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Abstract

Finding low-rank solutions of semidefinite programs is important in
many applications. For example, semidefinite programs that arise as
relaxations of polynomial optimization problems are exact relaxations
when the semidefinite program has a rank-1 solution. Unfortunately,
computing a minimum-rank solution of a semidefinite program is an
NP-hard problem. In this paper we review the theory of low-rank
semidefinite programming, presenting theorems that guarantee the ex-
istence of a low-rank solution, heuristics for computing low-rank solu-
tions, and algorithms for finding low-rank approximate solutions. Then
we present applications of the theory to trust-region problems and sig-
nal processing.
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1
Introduction

1.1 Low-rank semidefinite programming

A semidefinite program (SDP) is an optimization problem of the form

minimize C •X
subject to Ai •X = bi, i = 1, . . . ,m

X � 0.

(SDP)

The optimization variable is X ∈ Sn, where Sn is the set of all n × n
symmetric matrices, and the problem data are A1, . . . , Am, C ∈ Sn and
b ∈ Rm. The trace inner product of A,B ∈ Rm×n is

A •B = tr(ATB) =
m∑
i=1

n∑
j=1

AijBij .

The constraint X � 0 denotes a generalized inequality with respect to
the cone of positive-semidefinite matrices, and means that X is positive
semidefinite: that is, zTXz ≥ 0 for all z ∈ Rn. We can write (SDP)
more compactly by defining the operator A : Sn → Rm such that

A(X) =


A1 •X

...
Am •X

 .
2



1.1. Low-rank semidefinite programming 3

Using this notation we can express (SDP) as

minimize C •X
subject to A(X) = b

X � 0.

The dual problem of (SDP) is

maximize bTy

subject to
∑m
i=1 yiAi + S = C

S � 0,

(SDD)

where the optimization variables are y ∈ Rm and S ∈ Sn. We can write
(SDD) more succinctly as

maximize bTy

subject to A∗(y) + S = C

S � 0,

where the adjoint operator A∗ : Rm → Sn is given by

A∗(y) =
m∑
i=1

yiAi.

We do not attempt to give a general exposition of the theory of semidef-
inite programming in this paper – an excellent survey is provided by
Vandenberghe and Boyd [96]. The preceding remarks are only meant
to establish our particular conventions for talking about SDPs. Addi-
tional results about SDPs are given in Appendix A, which presents
those aspects of the theory that are most relevant for our purposes.

Semidefinite programs can be solved efficiently using interior-
point algorithms. However, such algorithms typically converge to a
maximum-rank solution [45], and in many cases we are interested in
finding a low-rank solution. For example, it is well known that every
polynomial optimization problem has a natural SDP relaxation, and
this relaxation is exact when it has a rank-1 solution. (We include the
derivation of this important result in Appendix A for completeness.)
Unfortunately, finding a minimum-rank solution of an SDP is NP-hard:
a special case of this problem is finding a minimum-cardinality solution



4 Introduction

of a system of linear equations, which is known to be NP-hard [36]. In
this paper we review approaches to finding low-rank solutions and ap-
proximate solutions of SDPs, and present some applications in which
low-rank solutions are important.

1.2 Outline

Chapter 2 discusses reduced-rank exact solutions of SDPs and theo-
rems about rank. We give an efficient algorithm for reducing the rank
of a solution. Although the algorithm may not find a minimum-rank so-
lution, it often works well in practice, and we can prove a bound on the
rank of the solution returned by the algorithm. Then we give a theorem
relating the uniqueness of the rank of a solution to the uniqueness of
the solution itself, and show how to use this theorem for sensor-network
localization. The chapter concludes with a theorem that allows us to
deduce the existence of a low-rank solution from the sparsity structure
of the coefficients.

Because finding a minimum-rank solution of an SDP is NP-hard,
we do not expect to arrive at an algorithm that accomplishes this task
in general. However, there are many heuristics for finding low-rank
solutions that often perform well in practice; we discuss these methods
in Chapter 3. We also present rounding methods, in which we find a
low-rank approximate solution that is close to a given exact solution in
some sense. One of the rounding methods that we discuss is the famous
Goemans-Williamson algorithm [39]; if the unique-games conjecture is
true, then this algorithm achieves the best possible approximation ratio
for the maximum-cut problem [57, 58].

The paper concludes with two chapters covering applications of
the theoretical results to trust-region problems and signal processing.
There are three appendices: the first gives background information, and
establishes our notation; the second reviews some classical results about
linear programming that we generalize to semidefinite programming in
Chapter 2; and the last contains technical probability lemmas that are
used in our analysis of rounding methods.
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2
Exact Solutions and Theorems about Rank

2.1 Introduction

In this chapter we discuss exact reduced-rank solutions and theorems
about rank. We begin by extending classical results about the cardinal-
ity of solutions of linear programs (reviewed in Appendix B) to results
about the rank of solutions of semidefinite programs. Then we present
a theorem that allows us to use the sparsity structure of the coefficients
of an SDP to guarantee the existence of a low-rank solution.

2.2 Rank reduction for semidefinite programs

We now generalize the well-known analysis of sparsification for lin-
ear programs to rank reduction for semidefinite programs. (The corre-
sponding sparsification algorithm for LPs is described in Appendix B;
our presentation of the corresponding rank-reduction algorithm for
SDPs is deliberately similar.) The main result is Theorem 2.1, which
guarantees the existence of a solution of (SDP) whose rank r satis-
fies r(r + 1)/2 ≤ m, where m is the number of linear equality con-
straints. This bound was independently discovered by Barvinok [3] and
Pataki [76].

6



2.2. Rank reduction for semidefinite programs 7

Suppose we are given a solution X of (SDP), and we want to find
another solution X+ with rank(X+) < rank(X). If we had an effi-
cient method for this problem that worked on every solution that does
not have minimum rank, then we could find a minimum-rank solution
by applying this rank-reduction method at most n times. However, we
know that the problem of finding a minimum-rank solution of (SDP) is
NP-hard. Thus, we do not expect to find an efficient rank-reduction al-
gorithm that always works. Nonetheless, we still hope to find a method
that often performs well in practice. We begin by making the following
assumption:

null(X+) ⊃ null(X), (2.1)

where null(X) = {z ∈ Rn |Xz = 0} is the nullspace of X. Observe the
strong similarity between this assumption, and the assumption (B.1)
that forms the basis for the standard LP-sparsification algorithm: in
the LP case, we assume that if a component of x is zero, then the
corresponding component of x+ is also zero; in the SDP case, we assume
that if X has zero gain in some direction, then X+ also has zero gain
in that direction. (Here we interpret a nonzero vector being in the
nullspace of a matrix as meaning that the matrix has zero gain in
the direction of the vector.) The following example shows that this
assumption can yield suboptimal results in some cases.

Example 2.1. Consider the SDP feasibility problem

Xii +Xnn = 1, i = 1, . . . , n− 1
Xij = 0, 1 ≤ i < j ≤ n
X � 0,

and suppose we are given the solution X = diag(1, . . . , 1, 0). If we
assume that null(X+) ⊃ null(X), then we have that en ∈ null(X+)
because en ∈ null(X). (Here en is the nth standard basis vector in
Rn: that is, the vector of length n whose nth component is equal to
1, and whose other components are all equal to 0.) This implies that
X+
nn = eT

nX
+en = 0. Then the equality constraint X+

ii + X+
nn = 1

implies that X+
ii = 1 for i = 1, . . . , n − 1. Therefore, we have that

X+ = X, and we are unable to reduce the rank of X. However, X is not
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a minimum-rank solution of the feasibility problem: rank(X) = n− 1,
but X̃ = diag(0, . . . , 0, 1) is a solution with rank(X̃) = 1.

Example 2.1 shows that the assumption in (2.1) may not only lead
to suboptimal results, but may even lead to arbitrarily poor results:
for every positive integer n, there is an instance of (SDP) and a cor-
responding initial solution such that our algorithm returns a solution
whose rank is n− 1 times the rank of a minimum-rank solution. How-
ever, because we do not expect to find an algorithm that works on every
instance of (SDP), we need to make a suboptimal assumption at some
point. Moreover, we will see that the assumption in (2.1) allows us to
derive an algorithm that often works well, and has some performance
guarantees.

We have stated our assumption as null(X+) ⊃ null(X). Although
this statement is clear and intuitive, a different formulation will prove
useful in the development of our algorithm. Let r = rank(X). Since
X is positive semidefinite, there exists a matrix V ∈ Rn×r such that
X = V V T. Then assumption (2.1) is equivalent to assuming that X+

has the form
X+ = V (I + α∆)V T,

where we think of ∆ ∈ Sn as an update direction, and α ∈ R as a step
size. We will also sometimes find it convenient to write X+ as

X+ = X + αV∆V T.

The fact that the proposed reformulation is equivalent to (2.1) is a
consequence of Proposition A.1.

We want to choose α and ∆ such that X+ is a solution of (SDP),
and rank(X+) < rank(X). Since the rank of X+ is strictly less than
that of X, we must have that X+ 6= X, and hence that α 6= 0.

• In order to maintain optimality, we require that

C •X+ = C •X.

Substituting in X+ = X + αV∆V T and simplifying, we obtain
the condition

(V TCV ) •∆ = 0.
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• We also need X+ to satisfy the equality constraints

Ai •X+ = bi, i = 1, . . . ,m.

Substituting in our expression for X+ and simplifying gives the
conditions

(V TAiV ) •∆ = 0, i = 1, . . . ,m.

For convenience we define the mapping AV : Sr → Rm such that

AV (∆) = A(V∆V T) =


(V TA1V ) •∆

...
(V TAmV ) •∆

 =


A1 • (V∆V T)

...
Am • (V∆V T)

 .
Then we can express our condition as AV (∆) = 0.

• The updated solution must satisfyX+ = V (I+α∆)V T � 0. Since
V is skinny and full rank, this is equivalent to the condition

I + α∆ � 0.

• Finally, we have that rank(X+) < rank(X) if and only if I+α∆
is singular.

In summary we want to choose α and ∆ in order to satisfy the following
conditions:

(V TCV ) •∆ = 0
AV (∆) = 0
I + α∆ � 0
I + α∆ is singular.

It turns out that the first constraint is implied by the second con-
straint. The main idea is that because the nullspace of X+ contains
the nullspace of X, the updated solution X+ automatically satisfies the
complementary-slackness condition. Therefore, X+ is optimal when-
ever it is feasible. We make this argument more precise in the proof of
the following proposition.

Proposition 2.1. Suppose X = V V T is a solution of (SDP). If
AV (∆) = 0, then (V TCV ) •∆ = 0.
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Proof. Consider the semidefinite program

minimize (V TCV ) • X̃
subject to (V TAiV ) • X̃ = bi, i = 1, . . . ,m

X̃ � 0

(2.2)

with variable X̃ ∈ Sr. Note that X̃ = I is strictly feasible for this
problem because

(V TAiV ) • I = Ai • (V V T) = Ai •X = bi,

and I � 0. Similarly, for every feasible point X̃ of (2.2), we have that
V X̃V T is feasible for (SDP), and achieves an objective value of

C • (V X̃V T) = (V TCV ) • X̃.

Since X is optimal for (SDP), we have that

(V TCV ) • I = C • (V V T) = C •X ≤ C • (V X̃V T) = (V TCV ) • X̃

for every feasible point X̃ of (2.2). Thus, we see that I is optimal for
(2.2). Moreover, since Slater’s condition is satisfied (we remarked above
that I is strictly feasible), we can find optimal dual variables S̃ ∈ Sr
and ỹ ∈ Rm satisfying the KKT conditions

m∑
i=1

ỹi(V TAiV ) + S̃ = V TCV

(V TAiV ) • X̃ = bi, i = 1, . . . ,m
S̃, X̃ � 0
S̃X̃ = 0.

Because X̃ = I is a solution of (2.2), the last condition implies that
S̃ = 0, and hence that every feasible point of (2.2) is optimal because it
automatically satisfies complementary slackness. Since S̃ = 0, the first
KKT condition simplifies to

V TCV =
m∑
i=1

ỹi(V TAiV ).

Thus, if AV (∆) = 0, or equivalently if

(V TAiV ) •∆ = 0, i = 1, . . . ,m,
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then we have that

(V TCV ) •∆ =
(

m∑
i=1

ỹi(V TAiV )
)
•∆ =

m∑
i=1

ỹi((V TAiV ) •∆) = 0.

Note that the argument in the proof of Proposition 2.1 only works
if X is a solution of (SDP). In particular, if we had an arbitrary feasible
pointX, and we wanted to find another feasible pointX+ with the same
objective value, we could not ignore the condition (V TCV ) •∆ = 0.

An algorithm for SDP rank reduction. A method for rank reduction
is given in Algorithm 2.1. Using the observations above, we will prove
that this algorithm returns a solution of (SDP), and derive a bound on
the rank of this solution.

Algorithm 2.1: rank reduction for semidefinite programs
Input: a solution X of (SDP)

1 repeat
2 compute the factorization X = V V T

3 find a nonzero ∆ ∈ null(AV ) (if possible)
4 find a maximum-magnitude eigenvalue λ1 of ∆
5 α := −1/λ1
6 X := V (I + α∆)V T

7 until null(AV ) = {0}

Proposition 2.2. Given a solution X = V V T of (SDP), Algorithm 2.1
returns another solution X+ such that rank(X+) ≤ rank(X). More-
over, this inequality is strict if null(AV ) 6= {0}.
Proof. In our preliminary analysis of the rank-reduction problem, we
showed that X+ is a solution of (SDP) with rank(X+) < rank(X) if
α and ∆ satisfy the following properties:

AV (∆) = 0 (2.3)
I + α∆ � 0 (2.4)
I + α∆ is singular. (2.5)
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In Algorithm 2.1 we choose ∆ in order to satisfy (2.3). We then choose
α = −1/λ1, where λ1 is a maximum-magnitude eigenvalue of ∆. Note
that λ1 is nonzero because ∆ is nonzero, so our choice of α is defined.
Let ∆ = QΛQT be the eigenvalue decomposition of ∆, where Q ∈ Rr×r

is orthogonal, and Λ ∈ Rr×r is diagonal. Then we have that

I + α∆ = QQT + αQΛQT

= Q(I + αΛ)QT

= QΛ̃QT,

where we define the matrix

Λ̃ = I + αΛ
= diag(1 + αλ1, . . . , 1 + αλn)

= diag
(

1− λ1
λ1
, . . . , 1− λn

λ1

)
.

Our choice of α implies that Λ̃ is singular because it is a diagonal
matrix whose first diagonal entry is zero. Additionally, Λ̃ is positive
semidefinite: since we ordered the eigenvalues of ∆ in descending order
of magnitude, we have that |λ1| ≥ |λi|, and hence that

1− λi
λ1
≥ 1−

∣∣∣∣λiλ1

∣∣∣∣ ≥ 0

for i = 1, . . . , r. Thus, conditions (2.4) and (2.5) are also satisfied.
This analysis shows that, after each iteration of the algorithm, we

have that X+ is still a solution of (SDP), and its rank is no larger than
the rank of X. (Moreover, if null(AV ) 6= {0}, then the rank of X+ is
strictly less than that of X.)

Theorem 2.1 (Barvinok [3] and Pataki [76]). If (SDP) is solvable, then
it has a solution X with rank(X) = r such that r(r + 1)/2 ≤ m.
Moreover, Algorithm 2.1 efficiently finds such a solution.

Proof. The termination condition for Algorithm 2.1 is

null(AV ) = {0},

where AV : Sr → Rm is a linear mapping, and r is the rank of the
solution returned by the algorithm. Every linear mapping whose input



2.2. Rank reduction for semidefinite programs 13

m 1 2 3 4 5 6 7 8 9 10
bound 1 1 2 2 2 3 3 3 3 4

Table 2.1: upper bounds on the minimum rank of a solution of (SDP)

space has strictly larger dimension than its output space has a nontriv-
ial nullspace. Therefore, when the algorithm terminates, we must have
that the dimension of the input space of AV is less than or equal to
the dimension of the output space of AV : that is,

dim(Sr) = r(r + 1)
2 ≤ dim(Rm) = m.

Thus, Algorithm 2.1 returns a solution X with rank(X) = r satisfying
r(r + 1)/2 ≤ m.

Another way of stating the result of Theorem 2.1 is that there is a
solution X of (SDP) such that

rank(X) ≤
⌊√

8m+ 1− 1
2

⌋
.

The values of this bound for small values of m are given in Table 2.1.
As we will see later, it is particularly important for applications to note
that if m ≤ 2, then (SDP) has a solution with rank at most 1.

The following example shows that the bound in Theorem 2.1 cannot
be improved without additional hypotheses.

Example 2.2. Suppose r ≤ n, and consider the SDP feasibility problem

Xii = 1, i = 1, . . . , r
Xij = 0, 1 ≤ i < j ≤ r
X � 0

with variable X ∈ Sn. The minimum-rank solution of this problem is
X = e1e

T
1 +· · ·+ereT

r , which has rank r. There are r equality constraints
of the form Xii = 1, and r(r − 1)/2 equality constraints of the form
Xij = 0. The total number of equality constraints is therefore

m = r + r(r − 1)
2 = r(r + 1)

2 .
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Thus, the minimum-rank solution X for this problem has rank(X) = r

satisfying r(r + 1)/2 = m, where m is the number of linear equality
constraints.

Example 2.3. Consider a norm-constrained quadratic optimization
problem of the form

minimize xTPx+ 2qTx+ r

subject to ‖x‖ = 1,
where x ∈ Rn is the optimization variable, and P ∈ Sn, q ∈ Rn, and
r ∈ R are problem data. In particular, note that we do not assume
that P is positive semidefinite, so the objective function may not be
convex. We will have much more to say about such problems (which
are called simple trust-region problems) in Chapter 4. The natural SDP
relaxation of this problem is

minimize
[
P q

qT r

]
•X

subject to [
I 0
0 0

]
•X = 1[

0 0
0 1

]
•X = 1

X � 0,

where the optimization variable is X ∈ Sn+1. (See Chapter A for a re-
view of the natural SDP relaxation of a polynomial optimization prob-
lem, and how to construct a solution of the polynomial optimization
problem from a rank-1 solution of the SDP relaxation.) Theorem 2.1
allows us to conclude that the SDP relaxation has a rank-1 solution.
Thus, we can solve the norm-constrained quadratic optimization prob-
lem by finding a rank-1 solution X = vvT ∈ Sn+1 of the associated
SDP, where v ∈ Rn+1, and taking x = vn+1(v1, . . . , vn).

Remark 2.1. Consider what happens when we apply Algorithm 2.1 to
an instance of (SDP) with homogeneous equality constraints (that is,
with b = 0). Then we can always choose ∆ = I ∈ Sr. This choice of ∆
works because

AV (I) = A(V V T) = A(X) = 0.
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For this value of ∆, we have that α = −1, and hence that

X+ = V (I + α∆)V T = V (I − I)V T = 0.

Thus, Algorithm 2.1 tells us that X = 0 is a solution of every solvable
instance of SDP with homogeneous equality constraints. Note in par-
ticular the (easy-to-overlook) hypothesis in Theorem 2.1 that (SDP) is
solvable. For example, consider the semidefinite program

minimize −X11
subject to X22 = 0

X � 0.

The linear constraint for this problem is homogeneous, but X = 0 is
not a solution: the problem is unbounded below, and not solvable.

Pataki [76] also showed how to use Theorem 2.1 to obtain an upper
bound on the minimum rank of an optimal dual slack variable.

Corollary 2.2 (Pataki [76]). Consider an instance of (SDD) such that
A1, . . . , Am are linearly independent. If (SDD) is solvable, then it has a
solution (y, S) with rank(S) = s such that s(s+1)/2 ≤ n(n+1)/2−m.

Proof. We will prove the bound by converting (SDD) into a standard-
form primal SDP in the dual slack variable S, and then applying The-
orem 2.1. Under the assumption that A1, . . . , Am are linearly indepen-
dent, the Gram matrix

G =


A1 •A1 · · · A1 •Am

... . . . ...
Am •A1 · · · Am •Am


is invertible. Therefore, we can use the constraint

∑m
i=1 yiAi + S = C

of (SDD) to solve for y in terms of S:

y = G−1


A1 • (C − S)

...
Am • (C − S)

 .
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Defining β = G−1b, we can write the objective function of (SDD) as

bTy = bTG−1


A1 • (C − S)

...
Am • (C − S)



= βT


A1 • (C − S)

...
Am • (C − S)


=

m∑
i=1

βi(Ai • (C − S))

=
(

m∑
i=1

βiAi

)
• C −

(
m∑
i=1

βiAi

)
• S.

Another consequence of the assumption that A1, . . . , Am are linearly in-
dependent is that dim(span(A1, . . . , Am)) = m. Therefore, we can find
an orthonormal basis Q1, . . . , Qm ∈ Sn for span(A1, . . . , Am). Then
we can extend Q1, . . . , Qm to an orthonormal basis Q1, . . . , Qdim(Sn)
for all of Sn. For a fixed value of S, there exists y ∈ Rm such that∑m
i=1 yiAi + S = C if and only if C − S ∈ span(A1, . . . , Am). An

equivalent condition in terms of the orthonormal basis defined above is

Qi • (C − S) = 0, i = m+ 1, . . . ,dim(Sn).

Combining these observations, we can eliminate y from (SDD), giving
the following problem:

maximize (
∑m
i=1 βiAi) • C − (

∑m
i=1 βiAi) • S

subject to Qi • (C − S) = 0, i = m+ 1, . . . ,dim(Sn)
S � 0.

We can convert this problem into a standard-form primal SDP by
negating the objective to obtain a minimization problem, ignoring the
additive constant in the objective, and rearranging the equality con-
straints:

minimize (
∑m
i=1 βiAi) • S

subject to Qi • S = Qi • C, i = m+ 1, . . . ,dim(Sn)
S � 0.
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n

m 1 2 3 4 5

1 0 1 2 3 4
2 1 2 3 4
3 0 2 3 4
4 1 3 4
5 1 2 4

Table 2.2: upper bounds on the minimum rank of an optimal dual slack variable

This problem is an instance of (SDP) with dim(Sn)−m equality con-
straints; moreover, this problem is solvable because we assume that
(SDD) is solvable. Therefore, we can apply Theorem 2.1 to conclude
that there is a solution S with s = rank(S) such that

s(s+ 1)
2 ≤ dim(Sn)−m = n(n+ 1)

2 −m.

