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Many recent applications in machine learning and data fitting call for the algorithmic so-
lution of structured smooth convex optimization problems. Although the gradient descent
method is a natural choice for this task, it requires exact gradient computations and hence
can be inefficient when the problem size is large or the gradient is difficult to evaluate.
Therefore, there has been much interest in inexact gradient methods (IGMs), in which an
efficiently computable approximate gradient is used to perform the update in each iteration.
Currently, non–asymptotic linear convergence results for IGMs are typically established un-
der the assumption that the objective function is strongly convex, which is not satisfied in
many applications of interest; while linear convergence results that do not require the strong
convexity assumption are usually asymptotic in nature. In this paper, we combine the best
of these two types of results by developing a framework for analyzing the non–asymptotic
convergence rates of IGMs when they are applied to a class of structured convex optimization
problems that includes least squares regression and logistic regression. We then demonstrate
the power of our framework by proving, in a unified manner, new linear convergence results
for three recently proposed algorithms—the incremental gradient method with increasing
sample size [7, 10], the stochastic variance–reduced gradient (SVRG) method [14], and the
incremental aggregated gradient (IAG) method [5]. We believe that our techniques will find
further applications in the non–asymptotic convergence analysis of other first–order methods.

Keywords: Non-asymptotic convergence rate, global error bound, inexact gradient
method, least squares regression, logistic regression.

1. Introduction

Motivated by various applications in machine learning and data fitting, there has been
much interest in the design and analysis of fast algorithms for solving large–scale struc-
tured convex optimization problems recently. A case in point is the problem of empirical
risk minimization, in which one is given a set of input–output samples of a system, and
the goal is to minimize the discrepancy between the observed output and the output pre-
dicted by certain parametrized model of the system. Such a problem can be formulated
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as

min
x∈Rd

f(x) =
1

n

n∑

i=1

fi(x), (1)

where x ∈ R
d is the parameter vector, fi : R

d → R is a convex function that measures
the error or loss between the observed and predicted output of the i–th sample, and n
is the total number of available samples. When every fi is smooth, a simple and natural
approach for solving Problem (1) is to use gradient descent. However, this requires the
computation of the full gradient ∇f = 1

n

∑n
i=1∇fi in every iteration and hence can be

expensive when M is large or some of the ∇fi’s are difficult to evaluate. Nevertheless,
it is possible to circumvent such difficulty by exploiting the finite–sum structure of ∇f .
One strategy is to use a subset of the summands that make up the full gradient ∇f
to update the solution in each iteration. This leads to the class of incremental gradient
methods, whose update formulae take the form

xk+1 = xk − αk

|Ik|
∑

i∈Ik
∇fi(x

k). (2)

Here, αk > 0 is the step size in the k–th iteration, and Ik is a (possibly random) subset of
N = {1, 2, . . . , n} chosen according to some pre–specified rules (see [4] and the references
therein for some common choices of {Ik}k≥0). Note that the k–th iteration only requires
the |Ik| gradient values {∇fi(x

k)}i∈Ik . Hence, an iteration of an incremental gradient
method will generally be more efficient than that of gradient descent. However, in order
to guarantee convergence, incremental gradient methods of the form (2) typically require
diminishing step sizes, which results in the slow (sublinear) convergence of these meth-
ods [4]. On the other hand, gradient descent with a constant step size can achieve fast
(linear) convergence in various settings (see, e.g., [24]). Thus, a problem of fundamental
interest is to design methods that can enjoy both the low per–iteration complexity of
incremental gradient methods and the fast convergence of gradient descent.
To approach the above problem, it is useful to consider incremental gradient methods

of the form (2) under the framework of inexact gradient methods (IGMs). These meth-
ods aim at minimizing an arbitrary smooth function f by computing iterates {xk}k≥0

according to the formula

xk+1 = xk − αk

(

∇f(xk) + ek+1
)

, (3)

where Gk = ∇f(xk) + ek+1 ∈ R
d is an approximation of the gradient ∇f at xk, and

ek+1 = Gk−∇f(xk) ∈ R
d is the (possibly random) approximation error. It is easy to see

that the update formula (2) is a special case of (3), with

ek+1 =
1

|Ik|
∑

i∈Ik
∇fi(x

k)−∇f(xk).

In fact, many other methods also fall under the IGM framework. For details, we refer
the reader to [3, 4, 21, 27] and the discussions therein.
The rationale behind the update (3) is that an approximate gradient can often be

computed very efficiently. Thus, IGMs could have significant computational gain in each
iteration. However, the convergence rates of such methods depend crucially on the choice
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of step sizes {αk}k≥0 and the magnitude of the error vectors {ek}k≥1. Many recent works
on the convergence analysis of IGMs have focused on the case where the step sizes are con-
stant and developed conditions under which a non–asymptotic linear rate of convergence
can be achieved. For instance, Blatt et al. [5] proposed an IGM, called the incremental
aggregated gradient (IAG) method, for solving Problem (1) and showed that it con-
verges linearly when f is a strongly convex quadratic function. Recently, Gürbüzbalaban
et al. [12] refined this result by showing that the linear rate of convergence can still be
attained when f is a smooth strongly convex function with Lipschitz continuous gradient.
There has also been significant interest in stochastic IGMs for solving Problem (1) lately.
These include the stochastic average gradient (SAG) method developed by Le Roux et
al. [16], the stochastic variance–reduced gradient (SVRG) method developed by Johnson
and Zhang [14], and the SAGA method developed by Defazio et al. [8], just to name a
few. All these methods have been shown to converge linearly in expectation when f is
strongly convex. It is interesting to note that the above results do not require diminish-
ing step sizes or diminishing error norms. On another front, Byrd et al. [7] established
the linear convergence of a certain instantiation of the incremental gradient method (2)
when f is strongly convex and has a bounded Hessian. For the general IGM (3) with
constant step sizes, Friedlander and Schmidt [10] (see also [27]) showed that it converges
(sub)linearly if f is strongly convex and the squared error norms {‖ek‖22}k≥1 decrease
(sub)linearly to zero. It should be noted that all the aforementioned linear convergence
results apply only to problems with a strongly convex objective. As such, they do not
cover several important applications such as least squares regression and logistic regres-
sion. Although many works have studied the non–asymptotic convergence rates of IGMs
when the objective function is not strongly convex, the best known rate is only sublinear
(see, e.g., [1, 2, 6, 23, 25, 28]).
In another direction, there have been some early works that establish the asymp-

totic linear convergence of IGMs without requiring the objective function to be strongly
convex. For instance, Luo and Tseng [20, 21] showed that if the error norms satisfy
‖ek+1‖2 = O(‖xk − xk+1‖2), then the IGM (3) with step sizes bounded away from zero
has an asymptotic linear rate of convergence when applied to certain structured convex
optimization problems. In particular, this result applies to least squares regression and
logistic regression. However, it should be noted that the condition on the error norms as
stated above is rather strong, for it implies that the objective values of the iterates are
strictly decreasing. Subsequently, Li [18] showed that the asymptotic linear convergence
result of Luo and Tseng still holds under the weaker condition that the error norms
decrease linearly to zero. This shows that even with large gradient approximation errors
in the early iterations—which typically yields computational savings but may lead to an
increase in the objective value in some iterations—the IGM can still converge quickly.
Motivated by the above discussion, our main contribution in this paper is twofold.

First, we develop a new framework for analyzing the non–asymptotic convergence rate
of the IGM (3) with step sizes bounded away from zero when it is applied to a class
of structured convex optimization problems (which includes least squares regression and
logistic regression). One notable feature of our proposed framework is that it can handle
IGMs that generate iterates with non–monotonic objective values. Second, we show that
our framework leads to a unified non–asymptotic linear convergence analysis of several
recently proposed algorithms—namely, the incremental gradient method with increasing
sample size [7, 10], the SVRG method [14], and the IAG method [5]—even when strong
convexity is absent. Our linear convergence results extend those in [18, 20, 21, 30] in
that they hold non–asymptotically, and those in [5, 7, 10, 12, 14, 27] in that they cover
cases where the objective function is not necessarily strongly convex. A key step in our
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approach is to develop a global version of the error bound in [20]. Such a global error
bound provides a way to measure the progress of the IGM (3) in every iteration and
not just those iterations that are close to convergence. This, together with the powerful
convergence analysis framework developed by Luo and Tseng [21], allows us to establish
the desired non–asymptotic convergence rate results. We remark that Wang and Lin [31]
and Ma et al. [22] have recently exploited properties similar to the global error bound
developed in this paper to study the non–asymptotic convergence rates of feasible descent
methods. However, our work differs from theirs in two important aspects. First, the anal-
yses in [22, 31] require the objective values of the iterates to be strictly decreasing either
deterministically or in expectation, while our analysis does not have such a requirement.
This allows us to analyze several recently proposed first–order methods that generate
iterates with non–monotonic objective values, such as the SVRG method [14] and the
IAG method [5]. Second, in the context of risk minimization, the analyses in [22, 31]
apply only to the class of globally strongly convex loss functions, which precludes many
commonly used loss functions such as the logistic loss u 7→ log(1+exp(−u)). By contrast,
our analysis only requires the loss function to be strongly convex on compact subsets,
and hence it applies to a much wider class of loss functions.

2. Preliminaries

2.1 Basic Setup and Observations

In this paper, we focus on the following unconstrained convex optimization problem:

min
x∈Rd

{
f(x) = g(Ex) + qTx

}
, (4)

where E ∈ R
m×d is a linear operator, q ∈ R

d is a vector, and g : Rm → R is a function
satisfying the following assumptions:

Assumption 1

(a) The function g is continuously differentiable on R
m and its gradient ∇g is Lipschitz

continuous with parameter Lg > 0 on R
m; i.e.,

‖∇g(u) −∇g(v)‖2 ≤ Lg‖u− v‖2 for u, v ∈ R
m.

(b) The function g is strictly convex on R
m; i.e., g is strongly convex on any compact

subset of Rm.

The above setup is motivated by the empirical risk minimization problem (1). Indeed,
in many applications, the prediction error of the i–sample fi can be expressed as fi(x) =
ℓ(bi, a

T
i x), where (ai, bi) ∈ R

d ×R is the i–th input–output sample, and ℓ : R×R → R is
a loss function. Thus, the objective function f in Problem (1) can be put into the form
f(x) = g(Ex), where E is an n×d matrix whose i–th row is aTi , and g : Rn → R is given
by

g(y) =
1

n

n∑

i=1

ℓ(bi, yi).

For instance, by taking ℓ to be the square loss ℓ(u, v) = (u − v)2, we obtain the least
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squares regression problem

min
x∈Rd

f(x) =
1

n

n∑

i=1

(
aTi x− bi

)2

︸ ︷︷ ︸

ℓ(bi,aT
i x)

. (5)

On the other hand, by using the logistic loss ℓ(u, v) = log(1 + exp(−uv)), we arrive at
the logistic regression problem

min
x∈Rd

f(x) =
1

n

n∑

i=1

log
(
1 + exp(−bia

T
i x)
)

︸ ︷︷ ︸

ℓ(bi,aT
i x)

. (6)

In both examples, it is easy to verify that the corresponding g satisfies Assumption 1.
Going back to Problem (4), we note that the strict convexity of g on R

m does not
necessarily imply the strict convexity of f on R

d, as E may not have full column rank.
Now, by Assumption 1(a), it is easy to verify that ∇f is Lipschitz continuous with
parameter L = Lg‖E‖2 on R

d, where ‖E‖ = sup‖x‖2=1 ‖Ex‖2 is the spectral norm of E.
Finally, let X denote the set of optimal solutions to Problem (4). We make the following
assumption concerning X :

Assumption 2 The optimal solution set X is non–empty.

Assumption 2 implies that the optimal value fmin of Problem (4) is finite and bounded
from below. This, together with Assumption 1(b), yields the following simple but useful
result:

Proposition 1 The map x 7→ Ex is invariant over the optimal solution set X ; i.e.,
there exists a t∗ ∈ R

m such that Ex∗ = t∗ for all x∗ ∈ X .

Proposition 1 is well known; see, e.g., [20, 29]. For the sake of completeness, let us
include its proof here.

Proof. Let x∗, y∗ ∈ X be arbitrary. By the convexity of X , we have (x∗ + y∗)/2 ∈ X .
Hence, the convexity of f and optimality of x∗, y∗ imply that f((x∗ + y∗)/2) = (f(x∗) +
f(y∗))/2, or equivalently, g((Ex∗ + Ey∗)/2) = (g(Ex∗) + g(Ey∗))/2. Since g is strictly
convex on R

m, we conclude that Ex∗ = Ey∗, as desired. ⊔⊓

2.2 Inexact Gradient Methods

One approach for solving Problem (4) is to use inexact gradient methods (IGMs), which
compute iterates according to the formula (3). Our goal is to establish the convergence
rate of the IGM (3) under Assumptions 1 and 2 and various assumptions on the rate at
which the error sequence {ek}k≥1 tends to zero. We allow for the possibility that e1, e2, . . .
are random, in which case the iterates x1, x2, . . . will also be random. To simplify the
exposition, we assume that the step sizes {αk}k≥0 in (3) are constant and equal to some
α > 0. However, it should be noted that our analysis can also be applied to the case
where the step sizes {αk}k≥0 satisfy lim infk≥0 αk > 0.
The first step of our convergence analysis is to understand the behavior of the (possibly

random) sequence {f(xk)}k≥0. It is well–known that when there is no error (i.e., ek = 0

for all k ≥ 1), the IGM (3) will generate a sequence of iterates {xk}k≥0 whose associated
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objective values {f(xk)}k≥0 are monotonically decreasing [17]. However, this may not
be true in the presence of errors. The following proposition provides a bound on the
difference of the objective values of two successive iterates in terms of the error size. Its
proof is standard and can be found in Appendix A.

Proposition 2 The sequence {xk}k≥0 generated by the IGM (3) satisfies

f(xk)− f(xk+1) ≥
(
1

α
− L

2

)

‖xk − xk+1‖22 − ‖ek+1‖2‖xk − xk+1‖2

for all k ≥ 0.

An immediate consequence of Proposition 2 is the following result, whose proof can be
found in Appendix B.

Corollary 1 (cf. [18]) Suppose that the step size α satisfies α ∈
(
0, 2

L

)
. Then, for all

k ≥ 0,

(a)

‖xk − xk+1‖22 ≤ 2

γ

(

f(xk)− f(xk+1) +
1

2γ
‖ek+1‖22

)

,

(b)

0 ≤ f(xk+1)− fmin ≤ f(xk)− fmin +
1

4γ
‖ek+1‖22,

where γ = 1
α − L

2 > 0.

Although the error sequence {ek}k≥1 can be random, it should be noted that the
inequalities in both Proposition 2 and Corollary 1 hold for every realization of {ek}k≥1.

3. Error Bound Condition

Since we are interested in analyzing the convergence rate of the IGM (3), we need a
measure to quantify its progress towards optimality. One natural candidate would be
the distance to the optimal solution set X . Indeed, since X is non–empty, convex, and
closed (the closedness of X follows from the continuity of g), every x ∈ R

d has a unique
projection x̄ ∈ X onto X , and hence the measure x 7→ dist(x,X ), where

dist(x,X ) = min
y∈X

‖x− y‖2,

is well defined. Despite its intuitive appeal, the measure dist(·,X ) has one major dis-
advantage; namely, it is not easy to compute. An alternative would be to consider the
norm of the gradient x 7→ ‖∇f(x)‖2, which is motivated by the fact that the optimality
condition of (4) is ∇f(x) = 0. However, since ‖∇f(·)‖2 is only a surrogate of dist(·,X ),
we need to establish a relationship between them. Towards that end, consider the set

SB = {y ∈ R
m : ‖y − t∗‖2 ≤ B} ,
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where B > 0 is arbitrary. We then have the following theorem:

Theorem 1 Suppose that both Assumptions 1 and 2 hold for Problem (4). Suppose
further that g is strongly convex on SB for some B > 0; i.e.,

g(y)− g(z) ≥ (y − z)T∇g(z) +
σB
2
‖y − z‖22 for all y, z ∈ SB .

Then, there exists a constant τB ≥ 1
L such that

dist(x,X ) ≤ τB‖∇f(x)‖2 (7)

for all x ∈ R
d satisfying Ex ∈ SB.

Condition (7) is a so–called error bound for Problem (4). The proof of Theorem 1 relies
on the following proposition, whose proof can be found in Appendix C.

Proposition 3 There exist an ω > 0 such that for any x ∈ Rd, there exists an x∗ ∈ X
satisfying

‖x− x∗‖2 ≤ ω (‖∇f(x)‖2 + ‖Ex− t∗‖2) . (8)

Proof of Theorem 1. The argument is similar to that in [20]. Let x ∈ R
d be such that

Ex ∈ SB. The strong convexity of g on SB implies that

σB
2
‖Ex− t∗‖22 ≤ g(Ex)− g(t∗)− (Ex− t∗)T∇g(t∗),

σB
2
‖Ex− t∗‖22 ≤ g(t∗)− g(Ex) − (t∗ − Ex)T∇g(Ex).

Adding the above two inequalities and using the fact that ∇f(x∗) = 0 yield

σB‖Ex− t∗‖22 ≤ (Ex− t∗)T (∇g(Ex) −∇g(t∗))

= (x− x∗)T (∇f(x)−∇f(x∗))

≤ ‖x− x∗‖2‖∇f(x)‖2. (9)

In addition, by Proposition 3, there exists an x∗ ∈ X such that (8) holds. Hence, us-
ing (8), (9), and the identity (a + b)2 ≤ 2(a2 + b2), which is valid for all a, b ∈ R, we
compute

‖x− x∗‖22 ≤ ω2 (‖∇f(x)‖2 + ‖Ex− t∗‖2)2

≤ 2ω2
(
‖∇f(x)‖22 + ‖Ex− t∗‖22

)

≤ 2ω2

[

‖∇f(x)‖2
(

‖∇f(x)‖2 +
1

σB
‖x− x∗‖2

)]

≤ 2ω2

[

‖∇f(x)‖2
((

1 +
ω

σB

)

‖∇f(x)‖2 +
ω

σB
‖Ex− t∗‖2

)]

. (10)
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Since ‖Ex− t∗‖2 = ‖Ex− Ex∗‖2 ≤ ‖E‖ · ‖x− x∗‖2, it follows from (10) that

‖Ex− t∗‖22 ≤ 2‖E‖2ω2

(

1 +
ω

σB

)[

‖∇f(x)‖2(‖∇f(x)‖2 + ‖Ex− t∗‖2)
]

.