Another way of stating the result of Corollary 2.2 is that there is a
solution S of (SDD) such that

rank(S) ≤
⌊√

4n(n+ 1)− 8m+ 1− 1
2

⌋
.

(Note that the assumption that A1, . . . , Am are linearly independent
implies that m ≤ dim(Sn) = n(n+ 1)/2, so the quantity in the square
root is always strictly greater than 1.) The values of this bound for
small values of m and n are given in Table 2.2. (Values of m and n for
which m > dim(Sn) = n(n + 1)/2 are left blank because the bound
does not apply.) There are a couple of particularly interesting features
of this table.

• If m = dim(Sn) = n(n + 1)/2, then S = 0 is a solution. Note
that if S = 0 is feasible for a primal-dual pair with a feasi-
ble primal, then S = 0 is optimal because it satisfies the com-
plementary slackness condition XS = 0 for every matrix X. If
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m = dim(Sn), then our linear-independence assumption implies
that A1, . . . , Am span Sn; thus, for every matrix C ∈ Sn, there
exist scalars y1, . . . , ym such that

m∑
i=1

yiAi = C.

This implies that S = 0 is feasible.

• If m = n(n+ 1)/2− 1 or m = n(n+ 1)/2− 2, then (SDD) has a
solution (y, S) with rank(S) = 1.

Further rank reduction for feasibility problems. It is also worth not-
ing that, with some additional mild hypotheses, there is a bound for
SDP feasibility problems that is sometimes slightly stronger than the
bound in Theorem 2.1. This bound (which we state without proof) was
first given by Barvinok [4], who provided a nonconstructive proof; an
algorithm for finding a solution satisfying the bound was supplied by
Ai, Huang, and Zhang [1].

Theorem 2.3. Consider the set

F = {X ∈ Sn |Ai •X = bi, i = 1, . . . ,m},

where A1, . . . , Am ∈ Sn and b ∈ Rm are given. If F is nonempty and
bounded, and m = (r+ 1)(r+ 2)/2 for some positive integer r ≤ n− 2,
then there exists X ∈ F such that rank(X) ≤ r.

For example, Theorem 2.1 tells us that every solvable SDP with
m = 3 equality constraints has a solution with rank at most 2, while
Theorem 2.3 tells us that every bounded and feasible SDP feasibility
problem with m = 3 equality constraints and variable size n ≥ 5 has a
solution with rank at most 1.

2.3 Rank and uniqueness

In this section we present a theorem relating rank and uniqueness for
semidefinite programs. This result was given by Zhu [105], and gen-
eralizes the classical result in Theorem B.2, which relates cardinality
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and uniqueness for linear programs. Our discussion of the theorem for
semidefinite programs is intentionally similar to the development of the
corresponding result for linear programs.

Theorem 2.4. Let X = V V T be a solution of (SDP), where V ∈ Rn×r

and r = rank(X). This solution is unique if and only if

(i) X has the maximum rank among all solutions, and

(ii) null(AV ) = {0},

where we define AV : Sr → Rm such that AV (Z) = A(V ZV T).

Proof. First, suppose X is the unique solution of (SDP). It is trivially
true that X has the maximum rank among all solutions because it
is the only solution. In order to show that null(AV ) = {0}, we will
argue by contradiction. Suppose there exists a nonzero ∆ ∈ Sr such
that AV (∆) = 0. Then Algorithm 2.1 finds a solution X̃ of (SDP)
whose rank is strictly less than that of X. This contradicts the as-
sumption that X is the unique solution of (SDP), and thereby proves
that null(AV ) = {0}.

Conversely, suppose that X and X̃ are distinct solutions of (SDP).
We can assume without loss of generality that X has the maximum
rank among all solutions of (SDP). First, observe that (1/2)(X + X̃)
is a solution of (SDP) with

range((1/2)(X + X̃)) = range((1/2)X) + range((1/2)X̃)
= range(X) + range(X̃),

where we have used Lemma A.7 and the fact that nonzero scaling does
not change the range of a matrix. SinceX is assumed to be a maximum-
rank solution, we must have that range(X̃) ⊂ range(X) because oth-
erwise range(X) would be a strict subset of range((1/2)(X+X̃)), and
the rank of (1/2)(X+X̃) would be strictly greater than that of X, con-
tradicting our assumption that X is a maximum-rank solution. Taking
orthogonal complements, and noting that X and X̃ are symmetric, we
find that

range(X)⊥ = null(X) ⊂ range(X̃)⊥ = null(X̃).
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Let X = V V T, where V ∈ Rn×r and r = rank(X). Having shown that
null(X) ⊂ null(X̃), we can use Proposition A.1 to conclude that there
exists a matrix Q ∈ Sr such that X̃ = V QV T. Then we have that

AV (I −Q) = A(V (I −Q)V T) = A(X)−A(X̃) = b− b = 0.

Additionally, I −Q is nonzero because X = V V T and X̃ = V QV T are
distinct. Thus, I −Q is a nonzero matrix in null(AV ).

Corollary 2.5. If (SDP) is solvable, and every solution has the same
rank, then (SDP) has a unique solution.

Proof. Let X = V V T be a solution of (SDP), where V ∈ Rn×r and
r = rank(X). Since every solution of (SDP) has the same rank,X must
have the maximum rank among all solutions. Another consequence of
the fact that every solution has the same rank is that Algorithm 2.1
must terminate on the first iteration: that is, null(AV ) = {0}. Thus,
Theorem 2.4 tells us that X is the unique solution of (SDP).

2.3.1 An example of sensor-network localization

Suppose xtrue ∈ Rd is the unknown location of a sensor, and
a1, . . . , am ∈ Rd are the known locations of points called anchors. We
are given the distances between the sensor and the anchors:

di = ‖xtrue − ai‖, i = 1, . . . ,m.

We can attempt to determine xtrue from the distance measurements by
solving the optimization problem

minimize 0
subject to ‖x− ai‖2 = d2

i , i = 1, . . . ,m

with variable x ∈ Rd. The primal SDP relaxation of this problem is

minimize 0 •X
subject to [

I −ai
−aT

i 0

]
•X = d2

i − ‖ai‖
2, i = 1, . . . ,m[

0 0
0 1

]
•X = 1

X � 0
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with variable X ∈ Sd+1, and the corresponding dual SDP relaxation is

maximize
∑m
i=1(d2

i − ‖ai‖
2)yi + z

subject to
∑m
i=1 yi

[
I −ai
−aT

i 0

]
+ z

[
0 0
0 1

]
+ S = 0

S � 0

(2.6)

with variables y ∈ Rm, z ∈ R, and S ∈ Sd+1. (See Section A.2.4 for a
development of the natural SDP relaxation of a polynomial optimiza-
tion problem.) We can check that

X0 =
[
xtrue

1

] [
xtrue

1

]T

is a solution of the primal SDP relaxation. However, if the solution
of the primal SDP relaxation is not unique, then we cannot necessar-
ily solve the sensor-network-localization problem using the SDP relax-
ation. The following theorem gives conditions under which the primal
SDP relaxation has a unique solution.
Proposition 2.3. If a1, . . . , am are affinely independent (that is, not
contained in a hyperplane), then the primal SDP relaxation of the
sensor-network-localization problem has a unique solution.
Proof. We have that a1, . . . , am are affinely dependent if and only if
there exist a scalar β and a nonzero vector η ∈ Rd such that

ηTai + β = 0, i = 1, . . . ,m.
(The vector η is a normal vector of the hyperplane containing
a1, . . . , am, and β determines the offset of the hyperplane from the
origin.) Collecting these conditions into a matrix equation gives

aT
1 1
...

...
aT
m 1


[
η

β

]
=


0
...
0

 .
Thus, we have that a1, . . . , am are affinely independent if and only if

aT
1 1
...

...
aT
m 1


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is skinny and full rank, or, equivalently,[
a1 · · · am
1 · · · 1

]
is fat and full rank. Therefore, if a1, . . . , am are affinely independent,
then we can find a vector y ∈ Rm such that[

a1 · · · am
1 · · · 1

]
y =

[∑m
i=1 yiai∑m
i=1 yi

]
= −

[
xtrue

1

]
.

Define z = −‖xtrue‖2, and

S =
m∑
i=1

yi

[
−I ai
aT
i 0

]
− z

[
0 0
0 1

]

=
[
− (
∑m
i=1 yi) I

∑m
i=1 yiai

(
∑m
i=1 yiai)

T −z

]

=
[

I −xtrue
−xT

true ‖xtrue‖2

]

=
[
I −xtrue

]T [
I −xtrue

]
.

We have that (y, z, S) is a solution of (2.6) because it is feasible by
construction, and satisfies the complementarity condition

SX0 =
([
I −xtrue

]T [
I −xtrue

])[xtrue
1

] [
xtrue

1

]T


=
[
I −xtrue

]T([
I −xtrue

] [xtrue
1

])[
xtrue

1

]

=
[
I −xtrue

]T
(xtrue − xtrue)

[
xtrue

1

]
= 0.

The last expression given for S implies that rank(S) = d. Let X be
a solution of the primal SDP relaxation. Then we can use the com-
plementarity condition S • X = 0 and Lemma A.5 to conclude that
rank(X) ≤ 1. Moreover, the constraint[

0 0
0 1

]
•X = 1
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a1

a2

a3

‖x− a1‖ = d1

‖x− a2‖ = d2

‖x− a3‖ = d3

x1

x2

Figure 2.1: sensor-network localization fails with affinely dependent anchors

guarantees that X is nonzero, and hence that rank(X) = 1. Since the
rank of a solution of the primal SDP relaxation must be unique, we
can use Corollary 2.5 to conclude that the primal SDP relaxation has
a unique solution.

The assumption that a1, . . . , am are affinely independent is reason-
able because if this condition is violated, then we cannot uniquely iden-
tify x based on the distance measurements ‖x − ai‖ for i = 1, . . . ,m.
The geometry of a simple example with m = 3 is shown in Figure 2.1.
Note that the points x1 and x2 cannot be distinguished on the basis of
the measurements ‖x− ai‖ for i = 1, . . . ,m.

2.4 Rank and sparsity

Consider an SDP of the form

minimize A0 •X
subject to Ak •X ≤ bk, k = 1, . . . ,m

X � 0,

(2.7)

where X ∈ Sn is the optimization variable, and A0, . . . , Am ∈ Sn
and b ∈ Rm are problem data. In many applications the coeffi-
cients A0, . . . , Am are sparse, not only in the sense that each Ak has
only a few nonzero entries, but also in the much stronger sense that
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(A0)ij = · · · = (Am)ij = 0 for most i and j. We can encode the spar-
sity pattern of A0, . . . , Am using a graph G = (V,E) with vertex set
V = {1, . . . , n} and edge set

E = {(i, j) | (Ak)ij 6= 0 for some k}.

If the coefficients are sparse in the strong sense described above, then
the corresponding graph will be sparse. We will show that if the graph
possesses certain properties, then the associated instance of (2.7) is
guaranteed to have a low-rank solution, and we can efficiently con-
struct such a solution using the graph. Many results of this type were
developed in the context of power networks [61, 62, 63, 88, 86, 103].
However, related theorems have also been stated in terms of general
quadratic optimization [9, 59], and applied to distributed control prob-
lems [54].

We will present a simple example of a theorem connecting rank and
sparsity that was given by Sojoudi and Lavaei [87]. Before stating this
result, we need to introduce some additional terminology. Define the
sign of an edge (i, j) ∈ E to be

σ(i, j) =


1 (A0)ij , . . . , (Am)ij ≥ 0,
−1 (A0)ij , . . . , (Am)ij ≤ 0,

0 otherwise.

We say that the edge (i, j) is sign definite if σ(i, j) 6= 0, positive if
σ(i, j) = 1, and negative if σ(i, j) = −1.

The construction used in the following theorem is illustrated for
a simple example in Example 2.4. Since concrete examples are often
easier to understand than abstract proofs, we encourage the reader to
work through the proof and the example in parallel.

Theorem 2.6 (Sojoudi and Lavaei [87]). Consider a solvable instance of
(2.7) with associated graph G = (V,E). If

(1) every edge of G is sign definite, and

(2) every cycle of G has an even number of positive edges,

then (2.7) has a rank-1 solution.
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Proof. The first step in the proof is to assign a label α(k) ∈ {±1} to
each vertex k in such a way that

σ(i, j) = −α(i)α(j)

for every edge (i, j) in the graph. Let T be a rooted spanning tree for G,
r be the root of the tree, and p(i) denote the parent of i in T . Choose
the labels

α(r) = 1 and α(i) = −σ(i, p(i))
α(p(i)) , i 6= r.

By construction we have that σ(i, j) = −α(i)α(j) for every edge (i, j)
in T . We will show that our assumptions about the structure of G
imply that this property actually holds for all edges in G, not just the
ones contained in the spanning tree T . Consider an edge (i, j) that is
in G but not in T . Recall that adding an edge to a tree creates a cycle.
Thus, adding (i, j) to T yields a cycle:

v1 = j, v2, . . . , v`−1, v` = i, v`+1 = j,

where (vk, vk+1) is in T for k = 1, . . . , ` − 1. Because every cycle in G
has an even number of positive edges, we have that∏̀

k=1
σ(vk, vk+1) = (−1)`.

(If ` is even, then the cycle contains an even number of negative edges,
so the product of the signs of all of the edges in the cycle is equal
to 1; if ` is odd, then the cycle contains an odd number of negative
edges, so the product of the signs of all of the edges in the cycle is
equal to −1.) Since (vk, vk+1) is in T for k = 1, . . . , `− 1, we have that
σ(vk, vk+1) = −α(vk)α(vk+1) for k = 1, . . . , `− 1, and hence that

∏̀
k=1

σ(vk, vk+1) =
(
`−1∏
k=1

σ(vk, vk+1)
)
σ(v`, v`+1)

=
(
`−1∏
k=1

(−α(vk)α(vk+1))
)
σ(v`, v`+1)

= (−1)`−1α(v1)
(
`−1∏
k=2

α(vk)2
)
α(v`)σ(v`, v`+1).
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We can simplify this expression by observing that α(vk)2 = 1 since
α(vk) ∈ {±1} for k = 2, . . . , ` − 1. Also, we note that v1 = v`+1 = j

and v` = i. Combining these results, we find that

∏̀
k=1

σ(vk, vk+1) = (−1)`−1α(i)α(j)σ(i, j) = (−1)`.

Solving for σ(i, j) gives

σ(i, j) = − 1
α(i)α(j) = −α(i)α(j),

where 1/α(k) = α(k) because α(k) ∈ {±1}.
Now we use the labels α(1), . . . , α(n) to construct a rank-1 solution

of the SDP. Let X be a solution of (2.7), and define

X̃ =


α(1)
√
X11

...
α(n)

√
Xnn



α(1)
√
X11

...
α(n)

√
Xnn


T

.

Note that X � 0 because X is a solution of (2.7); therefore, Xii ≥ 0 for
i = 1, . . . , n, so the square roots in our definition of X̃ are real numbers.
Using our definition of X̃, and the fact that α(i)α(j) = −σ(i, j), we
have that

(Ak)ijX̃ij = (Ak)ijα(i)α(j)
√
XiiXjj

= −σ(i, j)(Ak)ij
√
XiiXjj

for all (i, j) ∈ E. The definition of the sign of an edge implies that
σ(i, j)(Ak)ij = |(Ak)ij |, and hence that

(Ak)ijX̃ij = −|(Ak)ij |
√
XiiXjj .

Another consequence of X being positive semidefinite is that

det
([
Xii Xij

Xij Xjj

])
= XiiXjj −X2

ij ≥ 0.

Rearranging this inequality, we find that

−
√
XiiXjj ≤ −|Xij |.
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This inequality allows us to bound (Ak)ijX̃ij :

(Ak)ijX̃ij = −|(Ak)ij |
√
XiiXjj

≤ −|(Ak)ij ||Xij |
= −|(Ak)ijXij |
≤ (Ak)ijXij .

Summing both sides of this inequality over i and j gives

Ak • X̃ =
n∑
i=1

n∑
j=1

(Ak)ijX̃ij ≤
n∑
i=1

n∑
j=1

(Ak)ijXij = Ak •X.

(Although our earlier analysis only held for (i, j) ∈ E, we can still sum
over i and j because (Ak)ij = 0 if (i, j) /∈ E.) With k = 1, . . . ,m, this
inequality tells us that X̃ satisfies the inequality constraints of (2.7):

Ak • X̃ ≤ Ak •X ≤ bk, k = 1, . . . ,m.

With k = 0, this inequality tells us that X̃ is optimal for (2.7) because
X is optimal, and A0 • X̃ ≤ A0 •X. Thus, we can conclude that X̃ is
a rank-1 solution of (2.7).

Example 2.4. Consider the following instance of (2.7):

minimize X11
subject to Xii ≤ 1, i = 1, 2, 3, 4

−Xii ≤ −1, i = 1, 2, 3, 4
X12 +X13 −X23 +X34 ≤ 2
X � 0.

A rank-4 solution of this problem is given by X = I. The graph G rep-
resenting the sparsity pattern of the coefficients is given in Figure 2.2.
All of the edges are sign definite, and are labeled with the correspond-
ing signs. Note that G satisfies the conditions of Theorem 2.6: we have
already remarked that all of the edges are sign definite; there is only
one cycle, and it has two positive edges. Thus, this problem must have
a rank-1 solution. We can construct such a solution by applying the
procedure given in the proof of Theorem 2.6. We will use the rooted
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Figure 2.2: the graph G representing the sparsity pattern of Example 2.4
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Figure 2.3: a rooted spanning tree for the graph G in Figure 2.2

spanning tree T shown in Figure 2.3. First, we assign the label α(2) = 1
to the root node. Then we assign labels to the children of the root:

α(1) = −σ(1, 2)
α(2) = −1 and α(3) = −σ(2, 3)

α(2) = 1.

Next, we assign a label to the node at depth 2:

α(4) = −σ(3, 4)
α(3) = −1.

Note that the edge (1, 3) is in G, but not in T ; however, since G satisfies
the hypotheses of Theorem 2.6, we still have that

α(1)α(3) = −σ(1, 3) = −1.

Using our vertex labels and the initial solution X = I, we construct
the rank-1 solution

X̃ =


α(1)
√
X11

α(2)
√
X22

α(3)
√
X33

α(4)
√
X44



α(1)
√
X11

α(2)
√
X22

α(3)
√
X33

α(4)
√
X44


T

=


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

 .
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Finally, we list two important cases where the hypotheses of Theo-
rem 2.6 are easy to check.

Corollary 2.7. Consider a solvable instance of (2.7) with associated
graph G.

(1) If G is acyclic, and every edge of G is sign definite, then (2.7) has
a rank-1 solution.

(2) If every edge of G is negative, then (2.7) has a rank-1 solution.

Bose et al. [9] gave a result similar to the first part of Corollary 2.7;
the second part of the corollary was shown by Kim and Kojima [59].



3
Heuristics and Approximate Solutions

3.1 Introduction

This chapter is about heuristics and approximate methods for low-
rank semidefinite programming. First, we describe the nonlinear-
programming method of Burer and Monteiro [15, 16, 17, 18]. This
is a popular heuristic that often works well in practice, particularly
when we can guarantee the existence of a low-rank solution using, for
example, one of the theorems from Chapter 2. Next, we discuss the
nuclear-norm heuristic. One of the foundations of compressed sensing
is the fact that the `1-heuristic often finds a minimum-cardinality so-
lution of a system of linear equations [2, 20, 21, 22, 23, 30]. Similarly,
the nuclear-norm heuristic often recovers a minimum-rank solution of
an SDP feasibility problem [80]. We do not prove guarantees about the
nuclear-norm heuristic, focusing instead on showing how to minimize
the nuclear norm by solving a semidefinite program. The chapter con-
cludes with a presentation of methods for rounding exact solutions to
low-rank approximate solutions. These techniques are widely used in
approximation algorithms, including the famous Goemans-Williamson
algorithm for the maximum-cut problem.

30
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3.2 Nonlinear-programming algorithms

Interior-point methods are often impractical for large-scale semidefinite
programs. This has prompted the development of first-order algorithms
such as the spectral-bundle algorithm of Helmberg and Rendl [48]; a
survey of such first- and second-order algorithms is given by Mon-
teiro [71]. Large-scale SDPs frequently arise as relaxations of com-
binatorial optimization problems, such as the maximum-cut problem
(see Section 3.4.3). Extending an algorithm for solving relaxations of
maximum-cut problems [14], Burer and Monteiro [15, 16, 17, 18] pro-
posed a nonlinear-programming algorithm for low-rank semidefinite
programming, and demonstrated that it is often effective in practice.
This algorithm is based on the fact that there is a one-to-one corre-
spondence between the set of n×n positive-semidefinite matrices with
rank at most r, and the set of matrices that can be written in the form
RRT for some R ∈ Rn×r. Having made this observation, we consider
the optimization problem

minimize C • (RRT)
subject to Ai • (RRT) = bi, i = 1, . . . ,m,

(SDP-r)

with variable R ∈ Rn×r, where the positive integer r is a problem pa-
rameter. If r is chosen to be at least as large as the rank of a minimum-
rank solution of (SDP), then (SDP-r) is equivalent to (SDP). (For
example, we can use the bounds in Chapter 2 to choose r.) If r is less
than the rank of a minimum-rank solution of (SDP), then we can think
of (SDP-r) as giving us a low-rank approximate solution of (SDP).

The constraint X � 0 is the source of the difficulty in solving
(SDP) since the objective and equality constraints are both linear.
Thus, (SDP-r) has the advantage of eliminating the difficult matrix
inequality; however, this comes at the expense of turning the linear
objective and constraint functions into (possibly nonconvex) quadratic
functions. Nonetheless, making this trade-off gives rise to an algorithm
that often works well in practice, at least when r is small, and there
exists a solution with rank less than or equal to r.