Let γB = 2‖E‖2ω2
(

1 + ω
σB

)

. Then, the above inequality is of the form U2 ≤
γB (V (U + V )) with U, V ≥ 0. This implies that U ≤ γ̄BV , where γ̄B =
(

γB +
√

γ2B + 4γB

)/
2. Hence, we obtain ‖Ex − t∗‖2 ≤ γ̄B‖∇f(x)‖2. This, together

with Proposition 3, yields (7) with τB = ω(1 + γ̄B).
Now, for any x ∈ R

d satisfying Ex ∈ SB , let x̄ be the projection of x onto X . By
the optimality of x̄, we have ∇f(x̄) = 0. It follows from the Lipschitz continuity of ∇f
and (7) that

dist(x,X ) ≤ τB‖∇f(x)‖2 = τB‖∇f(x)−∇f(x̄)‖2 ≤ τBL‖x− x̄‖2 = τBL · dist(x,X ),

which implies that τB ≥ 1
L . ⊔⊓

The error bound (7) has a close relationship with the so–called quadratic growth con-
dition on f . Such a property will be useful in our subsequent analysis.

Proposition 4 Consider the setting of Theorem 1 and let τB ≥ 1
L be the constant that

satisfies (7). Then,

f(x)− fmin ≥ 1

2τ2BL
dist(x,X )2

for all x ∈ R
d satisfying Ex ∈ SB.

Proof. Since ∇f is Lipschitz continuous, we have

f(y) ≥ f(z) + (y − z)T∇f(z) +
1

2L
‖∇f(y)−∇f(z)‖22 for all y, z ∈ R

d; (11)

see, e.g., [24, Theorem 2.1.5]. Now, let x ∈ R
d be such that Ex ∈ SB, and let x̄ be the

projection of x onto X . By taking y = x and z = x̄ in (11), we have

f(x)− fmin ≥ 1

2L
‖∇f(x)‖22. (12)

This, together with the error bound (7), implies the required result. ⊔⊓

4. Convergence Analysis of the IGM

Armed with Theorem 1 and Proposition 4, we are now ready to analyze the convergence
rate of the IGM (3) in the following two scenarios:

(S1) The function g is strongly convex on R
m.

(S2) The function g is strongly convex on SB for all B ∈ (0,∞), and the (possibly random)
error sequence {ek}k≥1 satisfies

∑∞
k=1 ‖ek‖22 ≤ Γ for some Γ ∈ (0,∞).

8
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It is easy to verify that the function g corresponding to the least squares regression
problem (5) and the logistic regression problem (6) satisfies the assumption in (S1) and
(S2), respectively.
The key step of the analysis is the following theorem, which establishes a recurrence

relation between f(xk+1)−fmin and f(xk)−fmin and forms the basis of all our subsequent
results.

Theorem 2 Suppose that both Assumptions 1 and 2 hold for Problem (4). Furthermore,
suppose that either (S1) or (S2) holds. Let {xk}k≥0 be the sequence generated by the
IGM (3) with step size αk = α for all k ≥ 0, where α ∈

(
0, 1

L

)
. Then, there exists a

constant τ ≥ 1
L such that

dist(xk,X ) ≤ τ‖∇f(xk)‖2 (13)

for all k ≥ 0. Moreover, we have

f(xk+1)− fmin ≤ µ(f(xk)− fmin) + δ‖ek+1‖22 (14)

for all k ≥ 0, where µ = 1− α
Lτ2 ∈ (0, 1) and δ = α

2 .

Proof. Let us first verify that in both scenarios (S1) and (S2), there exists a B > 0 such
that Exk ∈ SB for all k ≥ 0, and that g is strongly convex on SB . In scenario (S1), we
can simply set B = ∞ to get SB = R

m. In scenario (S2), observe that Corollary 1(b)
implies

0 ≤ f(xk)− fmin ≤ f(x0)− fmin +

k∑

j=1

‖ej‖22 ≤ f(x0)− fmin + Γ

for all k ≥ 0. Hence, by [29, Fact 4.1], the sequence {Exk}k≥0 is bounded. Consequently,
there exists a B ∈ (0,∞), which does not depend on the realization of {xk}k≥0, such
that Exk ∈ SB , and g is strongly convex on SB.
The above argument implies that Theorem 1 applies to both scenarios (S1) and (S2).

Hence, there exists a τ > 0, which does not depend on the realization of {ek}k≥1, such
that

dist(xk,X ) ≤ τ‖∇f(xk)‖2

for all k ≥ 0. Since ∇f is Lipschitz continuous, we have

f(y) ≤ f(z) + (y − z)T∇f(z) +
L

2
‖y − z‖22 for all y, z ∈ R

d; (15)

see, e.g., [24, Theorem 2.1.5]. Hence, by (15) and the iteration formula xk+1 = xk −

9
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α(∇f(xk) + ek+1), we obtain

f(xk+1)− fmin = f(xk − α(∇f(xk) + ek+1))− fmin

≤ f(xk)− α(∇f(xk) + ek+1)T∇f(xk) +
α2L

2
‖∇f(xk) + ek+1‖22 − fmin

= f(xk)− fmin − α

(

1− αL

2

)

‖∇f(xk)‖22 +
α2L

2
‖ek+1‖22

+ (α2L− α)∇f(xk)T ek+1. (16)

Since α ≤ 1
L , we have α2L− α < 0. It follows that

(α2L− α)∇f(xk)T ek+1 ≤ |α2L− α| · ‖∇f(xk)‖2 · ‖ek+1‖2
= α(1− αL) · ‖∇f(xk)‖2 · ‖ek+1‖2.

Using the identity ab ≤ (a2 + b2)/2, which is valid for all a, b ∈ R, the above leads to

(α2L− α)∇f(xk)T ek+1 ≤ α(1 − αL)

2
‖∇f(xk)‖22 +

α(1 − αL)

2
‖ek+1‖22.

Upon substituting this into (16), we obtain

f(xk+1)− fmin ≤ f(xk)− fmin −
α

2
‖∇f(xk)‖22 +

α

2
‖ek+1‖22. (17)

Now, by taking y = xk and x = x̄k (the projection of xk onto X ) in (15), we have

f(xk)− fmin ≤ L

2
dist(xk,X )2.

This, together with (13), implies that

‖∇f(xk)‖22 ≥ 1

τ2
dist(xk,X )2 ≥ 2

τ2L
(f(xk)− fmin). (18)

Upon combining (17) and (18), we obtain

f(xk+1)− fmin ≤ f(xk)− fmin −
α

τ2L
(f(xk)− fmin) +

α

2
‖ek+1‖22,

which implies the desired result. ⊔⊓
Theorem 2 suggests that the convergence behavior of the IGM (3) can be deduced from

the behavior of the squared norms of the error vectors {ek}k≥1. As a simple application
of Theorem 2, observe that by unrolling the inequality (14), we obtain

f(xk)− fmin ≤ µk
(
f(x0)− fmin

)
+ δ

k∑

j=1

µk−j‖ej‖22. (19)

This motivates the following results, whose proof can be found in Appendix D:

10
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Corollary 2 Consider the setting of Theorem 2.

(a) (Sublinear Convergence) Suppose that for some ρ > 0, we have ‖ek‖22 ≤ Bk =
O
(

1
k1+ρ

)
for all k ≥ 1. Then, the sequence of iterates {xk}k≥0 satisfies

f(xk+1)− fmin ≤ O

(
1

(k + 1)1+ρ

)

and dist(xk,X ) ≤ O

(
1

(k + 1)(1+ρ)/2

)

for all k ≥ 0. In particular, the sequence {f(xk)}k≥0 (resp. {xk}k≥0) converges at
least sublinearly to fmin (resp. an element in X ).

(b) (Linear Convergence) Suppose that for some ρ ∈ (0, 1), we have ‖ek‖22 ≤ Bk = O(ρk)
for all k ≥ 1. Then, there exists a c ∈ (0, 1) such that the sequence of iterates {xk}k≥0

satisfies

f(xk+1)− fmin ≤ O(c2(k+1)) and dist(xk,X ) ≤ O(ck)

for all k ≥ 0. In particular, the sequence {f(xk)}k≥0 (resp. {xk}k≥0) converges at
least linearly to fmin (resp. an element in X ).

In the context of inexact gradient methods, Corollary 2 extends the results of Schmidt
et al. [27] and Friedlander and Schmidt [10] in two ways. First, it shows that when
applied to the structured convex optimization problem (4), the IGM (3) can achieve
an O

(
1
k2

)
convergence rate for the sequence {f(xk) − fmin}k≥0 even when the error

norms {‖ek‖2}k≥1 decrease at an O
(
1
k

)
rate. This should be contrasted with the case

of a general convex optimization problem, for which the IGM (3) is only known to

achieve an O
(
log2 k

k

)

convergence rate for the sequence {min0≤j≤k f(x
j)− fmin}k≥0 [27,

Proposition 1]. Second, our analysis shows that even when the objective function f is
not strongly convex, it is possible to establish a sublinear (resp. linear) convergence rate
for the sequence of iterates {xk}k≥0, provided that the error norms {‖ek‖2}k≥1 decrease
to zero at a sublinear (resp. linear) rate.

Remarks. Since the relationship in Theorem 2 holds for every realization of the error
sequence {ek}k≥1, it also holds in expectation. Thus, we can derive bounds on the ex-
pected convergence rates of {f(xk)}k≥0 and {xk}k≥0 whenever bounds on {E

[
‖ek‖22

]
}k≥1

are available. As an illustration, we have the following extension of Corollary 2:

Corollary 3 Consider the setting of Theorem 2.

(a) (Expected Sublinear Convergence) Suppose that for some ρ > 0, we have E
[
‖ek‖22

]
≤

Bk = O
(

1
k1+ρ

)
for all k ≥ 1. Then, the sequence of iterates {xk}k≥0 satisfies

E

[

f(xk+1)− fmin

]

≤ O

(
1

(k + 1)1+ρ

)

and E

[

dist(xk,X )
]

≤ O

(
1

(k + 1)(1+ρ)/2

)

for all k ≥ 0.
(b) (Expected Linear Convergence) Suppose that for some ρ ∈ (0, 1), we have E

[
‖ek‖22

]
≤

Bk = O(ρk) for all k ≥ 1. Then, there exists a c ∈ (0, 1) such that the sequence of
iterates {xk}k≥0 satisfies

E

[

f(xk+1)− fmin

]

≤ O(c2(k+1)) and E

[

dist(xk,X )
]

≤ O(ck)

11



April 6, 2017 Optimization Methods & Software inexact˙conv˙v2

for all k ≥ 0.

The proof of Corollary 3 can be found in Appendix E.

5. Applications to Least Squares Regression and Logistic Regression

We now demonstrate the power of the analysis framework developed in previous sections
by applying it to three recently proposed first–order methods—namely, the incremental
gradient method with increasing sample size [10], the stochastic variance–reduced gradi-
ent method [14], and the incremental aggregated gradient method [30]—and establishing,
in a unified manner and for the first time, that these methods converge linearly when
applied to the least squares regression problem and/or the logistic regression problem.
To set the stage for our analysis, let us collect some useful properties of the least squares
regression and logistic regression problems.
Recall that the least squares regression problem is

min
x∈Rd

f(x) =
1

n

n∑

i=1

(
aTi x− bi

)2

︸ ︷︷ ︸

fi(x)

, (LSR)

where ai ∈ R
d and bi ∈ R are the given data, while the logistic regression problem is

min
x∈Rd

f(x) =
1

n

n∑

i=1

log
(
1 + exp(−bia

T
i x)
)

︸ ︷︷ ︸

fi(x)

, (LR)

where ai ∈ R
d and bi ∈ {−1, 1} are the given data. As discussed in Section 2.1, both

(LSR) and (LR) satisfy Assumptions 1 and 2. Moreover, as remarked in Section 4, the
objective functions of (LSR) and (LR) satisfy the requirements in scenarios (S1) and (S2),
respectively. The following proposition provides an estimate of the Lipschitz constant of
∇f in (LSR) and (LR).

Proposition 5 Let L > 0 be a constant such that max1≤i≤n ‖ai‖22 ≤ L. Then, for either
(LSR) or (LR), ∇f is Lipschitz continuous with parameter at most L.

Proof. Note that for both (LSR) and (LR), f is twice continuously differentiable on R
d.

Hence, the Lipschitz constant of ∇f is bounded above by supx∈Rd ‖Hf (x)‖, where Hf (x)
is the Hessian of f at x and ‖ · ‖ is the operator norm. For (LSR), we have

Hf (x) =
1

n

n∑

i=1

aia
T
i .

Since ‖aiaTi ‖ = ‖ai‖22 ≤ L, it follows that supx∈Rd ‖Hf (x)‖ ≤ L.

On the other hand, for (LR), we have

Hf (x) =
1

n

n∑

i=1

b2i exp(−bia
T
i x)

(1 + exp(−biaTi x))
2
· aiaTi .

12
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Since bi ∈ {−1, 1}, we have b2i = 1. Moreover, the fact that exp(−bia
T
i x) is positive

implies

exp(−bia
T
i x)

(1 + exp(−bia
T
i x))

2
≤ 1

4
.

Therefore, we obtain ‖Hf (x)‖ ≤ 1
4

∥
∥ 1
n

∑n
i=1 aia

T
i

∥
∥ ≤ L for all x ∈ R

d, as desired. ⊔⊓

5.1 Incremental Gradient Method with Increasing Sample Size

The incremental gradient method is specifically designed for solving optimization prob-
lems with a finite–sum structure such as Problem (1) (we refer the readers to the excellent
survey [4]). The high–level description of the method is given in Algorithm 1.

Algorithm 1 Incremental Gradient Method with Increasing Sample Size

Input: initial sample set I0 ⊂ N = {1, 2, . . . , n}, step size α > 0, initial point x0 ∈ R
d

for k = 0, 1, 2, . . . do
calculate the search direction by

Gk =
1

|Ik|
∑

i∈Ik
∇fi(x

k)

update xk by the formula

xk+1 = xk − αGk

choose Ik+1 ⊂ N according to some pre–specified rule
end for

By viewing Algorithm 1 as an inexact gradient method of the form (3), it can be easily
verified that the error vector ek+1 in the k–th iteration is given by

ek+1 = Gk −∇f(xk) =
n− |Ik|
n|Ik|

∑

i∈Ik
∇fi(x

k)− 1

n

∑

i∈N \Ik
∇fi(x

k). (20)

If we form Ik by sampling a fixed number of elements from N uniformly without re-
placement and the sampling is done independent of I0, I1, . . . , Ik−1 for all k ≥ 0, then we
also have

E

[

‖ek+1‖22
∣
∣Fk

]

=

(
n− |Ik|
n|Ik|

)(

1

n− 1

n∑

i=1

‖∇fi(x
k)−∇f(xk)‖22

)

(21)

for all k ≥ 0, where Fk is the σ–algebra generated by e1, e2, . . . , ek with F0 = ∅; see [10,
Section 3.2].
In order to apply the machinery developed in Section 4 to understand the convergence

behavior of Algorithm 1, we need to bound the squared error norms {‖ek‖22}k≥1. Towards
that end, let us study the least squares regression and the logistic regression problems
separately.

13
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5.1.1 Least Squares Regression

Consider first the case where we apply Algorithm 1 to solve the least squares regres-
sion problem (LSR). The following proposition provides bounds on the error norms
{‖ek‖2}k≥1 under two different rules of choosing the sets {Ik}k≥0. Its proof can be found
in Appendix F.

Proposition 6 The following hold:

(a) (Generic) Suppose that the sets {Ik}k≥0 satisfy n
2 ≤ |Ik| ≤ n for all k ≥ 0. Then, we

have

‖ek+1‖22 ≤ 8L
n− |Ik|

n
f(xk) (22)

for all k ≥ 0, where L > 0 is given in Proposition 5.
(b) (Uniform Sampling without Replacement) Suppose that the sets {Ik}k≥0 are formed

by sampling a fixed number of elements from N uniformly without replacement.
Then, we have

E

[

‖ek+1‖22
]

≤ 16L
n− |Ik|

(n− 1)|Ik|
E

[

f(xk)
]

(23)

for all k ≥ 0, where L > 0 is given in Proposition 5.

Since the premises of Theorem 2 are satisfied by the least squares regression prob-
lem (LSR), under the assumption that the sets {Ik}k≥0 satisfy n

2 ≤ |I0| ≤ |I1| ≤ · · · , the
inequalities (14) and (22) together yield

f(xk+1)− fmin ≤ µ
(

f(xk)− fmin

)

+ 8δL
n − |Ik|

n

[(

f(xk)− fmin

)

+ fmin

]

=

(

µ+ 8δL
n − |Ik|

n

)(

f(xk)− fmin

)

+ 8δLfmin
n− |Ik|

n

≤ µ̄
(

f(xk)− fmin

)

+ δ̄Ek+1, (24)

where

µ̄ = µ+ 8δL
n − |I0|

n
, δ̄ = 8δLfmin, Ek+1 =

n− |Ik|
n

for k = 0, 1, . . . .

Hence, if µ̄ ∈ (0, 1) (which can be guaranteed when |I0| is sufficiently large), then Corol-
lary 2 implies that as long as {Ek}k≥1 decreases (sub)linearly to zero, the sequence
{f(xk)}k≥0 (resp. {xk}k≥0) converges at least (sub)linearly to fmin (resp. an element in
X ).

Remark.The assumptions |I0| ≥ n
2 and µ̄ ∈ (0, 1) are only made for the sake of simplicity

and can be dropped altogether. Indeed, as long as {Ek}k≥1 decreases to zero, there will
be an index K ≥ 1 such that |Ik| ≥ n

2 and µ + 8δLEk+1 ∈ (0, 1) for all k ≥ K. Hence,
one can still derive the desired convergence rate results using arguments similar to the
proof of Corollary 2.

14
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On the other hand, under the assumption that the sets {Ik}k≥0 are obtained by sam-
pling uniformly from N without replacement and satisfy |I0| ≤ |I1| ≤ · · · , the inequali-
ties (14) and (23) imply

E

[

f(xk+1)− fmin

]

≤
(

µ+ 16δL
n− |Ik|

(n − 1)|Ik|

)

E

[

f(xk)− fmin

]

+ 16δLfmin
n− |Ik|

(n− 1)|Ik|

≤ µ̃E
[

f(xk)− fmin

]

+ δ̃Ẽk+1,

where

µ̃ = µ+ 16δL
n− |I0|

(n − 1)|I0|
, δ̃ = 16δLfmin, Ẽk+1 =

n− |Ik|
(n− 1)|Ik|

for k = 0, 1, . . . .