We can attempt to solve (SDP-r) using standard nonlinear-
programming algorithms. Burer and Monteiro suggest using an
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augmented-Lagrangian method with a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm to solve the uncon-
strained subproblems. Augmented-Lagrangian methods were intro-
duced by Hestenes [49] and Powell [79]; the BFGS algorithm was inde-
pendently proposed by Broyden [11, 12], Fletcher [34], Goldfarb [40],
and Shanno [82]. We will not review augmented-Lagrangian methods
or the BFGS algorithm because both are covered very well in several
texts on nonlinear programming and numerical optimization [7, 35, 65].

It is also worth mentioning that other nonlinear-programming algo-
rithms have been suggested for solving (SDP-r) (for example, see [53]).
However, the approach suggested by Burer and Monteiro is widely used
in the literature on applications of low-rank semidefinite programming.

3.3 The nuclear-norm heuristic

Suppose we want to find a minimum-rank solution of the SDP feasibility
problem

Ai •X = bi, i = 1, . . . ,m
X � 0,

where X ∈ Sn is the variable, and A1, . . . , Am ∈ Sn and b ∈ Rm are
problem data. Although we focus on feasibility problems for simplicity,
we can readily extend our results to optimization problems. First, we
compute a solution X? of (SDP) using an interior-point method. Then
we find a minimum-rank solution of the feasibility problem

C •X = C •X?

Ai •X = bi, i = 1, . . . ,m
X � 0.

A common technique for finding low-rank solutions of SDP feasibility
problems involves solving an optimization problem with a specially
chosen objective. For example, Barvinok’s proof of the rank bound
in Theorem 2.1 was based on considering an instance of (SDP) with a
generic value of C. Minimizing the “trace objective” tr(X) (that is, the
special case when C = I) is common in the control community [69, 75].
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The following example shows the effect of different objective functions
on a specific problem.

Example 3.1. Suppose we want to find the smallest possible dimen-
sion d and corresponding points x1, x2, x3 ∈ Rd satisfying the distance
constraints

‖x1‖ = 1, ‖x1 − x2‖ = 1, and ‖x2 − x3‖ = 1. (3.1)

Consider the SDP feasibility problem

Ai •X = 1, i = 1, 2, 3
X � 0,

(3.2)

where we define

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

 1 −1 0
−1 1 0

0 0 0

 , and A3 =

0 0 0
0 1 −1
0 −1 1

 .
Given points x1, x2, x3 ∈ Rd satisfying (3.1), the matrix

X =
[
x1 x2 x3

]T [
x1 x2 x3

]
is a rank-d solution of (3.2). Conversely, given a rank-d solution X

of (3.2), we can use the factorization above to find x1, x2, x3 ∈ Rd

satisfying (3.1). Thus, our original problem is equivalent to finding a
minimum-rank solution of (3.2).

Because (3.2) has m = 3 equality constraints, Theorem 2.1 guar-
antees that there exists a solution whose rank is at most 2. This is
convenient because it allows us to draw pictures in the plane. We can
think of our problem as choosing the configuration of a mechanical link-
age, as shown in Figure 3.1. The linkage has a fixed pivot at the origin,
and floating pivots at locations x1 and x2; the end of the linkage is x3.
Since the origin is fixed, and the length of the segment between the ori-
gin and x1 is fixed at ‖x1‖ = 1, x1 must lie on the unit circle centered
at the origin. Similarly, x2 must lie on the unit circle centered at x1,
and x3 must lie on the unit circle centered at x2. In Figure 3.1, these
circles are shown as dashed lines, while the thick solid lines represent
the segments of the linkage.
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O

x1x2

x3

Figure 3.1: representation of the feasibility problem as a mechanical linkage

Suppose we apply the trace objective to this problem. This corre-
sponds to configuring the linkage in order to minimize

tr(X) = ‖x1‖2 + ‖x2‖2 + ‖x3‖2 = 1 + ‖x2‖2 + ‖x3‖2.

Thus, we want x2 and x3 to be as close to the origin as possible. In terms
of the intuition provided by the mechanical linkage, we can imagine
attaching elastic bands that stretch from the origin to the floating pivot
at x2 and the end of the linkage at x3. Because x2 and x3 are equally
weighted in the objective function, the strengths of the corresponding
elastic bands are equal as well. The solution of the SDP using the trace
objective is shown in Figure 3.2. Observe that the origin is the midpoint
of the line segment joining x2 and x3. In terms of our mechanical-
linkage analogy, this reflects the fact that the forces due to the elastic
bands joining the origin to x2 and x3 must be balanced.

The standard trace objective gives us a rank-2 solution of the fea-
sibility problem, which can be used to construct a set of points in R2

satisfying the given conditions. Returning to the mechanical-linkage
analogy, suppose we pull x3 as far from the origin as possible. Then



3.3. The nuclear-norm heuristic 35

O x1

x2

x3

Figure 3.2: a solution of the SDP with C = I

the linkage will be configured in a straight line as shown in Figure 3.3,
allowing us to find a set of points in R satisfying the given conditions.
Based on this intuition, we compute the solution of the feasibility prob-
lem that minimizes the objective

(−e3e
T
3 ) •X = −‖x3‖2.

(This is equivalent to finding the solution that maximizes ‖x3‖2, which
corresponds to our intuition of pulling x3 as far from the origin as
possible.)

Another objective function commonly used in the literature is the
log-det heuristic: log(det(X+δI)), where δ > 0 is a small regularization
term. This approach was proposed by Fazel, Hindi, and Boyd [33].

One limitation of the trace and log-det heuristics is that they can
only be applied to square matrices. Thus, we cannot apply these heuris-
tics to a system of linear matrix equations:

Ai •X = bi, i = 1, . . . , p,

where X ∈ Rm×n is the variable, and A1, . . . , Ap ∈ Rm×n and b ∈ Rm

are problem data. For a problem of this type, Fazel [31, 32] suggested
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O x1 x2 x3

Figure 3.3: a solution of the SDP with C = −e3eT
3

minimizing the nuclear norm subject to the constraints Ai •X = bi for
i = 1, . . . , p. Recall that the nuclear norm of a matrix X ∈ Rm×n is
defined to be

‖X‖∗ =
min(m,n)∑
i=1

σi,

where σi denotes the ith singular value of X. In the special case when
X is symmetric and positive semidefinite, we have that ‖X‖∗ = tr(X),
so we can think of the nuclear-norm heuristic as a generalization of the
trace heuristic.

There are other intuitively appealing justifications for using the
nuclear-norm heuristic. Recall that the convex envelope of a function
f : Rn → R is defined to be the convex function g : Rn → R such
that h(x) ≤ g(x) ≤ f(x) for all x ∈ dom(f), and all convex functions
h : Rn → R. Thus, we can think of g as the best convex approximation
of f . It is possible to show that the nuclear norm is the convex envelope
of the rank function (see [31]). Therefore, the nuclear-norm heuristic
provides the best convex approximation of the problem of minimizing
the rank subject to affine constraints.

We can also think of the nuclear-norm heuristic as the matrix analog
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of the `1-heuristic because

‖diag(x)‖∗ =
n∑
i=1
|xi| = ‖x‖1

for every vector x ∈ Rn. It has been shown that the `1-heuristic yields
a minimum-cardinality solution in many cases [2, 20, 21, 22, 23, 30].
Moreover, similar guarantees can often be made for the nuclear-norm
heuristic [80]. We will not attempt to prove these guarantees here; our
focus will instead be on showing how to minimize the nuclear norm by
solving a semidefinite program.

Proposition 3.1. The nuclear norm of A ∈ Rm×n is the common opti-
mal value of the semidefinite program

maximize A • Y

subject to
[
Im Y

Y T In

]
� 0

with variable Y ∈ Rm×n, and its dual

minimize tr(W1) + tr(W2)

subject to
[

W1 −(1/2)A
−(1/2)AT W2

]
� 0,

with variables W1 ∈ Sm and W2 ∈ Sn.

Proof. Let r = rank(A), and A = UΣV T be the (reduced) singular-
value decomposition of A, where U ∈ Rm×r and V ∈ Rn×r have or-
thonormal columns, and Σ ∈ Rr×r is diagonal and nonsingular. Con-
sider the matrix Y = UV T. Corollary A.12 tells us that[

Im Y

Y T In

]
� 0

if and only if In − Y TY � 0. Let Ṽ ∈ Rn×(n−r) be the matrix whose
columns are the right singular vectors of A corresponding to the zero
singular values. Then we have that

In − Y TY = In − (UV T)T(UV T) = In − V V T = Ṽ Ṽ T � 0.
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This proves that Y is feasible for the primal problem. Moreover, Y
achieves an objective value of

A • Y = tr(ATY ) = tr((UΣV T)T(UV T)) = tr(Σ) = ‖A‖∗.

Similarly, the matrices W1 = (1/2)UΣUT and W2 = (1/2)V ΣV T are
feasible for the dual problem because[

W1 −(1/2)A
−(1/2)AT W2

]
=
[

(1/2)UΣUT −(1/2)UΣV T

−(1/2)V ΣUT (1/2)V ΣV T

]

= 1
2

[
UΣ

1
2

−V Σ
1
2

] [
UΣ

1
2

−V Σ
1
2

]T

� 0.

These matrices achieve an objective value of

tr(W1) + tr(W2) = tr((1/2)UΣUT) + tr((1/2)V ΣV T)
= tr(Σ)
= ‖A‖∗.

For all feasible matrices Y , W1, and W2, we have that

tr(W1) + tr(W2)−A • Y =
[

W1 −(1/2)A
−(1/2)AT W2

]
•
[
Im Y

Y T In

]
≥ 0

since the trace inner product of two positive semidefinite matrices is
nonnegative. Thus, we have that tr(W1)+tr(W2) ≥ A•Y for all feasible
matrices Y ,W1, andW2. For the values of Y ,W1, andW2 given above,
we found that

A • Y = tr(W1) + tr(W2) = ‖A‖∗.

Therefore, we can conclude that the values of Y , W1, and W2 given
above are the solutions of the corresponding optimization problems,
and that the common optimal value of the two problems is ‖A‖∗.

Corollary 3.1. Consider the problem of minimizing the nuclear norm
subject to affine constraints:

minimize ‖X‖∗
subject to Ai •X = bi, i = 1, . . . , p,
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where X ∈ Rm×n is the optimization variable, and A1, . . . , Ap ∈ Rm×n

and b ∈ Rp are problem data. We can solve this problem by solving
the semidefinite program

minimize tr(W1) + tr(W2)
subject to Ai •X = bi, i = 1, . . . , p[

W1 −(1/2)X
−(1/2)XT W2

]
� 0

with variables X ∈ Rm×n, W1 ∈ Sm, and W2 ∈ Sn.

3.4 Rounding methods

Many popular approximation algorithms for NP-hard problems are
based on SDP relaxations of integer-programming problems. In order
to recover an approximate solution from the SDP relaxation, we typi-
cally need to round the solution of the SDP. The most famous exam-
ple of such an algorithm is the Goemans-Williamson algorithm for the
maximum-cut problem [39]. This section surveys some of the most pop-
ular methods for rounding the solutions of SDP problems to low-rank
approximate solutions, and proves some guarantees on the quality of
the resulting approximations.

3.4.1 Low-rank projection

Consider a matrix X ∈ Sn+ with eigenvalue decomposition

X =
n∑
i=1

λiviv
T
i ,

where λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of X, and v1, . . . , vn ∈ Rn

form an orthonormal set of corresponding eigenvectors. Suppose X is
the solution of a semidefinite program, and we desire a solution with
rank at most r. Perhaps the most natural rounding method is to find
the rank-r matrix that is closest to X in some norm. If we use either
the operator norm or the Frobenius norm, then this matrix is

X̃ =
r∑
i=1

λiviv
T
i .
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Although this method can be effective in some cases, it can also perform
very poorly in other cases, as shown in the following example. For
simplicity we present the example as a linear program for which we
seek a low-cardinality solution.

Example 3.2. Consider the linear program

minimize (n− 2)x1 − 2x2 − · · · − 2xn−1
subject to x1 + 2xn = 2

xi + xn = 1, i = 2, . . . , n− 1
x ≥ 0

with variable x ∈ Rn. The set of solutions of this problem is

X ? = {(2θ, θ, . . . , θ, 1− θ) ∈ Rn | 0 ≤ θ ≤ 1}.

Suppose we are given the solution corresponding to θ = 1/2:

x? = (1, 1/2, . . . , 1/2) ∈ Rn.

Rounding this solution to the nearest vector with one nonzero compo-
nent gives x̃ = e1, which violates all of the equality constraints, and
achieves an objective value of n−2. However, the best solution with one
nonzero component is en, which is the solution of the linear program
corresponding to θ = 0, and achieves an objective value of 0.

3.4.2 Binary quadratic maximization

Consider the binary quadratic maximization problem

maximize xTQx

subject to xi ∈ {±1}, i = 1, . . . , n,
(3.3)

where x ∈ Rn is the variable, and Q ∈ Sn is problem data. Note that
we do not assume that Q is positive semidefinite. Let z? be the optimal
value of this problem. We can formulate the constraint xi ∈ {±1} as the
quadratic constraint x2

i = 1. This gives us a polynomial optimization
problem whose natural SDP relaxation of (3.3) is

maximize Q •X
subject to Eii •X = 1, i = 1, . . . , n

X � 0,

(3.4)
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where X ∈ Sn is the variable, and Eii is the matrix whose (i, i)-entry
is equal to 1, and whose other entries are all equal to 0. Let z̃? be
the optimal value of the SDP relaxation. Because (3.4) is a relaxation
of (3.3), we have that z̃? ≥ z?. The proof of the following theorem
shows that, in the special case when Q is positive semidefinite, we can
randomly round a solution of the SDP relaxation to an approximate
solution of (3.3) whose expected objective value is within a factor of
2/π ≈ 0.6366 of optimal. For such a randomized rounding algorithm,
we typically compute several rounded solutions, and then report the
solution with the highest objective value.

Theorem 3.2 (Nesterov [74]). If Q is positive semidefinite, then

z? ≥ (2/π)z̃?.

Proof. Let X ∈ Sn be a solution of (3.4), and x ∈ Rn be a normal
random vector with mean vector 0 and covariance matrix X. Define
the vector x̂ ∈ Rn such that

x̂i =

 1 xi ≥ 0,
−1 otherwise.

The constraint Eii •X = 1 in (3.4) implies that xi has unit variance.
Because xi and xj have unit variance, Xij is the correlation of xi and
xj . Thus, Corollary C.4 tells us that

E
(
(x̂x̂T)ij

)
= E(x̂ix̂j) = 2

π
arcsin(Xij).

Applying this result, we find that

z? ≥ E
(
x̂TQx̂

)
= Q •E

(
x̂x̂T

)
= 2
π

(Q • arcsin(X)) .

Since X � 0, Corollary A.9 tells us that arcsin(X) � X. Combined
with the assumption that Q � 0, this implies that

z? = 2
π

(Q • arcsin(X)) ≥ 2
π

(Q •X) = (2/π)z̃?.
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3.4.3 The maximum-cut problem

Given an undirected graph G = (V,E) with nonnegative edge weights,
the maximum-cut problem is to partition the set of vertices into two
sets in order to maximize the total weight of the edges between the two
sets. More concretely, suppose the vertex set is V = {1, . . . , n}, and let

wij =

the weight of edge (i, j) (i, j) ∈ E,
0 otherwise.

The maximum-cut problem is to find a subset S of V that maximizes∑
i∈S

∑
j /∈S

wij ,

It is well known that this problem is NP-hard – the corresponding deci-
sion problem was in Karp’s original list of NP-complete problems [56].

The Goemans-Williamson algorithm [39] is an approximation algo-
rithm for the maximum-cut problem that achieves an approximation
ratio of

α = 2
π

min
0≤θ≤π

(
θ

1− cos(θ)

)
≈ 0.8786.

This is currently the best known approximation ratio for the maximum-
cut problem among all polynomial-time algorithms. Moreover, under
the unique-games conjecture [57], it is NP-hard to obtain an approxi-
mation ratio that is better than that of the Goemans-Williamson algo-
rithm [58]. Without relying on any unproven conjectures, it is possible
to show that it is NP-hard to obtain an approximation ratio better
than 16/17 ≈ 0.9412 [47, 94].

We can describe the set S using the vector x ∈ Rn such that

xi =

 1 i ∈ S,
−1 i /∈ S.

Then we have that

1 + xi
2 =

1 i ∈ S,
0 otherwise,

and 1− xj
2 =

0 j ∈ S,
1 otherwise.
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Thus, we can write the objective of the maximum-cut problem as∑
i∈S

∑
j /∈S

wij =
n∑
i=1

n∑
j=1

wij

(1 + xi
2

)(1− xj
2

)

= 1
4

n∑
i=1

n∑
j=1

wij(1 + xi − xj − xixj)

= 1
4

n∑
i=1

n∑
j=1

wij(1− xixj),

where the last step follows from the fact that
n∑
i=1

n∑
j=1

wijxi =
n∑
i=1

n∑
j=1

wijxj

because wij = wji, so that
∑n
i=1

∑n
j=1wij(xi−xj) = 0. Since xi ∈ {±1},

we have that x2
i = 1 for i = 1, . . . , n. Therefore,

∑
i∈S

∑
j /∈S

wij = 1
4

n∑
i=1

n∑
j=1

wij(x2
i − xixj)

=
n∑
i=1

1
4

n∑
j=1

wij

x2
i −

n∑
i=1

n∑
j=1

(1
4wij

)
xixj

= xTQx,

where we define the matrix Q ∈ Sn such that

Qij =

(
∑n
k=1wik − wij) /4 i = j,

−wij/4 otherwise.

Thus, the maximum-cut problem can be represented as a binary-
quadratic optimization problem:

maximize xTQx

subject to xi ∈ {±1}, i = 1, . . . , n.
(3.5)

Theorem 3.2 tells us that the optimal value of (3.5) is within a factor
of 2/π ≈ 0.6366 of the optimal value of its SDP relaxation. However,
we can use the special structure of Q in (3.5) to show that the approx-
imation ratio is actually much better.
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Theorem 3.3 (Goemans and Williamson [39]). Let z? and z̃? denote
the optimal values of (3.5) and its SDP relaxation, respectively. Then,
z? ≥ αz̃?, where

α = 2
π

min
0≤θ≤π

(
θ

1− cos(θ)

)
≈ 0.8786.

Proof. The SDP relaxation of (3.5) is

minimize Q •X
subject to Eii •X = 1, i = 1, . . . , n

X � 0.

(3.6)

Let X ∈ Sn be a solution of (3.6), and x ∈ Rn be a normal random
vector with mean vector 0 and covariance matrix X. Define the vector
x̂ ∈ Rn such that

x̂i =

 1 xi ≥ 0,
−1 otherwise.

The constraint Eii •X = 1 in (3.6) implies that xi has unit variance.
Because xi and xj have unit variance, Xij is the correlation of xi and
xj . Thus, Corollary C.4 tells us that

E
(
(x̂x̂T)ij

)
= E(x̂ix̂j) = 2

π
arcsin(Xij).

Our definition of the matrix Q implies that

x̂TQx̂ = 1
4

n∑
i=1

n∑
j=1

wij(1− x̂ix̂j)

for all x̂ ∈ Rn such that x̂2
i = 1, and

Q •X = 1
4

n∑
i=1

n∑
j=1

wij(1−Xij)

for all X ∈ Sn such that Xii = 1. Since the sum of the acute angles in
a right triangle is π/2, we have that arccos(Xij) + arcsin(Xij) = π/2,
and hence that

1− 2
π

arcsin(Xij) = 2
π

arccos(Xij).
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Combining these results, we find that

E
(
x̂TQx̂

)
= E

1
4

n∑
i=1

n∑
j=1

wij(1− x̂ix̂j)


= 1

4

n∑
i=1

n∑
j=1

wij(1−E(x̂ix̂j))

= 1
4

n∑
i=1

n∑
j=1

wij

(
1− 2

π
arcsin(Xij)

)

= 1
4

n∑
i=1

n∑
j=1

wij

( 2
π

arccos(Xij)
)
.

Consider any constant α such that

2
π

arccos(t) ≥ α(1− t), −1 ≤ t ≤ 1.

(We only need the inequality to be satisfied for −1 ≤ t ≤ 1 because
Xij is a correlation, so −1 ≤ Xij ≤ 1.) For such an α, we have that

E
(
x̂TQx̂

)
≥ 1

4

n∑
i=1

n∑
j=1

wijα(1−Xij) = α(Q •X) = αz̃?.

In order to obtain the tightest bound possible, we choose α to be the
largest value satisfying the constraint above: that is,

α = 2
π

min
−1≤t≤1

(arccos(t)
1− t

)
= 2
π

min
0≤θ≤π

(
θ

1− cos(θ)

)
≈ 0.8786.

(The largest lower bound for a function over an interval is the minimum
value of the function on the interval.) Having shown how to construct
an approximate solution x̂ of (3.5) such that E

(
x̂TQx̂

)
≥ αz̃?, we can

conclude that z? ≥ αz̃?.

3.4.4 Problems with positive-semidefinite coefficients

It is also possible to establish bounds on the quality of a rounded
solution in the case when all of the coefficient matrices are positive-
semidefinite. This result is based on the analysis of So, Ye, and
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Zhang [85], although we present somewhat different bounds here. For
simplicity we only consider feasibility problems

Ai •X = bi, i = 1, . . . ,m,
X � 0

with variable X ∈ Sn, and problem data A1, . . . , Am ∈ Sn+ and b ∈ Rm
+ .

Note that Ai • X ≥ 0 because Ai and X are both positive semidefi-
nite; thus, the assumption that the bi are nonnegative only serves to
exclude problem instances that are trivially infeasible. We can extend
our analysis to optimization problems by finding the optimal value z? of
(SDP), and then considering the SDP feasibility problem with equality
constraints C •X = z? and Ai •X = bi for i = 1, . . . ,m.

Theorem 3.4. Suppose A1, . . . , Am, X ∈ Sn+ and b ∈ Rm
+ satisfy

Ai •X = bi, i = 1, . . . ,m.

Because X is positive semidefinite, there exists a matrix V ∈ Rn×r

such that X = V V T, where r = rank(X). Let z1, . . . , zd ∈ Rr be
independent standard normal random vectors, and define

Z = 1
d

d∑
k=1

zkz
T
k and X̃ = V ZV T.