In particular, if µ̃ ∈ (0, 1) (which again can be guaranteed when |I0| is sufficiently large),
then by Corollary 3, we see that the expected rate at which {f(xk)}k≥0 (resp. {xk}k≥0)

converges to fmin (resp. an element in X ) is (sub)linear, provided that {Ẽk}k≥1 decreases
(sub)linearly to zero.

5.1.2 Logistic Regression

Next, let us consider the case where Algorithm 1 is used to solve the logistic regression
problem (LR). Recall that for (LR), we have fi(x) = log(1 + exp(−bia

T
i x)) for i =

1, 2, . . . , n. To bound the error norms {‖ek‖2}k≥1, we first compute

∇fi(x) =
−bi exp(−bia

T
i x)

1 + exp(−biaTi x)
ai for i = 1, 2, . . . , n.

Upon noting that max1≤i≤n ‖ai‖22 ≤ L and bi ∈ {−1, 1}, we obtain

‖ek+1‖22 ≤




n− |Ik|
n|Ik|

∑

i∈Ik
‖∇fi(x

k)‖2 +
1

n

∑

i∈N \Ik
‖∇fi(x

k)‖2





2

≤ 4L2E2
k+1,

where, as before, Ek+1 = n−|Ik|
n . Since the premises of Theorem 2 are satisfied by the

logistic regression problem (LR), the above inequality, together with (14), implies that

f(xk+1)− fmin ≤ µ
(

f(xk)− fmin

)

+ 4δLE2
k+1.

In particular, if {E2
k}k≥1 decreases (sub)linearly to zero, then by Corollary 2, we conclude

that {f(xk)}k≥0 (resp. {xk}k≥0) converges at least (sub)linearly to fmin (resp. an element
in X ).
If the sets {Ik}k≥0 are obtained via uniform sampling from N without replacement,

15
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then using (21) and max1≤i≤n ‖ai‖22 ≤ L, we have

E

[

‖ek+1‖22
∣
∣Fk

]

≤
(
n− |Ik|
n|Ik|

)[

1

n− 1

n∑

i=1

(

‖∇fi(x
k)‖2 + ‖∇f(xk)‖2

)2
]

≤ 4L2 n− |Ik|
(n− 1)|Ik|

.

This implies that for all k ≥ 0,

E

[

f(xk+1)− fmin

]

≤ µE
[

f(xk)− fmin

]

+ 4δL2Ẽk+1,

where, as before, Ẽk+1 = n−|Ik|
(n−1)|Ik| . Hence, by Corollary 3, the expected rate at which

{f(xk)}k≥0 (resp. {xk}k≥0) converges to fmin (resp. an element in X ) is (sub)linear,

provided that {Ẽk}k≥1 decreases (sub)linearly to zero.

5.2 Stochastic Variance–Reduced Gradient Method for Least Squares

Regression

The stochastic variance–reduced gradient (SVRG) method is recently proposed by John-
son and Zhang [14] for solving data fitting problems with a finite–sum structure. The
high–level description of the SVRG method is given in Algorithm 2. Unlike the standard
stochastic gradient descent (SGD) method, the SVRG method has an additional epoch
index s. In each epoch, the SVRG method performs a fixed number of SGD–type updates
with a correction term µ − ∇fik(ω) (see (25)). Such a correction term aims to reduce
the variance of the approximate gradient ∇fik . Under the assumption that f is strongly
convex and some other standard assumptions, it is proven in [14] (cf. [26]) that by choos-
ing the step size α and update frequency l properly, the sequence {ωs}s≥0 generated by
the SVRG method will converge to the optimal solution ω∗ linearly in expectation; i.e.,
E
[
‖ωs+1 − ω∗‖2

]
≤ ρE [‖ωs − ω∗‖2] for some constant ρ ∈ (0, 1).

Algorithm 2 Stochastic Variance–Reduced Gradient Method

Input: number of iterations in each epoch l ≥ 1, step size α > 0, initial point ω0 ∈ R
d

for s = 1, 2, . . . do
ω = ωs−1

µ = 1
n

∑n
i=1 ∇fi(ω)

x0 = ω
for k = 0, 1, . . . , l − 1 do

sample an index ik ∈ N uniformly at random
update xk by the formula

xk+1 = xk − α(∇fik(x
k)−∇fik(ω) + µ) (25)

end for

sample an index k ∈ {0, 1, . . . , l − 1} uniformly at random and set ωs = xk

end for

In this section, we study the convergence performance of the SVRG method for solving

16
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the least squares regression problem (LSR). Note that the objective function of (LSR)
is not strongly convex in general. Thus, existing analyses of the SVRG method, such as
those in [14, 26], do not apply here. However, using the machinery developed in Section 4,
we can still show that the iterates generated by the SVRG method will converge linearly
in expectation. We remark that a similar result has been established independently by
Gong and Ye [11]. However, our proof highlights the fact that the SVRG method can be
treated as an IGM.
To begin our analysis, consider an arbitrary epoch s ≥ 1. For simplicity, let ω and

ω+ denote the input and output of this epoch, respectively. Also, let {xk}0≤k≤l be the
sequence generated by update formula (25) in this epoch. Thus, we have x0 = ω, and
ω+ is selected from {x0, x1, . . . , xl−1} uniformly at random. Upon viewing the update
formula (25) as an instance of (3), we obtain

ek+1 = ∇fik(x
k)−∇fik(ω) + µ−∇f(xk)

= ∇fik(x
k)−∇fik(ω) +

1

n

n∑

i=1

[

∇fi(ω)−∇fi(x
k)
]

(26)

for k = 0, 1, . . . , l − 1, where ik is a random variable satisfying Pr(ik = i) = 1
n for

i = 1, 2, . . . , n. Driven by the randomness of ik, the error vectors {ek}1≤k≤l are also
random. Let Fk be the σ–algebra generated by e1, e2, . . . , ek with F0 = ∅. By utilizing
the structure of ek, we can prove the following bounds:

Proposition 7 Suppose that the SVRG method is used to solve the least squares re-
gression problem (LSR). Then, for k = 0, 1, . . . , l − 1, we have

E

[

f(xk+1)− fmin

∣
∣Fk

]

≤
[

1− 2α

τ2L

(

1− αL

2

)]

(f(xk)− fmin)

+
α2L

2
E

[

‖ek+1‖22
∣
∣Fk

]

, (27)

E

[

‖ek+1‖22
∣
∣Fk

]

≤ 4L(f(xk)− fmin + f(ω)− fmin). (28)

The proof of Proposition 7 can be found in Appendix G. Armed with Proposition 7,
we can now apply the machinery developed in Section 4 to establish the global linear
convergence of the SVRG method for solving (LSR).

Theorem 3 Suppose that the SVRG method is used to solve the least squares regression
problem (LSR). If the step size α and update frequency l satisfy

ρ =
1 + 2lα2L2

l
[

2α
τ2L

(
1− αL

2

)
− 2α2L2

] < 1,

where τ ≥ 1
L is the constant in Theorem 2, then the sequence of iterates {ωs}s≥0 from

each epoch satisfies

E [f(ωs)− fmin] = O(ρs) and E [dist(ωs,X )] = O(ρs/2).

Proof. We first show that by choosing α and l properly, ρ < 1 can be achieved. From
Proposition 5, we know that L is the Lipschitz constant of ∇f . Hence, by Theorem 2,
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we have τ ≥ 1
L . We claim that as long as α < 1

3τ2L3 , we have

2α

τ2L

(

1− αL

2

)

− 2α2L2 > 3α2L2. (29)

Indeed, simple calculations show that (29) is equivalent to αL(5L2τ2 + 1) < 2. Since
Lτ ≥ 1, this is satisfied if α < 1

3τ2L3 . In light of (29), it is immediate from the definition

of ρ that for any fixed α satisfying α < 1
3τ2L3 , we have ρ < 1+2lα2L2

3lα2L2 . Hence, by choosing
l large enough, ρ < 1 can be achieved.
Now, consider an arbitrary epoch s ≥ 0. For simplicity, let ω denote ωs and ω+ denote

ωs+1. Also, let {xk}0≤k≤l be the sequence generated by the update formula (25) in this
epoch. By (28) and (27), we have

E

[

f(xk+1)− fmin

∣
∣Fk

]

≤
[

1− 2α

τ2L

(

1− αL

2

)]

(f(xk)− fmin)

+ 2α2L2(f(xk)− fmin + f(ω)− fmin).

Taking expectation on both sides, we obtain

E

[

f(xk+1)− fmin

]

≤
[

1− 2α

τ2L

(

1− αL

2

)

+ 2α2L2

]

E

[

f(xk)− fmin

]

+ 2α2L2 (f(ω)− fmin) .

Summing the above inequality over k = 0, 1, . . . , l−1 and using the fact that x0 = ω and
f(xl)− fmin ≥ 0, we have

[
2α

κ2L

(

1− αL

2

)

− 2α2L2

] l−1∑

k=0

E

[

f(xk)− fmin

]

≤ 2lα2L2(f(ω)− fmin).

By definition of ρ, the above can be simplified as

1

l

l−1∑

k=0

E

[

f(xk)− fmin

]

≤ ρ(f(ω)− fmin). (30)

Since ω+ is selected from {x0, x1, . . . , xl−1} uniformly at random, by taking expectation
with respect to x0, x1, . . . , xl−1, we have

E
[
f(ω+)

]
=

1

l

l−1∑

k=0

f(xk).

Taking another expectation with respect to e1, e2, . . . , el on both sides of the above yields

E
[
f(ω+)

]
=

1

l

l−1∑

k=0

E

[

f(xk)
]

.
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This, together with (30), implies that E [f(ω+)− fmin] ≤ ρ(f(ω) − fmin), where the
expectation is taken with respect to e1, e2, . . . , el and the randomness in selecting ω+.
Since the above inequality holds for an arbitrary epoch, we conclude that

E [f(ωs)− fmin] = O(ρs).

The convergence result for dist(ωs,X ) now follows from Proposition 4. ⊔⊓
Before we close this sub–section, let us remark that the techniques developed above

can be extended to establish similar linear convergence results for other variants of the
SVRG method, such as the prox–SVRG method in [32] and the mini–batch variant of
the SVRG method in [15]. However, in view of the current length of the paper, we shall
not pursue these directions here.

5.3 Incremental Aggregated Gradient Method for Least Squares Regression

Similar to the incremental gradient method and the SVRG method, the incremental
aggregated gradient (IAG) method is also specifically designed for solving data fitting
problems with the finite–sum structure. Algorithm 3 is a high–level description of the
IAG method. The sequence of index vectors {πk}k≥0 is arbitrary but satisfies the delay
bound (31), which ensures that each component ∇fi in the summands (32) is updated
at least once within every K+1 consecutive iterations of IAG. For example, the original
IAG method proposed in [5] is a realization of Algorithm 3, where π0

i = 0 for i = 1, . . . , n
and

πk
i =

{

k if i = (k − 1 mod n) + 1,

πk−1
i otherwise

for i = 1, . . . , n and k = 1, 2, . . .. Hence, the components {∇fi}1≤i≤n in the summa-
tion (32) are updated cyclically and the delay bound K is thus n − 1. The generalized
version of the IAG method in Algorithm 3 is developed in [30]. By introducing a uniform
delay bound K, it allows us to model the distributed computation setting, where the
center assigns the task of computing ∇f1, . . . ,∇fn to n processors and update x in an
asynchronous manner.
In [30], it has been shown that the IAG method is globally convergent. Moreover, by

assuming a local error bound property, the rate at which the sequence of iterates {xk}k≥0

generated by the IAG method converges to the optimal solution set X is asymptotically
linear. Recently, it is shown in [12] that the IAG method enjoys a non–asymptotic linear
convergence rate when the objective function f is strongly convex. In this section, we
will show that when applying the IAG method to solve the least squares regression
problem (LSR), the non–asymptotic linear convergence rate can be achieved without
assuming strong convexity.
To begin, we note that the update formula (33) can be expressed as an instance of (3)

with the error vector ek+1 given by

ek+1 =
1

n

n∑

i=1

[

∇fi(x
πk
i )−∇fi(x

k)
]

, (34)

where k = 0, 1, . . .. Using the structure of ek+1 and the delay bound K, we have the
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Algorithm 3 Incremental Aggregated Gradient Method

Input: step size α > 0, delay bound K ∈ N+, initial point x
0 ∈ R

d

for k = 0, 1, 2, . . . do
choose the index vector πk ∈ Z

n such that each entry πk
i satisfies

(k −K)+ ≤ πk
i ≤ k for i = 1, 2, . . . , n (31)

calculate the search direction by

Gk =
1

n

n∑

i=1

∇fi(x
πk
i ) (32)

update xk by the formula

xk+1 = xk − αGk (33)

end for

following bound on ‖ek+1‖22, whose proof can be found in Appendix H.

Proposition 8 Suppose that the IAG method is used to solve the least squares regression
problem (LSR). Then, for k = 0, 1, . . ., we have

‖ek+1‖22 ≤ 8nL · max
(k−K)+≤l≤k

(f(xl)− fmin).

Equipped with Proposition 8, we are now ready to establish the global linear conver-
gence of the IAG method for solving (LSR).

Theorem 4 Suppose that the IAG method is used to solve the least squares regression
problem (LSR). If the step size α is chosen such that

ρ =
(

1− α

Lτ2
+ 10nα3L3K2

) 1

2K+1

< 1,

where τ ≥ 1
L is the constant in Theorem 2, then

f(xk)− fmin ≤ O(ρk) and dist(xk,X ) ≤ O(ρk/2).

Proof. Since the premises of Theorem 2 hold for the least squares regression prob-
lem (LSR), we have τ ≥ 1

L . Using (34) and the fact that ∇fi is Lipschitz continuous
with parameter L for i = 1, . . . , n, we have

‖ek+1‖2 ≤
1

n

n∑

i=1

‖∇fi(x
πk
i )−∇fi(x

k)‖2 ≤ L

n

n∑

i=1

‖xπk
i − xk‖2.
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This implies that

‖ek+1‖2 ≤
L

n

n∑

i=1

k−1∑

j=(k−K)+

‖xj+1 − xj‖2 (35)

≤ L

k−1∑

j=(k−K)+

‖xj+1 − xj‖2

= αL

k−1∑

j=(k−K)+

‖Gj‖2 (36)

≤ αL

k−1∑

j=(k−K)+

(
‖∇f(xj)‖2 + ‖ej+1‖2

)
, (37)

where (35) follows from the triangle inequality and the fact that (k−K)+ ≤ πk
i ≤ k, (36)

follows from (33), and (37) follows from (32), (34), and the triangle inequality. Hence,

‖ek+1‖22 ≤ 2α2L2K

k−1∑

j=(k−K)+

(
‖∇f(xj)‖22 + ‖ej+1‖22

)
. (38)

Since ∇f is Lipschitz continuous with parameter L, we see from (12) that

‖∇f(xj)‖22 ≤ 2L(f(xj)− fmin) for j = (k −K)+, . . . , k − 1.

Together with (38) and Proposition 8, this yields

‖ek+1‖22 ≤ 2α2L2K

k−1∑

j=(k−K)+

(

2L(f(xj)− fmin) + 8nL · max
(j−K)+≤l≤j

(f(xl)− fmin)

)

≤ 2α2L2K

k−1∑

j=(k−K)+

(

10nL · max
(j−K)+≤l≤j

(f(xl)− fmin)

)

≤ 20nα2L3K2 · max
(k−2K)+≤l≤k

(f(xl)− fmin).

Upon combining this with (14), we obtain

f(xk+1)−fmin ≤
(

1− α

Lτ2

)

(f(xk)−fmin)+10nα3L3K2· max
(k−2K)+≤l≤k

(f(xl)−fmin). (39)

To solve the above recurrence, we need the following result:

Fact 1 ([9, Lemma 3]) Let {Vk}k≥0 be a sequence of non-negative real numbers satis-
fying

Vk+1 ≤ pVk + q max
(k−T )+≤j≤k

Vj
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for some constants p, q ≥ 0 and integer T ≥ 0. Suppose that p+ q < 1. Then, by letting

ρ = (p + q)
1

T+1 < 1, we have

Vk ≤ ρkV0 for k = 0, 1, . . . .

Now, observe that (39) corresponds to

Vk = f(xk)− fmin, p = 1− α

Lτ2
, q = 10nα3L3K2, T = 2K

in Fact 1. Hence, if we choose α such that p+ q < 1, or equivalently, α < 1√
10nKτL2

, then

by Fact 1, we have

f(xk)− fmin ≤
(

1− α

Lτ2
+ 10nα3L3K2

) 1
2K+1

(f(x0)− fmin).

Finally, using Proposition 4, the convergence result for dist(xk,X ) follows. ⊔⊓

6. Numerical Illustrations

In this section, we perform numerical experiments on the three instantiations of the
IGM (3) in Section 5 to support our theoretical developments. Specifically, we use both
synthetic and real datasets to test (i) the incremental gradient method with increasing
sample size (IGM–ISS) for solving the least squares regression problem (LSR) and the
logistic regression problem (LR), (ii) the stochastic variance–reduced gradient (SVRG)
method for solving the least squares regression problem (LSR), and (iii) the incremen-
tal aggregated gradient (IAG) method for solving the least squares regression prob-
lem (LSR).

6.1 On Identifying Linear Convergence

To numerically investigate the rate at which a sequence {wk}k≥0 converges to w∗, it is
common to plot the sequence {log(‖wk − w∗‖2)}k≥0 with respect to the index k. If the
resulting curve roughly follows a straight line with negative slope, then it indicates that
the convergence rate is at least linear. Based on this discussion, we shall present the
following two types of figures for determining the convergence rates of IGMs:

(i) We plot the sequence {log(f(xk)− fmin)}k≥0 with respect to the number of iterations
k ≥ 0. Since it is in general difficult to determine fmin exactly, we approximate it
by solving the optimization problem to a high accuracy. Such a plot will allow us to
deduce the convergence rate of the function value.

(ii) We plot the sequence {log(‖∇f(xk)‖2)}k≥0 with respect to the number of iterations
k ≥ 0. This is for identifying the convergence rate of {dist(xk,X )}k≥0. Due to the
error bound property (13) and the Lipschitz continuity of ∇f(x), the rate at which
{dist(xk,X )}k≥0 converges to 0 is identical with the rate at which {‖∇f(xk)‖2}k≥0

converges to 0.