Then, for all γ ∈ (0, 1), we have that

prob
(
αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi, i = 1, . . . ,m

)
≥ 1− 2m(1− γ)

d
2 ,

where we define the distortion functions

αl(γ) = −W0

(
γ − 1
e

)
and αu(γ) = −W−1

(
γ − 1
e

)
,

andWk is the kth branch of the LambertW function (see Remark 3.1).
The distortion functions αl(γ) and αu(γ) are shown in Figure 3.4. In
particular, if γ > 1 − (2m)−

2
d , then there is positive probability that

X̃ satisfies the distortion bounds αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi for all
i = 1, . . . ,m.
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Figure 3.4: distortion functions in Theorem 3.4
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Proof. Suppose bi = 0. Then we have that

Ai • (V V T) = Ai •X = bi = 0,

so we can use Lemma A.3 to conclude that AiV = 0. This implies that

Ai • X̃ = Ai • (V ZV T) = (AiV ) • (ZV T) = (0) • (ZV T) = 0.

Thus, X̃ satisfies all homogeneous equality constraints exactly. In the
rest of the proof, we assume that the homogeneous equality constraints
have been discarded, so bi > 0 for i = 1, . . . ,m.

We are interested in bounding the probability that the distortion
bounds are satisfied:

prob
(
αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi, i = 1, . . . ,m

)
= 1− prob

(
m⋃
i=1

(
Ai • X̃ < αl(γ)bi or Ai • X̃ > αu(γ)bi

))
.

Applying the union bound yields

prob
(
αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi, i = 1, . . . ,m

)
≥ 1−

m∑
i=1

(
prob

(
Ai • X̃ < αl(γ)bi

)
+ prob

(
Ai • X̃ > αu(γ)bi

))
= 1−

m∑
i=1

prob
(

(Ai • X̃)d
bi

< αl(γ)d
)

−
m∑
i=1

prob
(

(Ai • X̃)d
bi

> αu(γ)d
)
.

(We can divide by bi without changing the direction of the inequality
due to our assumption that the bi are all strictly positive.) Observe
that we can write Ai • X̃ and bi as

Ai • X̃ = Ai • (V ZV T) = (V TAiV ) • Z,
bi = Ai •X = Ai • (V V T) = tr(V TAiV ).
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Using these observations, we can express our bound as

prob
(
αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi, i = 1, . . . ,m

)
≥ 1−

m∑
i=1

prob
(

((V TAiV ) • Z)d
tr(V TAiV ) < αl(γ)d

)

−
m∑
i=1

prob
(

((V TAiV ) • Z)d
tr(V TAiV ) > αu(γ)d

)
.

Since V TAiV ∈ Sr is symmetric, it has an eigenvalue expansion

V TAiV =
r∑
j=1

λijqijq
T
ij ,

where λi1, . . . , λir ∈ R are the eigenvalues of Ai, and qi1, . . . , qir ∈ Rr

form an orthonormal set of corresponding eigenvectors. Note that
V TAiV is positive semidefinite because Ai is positive semidefinite;
therefore, the eigenvalues λij are nonnegative. Using this eigenvalue
expansion of V TAiV , the definition of Z, and the fact that the trace
of a matrix is the sum of its eigenvalues, we have that

((V TAiV ) • Z)d
tr(V TAiV ) = 1∑r

̃=1 λi̃

 r∑
j=1

λijqijq
T
ij

 • (1
d

d∑
k=1

zkz
T
k

) d
=

r∑
j=1

λij∑r
̃=1 λi̃

d∑
k=1

(qijzk)2

=
r∑
j=1

θij

d∑
k=1

(qT
ijzk)2,

where we define
θij = λij∑r

̃=1 λi̃
.

Observe that the θij are nonnegative, and satisfy
r∑
j=1

θij =
r∑
j=1

λij∑r
̃=1 λi̃

= 1.

Because each zk is a standard normal random vector, and each qij
is a unit vector, we have that each qT

ijzk is a standard normal random
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variable. Additionally, because the zk are independent standard normal
random vectors, and qi1, . . . , qir form an orthonormal set, we have that

E
(
(qT
ij1zk1)(qT

ij2zk2)T
)

= qT
ij1 E

(
zk1z

T
k2

)
qij2

= δk1k2q
T
ij1qij2

= δk1k2δj1j2 .

Thus, qT
ij1zk1 and qT

ij2zk2 are uncorrelated unless j1 = j2 and k1 = k2.
Since uncorrelated jointly normal random variables are independent,
the qT

ijzk are independent standard normal random variables. This im-
plies that

yij =
d∑

k=1
(qT
ijzk)2

is a chi-squared random variable with d degrees of freedom because
it is the sum of the squares of d independent standard normal ran-
dom variables. Moreover, the yij are independent because the qT

ijzk are
independent for j = 1, . . . , r and k = 1, . . . , d. Thus, we have that

((V TAiV ) • Z)d
tr(V TAiV ) =

d∑
j=1

θijyij ,

where the yij are independent chi-squared random variables with d

degrees of freedom, and θi1, . . . , θir are nonnegative scalars summing
to 1 for all i = 1, . . . ,m. Therefore, we can apply Lemma C.2:

prob
(

((V TAiV ) • Z)d
tr(V TAiV ) < αl(γ)d

)

= prob

 r∑
j=1

θijyij < αl(γ)d


≤ (eαl(γ) exp(−αl(γ)))

d
2

=
(
−eW0

(
γ − 1
e

)
exp

(
W0

(
γ − 1
e

))) d
2

=
(
−e
(
γ − 1
e

)) d
2

= (1− γ)
d
2 ,
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where we have made use of the fact that W0(y) exp(W0(y)) = y for all
y ∈ (−1/e, 0) (see Remark 3.1). Note that we can apply the lemma even
though the inequality inside the probability is strict since chi-squared
random variables are continuous, so the probability is the same whether
the inequality is weak or strict. Similarly, Lemma C.1 tells us that

prob
(

((V TAiV ) • Z)d
tr(V TAiV ) > αu(γ)d

)

= prob

 r∑
j=1

θijyij > αu(γ)d


≤ (eαu(γ) exp(−αu(γ)))

d
2

=
(
−eW−1

(
γ − 1
e

)
exp

(
W−1

(
γ − 1
e

))) d
2

=
(
−e
(
γ − 1
e

)) d
2

= (1− γ)
d
2 .

Combining these results gives

prob
(
αl(γ)bi ≤ Ai • X̃ ≤ αu(γ)bi, i = 1, . . . ,m

)
≥ 1− 2m(1− γ)

d
2 .

Remark 3.1. A general discussion of the Lambert W function is given
by Corless, et al. [26]. For our purposes it suffices to know that the W
function satisfiesW (y) exp(W (y)) = y for all y ∈ (−1/e, 0). A sketch of
the function that maps z to z exp(z) is shown in Figure 3.5. For every
y ∈ (−1/e, 0), there are exactly two values of z such that z exp(z) = y.
The value of z such that z exp(z) = y and z ∈ (−1, 0) is given by
W0(y); the value of z such that z exp(z) = y and z ∈ (−∞,−1) is given
by W−1(y).
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Figure 3.5: the function that maps z to z exp(z)



Part II

Applications



4
Trust-Region Problems

A trust-region problem (4.1) is an optimization problem of the form

minimize xTP0x+ 2qT
0 x+ r0

subject to aT
i x ≤ bi, i = 1, . . . ,m
xTPix+ 2qT

i x+ ri ≤ 0, i = 1, . . . , p
‖x‖ = 1.

(4.1)

The optimization variable is x ∈ Rn, and the problem data are
a1, . . . , am ∈ Rn, b1, . . . , bm ∈ R, P0, . . . , Pp ∈ Sn, q0, . . . , qp ∈ Rn,
and r0, . . . , rp ∈ R. We assume that P1, . . . , Pp are positive semidef-
inite, so each quadratic inequality constraint represents an ellipsoid
(or degenerate ellipsoid). However, note that the objective may not be
convex because we do not assume that P0 is positive semidefinite.

An important special case of (4.1) is the simple trust-region prob-
lem, where m = p = 0. For example, the Levenberg-Marquardt algo-
rithm for nonlinear programming solves an instance of the simple trust-
region problem in each step of the algorithm. The simple trust-region
problem is known to be much easier than the general trust-region prob-
lem, and has been studied extensively [29, 37, 41, 44, 72, 73, 81, 90].
Additionally, some algorithms for nonconvex quadratic programming,
which is NP-hard in general, use the simple trust-region problem as a

54
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subproblem [55, 101]. It is possible to show that there is no duality gap
for the simple trust-region problem [91]; however, a duality gap may
exist for the general trust-region problem (4.1).

Special cases of (4.1) with m = 0 and 0 < s ≤ 2 have also received
considerable attention. For example, Peng and Yuan [77] considered the
problem of minimizing a quadratic function subject to two quadratic
constraints. Using properties of local minimizers [66], Martinez and
Santos [67] presented an algorithm for minimizing a quadratic func-
tion subject to two strictly convex quadratic constraints. Zhang [104]
proposed an algorithm for the general quadratic case, and the two-
dimensional trust-region problem was solved by Williamson [99]. Un-
fortunately, a duality gap may exist for all of these problems.

In this chapter we describe approaches to solving trust-region prob-
lems using semidefinite programming. The key step in the analysis is
typically to demonstrate that the SDP relaxation has a rank-1 solution
for certain special cases of (4.1).

4.1 SDP relaxation of a trust-region problem

Note that (4.1) is a quadratic optimization problem. The derivations
of the primal and dual SDP relaxations of such a problem are given in
Section A.2.4. In particular, the primal SDP relaxation of (4.1) is

minimize Q0 •X
subject to Li •X ≤ 0, i = 1, . . . ,m

Qi •X ≤ 0, i = 1, . . . , p
Fi •X = 1, i = 1, 2
X � 0,

(4.2)

where the optimization variable is X ∈ Sn+1, and we define

Qi =
[
Pi qi
qT
i ri

]
, i = 0, . . . , p,

Li =
[

0 (1/2)ai
(1/2)aT

i −bi

]
, i = 1, . . . ,m,

F1 =
[
I 0
0 0

]
, and F2 =

[
0 0
0 1

]
.
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The corresponding dual relaxation is

maximize ν1 + ν2
subject to

∑2
i=1 νiFi −

∑m
i=1 λiLi −

∑p
i=1 µiQi + S = Q0

λ ≥ 0
µ ≥ 0
S � 0,

(4.3)

with variables λ ∈ Rm, µ ∈ Rp, ν ∈ R2, and S ∈ Sn+1. The comple-
mentarity conditions for (4.2) and (4.3) are

λi(Li •X) = 0, i = 1, . . . ,m
µi(Qi •X) = 0, i = 1, . . . , p

S •X = 0.

Since X and S are positive semidefinite, the last complementarity con-
dition is equivalent to SX = 0.

We argue in Section A.2.4 that (4.2) is an exact relaxation if it has
a rank-1 solution. The following lemma gives sufficient conditions for
the existence of a rank-1 solution of (4.2).

Lemma 4.1. Suppose (4.2) and (4.3) are both solvable, and there is
no duality gap. Let X and (λ, µ, ν, S) be solutions of (4.2) and (4.3),
respectively. The boundary of the second-order cone is

bd(SOC) = {(x, t) ∈ Rn+1 | ‖x‖2 = t}.

If there exists a nonzero vector z ∈ range(X) ∩ bd(SOC) such that

(i) zTLiz ≤ 0 for i = 1, . . . ,m,

(ii) zTQiz ≤ 0 for i = 1, . . . , p,

(iii) λi(zTLiz) = 0 for i = 1, . . . ,m, and

(iv) µi(zTQiz) = 0 for i = 1, . . . , p,

then (4.2) is an exact relaxation of (4.1).
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Proof. Since we assume z ∈ bd(SOC), we have that ‖z1:n‖ = zn+1,
where z1:n = (z1, . . . , zn) is the vector consisting of the first n compo-
nents of z. Because we also assume that z is nonzero, it must be the
case that zn+1 is nonzero, and hence that we can define the matrix

X̃ = 1
z2
n+1

zzT.

We have that rank(X̃) = 1 since X̃ is a positive multiple of a nonzero
dyad. We will show that X̃ is a solution of (4.2) by showing that it is
feasible, and satisfies the complementarity conditions. Since we assume
that zTLiz ≤ 0 for i = 1, . . . ,m, we have that

Li • X̃ = zTLiz

z2
n+1

≤ 0, i = 1, . . . ,m.

Similarly, the assumption that zTQiz ≤ 0 for i = 1, . . . , p implies that

Qi • X̃ = zTQiz

z2
n+1

≤ 0, i = 1, . . . , p.

Using the definitions of F1 and F2, we find that

F1 • (zzT) = zTF1z = ‖z1:n‖2 and F2 • (zzT) = zTF2z = z2
n+1.

Therefore, we have that

F1 • X̃ = ‖z1:n‖2

z2
n+1

= 1 and F2 • X̃ =
z2
n+1
z2
n+1

= 1.

Additionally, we have that X̃ is positive semidefinite because it is a
positive multiple of a dyad. Taken together, these results show that X̃
is feasible for (4.2).

Our assumptions that λi(zTLiz) = 0 and µi(zTQiz) = 0 imply that

λi(Li • X̃) = λi(zTLiz)
z2
n+1

= 0 and µi(Qi • X̃) = µi(zTQiz)
z2
n+1

= 0.

Since z ∈ range(X), there exists a vector z̃ such that z = Xz̃. We
have that SX = 0 because S and X are solutions of their respective
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problems, and therefore satisfy complementary slackness. Combining
these results, we find that

SX̃ = 1
z2
n+1

SzzT = 1
z2
n+1

SXz̃zT = 0.

Thus, we have shown that X̃ is feasible, and satisfies the complemen-
tarity conditions. This implies that X̃ is a solution of (4.2).

4.2 The simple trust-region problem

The simple trust-region problem (4.4) is a special case of (4.1) with
m = p = 0:

minimize xTP0x+ 2qT
0 x+ r0

subject to ‖x‖ = 1.
(4.4)

SDP relaxation of the simple trust-region problem

The SDP relaxation of (4.4) is

minimize Q0 •X
subject to Fi •X = 1, i = 1, 2

X � 0.

(4.5)

This problem has m = 2 equality constraints, so Theorem 2.1 guar-
antees the existence of a rank-1 solution. Thus, this SDP relaxation is
exact. In particular, if X = vvT ∈ Sn+1 is a rank-1 solution of (4.5),
where v ∈ Rn+1, then x = vn+1(v1, . . . , vn) is a solution of (4.4).

4.3 Linear equality constraints

It turns out that adding linear equality constraints to (4.4) does not
make the problem more difficult – we can reduce such a problem to an
instance of (4.4). Consider the problem

minimize xTP0x+ 2qT
0 x+ r0

subject to Ax = b

‖x‖ = 1,
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where we assume that A ∈ Rm×n is fat and full rank. (Note that if
A is not fat and full rank, then some of the equality constraints are
either redundant or inconsistent. We can use Gaussian elimination to
detect inconsistent constraints, or to identify and remove redundant
constraints.) Let xmn = A†b denote the minimum-norm solution of
Ax = b, where A† is the pseudoinverse of A. The problem is infeasible
if ‖xmn‖ > 1; if ‖xmn‖ = 1, then xmn is the solution of (4.4) because
it is the only feasible point. (Note that the minimum-norm solution
of Ax = b is unique because we assume that A is fat and full rank.)
Now consider the case when ‖xmn‖ < 1. We can write every solution
of Ax = b in the form x = xmn + z, where z ∈ null(A). We can then
reformulate (4.4) in terms of the variable z:

minimize zTP0z + 2(q0 + P0xmn)Tz + (xT
mnP0xmn + 2qT

0 xmn + r0)
subject to Az = 0

‖z‖ = (1− ‖xmn‖2)
1
2 .

In this reformulation we have used the fact that the minimum-norm
solution xmn is in the orthogonal complement of null(A), so that

‖xmn + z‖2 = ‖xmn‖2 + 2xT
mnz + ‖z‖2 = ‖xmn‖2 + ‖z‖2.

Therefore, we can write the condition ‖x‖ = 1 as

‖z‖ = (1− ‖xmn‖2)
1
2 .

We have that dim(null(A)) = m − n since we assume that A is fat
and full rank. Let N ∈ Rn×(m−n) be a matrix whose columns form
an orthonormal basis for null(A). Then every z ∈ null(A) can be
written as z = (1 − ‖xmn‖2)

1
2Nw, where w ∈ Rm−n. Expressing our

optimization problem in terms of w gives a simple trust-region problem:

minimize wTP̃w + 2q̃Tw + r̃

subject to ‖w‖ = 1,

where we define

P̃ = (1− ‖xmn‖2)NTP0N

q̃ = (1− ‖xmn‖2)
1
2NT(P0xmn + q0)

r̃ = xT
mnP0xmn + 2qT

0 xmn + r0.
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We obtain the constraint in our reformulated problem by noting that

‖w‖ = ‖Nw‖ = ‖(1− ‖xmn‖2)−
1
2 z‖ = 1

because N has orthonormal columns, and ‖z‖ = (1− ‖xmn‖2)
1
2 .

4.4 Linear inequality constraints

We have shown that a trust-region problem with linear equality con-
straints can be reduced to an instance of (4.4). Now consider a trust-
region problem with linear inequality constraints

minimize xTP0x+ 2qT
0 x+ r0

subject to aT
i x ≤ bi, i = 1, . . . ,m
‖x‖ = 1.

(4.6)

4.4.1 Feasibility problems

First, we consider the feasibility problem associated with (4.6): that is,
given vectors a1, . . . , am ∈ Rn and b ∈ Rm, we want to determine if
there is a vector x ∈ Rn satisfying the constraints

aT
i x ≤ bi, i = 1, . . . ,m,
‖x‖ = 1.

(4.7)

We assume that a1, . . . , am are linearly independent. (If a1, . . . , am are
linearly dependent, then either there are variables that can be elimi-
nated, or there are constraints that are either redundant or inconsistent;
we can address these issues using Gaussian elimination.) Since we as-
sume that a1, . . . , am are linearly independent, it must be the case that
the system of equations

aT
i x = bi, i = 1, . . . ,m

has a solution. Moreover, a system of equations and inequalities ob-
tained by relaxing some of these equations to inequalities must also
have a solution because every relaxation of a feasible problem is also
feasible. First, we show that (4.7) is NP-hard in the general case.

Theorem 4.2. It is NP-hard to decide if (4.7) has a solution.



4.4. Linear inequality constraints 61

Proof. We will give a polynomial-time reduction to (4.7) from the par-
tition problem, which is known to be NP-hard [36]. In the partition
problem, we are given a set of integers {a1, . . . , aN}, and we want to
determine if there exists a subset S of {1, . . . , N} such that∑

i∈S
ai =

∑
i/∈S

ai.

Define the vector a = (a1, . . . , aN ) ∈ RN , and consider the following
instance of (4.7):

±
√
N(a,−a)Tx ≤ 0

±(ej , ej)Tx ≤ ±1/
√
N, j = 1, . . . , N

(−ej , 0)Tx ≤ 0, j = 1, . . . , N
(0,−ej)Tx ≤ 0, j = 1, . . . , N

‖x‖ = 1,

where x ∈ R2N . Note that this problem has m = 4N + 2 linear in-
equality constraints. Let x = (u, v), where u, v ∈ RN . We can express
our instance of (4.7) in terms of u and v as

(
√
Na)Tu = (

√
Na)Tv

uj + vj = 1/
√
N, j = 1, . . . , N

uj , vj ≥ 0, j = 1, . . . , N
‖u‖2 + ‖v‖2 = 1.

If u and v satisfy the second and fourth of these conditions, then

N∑
j=1

ujvj = 1
2

N∑
j=1

((uj + vj)2 − (u2
j + v2

j ))

= 1
2

 N∑
j=1

( 1√
N

)2
−

 N∑
j=1

u2
j +

N∑
j=1

v2
j


= 1

2
(
1− (‖u‖2 + ‖v‖2)

)
= 0.
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Since uj , vj ≥ 0, this implies that ujvj = 0 for j = 1, . . . , N . Thus,
there is a one-to-one correspondence between subsets S of {1, . . . , N},
and vectors x = (u, v) satisfying the constraints

uj + vj = 1√
N
, uj , vj ≥ 0, and ‖u‖2 + ‖v‖2 = 1.

In particular, given a subset S of {1, . . . , N}, we set

uj =

1/
√
N j ∈ S,

0 otherwise,
and vj =

1/
√
N j /∈ S,

0 otherwise.

Similarly, given vectors u and v satisfying the constraints, we take

S = {j ∈ {1, . . . , N} |uj = 1/
√
N}.

Intuitively, we can think of
√
Nu and

√
Nv as the indicator vectors for

the set S and its complement, respectively. This implies that∑
i∈S

ai = (
√
Na)Tu and

∑
i/∈S

ai = (
√
Na)Tv.

Thus, we have
∑
i∈S ai =

∑
i/∈S ai if and only if (

√
Na)Tu = (

√
Na)Tv.

This proves that the partition problem is equivalent to the given in-
stance of (4.7), and hence that (4.7) is NP-hard.

Although Theorem 4.2 states that (4.7) is NP-hard in general, the
following theorem shows that we can solve (4.7) in polynomial time
under an additional technical assumption.

Theorem 4.3. Suppose there exists an integer α < m such that |A| ≤ α
for every index set A ⊆ {1, . . . ,m} with the property that

{x ∈ Rn | ‖x‖ ≤ 1, aT
i x = bi for i ∈ A} 6= ∅.

Then we can compute a solution of (4.7) in polynomial time.

Proof. Let x0 be a solution of

minimize ‖x‖2

subject to aT
i x ≤ bi, i = 1, . . . ,m.
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(We can solve this problem efficiently using standard algorithms.) If
‖x0‖ > 1, then (4.7) is infeasible; if ‖x0‖ = 1, then x0 is a solution of
(4.7). Thus, we can focus on the case when ‖x0‖ < 1. Choose an index
set A ⊆ {1, . . . ,m} with |A| > α, and let x1 be a solution of the convex
quadratic program:

minimize ‖x‖2

subject to aT
i x = bi, i ∈ A
aT
i x ≤ bi, i /∈ A.

Note that this problem is feasible because we assume that a1, . . . , am
are linearly independent. Additionally, because |A| > α, we have that
‖x1‖ > 1. Let

x(θ) = θx0 + (1− θ)x1.

For every θ ∈ [0, 1], the vector x(θ) satisfies
aT
i x(θ) = θ(aT

i x0) + (1− θ)(aT
i x1) ≤ θbi + (1− θ)bi = bi.

Note that the function f(θ) = ‖x(θ)‖ is continuous,
f(0) = ‖x0‖ < 1, and f(1) = ‖x1‖ > 1.

Therefore, the intermediate-value theorem guarantees the existence of
a θ̂ ∈ [0, 1] such that f(θ̂) = 1. We can find such a θ̂ efficiently using,
for example, bisection on θ. Then x(θ̂) is a solution of (4.7).

The proof of Theorem 4.3 easily generalizes to the case when there
are linear equality constraints.
Theorem 4.4. Consider the feasibility problem

aT
i x ≤ bi, i = 1, . . . ,m
Cx = d

‖x‖ = 1
with variable x ∈ Rn, and problem data a1, . . . , am ∈ Rn, b ∈ Rm,
C ∈ Rp×n, and d ∈ Rp. We can assume without loss of generality that
the rows of the matrix 

aT
1
...
aT
m

C


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are linearly independent. Suppose there exists an integer α < m such
that |A| ≤ α for every index set A ⊆ {1, . . . ,m} with the property that

{x ∈ Rn | ‖x‖ ≤ 1, Cx = d, aT
i x = bi for i ∈ A} 6= ∅.

Then we can compute a solution of the feasibility problem above in
polynomial time.

4.4.2 SDP-SOCP relaxation

Adding redundant (also called valid) constraints to an optimization
problem does not change the optimal set or optimal value of the prob-
lem. Intuitively, the Lagrangian relaxation constructs a lower bound on
the optimal value of an optimization problem using linear combinations
of the constraints. Therefore, adding redundant constraints may result
in tighter relaxations (that is, smaller duality gaps) because there are
more constraints that can be used to construct the lower bound. Per-
haps the most famous examples of valid inequalities are Gomory cuts,
which were introduced by Gomory [42, 43], and used in practical algo-
rithms by Cornuéjols [27, 28]. Adding valid inequalities to (4.6) gives
the problem

minimize xTP0x+ 2qT
0 x+ r0

subject to ‖(bi − aT
i x)x‖ ≤ bi − aT

i x, i = 1, . . . ,m
(bi − aT

i x)(bj − aT
j x) ≥ 0, 1 ≤ i < j ≤ m

‖x‖ = 1.

Due to the constraint ‖x‖ = 1, we have that

‖(bi − aT
i x)x‖ = |bi − aT

i x|‖x‖ = |bi − aT
i x|.

Thus, the constraint ‖(bi − aT
i x)x‖ = |bi − aT

i x| ≤ bi − aT
i x is equiv-

alent to the inequality bi − aT
i x ≥ 0, which can also be written as

aT
i x ≤ bi. However, the more complicated formulation of these con-

straints gives a tighter relaxation. Similarly, because aT
i x ≤ bi, the

constraints (bi − aT
i x)(bj − aT

j x) ≥ 0 are redundant; nonetheless, we
include these constraints because they result in a tighter relaxation.
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We can express the problem with the added valid constraints as

minimize
[
P0 q0
qT

0 r0

]
•

[x
1

] [
x

1

]T


subject to [x
1

] [
x

1

]T
[−ai

bi

]
∈ SOC, i = 1, . . . ,m

[
−ai
bi

]T
[x

1

] [
x

1

]T
[−aj

bj

]
≥ 0, 1 ≤ i < j ≤ m

[
I 0
0 0

]
•

[x
1

] [
x

1

]T
 = 1.

Since the set of dyads is equal to the set of rank-1, positive-semidefinite
matrices, we can rewrite this problem as

minimize C •X
subject to Fi •X = 1, i = 1, 2

cT
i Xcj ≥ 0, 1 ≤ i < j ≤ m
Xci ∈ SOC, i = 1, . . . ,m
X � 0
rank(X) = 1,

where we define the matrices F1, F2 ∈ Sn+1, and the vectors
c1, . . . , cm ∈ Rn+1 such that

F1 =
[
I 0
0 0

]
, F2 =

[
0 0
0 1

]
, and ci =

[
−ai
bi

]
.

Ignoring the rank constraint gives an SDP-SOCP relaxation of (4.6):

minimize C •X
subject to Fi •X = 1, i = 1, 2

Aij •X ≥ 0, 1 ≤ i < j ≤ m
Xci ∈ SOC, i = 1, . . . ,m
X � 0,

(4.8)

where Aij ∈ Sn+1 is the symmetric part of cicT
j :

Aij = 1
2(cicT

j + cjc
T
i ).
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If we can show that (4.8) has a rank-1 solution, then (4.8) is an exact
relaxation of (4.6): that is, (4.8) and (4.6) have the same optimal value,
and X = vvT is a rank-1 solution of (4.8) if and only if x = vn+1v1:n is
a solution of (4.6). Our analysis will use the dual of (4.8):

maximize λ1 + λ2
subject to

∑2
i=1 λiFi +

∑m−1
i=1

∑m
j=i+1 µijAij

+(1/2)
∑m
i=1(νicT

i + ciν
T
i ) + S = C

µij ≥ 0, 1 ≤ i < j ≤ m
νi ∈ SOC, i = 1, . . . ,m
S � 0,

(4.9)

where the variables are λi, µij ∈ R, νi ∈ Rn+1, and S ∈ Sn. The
complementarity conditions for (4.8) and (4.9) are

µij(Aij •X) = 0, 1 ≤ i < j ≤ m
νT
i Xci = 0, i = 1, . . . ,m
S •X = 0.

Since X and S are positive semidefinite, the last complementarity con-
dition is equivalent to SX = 0. The following lemma gives sufficient
conditions for (4.8) to be an exact relaxation of (4.6).

Lemma 4.5. Suppose (4.8) and (4.9) are both solvable, and there is
no duality gap. Let X and (λ, µ, ν, S) be solutions of (4.8) and (4.9),
respectively. If there exists a nonzero vector z ∈ range(X)∩bd(SOC)
such that

(i) cT
i z ≥ 0 for i = 1, . . . ,m,

(ii) µij(cT
i z)(cT

j z) = 0 for 1 ≤ i < j ≤ m, and

(iii) (cT
i z)(νT

i z) = 0 for i = 1, . . . ,m,

then (4.8) is an exact relaxation of (4.6).

Proof. Since z is on the boundary of SOC, we have that ‖z1:n‖ = zn+1.
Because we also assume that z is nonzero, zn+1 must be nonzero, so
we can define the matrix

X̃ = 1
z2
n+1

zzT.
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We have that rank(X̃) = 1 since X̃ is a positive multiple of a dyad.
We will show that X̃ is a solution of (4.8) by showing that it is feasible,
and satisfies the complementarity conditions. The definitions of F1 and
F2 imply that

F1 • X̃ = zTF1z

z2
n+1

= ‖z1:n‖2

z2
n+1

= 1

F2 • X̃ = zTF2z

z2
n+1

=
z2
n+1
z2
n+1

= 1.

We have that X̃ is positive semidefinite because it is a positive multiple
of a dyad. The assumption that cT

i z ≥ 0 for i = 1, . . . ,m guarantees

Aij • X̃ =
(cT
i z)(cT

j z)
z2
n+1

≥ 0.

Similarly, because cT
i z ≥ 0, z ∈ SOC, and SOC is closed under non-

negative scaling, we have that

X̃ci = cT
i z

z2
n+1

z ∈ SOC.

We have now shown that X̃ is feasible for (4.8).
Our assumption that µij(cT

i z)(cT
j z) = 0 implies that

µij(Aij • X̃) =
µij(cT

i z)(cT
j z)

z2
n+1

= 0

for 1 ≤ i < j ≤ m. Similarly, the assumption that (cT
i z)(νT

i z) = 0
guarantees that

νT
i X̃ci = (cT

i z)(νT
i z)

z2
n+1

= 0

for i = 1, . . . ,m. Since z ∈ range(X), there exists a vector z̃ such that
z = Xz̃. We have that SX = 0 because S and X are solutions of their
respective problems, and therefore satisfy complementary slackness.
Combining these results, we find that

SX̃ = 1
z2
n+1

SzzT = 1
z2
n+1

SXz̃zT = 0.

Thus, we have shown that X̃ is feasible, and satisfies the complemen-
tarity conditions. This implies that X̃ is a solution of (4.8).
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At most one inactive inequality constraint

Consider the optimization problem

minimize xTP0x+ 2qT
0 x+ r0

subject to aT
i x ≤ bi, i = 1, . . . ,m

(bi − aT
i x)(bj − aT

j x) = 0, 1 ≤ i < j ≤ m
‖x‖ = 1.

(4.10)

Recall that an inequality constraint is said to be active or binding if it
holds with equality. Thus, (4.10) requires that at most one inequality
constraint is inactive because the constraint (bi−aT

i x)(bj−aT
j x) = 0 is

satisfied if and only if aT
i x = bi or aT

j x = bj . The SDP-SOCP relaxation
of (4.10) is

minimize C •X
subject to Fi •X = 1, i = 1, 2

Aij •X = 0, 1 ≤ i < j ≤ m
Xci ∈ SOC, i = 1, . . . ,m
X � 0.

(4.11)

The corresponding dual relaxation is

maximize λ1 + λ2
subject to

∑2
i=1 λiFi +

∑m−1
i=1

∑m
j=i+1 µijAij

+(1/2)
∑m
i=1(νicT

i + ciν
T
i ) + S = C

νi ∈ SOC, i = 1, . . . ,m
S � 0.

(4.12)

The complementarity conditions for these relaxations are

νT
i Xci = 0, i = 1, . . . ,m
S •X = 0.

Since S and X are positive semidefinite, the last complementarity con-
dition is equivalent to SX = 0. We will show that if there is no duality
gap between (4.11) and (4.12), then (4.11) is an exact relaxation of
(4.10). Our analysis will use the following lemma, which gives suffi-
cient conditions for the SDP-SOCP relaxation to be exact.
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Lemma 4.6. Suppose there is no duality gap between (4.11) and (4.12).
If there exists a nonzero vector z ∈ range(X) ∩ bd(SOC) such that

(i) cT
i z ≥ 0 for i = 1, . . . ,m,

(ii) (cT
i z)(cT

j z) = 0 for 1 ≤ i < j ≤ m, and

(iii) (cT
i z)(νT

i z) = 0 for i = 1, . . . ,m,

then (4.11) is an exact relaxation of (4.10).

Proof. Let X be a solution of (4.11), and (λ, µ, ν, S) be a solution
of (4.12). In addition to satisfying the constraints of their respective
problems, these solutions must satisfy the complementarity conditions

SX = 0 and νT
i Xci = 0, i = 1, . . . ,m.

Suppose z satisfies the hypotheses above. Because z ∈ bd(SOC), we
have that ‖z1:n‖ = zn+1. Since, in addition, z is assumed to be nonzero,
this implies that zn+1 is nonzero. Therefore, we can define the matrix

X̃ = 1
z2
n+1

zzT.

The definitions of F1 and F2, imply that

F1 • X̃ = zTF1z

z2
n+1

= ‖z1:n‖2

z2
n+1

= 1,

F2 • X̃ = zTF2z

z2
n+1

=
z2
n+1
z2
n+1

= 1.

Our assumption that (cT
i z)(cT

j z) = 0 for 1 ≤ i < j ≤ m implies that

Aij • X̃ =
(cT
i z)(cT

j z)
z2
n+1

= 0.

Since z ∈ SOC, cT
i z ≥ 0, and SOC is closed under nonnegative scaling,

we have that
X̃ci = cT

i z

z2
n+1

z ∈ SOC.

Note that X̃ is positive semidefinite because it is a positive multiple of
a dyad. We have now shown that X̃ satisfies the constraints of (4.11);
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it remains to check that X̃ satisfies the complementarity conditions.
Our assumption that (cT

i z)(νT
i z) = 0 implies that

νT
i X̃ci = (cT

i z)(νT
i z)

z2
n+1

= 0.

Finally, because z ∈ range(X), we have that z = Xz̃ for some vector
z̃, and hence that

SX̃ = 1
z2
n+1

SzzT = 1
z2
n+1

SXz̃zT = 0,

where we use the fact that SX = 0. Having shown that X̃ is feasible,
and satisfies the complementarity conditions, we can conclude that X̃
is optimal. Moreover, it is clear that rank(X̃) = 1 because X̃ is a scalar
multiple of a dyad.

We are now prepared to show that (4.11) is an exact relaxation of
(4.10). We will rely heavily on Lemma 4.6.

Theorem 4.7. If there is no duality gap between (4.11) and (4.12),
then (4.11) has a rank-1 solution, which implies that (4.11) is an exact
relaxation of (4.10).

Proof. Let X be a solution of (4.11), and (λ, µ, ν, S) be a solution of
(4.12). We will show how to construct a rank-1 solution of (4.11). There
are three cases to consider.

(1) First, suppose Xc1 = · · · = Xcm = 0. Let r = rank(X), and
use Lemma A.10 to find vectors z1, . . . , zr such that

X =
r∑
j=1

ziz
T
i and zT

j (F1 − F2)zj = (F1 − F2) •X
r

= 0,

where (F1−F2)•X = (F1 •X)− (F2 •X) = 1−1 = 0 because X
is feasible for (4.11). Then we have that zj ∈ bd(SOC) because

zT(F1 − F2)zj = ‖(zj)1:n‖2 − (zj)2
n+1 = 0.

Note that z1, . . . , zr must be linearly independent since they form
a dyadic decomposition of the rank-r matrix X. This implies that
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the zj are all nonzero. Moreover, the fact that

Xci =
r∑
j=1

(cT
i zj)zj = 0

implies that cT
i zj = 0 for all i and j. We have that zj ∈ range(X)

because the zj form a dyadic decomposition for X. To summa-
rize, we have shown that the zj are nonzero vectors contained in
range(X) ∩ bd(SOC) such that cT

i zj = 0 for all i and j. This
implies that each of the zj satisfies the hypotheses of Lemma 4.6,
and hence that (4.11) is an exact relaxation of (4.10).

(2) Next, consider the case when at least one of the Xci is a
nonzero vector on the boundary of SOC. We can assume without
loss of generality that Xc1 is such a vector. Let z = Xc1. We have
that cT

1 z = cT
1Xc1 ≥ 0 because X � 0; we also have that

cT
j z = cT

1Xcj = A1j •X = 0

for j = 2, . . . ,m because X is feasible for (4.11). This implies that
(cT
i z)(cT

j z) = 0 for 1 ≤ i < j ≤ m. Complementarity requires that
νT

1 Xc1 = 0, and hence that (cT
1 z)(νT

1 z) = (cT
1 z)(νT

1 Xc1) = 0.
Having already shown that cT

j z = 0, we can conclude that
(cT
j z)(νT

j z) = 0 for j = 2, . . . ,m. Since X and S are solutions
of their respective problems, they satisfy the complementary-
slackness condition SX = 0; this implies that Sz = SXc1 = 0.
We have now shown that z satisfies the hypotheses of Lemma 4.6,
and hence that (4.11) is an exact relaxation of (4.10).

(3) Finally, consider the case when at least one of the Xci is
contained in the interior of SOC. Without loss of generality, we
can assume that Xc1 is in the interior of SOC. Define the matrix
P ∈ Sn+1 such that

P =
m∑
i=1

(X
1
2 ci)(X

1
2 ci)†.

In our expression for P , we take the pseudoinverse of column
vectors; recall that the pseudoinverse of a column vector q is
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given by

q† =

(1/‖q‖2)qT q 6= 0,
0 q = 0.

Note that Xc1 is nonzero because it is in the interior of SOC.
Thus, we have that

P = 1
cT

1Xc1
(X

1
2 c1)(X

1
2 c1)T

+
m∑
i=2

(1/(cT
i Xci))(X

1
2 ci)(X

1
2 ci)T X

1
2 ci 6= 0,

0 X
1
2 ci = 0.

Define the matrix Z ∈ Sn+1 such that

Z = X
1
2 (I − P )X

1
2

= X − 1
cT

1Xc1
(Xc1)(Xc1)T

−
m∑
i=2

(1/(cT
i Xci))(Xci)(Xci)T X

1
2 ci 6= 0,

0 X
1
2 ci = 0.

Because Xci ∈ SOC, we have that

(F1 − F2) • ((Xci)(Xci)T) = (Xci)TF1(Xci)− (Xci)TF2(Xci)
= ‖(Xci)1:n‖2 − (Xci)2

n+1

≤ 0.

Moreover, this inequality is strict for i = 1 because Xc1 is in the
interior of SOC. Combined with the fact that (F1 − F2) •X = 0
since X is feasible, this allows us to conclude that

(F1 − F2) • Z

= (F1 − F2) •X − (F1 − F2) • ((Xc1)(Xc1)T)
cT

1Xc1

−

((F1 − F2) • ((Xci)(Xci)T))/(cT
i Xci) X

1
2 ci 6= 0,

0 X
1
2 ci = 0.

> 0.
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This implies that Z is nonzero, and hence that s = rank(Z) > 0.
Use Lemma A.10 to find vectors u1, . . . , us such that

Z =
s∑
j=1

uju
T
j and uT

j (F1 − F2)uj = (F1 − F2) • Z
s

> 0.

Then our choice of u1, . . . , us implies that

uT
j (F1 − F2)uj = ‖(uj)1:n‖2 − (uj)2

n+1 > 0,

so that uj /∈ SOC. We will use u1 to construct a vector z satis-
fying the hypotheses of Lemma 4.6; however, this choice is some-
what arbitrary: any of the uj would serve as well. Because Xc1
is in the interior of SOC, and u1 is not contained in SOC, there
exists θ ∈ (0, 1) such that

z = θXc1 + (1− θ)u1

is on the boundary of SOC. Suppose z is equal to zero. Then we
have that u1 = −(θ/(1− θ))Xc1, and hence that

uT
1 (F1 − F2)u1 =

(
θ

1− θ

)2
(Xc1)T(F1 − F2)(Xc1)

=
(

θ

1− θ

)2
(‖(Xc1)1:n‖2 − (Xc1)2

n+1)

< 0,

where we use the fact that ‖(Xc1)1:n‖2 < (Xc1)2
n+1 because

Xc1 is in the interior of SOC. This contradicts the fact that
u1 was chosen such that uT

1 (F1 − F2)u1 > 0, and thereby proves
that z must be nonzero. We have that u1, . . . , us form a basis
for range(Z) ⊂ range(X

1
2 ) = range(X). Thus, we have that

u1 ∈ range(X). Since we also have that Xc1 ∈ range(X), we
can conclude that

z = θXc1 + (1− θ)u1 ∈ range(X).

For a column vector q, we think of qq† as the projection onto q.
We have that X

1
2 ci and X

1
2 cj are orthogonal because

(X
1
2 ci)T(X

1
2 cj) = cT

i Xcj = Aij •X = 0.
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This implies that P is the orthogonal projection onto the subspace
span(X

1
2 c1, . . . , X

1
2 cm). Therefore, we have that PX

1
2 ci = X

1
2 ci,

and hence that

Zci = X
1
2 (I − P )X

1
2 ci

= X
1
2 (X

1
2 c1 − PX

1
2 ci)

= X
1
2 (X

1
2 ci −X

1
2 ci)

= 0.

Note that u1, . . . , us are linearly independent because they form
a dyadic expansion of the rank-s matrix Z. Then the fact that

Zci =
s∑
j=1

(cT
i uj)uj = 0

implies that cT
i uj = 0 for all i and j. Since X � 0, we have that

cT
1Xc1 ≥ 0. Combining these results, we find that

cT
1 z = θcT

1Xc1 + (1− θ)cT
1 u1 = θcT

1Xc1 ≥ 0.

Similarly, we have that

cT
j z = θcT

1Xcj + (1− θ)cT
j u1 = θ(A1j •X) = 0

for j = 2, . . . ,m. Taken together, these results imply that cT
i z ≥ 0

for i = 1, . . . ,m, (cT
i z)(cT

j z) = 0 for 1 ≤ i < j ≤ m, and
(cT
i z)(νT

i z) = 0 for i = 2, . . . ,m. Since Xc1 is in the interior
of SOC, complementarity implies that ν1 = 0, and hence that
(cT

1 z)(νT
1 z) = 0. We have now shown that z satisfies the hypothe-

ses of Lemma 4.6, which proves that (4.11) is an exact relaxation
of (4.10).

The cases above are collectively exhaustive, and therefore suffice to
show that (4.11) is an exact relaxation of (4.10).

Non-intersecting pairs of linear constraints

Now we consider an instance of (4.6) with two non-intersecting lin-
ear constraints. When we say the linear constraints of (4.6) do not
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intersect, we mean that there is no vector x such that ‖x‖ ≤ 1 and
aT
i x = bi for i = 1, 2. The results in this section are due to Burer and

Anstreicher [13], and Burer and Yang [19].

Theorem 4.8. Suppose m = 2, (4.8) and (4.9) are both solvable, and
there is no duality gap. If

{x ∈ Rn | aT
1 x = b1, a

T
2 x = b2, ‖x‖ ≤ 1} = ∅,

then (4.8) is an exact relaxation of (4.6).

Proof. Let X be a solution of (4.8), and (λ, µ, ν, S) be a solution of
(4.9). If A12 •X = 0, then we can find a rank-1 solution of (4.8) using
the construction in the proof of Theorem 4.7. Thus, we only need to
consider the case when A12 • X > 0. In this case complementarity
implies that µ12 = 0, and hence that we can use Lemma 4.5 to deduce
that there exists a rank-1 solution of (4.8) if we can find a nonzero
z ∈ range(X) ∩ bd(SOC) such that

cT
1 z, c

T
2 z ≥ 0 and (cT

1 z)(νT
1 z) = (cT

2 z)(νT
2 z) = 0.