Since the focus of this work is on analyzing the convergence rates of IGMs, we shall not
report the computational times of the tested methods.
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6.2 Datasets with Non–Strongly Convex Objectives

The details of the tested datasets are listed in Table 1. The two datasets madelon and
cpusmall can be downloaded from the LIBSVM datasets1, and syntic is synthetic. We
note that the matrix A in Table 1 is defined as A = [a1, a2, . . . , an]

T ∈ R
n×d, where

the ai’s correspond to the vectors in (LSR) and (LR). Given the information about the
column rank of A (see the last column of Table 1), it is clear that the instances of (LSR)
and (LR) defined by these datasets are not strongly convex.

Name Problem n d Column rank of A

madelon logistic regression 2000 1000 ≤ 500
syntic least squares regression 2000 3000 ≤ 2000

cpusmall least squares regression 8192 20 ≤ 12

Table 1. Details of the tested data sets.

6.3 Convergence Performance

We are now ready to present the results of our experiments. In all the experiments, we
estimate the Lipschitz constant by letting L = max1≤i≤n ‖ai‖22 (see Proposition 5).

6.3.1 IGM–ISS

From the discussion in Section 5.1, we see that for both the least squares regression
problem (LSR) and the logistic regression problem (LR), if the sets {Ik}k≥0 are obtained

via uniform sampling from N without replacement, then as long as the sequence {Ẽk}k≥1

defined by Ẽk+1 = n−|Ik|
(n−1)|Ik| converges to zero linearly, the resulting algorithm will have

a linear convergence rate. In our implementation, we set

|Ik+1| =
⌈

n×
(

1 +
0.9 × (n− |Ik|)

|Ik|

)−1
⌉

. (40)

With this strategy of obtaining {Ik}k≥0, it can be verified that the resulting errors

{Ẽk}k≥1 satisfy Ẽk+1 = O(0.9k) for k = 0, 1, . . . and thus converge to zero at least
linearly. Figures 1 and 2 show the convergence performance of IGM–ISS when solving the
least squares regression problems cpusmall and syntic and the logistic regression problem
madelon, respectively. It can be seen from the figures that the convergence rates of the
objective values and the gradient norms are both at least linear.

6.3.2 SVRG and IAG

The theoretical results of Sections 5.2 and 5.3 show that when applied to the least squares
regression problem (LSR), both the SVRG and IAG methods can achieve a linear rate
of convergence when the parameters are chosen properly. In our implementation of the
SVRG method, we set the step size α = 0.001/L and the iteration number of each epoch
l = 2n. In the implementation of the IAG method, we set the same step size α = 0.001/L

1Information about these two data sets can be found in https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/.
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Figure 1. Convergence performance of IGM–ISS when solving the least squares regression problems cpusmall and
syntic. Figures 1(a) and 1(c) show the convergence rates of the objective values. Figures 1(b) and 1(d) show the
convergence rates of the gradient norms.
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Figure 2. Convergence performance of IGM–ISS when solving the logistic regression problem madelon. Figure 2(a)
shows the convergence rate of the objective values. Figure 2(b) shows the convergence rate of the gradient norms.
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Figure 3. Convergence performance of the SVRG method when solving the least squares regression problems
cpusmall and syntic. Figures 3(a) and 3(c) show the convergence rates of the objective values. Figures 3(b) and 3(d)
show the convergence rates of the gradient norms.

and the delay bound K = 10. Figures 3 and 4 show the convergence performance of these
two methods when solving the least squares regression problems cpusmall and syntic. It
can be seen from the figures that both the objective values and the gradient norms
converge at least linearly.

7. Concluding Remarks

In this paper, we considered a class of structured unconstrained convex optimization
problems, in which the objective function is the composition of an affine mapping with
a strictly convex function that has certain smoothness and curvature properties. This
encapsulates many problems in machine learning and data fitting, such as least squares
regression and logistic regression. We showed, in a unified manner, that a host of inexact
gradient methods in the literature for solving this class of problems have a global linear
rate of convergence. To obtain our results, we developed a so–called global error bound,
which, roughly speaking, measures the distance between a point and the optimal set in
terms of some easily computable quantities. In general, error bounds are very useful for
proving strong convergence rate results for optimization algorithms (see, e.g., [21, 34, 35]).
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Figure 4. Convergence performance of the IAG method when solving the least squares regression problems cpus-

mall and syntic. Figures 4(a) and 4(c) show the convergence rates of the objective values. Figures 4(b) and 4(d)
show the convergence rates of the gradient norms.

Thus, it would be interesting to see whether such an approach can be used to exploit the
structure of optimization problems arising in machine learning and establish the linear
convergence of some other first–order methods.
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Appendix

Appendix A. Proof of Proposition 2

Since ∇f is L–Lipschitz continuous, we have

f(xk+1)− f(xk) ≤ ∇f(xk)T (xk+1 − xk) +
L

2
‖xk+1 − xk‖22;

see, e.g., [24, Theorem 2.1.5]. Using (3) and the fact that αk = α for all k ≥ 0, we obtain

f(xk+1)− f(xk) ≤ L

2
‖xk+1 − xk‖22 +

(
1

α
(xk − xk+1)− ek+1

)T

(xk+1 − xk)

≤
(
L

2
− 1

α

)

‖xk+1 − xk‖22 + ‖ek+1‖2‖xk+1 − xk‖2,

as desired.

Appendix B. Proof of Corollary 1

By Proposition 2, we have

f(xk)− f(xk+1) ≥ γ

(

‖xk − xk+1‖2 −
1

2γ
‖ek+1‖2

)2

− 1

4γ
‖ek+1‖22. (B1)

Using the identity (a+ b)2 ≤ 2(a2 + b2), which is valid for all a, b ∈ R, we have

‖xk − xk+1‖22 =

(

‖xk − xk+1‖2 −
1

2γ
‖ek+1‖2 +

1

2γ
‖ek+1‖2

)2

≤ 2

[(

‖xk − xk+1‖2 −
1

2γ
‖ek+1‖2

)2

+
1

4γ2
‖ek+1‖22

]

. (B2)

Upon combining (B1) and (B2), we obtain (a). Now, observe from (B1) that

f(xk)− f(xk+1) = f(xk)− fmin + fmin − f(xk+1) ≥ − 1

4γ
‖ek+1‖22.

Upon rearranging, we obtain (b).

Appendix C. Proof of Proposition 3

We begin with the following result, which is known as the Hoffman error bound:

Fact 2 (cf. [13]) Let C ∈ R
m×n and s ∈ R

m be given. Suppose that the linear system

Cu = s (C1)
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in u ∈ R
n is feasible. Then, there exists a θ > 0, which depends only on C, such that for

any x ∈ R
n, there exists an x̄ ∈ R

n satisfying (C1) and

‖x− x̄‖2 ≤ θ‖Cx− s‖2.

The quantity θ > 0 in Fact 2 is known as the Hoffman constant, for which sharp estimates
are known. We refer the reader to [19, 33] for details.
To prove Proposition 3, consider the following linear system in (u, v) ∈ R

d × R
d:

v = u− ET∇g(t∗)− q,

Eu = t∗,

u = v.

(C2)

Note that (x̄, x̄) ∈ R
d ×R

d is feasible for (C2) if and only if x̄ ∈ X . Thus, it follows from
Assumption 2 that (C2) is feasible. Now, let z = x − ∇f(x) = x − ET∇g(Ex) − q. By
Fact 2, there exist a constant θ > 0 and a feasible solution (x∗, z∗) to (C2) such that

‖(x, z) − (x∗, z∗)‖2 ≤ θ
[

‖Ex− t∗‖2 + ‖∇f(x)‖2 +
∥
∥ET∇g(Ex) − ET∇g(t∗)

∥
∥
2

]

.

Since ‖ET∇g(Ex) − ET∇g(t∗)‖2 ≤ L · ‖E‖ · ‖Ex − t∗‖2, the desired result follows by
setting ω = θ(1 + L‖E‖).

Appendix D. Proof of Corollary 2

(a) By the assumption on {Bk}k≥1, we have

k∑

j=1

µk−j‖ej‖22 ≤
k∑

j=1

µk−jO

(
1

j1+ρ

)

(D1)

for all k ≥ 1. To bound the quantity on the right–hand side, let us define

Sk =

k∑

j=1

µk−j

j1+ρ
for k = 1, 2, . . . .