Because we are considering the case when cT
1Xc2 = A12 • X > 0, we

have that Xc1 and Xc2 are nonzero. We divide the analysis into cases.

(1) First, consider the case when Xc1 and Xc2 are linearly de-
pendent. Since Xc1 and Xc2 are nonzero, this implies that there
exists a nonzero scalar α such that Xc1 = αXc2. Moreover, α
must be positive because Xc1, Xc2 ∈ SOC.

(1)(a) Suppose Xc1 ∈ bd(SOC). Then we claim that the vector
z = Xc1 = αXc2 has the desired properties. BecauseX is positive
semidefinite, we have that cT

1 z = cT
1Xc1 ≥ 0. Similarly, we have

that cT
2 z = α(cT

2Xc2) ≥ 0 since X � 0 and α > 0. Because X
and ν1 are optimal, they satisfy the complementarity condition
νT

1 Xc1 = 0. Thus, z satisfies

νT
1 z = νT

1 Xc1 = 0 and νT
2 z = α(νT

2 Xc2) = 0.

This completes the proof that z satisfies the hypotheses of
Lemma 4.5, and hence that (4.8) is an exact relaxation of (4.6).
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(1)(b) Next, suppose Xc1 ∈ int(SOC). Then we also have that
Xc2 = (1/α)Xc1 ∈ int(SOC), and hence that ν1 = ν2 = 0 due
to complementarity. The orthogonal projection onto the subspace
span(X

1
2 c1) = span(X

1
2 c2) is represented by the matrix

P = (X
1
2 c1)((X

1
2 c1)T(X

1
2 c1))−1(X

1
2 c1)T

= 1
cT

1Xc1
(X

1
2 c1)(X

1
2 c1)T.

Define the matrix

Z = X
1
2 (I − P )X

1
2 = X − 1

cT
1Xc1

(Xc1)(Xc1)T.

Since Xc1 ∈ int(SOC), we have that

(F1 − F2) • ((Xc1)(Xc1)T) = (Xc1)T(F1 − F2)(Xc1)
= ‖(Xc1)1:n‖2 − (Xc1)2

n+1

< 0.

Combined with the fact that (F1 − F2) • X = 0 because X is
feasible for (4.8), this allows us to conclude that

(F1 − F2) • Z = (F1 − F2) •X

− 1
cT

1Xc1
(F1 − F2) • ((Xc1)(Xc1)T)

> 0.

This implies that Z is nonzero. Let s = rank(Z) > 0, and use
Lemma A.10 to find z1, . . . , zs such that

Z =
s∑
i=1

ziz
T
i and zT

i (F1 − F2)zi = (F1 − F2) • Z
s

> 0.

We have that zi /∈ SOC because

zT
i (F1 − F2)zi = ‖(zi)1:n‖2 − (zi)2

n+1 > 0.

Since Xc1 ∈ int(SOC) and zi /∈ SOC, there exists θ ∈ (0, 1)
such that

z = θXc1 + (1− θ)z1 ∈ bd(SOC).
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Suppose z = 0. Then we have that

z1 = − θ

1− θXc1,

and hence that

zT
1 (F1 − F2)z1 =

(
θ

1− θ

)2
(Xc1)T(F1 − F2)(Xc1) < 0.

This contradicts our choice of z1, and thereby proves that z is
nonzero. We have that PX

1
2 ci = X

1
2 ci because P is the projection

onto span(X
1
2 c1) = span(X

1
2 c2). This implies that

Zci = X
1
2 (I − P )X

1
2 ci

= X
1
2 (X

1
2 ci − PX

1
2 ci)

= X
1
2 (X

1
2 ci −X

1
2 ci)

= 0.

Therefore, we have that

Zci =
s∑
j=1

(cT
i zj)zj = 0,

and hence that cT
i zj = 0 because z1, . . . , zs are linearly indepen-

dent because they form a dyadic expansion of the rank-s matrix
Z. Since X is positive semidefinite, we have that cT

i Xci ≥ 0 for
i = 1, 2. Combined with the facts that cT

i zj = 0 and α > 0, this
allows us to conclude that

cT
1 z = θ(cT

1Xc1) + (1− θ)(cT
1 z1) ≥ 0,

cT
2 z = αθ(cT

2Xc2) + (1− θ)(cT
2 z1) ≥ 0.

This completes the proof that z satisfies the hypotheses of
Lemma 4.5, and hence that (4.8) is an exact relaxation of (4.6).

(2) Now consider the case when Xc1 and Xc2 are linearly inde-
pendent.

(2)(a) Suppose one of Xc1 and Xc2 is on the boundary of SOC,
and the other is in the interior of SOC. Without loss of gen-
erality, assume that Xc1 is on the boundary of SOC, and Xc2
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is in the interior of SOC. We claim that z = Xc1 satisfies the
hypotheses of Lemma 4.5. We have already shown that Xc1 is
nonzero. It is clear that Xc1 ∈ range(X), and we assume that
Xc1 ∈ bd(SOC). Since X � 0, we have that cT

1 z = cT
1Xc1 ≥ 0.

Similarly, because X is feasible, we find that

cT
2 z = cT

1Xc2 = A12 •X ≥ 0.

Since X and ν1 satisfy complementarity, we have that

νT
1 z = νT

1 Xc1 = 0.

Because Xc2 ∈ int(SOC), we have that ν2 = 0, and hence that
νT

2 z = 0. This completes the proof that z satisfies the hypotheses
of Lemma 4.5.
(2)(b) Now consider the case when Xc1, Xc2 ∈ int(SOC). Let P
be the projection onto span(X

1
2 c1, X

1
2 c2), and define the matrix

Z = X
1
2 (I − P )X

1
2 .

(2)(b)(i) Suppose (F1 − F2) • Z ≥ 0. Use Lemma A.10 to find
z1, . . . , zs such that

Z =
s∑
i=1

ziz
T
i and zT

i (F1 − F2)zi = (F1 − F2) • Z
s

≥ 0.

Because P is the projection onto span(X
1
2 c1, X

1
2 c2), we have

that PX
1
2 ci = X

1
2 ci, and hence that

Zci =
s∑
j=1

(cT
i zj)zj = X

1
2 (I − P )X

1
2 ci = 0

for i = 1, 2. Since z1, . . . , zs are linearly independent, this implies
that cT

i zj = 0 for i = 1, 2 and j = 1, . . . , s. Because z1 is nonzero
and contained in SOC, we have that

x = 1
(z1)n+1

(z1)1:n

satisfies ‖x‖ ≤ 1. Recall that we defined ci = (−ai, bi). Thus, we
have that

cT
i z1 = bi(z1)n+1 − aT

i (z1)1:n = 0,
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and hence that

aT
i x = aT

i (z1)1:n
(z1)n+1

= bi.

Combining these observations, we see that we have found a vector
x such that aT

1 x = b1, aT
2 x = b2, and ‖x‖ ≤ 1. This violates the

non-intersection assumption, so this case cannot happen.
(2)(b)(ii) Now consider the case when (F1 − F2) • Z < 0. Use
Lemma A.10 to find z1, . . . , zs such that Z =

∑s
i=1 ziz

T
i , and

zT
i (F1 −F2)zi = ((F1 −F2) •Z)/s, where s = rank(Z). Then we
have that Xc2 ∈ int(SOC), and z1 /∈ SOC, and we can use the
construction in (1)(b) to find a rank-1 solution of the SDP-SOCP
relaxation.

(2)(c) Finally, consider the case when Xc1, Xc2 ∈ bd(SOC).
Let P be the projection onto span(X

1
2 c1, X

1
2 c2), and define the

matrix Z = X
1
2 (I − P )X

1
2 . Since X is feasible, it satisfies the

constraint
cT

1Xc2 = (X
1
2 c1)T(X

1
2 c2) = 0.

Thus, we have that X
1
2 c1 and X

1
2 c2 are orthogonal, which implies

that the projection matrix P is given by

P =
2∑
i=1

(X
1
2 ci)(X

1
2 ci)†

=
2∑
i=1

1
cT
i Xci

(X
1
2 ci)(X

1
2 ci)T.

Using this expression for P , we find that

Z = X
1
2 (I − P )X

1
2

= X −X
1
2PX

1
2

= X −X
1
2

( 2∑
i=1

1
cT
i Xci

(X
1
2 ci)(X

1
2 ci)T

)
X

1
2

= X −
2∑
i=1

1
cT
i Xci

(Xci)(Xci)T.
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Because Xc1 and Xc2 are on the boundary of the second-order
cone, we have that

(Xci)T(F1 − F2)(Xci) = ‖(Xci)1:n‖2 − (Xci)2
n+1 = 0

for i = 1, 2. Additionally, we have that (F1−F2) •X = 0 since X
is feasible. Combining these results, we find that

(F1 − F2) • Z = (F1 − F2) •
(
X −

2∑
i=1

1
cT
i Xci

(Xci)(Xci)T
)

= (F1 − F2) •X −
2∑
i=1

(Xci)T(F1 − F2)(Xci)
cT
i Xci

= 0.

Thus, we have that (F1−F2)•Z = 0, and we can use the construc-
tion in (2)(b)(i) to show that the non-intersection assumption is
violated. Therefore, this case cannot happen.

Burer and Anstreicher [13] give an example showing that the SDP
relaxation of an instance of (4.6) with m = 2 may not be exact if the
linear constraints intersect inside the unit ball.

Non-intersecting sets of linear constraints

Burer and Yang [19] extended Theorem 4.8 to the case of an arbitrary
number of linear constraints such that no two constraints intersect
inside the unit ball.

Theorem 4.9. Suppose (4.8) and (4.9) are both solvable, and there is
no duality gap. If

{x ∈ Rn | aT
i x = bi, a

T
j x = bj , ‖x‖ ≤ 1} = ∅

for all distinct i and j in {1, . . . ,m}, then (4.8) is an exact relaxation
of (4.6).

Bienstock and Michalka [8] showed that (4.6) can be solved effi-
ciently if the linear constraints satisfy the non-intersection condition
given in the following theorem.
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Theorem 4.10. The problem (4.6) can be solved in polynomial time if
there exists a positive integer k > 1 with the property that

{x ∈ Rn | ‖x‖ ≤ 1, aT
i x ≤ bi for all i ∈ I} = ∅

for all index sets I ⊂ {1, . . . ,m} such that |I| = k.

4.5 Ellipsoidal quadratic inequality constraints

Consider an instance of (4.1) with m = 0:

minimize xTP0x+ 2qT
0 x+ r0

subject to xTPix+ 2qT
i x+ ri ≤ 0, i = 1, . . . , p

‖x‖ = 1.

(4.13)

When there are no linear inequality constraints, (4.2) simplifies to

minimize Q0 •X
subject to Qi •X ≤ 0, i = 1, . . . , p

Fi •X = 1, i = 1, 2
X � 0.

(4.14)

Similarly, (4.3) simplifies to

minimize ν1 + ν2
subject to

∑2
i=1 νiFi −

∑p
i=1 µiQi + S = Q0

µ ≥ 0
S � 0.

(4.15)

4.5.1 Inactive quadratic constraints

The following result was given by Ye and Zhang [102].

Theorem 4.11. If p = 1, and there exists a solution X of (4.14)
such that the quadratic inequality constraint is inactive at X (that
is, Q1 •X < 0)), then (4.14) is an exact relaxation of (4.13).

Proof. Suppose p = 1, X is a solution of (4.14) such that Q1 •X < 0,
and (µ, ν, S) is a solution of (4.15). The fact that Q1 •X < 0 implies
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that X is nonzero, and hence that r = rank(X) > 0. Use Lemma A.10
to find z1, . . . , zr ∈ Rn such that

X =
r∑
i=1

ziz
T
i and zT

i (F1 − F2)zi = (F1 − F2) •X
r

= 0,

where (F1−F2) •X = 0 because X is feasible for (4.14). We have that

Q1 •X = Q1 •
(

r∑
i=1

ziz
T
i

)
=

r∑
i=1

zT
i Q1zi < 0,

which implies that zT
i Q1zi < 0 for some i. Without loss of generality,

assume that zT
1 Q1z1 < 0. We claim that

z = sign((z1)n+1)z1

satisfies the hypotheses of Lemma 4.1. We have that z ∈ range(X)
because z1, . . . , zr form a basis for range(X). We chose z1 such that

zT
1 (F1 − F2)z1 = ‖(z1)1:n‖2 − (z1)2

n+1 = 0,

which implies that z is on the boundary of SOC. Since we have that
zTQ1z = zT

1 Q1z1 < 0, the vector z is nonzero, and zTQ1z ≤ 0. Com-
plementarity requires that µ1 = 0 because Q1 •X < 0, and hence that
µ1(zTQ1z) = 0. We have now checked that z satisfies all of the hy-
potheses of Lemma 4.1. Thus, we can conclude that (4.14) is an exact
relaxation of (4.13).

Burer and Anstreicher [13] showed that (4.14) may not be an exact
relaxation if there does not exist a solution for which the quadratic
inequality constraint is strictly satisfied.

Convex quadratic constraints

We can also show that (4.14) is an exact relaxation of (4.13) when
Q1, . . . , Qp are positive semidefinite. The characterization of positive-
semidefinite block matrices given in Corollary A.12 tells us that the
block matrix Qi is positive semidefinite if and only if Pi is positive
semidefinite, qi ∈ range(Pi), and ri − qT

i P
†
i qi ≥ 0. Thus, requiring

that Q1, . . . , Qp be positive semidefinite is a stronger condition than
requiring that (4.13) be a convex optimization problem.
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Theorem 4.12. Suppose Q1, . . . , Qp � 0. If (4.14) and (4.15) are both
solvable, and there is no duality gap, then (4.14) is an exact relaxation
of (4.13).

Proof. Suppose Q1, . . . , Qp are positive semidefinite, X is a solution of
(4.14), and (µ, ν, S) is a solution of (4.15). Since X and Qi are positive
semidefinite, Lemma A.1 tells us that Qi • X ≥ 0. We also have that
Qi•X ≤ 0 for i = 1, . . . , p because X is feasible for (4.14). Therefore, it
must be the case that Qi •X = 0 for i = 1, . . . , p. Since Xn+1,n+1 = 1,
we have that r = rank(X) > 0. Then we can use Lemma A.10 to find
z1, . . . , zr ∈ Rn such that

X =
r∑
i=1

ziz
T
i and zT

i (F1 − F2)zi = (F1 − F2) •X
r

= 0,

where (F1−F2)•X = 0 because X is feasible for (4.14). We claim that

z = sign((z1)n+1)z1

satisfies the hypotheses of Lemma 4.1. We have that z is nonzero and
contained in range(X) because z1, . . . , zr form a basis for range(X).
Additionally, since

zT
1 (F1 − F2)z1 = zT(F1 − F2)z = ‖z1:n‖2 − z2

n+1 = 0,

and zn+1 ≥ 0, we have that z is on the boundary of SOC. Because
Qi •X = 0 for i = 1, . . . , p, we have that

Qi •X = Qi •

 r∑
j=1

zjz
T
j

 =
r∑
j=1

zT
j Qizj = 0.

Since Qi � 0, every term in the summation is nonnegative, and it must
be the case that zT

j Qizj = 0 for all i and j. In particular, we have that
zTQiz = zT

1 Qiz1 = 0 for i = 1, . . . , p. This proves that z satisfies the
hypotheses of Lemma 4.1, and hence that (4.14) is an exact relaxation
of (4.13) when Q1, . . . , Qp � 0.



5
QCQPs with Complex Variables

5.1 Introduction

Quadratically constrained quadratic programs (QCQPs) with complex
variables appear frequently in applications. We define a complex QCQP
in standard form to be an optimization problem of the form

minimize zHQz

subject to zHAjz ≥ bj , j = 1, . . . ,m,
(5.1)

where the optimization variable is z ∈ Cn, and the problem data are
Q,A1, . . . , Am ∈ Hn and b ∈ Rm. We use Hn to denote the set of
n × n Hermitian matrices, and zH to denote the conjugate transpose
of z (also called the Hermitian transpose). Throughout this chapter we
will reserve i for the imaginary unit. Note that the objective function
and the left sides of the constraints are real even though z, Q, and
A1, . . . , Am are complex since the value of all quadratic forms with
Hermitian matrices is real.

Because the objective function or constraints may be nonconvex,
(5.1) is intractable in general. Therefore, it is common to consider the

84
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natural SDP relaxation

minimize Q • Z
subject to Aj • Z ≥ bj , j = 1, . . . ,m

Z � 0

(5.2)

with optimization variable Z ∈ Hn. This problem is a (complex) SDP,
and can be solved efficiently. Moreover, the SDP relaxation is tight if
it has a rank-1 solution.

Throughout the chapter we will use the complex extensions of re-
sults that we only prove for real vectors and matrices. Most of the
proofs are easily adapted to the complex case, and we will not usually
explicitly state that we are using the complex versions.

5.2 Rank of SDP solutions

5.2.1 Bounds via constraint counting

Consider the standard-form complex SDP

minimize C • Z
subject to Aj • Z = bj , j = 1, . . . ,m

Z � 0

(5.3)

with variable Z ∈ Hn and optimal value v?, where C,A1, . . . , Am ∈ Hn
and b ∈ Rm are problem data. The following theorem is the complex
analog of Theorem 2.1.

Theorem 5.1. If (5.3) is solvable, then it has a solution Z such that
rank(Z) ≤ b

√
mc. Moreover, we can find such a solution efficiently.

Proof. Let Z be a solution of (5.3) with rank(Z) = r. Then there
exists V ∈ Cn×r such that V V H = Z. Define C̃ = V HCV ∈ Hr and
Ãj = V HAjV ∈ Hr for j = 1, . . . ,m, and consider the problem

minimize C̃ • Z̃
subject to Ãj • Z̃ = bj , j = 1, . . . ,m

Z̃ � 0

(5.4)
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with variable Z̃ ∈ Hr and optimal value ṽ?. We claim that Z̃ = I is a
solution of (5.4), and ṽ? = v?. First, observe that Z̃ = I is feasible for
(5.4) since I � 0, and

Ãj • I = (V AjV H) • I = Aj • (V V H) = Aj • Z = bj .

Similarly, W = I achieves an objective value of

C̃ • I = (V HCV ) • I = C • (V V H) = C • Z = v?.

This implies that ṽ? ≤ v?. Conversely, it is straightforward to check
that if Z̃ is feasible for (5.4), then V Z̃V H is feasible for (5.3), and
achieves an objective value of C̃ • Z̃, which implies that v? ≤ ṽ?. Taken
together these results allow us to conclude that Z̃ = I is optimal for
(5.4), and ṽ? = v?.

Next, we show that every Z̃ that is feasible for (5.4) is also optimal.
Towards that end, consider the dual of (5.4):

maximize bTỹ

subject to
∑m
j=1 ỹjÃj + S̃ = C̃

S̃ � 0

(5.5)

with variables ỹ ∈ Rm and S̃ ∈ Hr. Since (5.4) is bounded below and
strictly feasible, strong duality holds, and (5.5) has a solution (ỹ, S̃).
Because Z̃ = I is optimal for (5.4), complementarity requires that
S̃ • I = 0, and hence that S̃ = 0. It follows that every Z̃ that is feasible
for (5.4) satisfies the complementarity condition S̃ • Z̃ = 0. Therefore,
every feasible point of (5.4) is optimal.

To complete the proof, consider the system of linear equations

Ãj •∆ = 0, j = 1, . . . ,m (5.6)

with variable ∆ ∈ Hr. Since ∆ is conjugate symmetric, it is completely
determined by the entries on and above the diagonal. Note that ∆ has
r diagonal entries (which must be real, and are therefore be specified
by one real number), and r(r− 1)/2 entries above the diagonal (which
may be complex, and are therefore be specified by two real numbers).
It follows that (5.6) is a system of m equations in r+2(r(r−1)/2) = r2
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real variables. If r2 > m, then (5.6) has a nonzero solution ∆ ∈ Hn. Let
λ1 be a maximum-magnitude eigenvalue of ∆, and consider the matrix

Z̃+ = I − (1/λ1)∆ ∈ Hr.

Using an argument similar to the one in the proof of Proposition 2.2,
we can verify that Z̃+ � 0 and rank(Z̃+) < r. Moreover, because
Ãj •∆ = 0 for j = 1, . . . ,m, we have that

Ãj • Z̃+ = Ãj •
(
I − 1

λ1
∆
)

= Ãj • I = bj , j = 1, . . . ,m.

It follows that Z̃+ is feasible and hence optimal for (5.4). This allows
us to conclude that Z+ = V Z̃+V H is optimal for (5.3), and satisfies
rank(Z+) ≤ rank(Z̃+) < r.

We can now repeat the above procedure with Z+ as our initial
solution of (5.3). Iteratively applying this method until ∆ = 0 is
the only solution of (5.6), we obtain a solution Z of (5.3) such that
rank(Z)2 ≤ m. Because rank(Z) is an integer, this inequality is equiv-
alent to the bound rank(Z) ≤ b

√
mc. Additionally, the procedure used

in this proof allows us to find such a solution efficiently.

Corollary 5.2. Consider the SDP

minimize C • Z
subject to Aj • Z ≥ bj , j = 1, . . . ,m

Aj • Z = bj , j = m+ 1, . . . ,m+ p

Z � 0,

with variable Z ∈ Hn, and problem data C,A1, . . . , Am+p ∈ Hn and
b ∈ Rm+p. If this problem is solvable, then it has a solution Z satisfying
rank(Z) ≤ b

√
m+ pc. Moreover, we can find such a solution efficiently.

Proof. Let Z0 be a solution of the SDP. Then Z0 is also a solution of
the optimization problem

minimize C • Z
subject to Aj • Z = Aj • Z0, j = 1, . . . ,m+ p

Z � 0

(5.7)
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with variable Z ∈ Hn. Using Theorem 5.1 we can efficiently find a
solution Z of (5.7) satisfying rank(Z) ≤ b

√
m+ pc. To complete the

proof, we note that Z is also optimal for the original SDP.

Using Corollary 5.2, we obtain our first tightness result concerning
the relaxation (5.2).

Corollary 5.3. The semidefinite relaxation (5.2) is tight for (5.1) when
m ≤ 3.

Remark 5.1. Theorem 5.1 extends the corresponding result for real
SDPs given in Theorem 2.1 to complex SDPs. A slightly different for-
mulation of Theorem 5.1 was given by Huang and Zhang [51].

We can extend Theorem 5.1 to SDPs with block structure. Specifi-
cally, consider the problem

minimize
∑K
k=1Ck • Zk

subject to
∑K
k=1Ajk • Zk = bj , j = 1, . . . ,m

Zk � 0, k = 1, . . . ,K,

(5.8)

where the optimization variables are Zk ∈ Hnk for k = 1, . . . ,K, and
the problem data are Ck, A1k, . . . , Amk ∈ Hnk for k = 1, . . . ,K, and
b ∈ Rm. Let v? be the optimal value of this problem. The following
theorem gives a bound on the rank of a minimum-rank solution of a
problem of this form.

Theorem 5.4. If (5.8) is solvable, then it has a solution (Z1, . . . , ZK)
such that

∑K
k=1 rank(Zk)2 ≤ m. Moreover, we can find such a solution

efficiently.

Proof. The proof is similar to that of Theorem 5.1. Let (Z1, . . . , Zk) be
a solution of (5.8) with rank(Zk) = rk for k = 1, . . . ,K. Then there
exists Vk ∈ Cnk×rk such that VkV H

k = Zk for k = 1, . . . ,K. Consider
the auxiliary SDP

minimize
∑K
k=1 C̃k • Z̃k

subject to
∑K
k=1 Ãjk • Z̃k = bj , j = 1, . . . ,m

Z̃k � 0, k = 1, . . . ,K,

(5.9)
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with optimization variables Z̃k ∈ Hrk for k = 1, . . . ,K, where we define
C̃k = V H

k CkVk ∈ Hrk for k = 1, . . . ,K, and Ãjk = V H
k AjkVk ∈ Hrk

for k = 1, . . . ,K and j = 1, . . . ,m. Let ṽ? be the optimal value of
this auxiliary SDP. As in the proof of Theorem 5.1, we can show that
every feasible point (Z̃1, . . . , Z̃k) of (5.9) is optimal, and corresponds
to a solution (V1Z̃1V

H
1 , . . . , VKZ̃KV

H
K ) of (5.8). Consider the system of

equations
K∑
k=1

Ãjk •∆k = 0, j = 1, . . . ,m (5.10)

with variables ∆k ∈ Hrk for k = 1, . . . ,K. Note that the number of
real variables in (5.10) is r2 =

∑K
k=1 r

2
k. Thus, if r2 > m, then there

exist matrices ∆k ∈ Hrk for k = 1, . . . ,K satisfying (5.10) such that
at least one of the ∆k is nonzero. Let Λ̃ be the set of all eigenvalues of
the ∆k:

Λ̃ =
K⋃
k=1
{λ ∈ R |λ is an eigenvalue of ∆k}

and let λ1 be a maximum-magnitude element of Λ̃. Define

Z̃+
k = Irk

− (1/λ1)∆k, k = 1, . . . ,K

where Irk
is the rk×rk identity matrix. We can then check that Z̃+

k � 0
and rank(Z̃+

k ) ≤ rk for all k = 1, . . . ,K, and rank(Z̃+
k ) < rk for some

k ∈ {1, . . . ,K}. Additionally, because ∆1, . . . ,∆K satisfy (5.10), we
have that

K∑
k=1

Ãjk • Z̃+
k =

K∑
k=1

Ãjk • (Irk
− (1/λ)∆k)

=
K∑
k=1

Ãjk • Irk

=
K∑
k=1

Ajk • Zk

= bj

for j = 1, . . . ,m. It follows that (Z̃+
1 , . . . , Z̃

+
K) is feasible and hence

optimal for (5.9). This implies that Z+
k = VkZ̃

+
k V

H
k for k = 1, . . . ,K is

a solution of (5.8) satisfying
∑K
k=1 rank(Z+

k )2 < r2.
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To complete the proof, we repeat the procedure given above with
Z+
k for k = 1, . . . ,K as our initial solution. Iteratively applying this

method until (∆1, . . . ,∆K) = (0, . . . , 0) is the only solution of (5.10)
yields a solution of (Z1, . . . , ZK) of (5.8) with

∑K
k=1 rank(Zk)2 ≤ m.

An analog of Corollary 5.2 for complex SDPs with block structure
follows directly from Theorem 5.4.

Corollary 5.5. Consider the SDP

minimize
∑K
k=1Ck • Zk

subject to
∑K
k=1Ajk • Zk = bj , j = 1, . . . ,m∑K
k=1Ajk • Zk ≥ bj , j = m+ 1, . . . ,m+ p

Z1, . . . , Zk � 0, k = 1, . . . ,K

with optimization variables Zk ∈ Hnk for k = 1, . . . ,K, and prob-
lem data Ck, A1k, . . . , Amk ∈ Hnk for k = 1, . . . ,K and b ∈ Rm. If
this problem is solvable, then it has a solution (Z1, . . . , ZK) such that∑K
k=1 rank(Zk)2 ≤ m + p. Moreover, we can compute such a solution

efficiently.

Remark 5.2. Theorem 5.4 and Corollary 5.5 are due to Huang and
Palomar [50].

5.2.2 Bound via complementarity

We have seen that an upper bound on the rank of a minimum-rank
solution of an SDP can be obtained by counting the number of con-
straints. Now we describe an alternative approach, which exploits the
complementarity property of primal and dual solutions. The dual of
(5.3) is

maximize bTy

subject to
∑m
j=1 yjAj + S = C

S � 0,

(5.11)

where the optimization variables are y ∈ Rm and S ∈ Hn. Suppose Z
and (y, S) are solutions of (5.3) and (5.11), respectively. These solutions
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must satisfy the complementarity condition S•Z = 0. Then Lemma A.5
tells us that

rank(Z) ≤ n− rank(S).
Thus, if we can argue that there exists a high-rank optimal dual slack
variable, then we can conclude that every primal solution has low rank.

5.3 Connection to the S-procedure

We can use the rank bounds in the previous section to develop the
S-procedure, which can be viewed as a theorem of alternatives for
quadratic systems. The S-procedure plays a fundamental role in the
development of the duality theory for nonconvex quadratic optimiza-
tion [5, 52, 95], and has applications in many areas of science and en-
gineering [6]. For a historical perspective on the S-procedure, we refer
the reader to [46, 78]. We will use Theorem 5.1 to prove the following
version of the S-procedure.

Theorem 5.6. Suppose A1, A2, Q ∈ Hn, and there exists z0 ∈ Cn such
that zH

0 Ajz0 > 0 for j = 1, 2. Then the following are equivalent:

(i) zHQz ≥ 0 whenever zHA1z, z
HA2z ≥ 0;

(ii) there exist λ1, λ2 ≥ 0 such that Q � λ1A1 + λ2A2.

Proof. Suppose there exist λ1, λ2 ≥ 0 such that Q � λ1A1 +λ2A2, and
the vector z ∈ Cn satisfies zHAjz ≥ 0 for j = 1, 2. The assumption
that Q � λ1A1 + λ2A2 implies that

zHQz ≥ zH(λ1A1 + λ2A2)z = λ1(zHA1z) + λ2(zHA2z).

Then, using the assumptions that λj ≥ 0 and zHAjz ≥ 0 for j = 1, 2,
we can conclude that

zHQz ≥ λ1(zHA1z) + λ2(zHA2z) ≥ 0.

Conversely, suppose zHQz ≥ 0 whenever zHAjz ≥ 0 for j = 1, 2.
Consider the optimization problem

minimize zHQz

subject to zHAjz ≥ 0, j = 1, 2
‖z‖ = 1
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with variable z ∈ Cn, and its SDP relaxation

minimize Q • Z
subject to Aj • Z ≥ 0, j = 1, 2

I • Z = 1
Z � 0

(5.12)

with variable Z ∈ Hn. Let v? be the optimal value of the SDP re-
laxation. Observe that (5.12) is solvable because its feasible region is
compact. Then Theorem 5.1 tells us that the SDP relaxation has a
rank-1 solution Z = zzH, where z ∈ Cn satisfies

Aj • Z = zHAjz ≥ 0, j = 1, 2.

Since zHQz ≥ 0 whenever zHAjz ≥ 0 for j = 1, 2, we have that

v? = Q • Z = zHQz ≥ 0.

The dual of (5.12) is

maximize µ

subject to Q � λ1A1 + λ2A2 + µI

λ1, λ2 ≥ 0,

(5.13)

where the variables are λ1, λ2, µ ∈ R. We assume that there exists a
vector z0 ∈ Cn such that zT

0 Ajz0 > 0 for j = 1, 2. This implies that
(5.12) is strictly feasible. Therefore, strong duality holds, and (5.13) has
a solution (µ, λ1, λ2), and µ = v? ≥ 0. Because (µ, λ1, λ2) is feasible for
(5.13), we have that λj ≥ 0 for j = 1, 2, and

Q � λ1A1 + λ2A2 + µI � λ1A1 + λ2A2.

Having found that the S-procedure is a consequence of our results
on the rank of solutions of complex SDPs, we can derive various ex-
tensions. For example, consider the following inhomogeneous version of
Theorem 5.6.
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Corollary 5.7. Given A1, A2, P ∈ Hn, b1, b2, q ∈ Cn, and c1, c2, r ∈ R,
define the functions f1, f2, g : Cn → R such that

f1(z) = zHA1z + 2 Re(bH
1 z) + c1,

f2(z) = zHA2z + 2 Re(bH
2 z) + c2,

g(z) = zHPz + 2 Re(qHz) + r.

Suppose there exists a vector z0 ∈ Cn such that f1(z0), f2(z0) > 0.
Then the following are equivalent:

(i) g(z) ≥ 0 whenever f1(z), f2(z) ≥ 0;

(ii) there exist λ1, λ2 ≥ 0 such that[
P q

qH r

]
� λ1

[
A1 b1
bH

1 c1

]
+ λ2

[
A2 b2
bH

2 c2

]
.

Proof. Define the functions f̃1, f̃2, g̃ : Cn ×C→ R such that

f̃j(z, t) =
[
z

t

]H [
Aj bj
bH
j cj

] [
z

t

]
= (z, t)HÃi(z, t), j = 1, 2,

g̃(z, t) =
[
z

t

]H [
P q

qH r

] [
z

t

]
= (z, t)HQ̃(z, t),

where we define

Ãj =
[
Aj bj
bH
j cj

]
, j = 1, 2 and Q̃ =

[
P q

qH r

]
.

Note that fj(z) = f̃j(z, 1) for j = 1, 2, and g(z) = g̃(z, 1). We claim
that (i) is equivalent to

g̃(z, t) ≥ 0 whenever f̃j(z, t) ≥ 0 for j = 1, 2. (5.14)

If we are able to prove this equivalence, then the desired result follows
from Theorem 5.6. Setting t = 1, we see that (5.14) implies (i). Con-
versely, suppose (i) holds. Fix values of z ∈ Cn and t ∈ C such that
f̃j(z, t) ≥ 0 for j = 1, 2. There are two cases to consider.
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(1) First, consider the case when t 6= 0. Then we have that

fj(z/t) = (z/t)HAj(z/t) + 2 Re(bH
j (z/t)) + c

= 1
|t|2

(
zHAjz + zHbjt+ tHbH

j z + tHct
)

= f̃j(z, t)
|t|2

≥ 0.

Because we assume that (i) holds, this implies that g(z/t) ≥ 0,
and hence that

g̃(z, t) = |t|2g(z/t) ≥ 0.

(2) Now consider the case when t = 0. Write the complex number
(Ajz0 + bj)Hz in polar form as

(Ajz0 + bj)Hz = rj exp(iθj), j = 1, 2,

where rj ≥ 0 is the magnitude, and θj ∈ (−π, π] is the argument.
For α, φ ∈ R and ε ∈ {±1}, we have that

f(αε exp(iφ)z + z0) = f̃j(z, t)α2 + 2rj cos(θj + φ)εα+ f(z0),

where f̃j(z, t) = zHAjz since we are considering the case when
t = 0. If we choose

φ = −θ1 + θ2
2 and ε =

 1 cos((θ1 − θ2)/2) ≥ 0,
−1 cos((θ1 − θ2)/2) < 0

then we have that

f(αε exp(iφ)z + z0)

= f̃j(z, t)α2 + 2rj
∣∣∣∣cos

(
θ1 − θ2

2

)∣∣∣∣α+ f(z0).

We have assumed that f̃j(z, t) ≥ 0 and rj ≥ 0 for j = 1, 2, and
f(z0) > 0. Thus, we have that f(αε exp(iφ)z + z0) > 0 for all
α ≥ 0. Since we are considering the case when (5.14) holds, this
implies that

g(αε exp(iφ)z + z0)
= g̃(z, t)α2 + 2 Re((Pz0 + q)Hz exp(iφ))εα+ g(z0)
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is nonnegative for all α ≥ 0. Because concave quadratic functions
are unbounded below, it must be the case that g(αε exp(iφ)z+z0)
is either a convex quadratic function of α or a linear function of
α. Equivalently, we must have that g̃(z, t) ≥ 0.

As another illustration of the power of the rank bound in Theo-
rem 5.1, we give a variation of the S-procedure with both equality and
inequality constraints.

Corollary 5.8. Given A,P ∈ Hn, b, q ∈ Cn, and c, r ∈ R, define the
functions f, g : Cn → R such that

f(z) = zHAz + 2 Re(bHz) + c,

g(z) = zHPz + 2 Re(qHz) + r.

Additionally, suppose there exist z1, z2 ∈ Cn such that ‖z1‖, ‖z2‖ ≤ 1,
and f(z1) < 0 < f(z2). Then the following are equivalent:

(i) g(z) ≥ 0 whenever ‖z‖ ≤ 1 and f(z) = 0;

(ii) there exist λ1 ≥ 0 and λ2 ∈ R such that[
P q

qH r

]
� λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

]
.

Proof. Suppose there exist λ1 ≥ 0 and λ2 ∈ R such that[
P q

qH r

]
� λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

]
,

and z ∈ Cn satisfies ‖z‖ ≤ 1 and f(z) = 0. Then we have that

g(z) =
[
z

1

]H [
P q

qH r

] [
z

1

]

≥
[
z

1

]H(
λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

])[
z

1

]
= λ1(1− ‖z‖2) + λ2f(z).



96 QCQPs with Complex Variables

Since λ1 ≥ 0, ‖z‖ ≤ 1, and f(z) = 0, this implies that g(z) ≥ 0.
Conversely, suppose g(z) ≥ 0 whenever ‖z‖ ≤ 1 and f(z) = 0.

Consider the optimization problem

minimize g(z)
subject to ‖z‖2 ≤ 1

f(z) = 0,
with variable z ∈ Cn, and its SDP relaxation

minimize
[
P q

qH r

]
• Z

subject to [
−I 0
0 1

]
• Z ≥ 0[

A b

bH c

]
• Z = 0[

0 0
0 1

]
• Z = 1

Z � 0

(5.15)

with variable Z ∈ Hn+1. Let v? be the optimal value of the SDP re-
laxation. Note that (5.15) is solvable because its feasible region is com-
pact. Then Corollary 5.2 tells us that (5.15) has a rank-1 solution. Let
Z = vvH be such a rank-1 solution, and define z = vn+1v1:n, where
v1:n = (v1, . . . , vn) ∈ Cn. The constraints of (5.15) imply that ‖z‖ ≤ 1
and f(z) = 0, and hence that v? = g(z) ≥ 0. Define the matrix

Z0 =
[
(n+ 1)−1I 0

0 1

]
.

Note that Z0 satisfies

Z0 � 0 and
[
I 0
0 −1

]
• Z0 = − 1

n+ 1 < 0.

(Our subsequent analysis holds for every matrix Z0 with these two
properties; we only give a specific choice of Z0 for concreteness.) Then
define

θ =
[
A b

bH c

]
• Z0.
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We claim that (5.15) is always strictly feasible. There are three cases
to consider.

(1) If θ = 0, then Z0 is strictly feasible for (5.15).

(2) Now suppose θ > 0. We assume that there exists z1 ∈ Cn

such that ‖z1‖ ≤ 1 and f(z1) < 0. This assumption implies that
the matrix

Z1 =
[
z1
1

] [
z1
1

]H

satisfies [
I 0
0 −1

]
• Z1 = ‖z1‖2 − 1 ≤ 0,[

A b

bH c

]
• Z1 = f(z1) < 0.

Therefore, we can find α ∈ (0, 1) such that αZ0 + (1 − α)Z1 is
strictly feasible for (5.15).

(3) Finally, consider the case when θ < 0. We assume that there
exists z2 ∈ Cn such that ‖z2‖ ≤ 1 and f(z2) > 0. This assumption
implies that the matrix

Z2 =
[
z2
1

] [
z2
1

]H

satisfies [
I 0
0 −1

]
• Z2 = ‖z2‖2 − 1 ≤ 0,[

A b

bH c

]
• Z2 = f(z2) > 0.

Thus, we can find β ∈ (0, 1) such that βZ0 + (1− β)Z2 is strictly
feasible for (5.15).
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The dual of (5.15):
maximize µ

subject to [
P q

qH r

]
� λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

]
+ µ

[
0 0
0 1

]
λ1 ≥ 0

with variables λ ∈ R2 and µ ∈ R. Since we have shown that (5.15) is
solvable and strictly feasible, the dual problem has a solution (µ, λ1, λ2),
and there is no duality gap: that is, µ = v? ≥ 0. Thus, we find that[

P q

qH r

]
� λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

]
+ µ

[
0 0
0 1

]

� λ1

[
−I 0
0 1

]
+ λ2

[
A b

bH c

]
.

Remark 5.3. In general the question of whether an S-procedure exists
for systems with quadratic equality constraints is a delicate one. For
some recent progress in this direction, see [100].

5.4 Applications to signal processing

5.4.1 Unicast transmit downlink beamforming

Consider a base station with N antennae transmitting individual data
streams to M single-antenna users. The signal transmitted by the base
station at time t is

x(t) =
M∑
j=1

sj(t)wj , t = 1, . . . , T,

where sj(t) ∈ C is the stream of unit-power data symbols, and wj ∈ CN

is the beamforming vector for user j. The signal received by the jth
user at time t is given by

yj(t) = hH
j x(t) + nj(t)

=
M∑
k=1

hH
j wksk(t) + nj(t) (5.16)
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for t = 1, . . . , T , where hj ∈ CN and nj(t) ∈ C are, respectively, the
channel vector and additive noise for user j. We assume that nj(t)
has a complex normal distribution with mean vector 0 and covariance
matrix σ2

j I, the channel vectors h1, . . . , hM are randomly fading, and
only the second-order statistics Rj = E

(
hjh

H
j

)
∈ HN are known for

j = 1, . . . ,M . The signal-to-interference-plus-noise ratio (SINR) for
user j is defined to be

SINRj =
wH
j Rjwj

σ2
j +

∑
k 6=j w

H
kRjwk

.

In the SINR-balancing problem, we want to choose w1, . . . , wM in order
to minimize the total transmitter power subject to the constraint that
the SINR for user j be greater than or equal to a given constant γj > 0
for j = 1, . . . ,M . We can express this problem mathematically as

minimize
∑M
j=1‖wj‖

2

subject to SINRj ≥ γj , j = 1, . . . ,M,

(5.17)

where the variables are w1, . . . , wM ∈ CN . (See Gershman et al. [38]
for more details on this problem formulation.) Note that (5.17) can be
expressed as a QCQP by clearing the denominators in the inequality
constraints. The natural SDP relaxation of this QCQP is the problem

minimize
∑M
j=1 I •Wj

subject to
∑M
k=1Ajk •Wk ≥ γjσ2

j , j = 1, . . . ,M
Wj � 0, j = 1, . . . ,M

(5.18)

with variables W1, . . . ,WM ∈ HN , where we define

Ajk =

Rj j = k,

−γjRj otherwise.

It can be shown that the dual of (5.18) is strictly feasible. Therefore, if
(5.18) is feasible, then strong duality holds, and the SDP relaxation of
the SINR-balancing problem is solvable. Then we can use Theorem 5.4
to find a solution (W1, . . . ,WM ) such that

∑M
j=1 rank(Wj)2 ≤ M .

Note that Wj is nonzero since otherwise SINRj = 0, and we cannot
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satisfy the SINR constraint for the jth user. Therefore, we have that
rank(Wj) = 1 for j = 1, . . . ,M , and hence (5.18) is an exact relaxation
of (5.17).

5.4.2 Transmit design for MISO channel secrecy

Consider a base station withN0 antennae transmitting a data stream to
a legitimate single-antenna receiver. Suppose there are M illegitimate
multi-antenna receivers eavesdropping on the transmission. Let Nj be
the number of antennae of the jth illegitimate receiver for j = 1, . . . ,M .
In the literature the base station and legitimate receiver are typically
called Alice and Bob, respectively; the jth eavesdropper is usually
called the jth Eve.

A fundamental problem in such a scenario is to design a transmit
scheme for the base station that allows it to reliably communicate with
the legitimate receiver while preventing the eavesdroppers from obtain-
ing information from the transmitted signals. Let x(t) ∈ CN0 be the sig-
nal transmitted by Alice, h ∈ CN0 be the multiple-input-single-output
(MISO) channel response between Alice and Bob, Gj ∈ CN0×Nj be
the multiple-input-multiple-output (MIMO) channel response between
Alice and the jth Eve, and n(t) ∈ C and vj(t) ∈ CNj be the additive
white Gaussian noises at Bob and the jth Eve, respectively. Then the
signals received at time t by Bob and the jth Eve are

y0(t) = hHx(t) + n(t) and yj(t) = GH
j x(t) + vj(t),

respectively. Without loss of generality, we assume that n(t) and vj(t)
have unit variance. Furthermore, let W = E

(
x(t)x(t)H

)
∈ HN0 be the

transmitter covariance.
The following analysis is due to Li and Ma [64]. We are interested

in minimizing the average transmitter power subject to the constraint
that the achievable secrecy rate exceed a given lower bound R > 0. We
can express this problem mathematically as

minimize tr(W )
subject to fj(W ) ≥ R, j = 1, . . . ,M

W � 0,

(5.19)
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where the variable is W ∈ HN0 , and

fj(W ) = log2(1 + hHWh)− log2(det(I +GH
jWGj))

is the secrecy-rate function for the jth Eve. Note that (5.19) is not
an SDP because the secrecy-rate constraint is nonconvex. In order to
obtain an SDP relaxation of (5.19), we need the following fact about
positive-semidefinite Hermitian matrices.