Let K ≡ K(µ, ρ) > 0 be such that µ′ = µ
(
1 + 1

k

)1+ρ
< 1 for all k ≥ K, and let

C ≡ C(µ, ρ) ≥ (1 − µ′)−1 be such that Sk ≤ Ck−(1+ρ) for k = 1, 2, . . . ,K. We now
show by induction that

Sk ≤ Ck−(1+ρ) for all k ≥ 1. (D2)

The statement is trivially true for k = 1, 2, . . . ,K. For k > K, the inductive hypoth-
esis and our choice of C imply that

Sk+1 = µSk +
1

(k + 1)1+ρ
≤
[

1 + Cµ

(

1 +
1

k

)1+ρ
]

1

(k + 1)1+ρ
≤ C

(k + 1)1+ρ
.
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This completes the inductive step.
Now, using (19), (D1), (D2), and Proposition 4, we have

f(xk+1)− fmin ≤ O(µk+1) +O(Sk+1) ≤ O

(
1

(k + 1)1+ρ

)

,

dist(xk,X )2 ≤ O

(

Sk+1 +

(
1 + µ

2

)k
)

= O

(
1

(k + 1)1+ρ

)

for all k ≥ 0. This completes the proof of (a).
(b) The assumption on {Bk}k≥1 implies that

k∑

j=1

µk−j‖ej‖22 ≤
k∑

j=1

µk−jO(ρj) ≤ O(kck1) ≤ O(ck2)

for all k ≥ 1, where c1 = max{µ, ρ} ∈ (0, 1) and c2 = 1+c1
2 ∈ (c1, 1). Hence, by (19)

and Proposition 4, we have

f(xk+1)− fmin ≤ O(µk+1) +O(ck+1
2 ) = O(ck+1

2 ),

dist(xk,X )2 ≤ O

(

ck+1
2 +

(
1 + µ

2

)k
)

≤ O(ck2)

for all k ≥ 0. The desired result then follows by setting c =
√
c2 ∈ (0, 1).

Appendix E. Proof of Corollary 3

By Theorem 2, we have

E

[

f(xk)− fmin

]

≤ µk
(
f(x0)− fmin

)
+ δ

k∑

j=1

µk−j
E
[
‖ej‖22

]
,

for all k ≥ 0. Upon noting

E

[

dist(xk,X )
]

≤
(

E

[

dist(xk,X )2
])1/2

and using the assumption that E
[
‖ek‖22

]
≤ Bk, the rest of the proof is essentially the

same as that of Corollary 2.
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Appendix F. Proof of Proposition 6

(a) Recall that for (LSR), we have fi(x) = (aTi x − bi)
2 for i = 1, . . . , n. Since

max1≤i≤n ‖ai‖22 ≤ L by Proposition 5, we use (20) to compute

‖ek+1‖22 ≤




n− |Ik|
n|Ik|

∑

i∈Ik
‖∇fi(x

k)‖2 +
1

n

∑

i∈N \Ik
‖∇fi(x

k)‖2





2

≤
(
n− |Ik|

n

)2






√
1

|Ik|
∑

i∈Ik
‖∇fi(xk)‖22 +

√
√
√
√

1

n− |Ik|
∑

i∈N \Ik
‖∇fi(xk)‖22






2

≤ 8

(
n− |Ik|

n

)2
(

1

|Ik|
∑

i∈Ik

(

aTi x
k − bi

)2
· ‖ai‖22

+
1

n− |Ik|
∑

i∈N \Ik

(

aTi x
k − bi

)2
· ‖ai‖22





≤ 8L

(
n− |Ik|

n

)2



1

|Ik|
∑

i∈Ik

(

aTi x
k − bi

)2
+

1

n− |Ik|
∑

i∈N \Ik

(

aTi x
k − bi

)2



 ,(F1)

where the second inequality follows from the concavity of x 7→ √
x and Jensen’s

inequality; the third inequality follows from the identity (a+ b)2 ≤ 2(a2 + b2), which
is valid for all a, b ∈ R, and

∇fi(x) = 2
(
aTi x− bi

)
ai for i = 1, 2, . . . , n.

Now, observe that for n
2 ≤ |Ik| ≤ n, we have

1

|Ik|
∑

i∈Ik

(

aTi x
k − bi

)2
+

1

n− |Ik|
∑

i∈N \Ik

(

aTi x
k − bi

)2

=
n

n− |Ik|
f(xk) +

(
1

|Ik|
− 1

n− |Ik|

)
∑

i∈Ik

(

aTi x
k − bi

)2

≤ n

n− |Ik|
f(xk). (F2)

The desired result then follows from (F1) and (F2).
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(b) Using (21) and max1≤i≤n ‖ai‖22 ≤ L, we have

E

[

‖ek+1‖22
∣
∣Fk

]

≤ n− |Ik|
n|Ik|

[

1

n− 1

n∑

i=1

(

‖∇fi(x
k)‖2 + ‖∇f(xk)‖2

)2
]

≤ n− |Ik|
n|Ik|




1

n− 1

n∑

i=1



2
√
L
∣
∣
∣aTi x

k − bi

∣
∣
∣+

1

n

n∑

j=1

∥
∥
∥∇fj(x

k)
∥
∥
∥
2





2



≤ n− |Ik|
n|Ik|




1

n− 1

n∑

i=1



2
√
L
∣
∣
∣aTi x

k − bi

∣
∣
∣+

√
√
√
√

1

n

n∑

j=1

‖∇fj(xk)‖22





2



≤ n− |Ik|
n|Ik|




8L

n− 1

n∑

i=1





(

aTi x
k − bi

)2
+

1

n

n∑

j=1

(

aTj x
k − bj

)2









= 16L
n− |Ik|

(n − 1)|Ik|
f(xk).

It follows from the tower property of conditional expectation that for all k ≥ 0,

E

[

‖ek+1‖22
]

≤ 16L
n− |Ik|

(n − 1)|Ik|
E

[

f(xk)
]

,

as desired.

Appendix G. Proof of Proposition 7

Recall that for the least squares regression problem (LSR), the premises of Theorem 2
hold. Moreover, using (26), we have E

[
ek+1 | Fk

]
= 0. Thus, by conditioning on Fk and

taking expectation with respect to ek+1 on both sides of (16), we obtain

E

[

f(xk+1)− fmin

∣
∣Fk

]

≤ f(xk)− fmin − α(1− αL

2
)‖∇f(xk)‖22 +

α2L

2
E

[

‖ek+1‖22
∣
∣Fk

]

.

Combining the above with (18), we obtain (27).
Next, let x∗ be an arbitrary point in the optimal solution set X . Since max1≤i≤n ‖ai‖22 ≤

L and fi(x) = (aTi x− bi)
2, ∇fi is Lipschitz continuous with parameter L for i = 1, . . . , n.

By (11), we have

‖∇fi(x)−∇fi(x
∗)‖22 ≤ 2L

[
fi(x)− fi(x

∗)− (x− x∗)T∇fi(x
∗)
]

for all x ∈ R
d and i = 1, . . . , n. Summing the above inequality over i = 1, . . . , n and

using the fact that ∇f(x∗) = 0, we obtain

1

n

n∑

i=1

‖∇fi(x)−∇fi(x
∗)‖22 ≤ 2L(f(x)− fmin). (G1)
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Since ik is uniformly sampled from {1, 2, . . . , n}, it follows that

E

[

∇fik(x
k)−∇fik(ω)

]

=
1

n

n∑

i=1

[

∇fi(x
k)−∇fi(ω)

]

,

where the expectation is taken with respect to ik. Substituting the above into (26), we
have

E

[

‖ek+1‖22
∣
∣Fk

]

= E

[∥
∥
∥∇fik(x

k)−∇fik(ω)− E

[

∇fik(x
k)−∇fik(ω)

]∥
∥
∥

2

2

]

≤ E

[

‖∇fik(x
k)−∇fik(ω)‖22

]

≤ 2
(

E

[

‖∇fik(x
k)−∇fik(x

∗)‖22
]

+ E

[

‖∇fik(ω)−∇fik(x
∗)‖22

])

≤ 4L
(

f(xk)− fmin + f(ω)− fmin

)

,

where the first inequality is due to the fact that for any random variable v ∈ R
n, we have

E

[

‖v − E[v]‖22
]

= E
[
‖v‖22

]
− (E[v])2 ≤ E

[
‖v‖22

]
,

and the third inequality is by (G1). This establishes (28) and completes the proof.

Appendix H. Proof of Proposition 8

Using (34), we bound

‖ek+1‖22 ≤ 1

n

n∑

i=1

‖∇fi(x
πk
i )−∇fi(x

k)‖22

≤ 1

n

n∑

i=1

n∑

j=1

‖∇fj(x
πk
i )−∇fj(x

k)‖22

≤ 2

n

n∑

i=1

n∑

j=1

‖∇fj(x
πk
i )−∇fj(x

∗)‖22

+
2

n

n∑

i=1

n∑

j=1

‖∇fj(x
k)−∇fj(x

∗)‖22, (H1)

where the first and third inequalities are due to the fact that (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i

for any a1, . . . , am ∈ R. Since max1≤i≤n ‖ai‖22 ≤ L and fi(x) = (aTi x − bi)
2, both ∇f

and the ∇fi’s are Lipschitz continuous with parameter L. Hence, by letting x∗ to be an
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arbitrary point in X and using the same arguments as those for (G1), we have

1

n

n∑

j=1

‖∇fj(x
πk
i )−∇fj(x

∗)‖22 ≤ 2L(f(xπ
k
i )− fmin),

1

n

n∑

j=1

‖∇fj(x
k)−∇fj(x

∗)‖22 ≤ 2L(f(xk)− fmin).

Combining the above two inequalities with (H1), we obtain

‖ek+1‖22 ≤ 4L

n∑

i=1

(f(xπ
k
i )− fmin + f(xk)− fmin). (H2)

In addition, since the index vectors {πk}k≥0 obey the bounded delay rule (31), we have

f(xπ
k
i )− fmin + f(xk)− fmin ≤ 2 max

(k−K)+≤l≤k
(f(xl)− fmin) for i = 1, 2, . . . , n.

The desired result then follows by substituting the above into (H2).
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