Lemma 5.9. Suppose A ∈ Hn+, where Hn+ is the set of n× n positive-
semidefinite Hermitian matrices:

Hn+ = {A ∈ Hn | zHAz ≥ 0 for all z ∈ Cn}.

Then we have that

det(I +A) ≥ 1 + tr(A),

with equality if and only if rank(A) ≤ 1.

Proof. Let λ1, . . . , λn be the eigenvalues of A. Because the determinant
of a matrix is the product of its eigenvalues, we have that

det(I +A) =
n∏
i=1

(1 + λi) =
∑

S⊂{1,...,n}

∏
j∈S

λj .

Note that λi ≥ 0 for i = 1, . . . , n because A is positive semidefinite.
Therefore, we can obtain a lower bound on det(I+A) from the expres-
sion above by ignoring the terms in the summation corresponding to
subsets S with more than one element:

det(I +A) ≥ 1 +
n∑
i=1

λi = 1 + tr(A).

Moreover, we have equality if and only if at most one of the λi is
nonzero. Since the rank of A is the number of nonzero λi, this implies
that the bound det(I +A) ≥ 1 + tr(A) holds with equality if and only
if rank(A) ≤ 1.

Using our lemma we find that

2fj(W ) = 1 + hHWh

det(I +GH
jWGj)

≤ 1 + hHWh

1 + tr(GH
jWGj)

.
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This bound gives us the following relaxation of (5.19):

minimize tr(W )
subject to 1 + hHWh ≥ 2R(1 + tr(GH

jWGj)), j = 1, . . . ,M
W � 0.

In order to make it clear that this problem is an SDP, we write it as

minimize I •W
subject to (hhH − 2RGjGH

j ) •W ≥ 2R − 1, j = 1, . . . ,M
W � 0.

(5.20)

Note that this relaxation is tight if it has a rank-1 solution because the
inequality in Lemma 5.9 holds with equality for rank-1 matrices. The
dual of (5.20) is

maximize (2R − 1)1Ty

subject to
∑M
j=1 yj(hhH − 2RGjGH

j ) + S = I

y ≥ 0
S � 0,

(5.21)

where the optimization variables are y ∈ RM and S ∈ HN0 . Suppose
(5.20) is feasible, and let W0 be a feasible point. Then, for sufficiently
large α, the matrix W̄ = αW0 + I is strictly feasible for (5.20). We also
have that

y0 = β1 and S0 = I −
M∑
j=1

(y0)j(hhH − 2RGjGH
j )

are strictly feasible for (5.21), where β = 1/(1 + |λ0|), and λ0 is a
maximum-magnitude eigenvalue of

M∑
j=1

(hhH − 2RGjGH
j ).

Since (5.20) and (5.21) are both strictly feasible, strong duality holds,
and we can find solutions W and (y, S) of the SDP relaxation and its
dual, respectively. Define the matrix

B = I + 2R
M∑
j=1

yjGjG
H
j � 0.
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Then we have that

S = I −
M∑
j=1

yj(hhH − 2RGjGH
j ) = B −

 M∑
j=1

yj

hhH,

and hence that

rank(S) = rank(B−
1
2SB−

1
2 )

= rank
(
I −

(
M∑
i=1

yi

)(
B−

1
2h
) (
B−

1
2h
)H
)

≥ N0 − 1,

where the inequality follows from the fact that subtracting a dyad
from a matrix can reduce the rank of the matrix by at most 1. The
complementarity condition for (5.20) and (5.21) states that S •W = 0.
Therefore, we can use Lemma A.5 to conclude that

rank(W ) ≤ N0 − rank(S) ≤ 1.

Therefore, (5.20) is a tight relaxation of (5.19).

5.4.3 Robust unicast downlink precoder design

Let us revisit the SINR-balancing problem introduced in Section 5.4.1.
In practice the channel vectors hj ∈ CN for j = 1, . . . ,M are unknown,
and must be estimated by the base station. In order to account for the
channel estimation errors in our design process, we need to specify a
model for the channel errors. A popular model for the channel errors
is the norm-bounded error model [83, 97], in which the channel vector
of user j is given by

hj = h̄j + ej ,

where h̄j ∈ CN is the nominal value of the channel vector for user j,
and the channel-error vector ej ∈ CN satisfies ‖ej‖2 ≤ εj for a given
threshold εj ≥ 0. With this error model, the robust precoder design
problem is

minimize
∑M
j=1 I •Wj

subject to Ψj(W1, . . . ,WM ) ≥ γjσ2
j , j = 1, . . . ,M

Wj � 0, j = 1, . . . ,M,

(5.22)
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with variables W1, . . . ,Wn ∈ Hn, where we define

Ψj(W1, . . . ,WM ) = inf
‖ej‖2≤εj

(
(dj + ej)HW̃j(dj + ej)

)
and

W̃j = Wj − γj
∑
k 6=j

Wk.

The constraint Ψj(W1, . . . ,WM ) ≥ γjσ2
j is semi-infinite due to the infi-

mum in the definition of Ψj . We can obtain a tractable representation
of this constraint using the S-procedure. First, we observe that the
robustness constraint is satisfied if and only if

(h̄j + ej)HW̃j(h̄j + ej)− γjσ2
j

= eH
j W̃jej + 2 Re

(
(W̃j h̄j)Hej

)
+ (h̄H

j W̃j h̄j − γjσ2
j ).

≥ 0

whenever ε2j − ‖ej‖
2
2 ≥ 0. Then we can apply Corollary 5.7 with

A1 = A2 = −I, b1 = b2 = 0, c1 = c2 = ε2j ,

P = W̃j , q = W̃j h̄j , and r = h̄H
j W̃j h̄j − γjσ2

j

to express the robustness constraint for the jth user as[
W̃j W̃j h̄j
h̄H
j W̃j h̄H

j W̃j h̄j − γjσ2
j

]
� λj

[
−I 0
0 ε2j

]
λj ≥ 0.

(Note that we have combined the λ1 and λ2 of Corollary 5.7 into a single
λj since f1 and f2 have the same coefficients.) Using this representation
of the robustness constraint, we can write the robust precoder design
problem as

minimize
∑M
j=1 I •Wj

subject to [
W̃j W̃j h̄j
h̄H
j W̃j h̄H

j W̃j h̄j − γjσ2
j

]
� λj

[
−I 0
0 ε2j

]
, j = 1, . . . ,M

W̃j = Wj − γj
∑
k 6=jWk, j = 1, . . . ,M

λj ≥ 0, j = 1, . . . ,M
Wj � 0, j = 1, . . . ,M,
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which is an SDP. It is an open problem to determine whether this
SDP always possesses a solution (W1, . . . ,WM ) with rank(Wj) ≤ 1 for
j = 1, . . . ,M , although several authors have analyzed special cases of
this problem [25, 89, 98].

Medra et al. [68] recently considered a frequency-division duplex
(FDD) system with structured vector quantization, and proposed a
channel-error model that can more accurately reflect the nature of es-
timation errors in such a system. In particular, let h̄j ∈ CN be the
nominal value of the channel vector for user j. In order to determine
the direction of the channel for user j, the base station uses a Grass-
mannian codebook C = {v1, . . . , vK}, where vk ∈ CN is a known unit
vector for k = 1, . . . ,K. Then the direction of user j’s channel is

dj ∈ argmin
v∈C

{
1−
|h̄H
j v|

2

‖h̄j‖22

}
.

Under suitable conditions it is possible to show that the channel vector
for user j can be expressed as

hj = ‖h̄j‖2(dj + ej),

where ej ∈ CN is an error vector whose statistics depend on both the
channel and the codebook. As is often the case, the statistics of ej are
difficult to characterize. Thus, let us assume for simplicity that ej lies
in a region defined by the conditions

‖ej‖2 ≤ ε and ‖dj + ej‖2 = 1, (5.23)

where ε ≥ 0 is a given parameter. We can then formulate a robust
precoder design problem similar to (5.22). Another possibility is to
treat ε ≥ 0 as a decision variable, and use it to determine the largest
region in which the error vectors can reside without compromising the
quality of service to the users. Specifically, let Ej(ε) be the set of all
vectors ej satisfying (5.23), and consider the optimization problem

maximize ε

subject to Φj(W1, . . . ,WM ) ≥ γjσ2
j /‖h̄j‖

2
2, j = 1, . . . ,M∑M

j=1 I •Wj ≤ K
Wj � 0, j = 1, . . . ,M,
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where we define

Φj(W1, . . . ,WM ) = inf
ej∈Ej(ε)

(
(dj + ej)HW̃j(dj + ej)

)
,

and W̃j is defined as in our analysis of the robust precoder design prob-
lem. The constraint Φj(W1, . . . ,WM ) ≥ γjσ2

j /‖h̄j‖2 is semi-infinite due
to the infimum in the definition of Φj . We can obtain a tractable rep-
resentation of this constraint using the S-procedure. First, we observe
that the assumption ‖dj‖2 = 1 implies that

‖dj + ej‖2 = 1 if and only if eH
j ej + 2 Re(dH

j ej) = 0.

Thus, we have that

Ej = {ej ∈ CN | ‖ej‖2 ≤ ε, e
H
j ej + 2 Re(dH

j ej) = 0}.

Then the robustness constraint is satisfied if and only if

(dj + ej)HW̃j(dj + ej)− γjσ2
j /‖h̄j‖

2
2

= eH
j W̃jej + 2 Re((W̃jdj)Hej) + (dH

j W̃jdj − γjσ2
j /‖h̄j‖

2
2)

≥ 0

whenever ‖ej‖2 ≤ ε and eH
j ej + 2 Re(dH

j ej) = 0. Writing this condition
in terms of ẽj = (1/ε)ej yields the equivalent condition that

ẽH
j (ε2W̃j)ẽj + 2 Re((εW̃jdj)Hẽj) + (dH

j W̃jdj − γjσ2
j /‖h̄j‖

2
2) ≥ 0

whenever ‖ẽj‖2 ≤ 1 and ẽH
j (ε2I)ẽj + 2 Re((εdj)Hẽj) = 0. Note that the

vectors
ẽ

(1)
j = −min(1/ε, 1)dj and ẽ

(2)
j = dj

satisfy ‖ẽ(1)
j ‖2, ‖ẽ

(2)
j ‖2 ≤ 1, and

(ẽ(1)
j )H(ε2I)ẽ(1)

j + 2 Re((εdj)Hẽ
(1)
j ) < 0,

(ẽ(2)
j )H(ε2I)ẽ(2)

j + 2 Re((εdj)Hẽ
(2)
j ) > 0.

Thus, we can use Corollary 5.8 with

A = ε2I, b = εdj , c = 0,

P = ε2W̃j , q = εW̃jdj , and r = dH
j W̃jdj −

γjσ
2
j

‖h̄j‖2
,
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to express the robustness constraint for the jth user as[
ε2W̃j εW̃jdj
εdH
j W̃j dH

j W̃jdj − γjσ2
j /‖h̄j‖2

]
� λ̃1j

[
−I 0
0 1

]
+ λ2i

[
ε2I εdj
εdH
j 0

]
λ̃1j ≥ 0.

Sylvester’s Law of Inertia [70] implies that matrix inequalities are pre-
served under congruence transformations. Multiplying the matrix in-
equality above on the left and the right by[

1/ε 0
0 1

]

and using the change of variables λ1j = λ̃1j/ε
2 yields the simplified

conditions[
W̃j W̃jdj
dH
j W̃j dH

j W̃jdj − γjσ2
j /‖h̄j‖2

]
� λ1j

[
−I 0
0 ε2

]
+ λ2j

[
I dj
dH
j 0

]
λ1j ≥ 0.

Thus, we can reformulate our problem as

maximize ε

subject to
[
W̃j W̃jdj
dH
j W̃j dH

j W̃jdj − γjσ2
j /‖h̄j‖

2

]

� λ1j

[
−I 0
0 ε2

]
+ λ2j

[
I dj
dH
j 0

]
, j = 1, . . . ,M

W̃j = Wj − γj
∑
k 6=jWk, j = 1, . . . ,M

λ1j ≥ 0, j = 1, . . . ,M∑M
j=1 I •Wj ≤ K

Wj � 0, j = 1, . . . ,M.

Although the reformulated problem is not an SDP due to the terms of
the form λ1jε

2, it is an SDP for every fixed value of ε > 0. Thus, we
can efficiently solve the reformulation to an arbitrary level of accuracy
using a bisection search on ε.
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Appendices



A
Background

There are many excellent books about linear algebra [70, 92] and opti-
mization [10, 65]. We do not attempt to give a comprehensive summary
of these fields in this appendix – we only discuss results that are either
uncommon in more general treatments, or extremely important in the
analysis of rank in semidefinite programs. This appendix also serves to
set our notation.

A.1 Linear algebra

We write X ∈ Sn to indicate that X is an n×n symmetric matrix, and
X ∈ Sn+ to specify that X is an n× n positive-semidefinite symmetric
matrix. (Recall that a symmetric matrix X is positive semidefinite if
zTXz ≥ 0 for all z ∈ Rn.) The spectral theorem tells us that every
symmetric matrix X has an orthogonal eigenvalue decomposition: that
is, there exist scalars λ1, . . . , λn ∈ R (the eigenvalues of X), and an
orthonormal set of vectors q1, . . . , qn ∈ Rn (corresponding eigenvectors
of X) such that

X =
n∑
i=1

λiqiq
T
i = Q̃Λ̃Q̃T,

110



A.1. Linear algebra 111

where Λ̃ = diag(λ1, . . . , λn) ∈ Rn×n is the diagonal matrix whose
diagonal entries are λ1, . . . , λn, and Q̃ ∈ Rn×n is the matrix whose
columns are q1, . . . , qn. If rank(X) = r, then X has exactly nonzero
eigenvalues. We can assume without loss of generality that λ1, . . . , λr
are the nonzero eigenvalues of X. Then the eigenvalue decomposition
of X reduces to

X =
r∑
i=1

λiqiq
T
i = QΛQT,

where Λ = diag(λ1, . . . , λr) ∈ Rr×r is the diagonal matrix whose diag-
onal entries are λ1, . . . , λr, and Q ∈ Rn×r is the matrix whose columns
are q1, . . . , qr. If X is symmetric and positive semidefinite, then we have
that λ1, . . . , λr > λr+1 = · · · = λn = 0. Then we can use the eigenvalue
decomposition to construct a dyadic decomposition of X: if we define
vi =

√
λiqi for i = 1, . . . , n, then

X =
n∑
i=1

viv
T
i = Ṽ Ṽ T =

r∑
i=1

viv
T
i = V V T,

where Ṽ ∈ Rn×n and V ∈ Rn×r are the matrices whose columns
are v1, . . . , vn and v1, . . . , vr, respectively. (Note that these dyadic de-
composition are not unique: for example, if W ∈ Rr×r is orthogonal,
then X = (VW )(VW )T is another dyadic decomposition of X. The
Cholesky factorization is another common decomposition of this form.)

The trace inner product of A,B ∈ Rm×n is

A •B = tr(ATB) =
m∑
i=1

n∑
j=1

AijBij .

Using these definitions and facts, we can prove the following results,
which are mostly standard, but included here because they are ex-
tremely important in the analysis of rank in semidefinite programs.

Lemma A.1. Suppose X,Y ∈ Sn. If X,Y � 0, then X • Y ≥ 0.

Proof. Since Y � 0, there exist vectors v1, . . . , vn ∈ Rn such that

Y =
n∑
k=1

vkv
T
k .
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Then we have that

X • Y = X •
(

n∑
k=1

vkv
T
k

)
=

n∑
k=1

X • (vkvT
k ) =

n∑
k=1

vT
kXvk.

Because X � 0, each term in the summation is nonnegative, which
implies that X • Y ≥ 0.

Lemma A.2. Suppose A ∈ Sn+ and x ∈ Rn. Then xTAx = 0 if and
only if Ax = 0.

Proof. Suppose Ax = 0. Then we have that xTAx = xT(0) = 0.
Conversely suppose xTAx = 0. Since A � 0, there exist vectors
v1, . . . , vn ∈ Rn such that

A =
n∑
k=1

vkv
T
k .

Using this expression for A, we find that

xTAx = xT
(

n∑
k=1

vkv
T
k

)
x =

n∑
k=1

(vT
k x)2 = 0.

Because every term in the summation is nonnegative, it must be the
case that vT

k x = 0 for k = 1, . . . , n, and hence that

Ax =
(

n∑
k=1

vkv
T
k

)
x =

n∑
k=1

(vT
k x)vk =

n∑
k=1

(0)vk = 0.

Lemma A.3. Suppose X ∈ Sn+ and V ∈ Rn×k. If X • (V V T) = 0, then
XV = 0.

Proof. Let v1, . . . , vk ∈ Rn be the columns of V :

V =
[
v1 · · · vk

]
.

Then we have that

V V T =
[
v1 · · · vk

] [
v1 · · · vk

]T
=

k∑
j=1

vjv
T
j ,
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and hence that

X • (V V T) = X •

 k∑
j=1

vjv
T
j

 =
k∑
j=1

X • (vjvT
j ) =

k∑
j=1

vT
j Xvj .

Each term in this summation is nonnegative because X � 0. Thus, if
X • (V V T) = 0, then we have that vT

j Xvj = 0 for j = 1, . . . , k. We can
then use Lemma A.2 to conclude that Xvj = 0 for j = 1, . . . , k, and
hence that

XV = X
[
v1 · · · vk

]
=
[
Xv1 · · · Xvk

]
= 0.

Lemma A.4. Suppose X,Y ∈ Sn+. If X • Y = 0, then XY = 0.

Proof. Since Y is positive semidefinite, there exists V ∈ Rn×n such
that Y = V V T. Then we have that X • Y = X • (V V T), so we can use
Lemma A.3 to conclude that XV = 0, and hence that

XY = X(V V T) = (XV )V T = (0)V T = 0.

Lemma A.5. Suppose A,B ∈ Sn+. If A •B = 0, then

rank(A) + rank(B) ≤ n.

Proof. Let

A = QΛQT =
n∑
i=1

λiqiq
T
i

be the (full) eigenvalue decomposition of A. Assume that the eigen-
values are ordered such that λ1 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0,
where r = rank(A). (Note that λi ≥ 0 for i = 1, . . . , n because A � 0.)
Observe that

A •B =
(

n∑
i=1

λiqiq
T
i

)
•B =

n∑
i=1

λi(qT
i Bqi) = 0.
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Since B � 0, we have that qT
i Bqi ≥ 0 for i = 1, . . . , n. Taken together,

these results imply that qT
i Bqi = 0 whenever λi > 0. Then Lemma A.2

tells us that Bqi = 0 for i = 1, . . . , r. Therefore,

span(q1, . . . , qr) ⊂ null(B).

Using conservation of dimension, we obtain the bound

rank(B) = n− dim(null(B)) ≤ n− dim(span(q1, . . . , qr)) = n− r.

Because rank(A) = r, this implies that

rank(A) + rank(B) ≤ r + (n− r) = n.

Proposition A.1. Suppose A,B ∈ Sn+. Let r = rank(A). Since A is
positive semidefinite, there exists V ∈ Rn×r such that A = V V T. We
have that null(A) ⊂ null(B) if and only if there exists a matrix Q ∈ Sr
such that B = V QV T.

Proof. First, suppose there exists Q ∈ Sr such that B = V QV T. Then,
for every vector z ∈ null(A), we have that

zTAz = zT(V V T)z = ‖V Tz‖2 = 0,

and hence that V Tz = 0. This allows us to conclude that

Bz = (V QV T)z = (V Q)(V Tz) = (V Q)(0) = 0,

and hence that null(A) ⊂ null(B).
Conversely, suppose null(A) ⊂ null(B). Let the (reduced) eigen-

value decompositions of A and B be

A = UΛUT and B = WMWT,

respectively, where U ∈ Rn×r and W ∈ Rn×s are matrices with or-
thonormal columns, Λ ∈ Rr×r andM ∈ Rs×s are diagonal and nonsin-
gular, r = rank(A), and s = rank(B). With Q = (V †W )M(V †M)T,
we have that

V QV T = V ((V †W )M(V †W )T)V T

= (V V †W )M(V V †W )T.
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Because A and B are symmetric, the condition null(A) ⊂ null(B)
implies that

range(B) = null(B)⊥ ⊂ null(A)⊥ = range(A).

Let w1, . . . , ws ∈ Rn denote the columns of W . Then we have that
wi ∈ range(B) ⊂ range(A), and hence that V V †wi = wi since V V †
is the projection onto range(V ) = range(A). Using this observation,
we find that

V V †W =
[
V V †w1 · · · V V †ws

]
=
[
w1 · · · ws

]
= W.

Applying this result, we find that

V QV T = WMWT = B.

Lemma A.6. If S1 and S2 are subspaces of an inner-product space V ,
then (S1 + S2)⊥ = S⊥1 ∩ S⊥2 .

Proof. Suppose x ∈ (S1 + S2)⊥ and y1 ∈ S1. Since S2 is a subspace, it
contains the zero vector, so y1 = y1 +0 ∈ S1 +S2. Therefore, xTy1 = 0.
This proves that x ∈ S⊥1 . Similarly, we have that x ∈ S⊥2 . Thus, we can
conclude that x ∈ S⊥1 ∩ S⊥2 , and hence that (S1 + S2)⊥ ⊂ S⊥1 ∩ S⊥2 .

Now suppose x ∈ S⊥1 ∩S⊥2 and y ∈ S1 +S2. There exist y1 ∈ S1 and
y2 ∈ S2 such that y = y1 + y2. Since x ∈ S⊥i , we have that xTyi = 0 for
i = 1, 2, and hence that

xTy = xT(y1 + y2) = xTy1 + xTy2 = 0 + 0 = 0.

This proves that x ∈ (S1 +S2)⊥, and thereby completes the proof that
(S1 + S2)⊥ = S⊥1 ∩ S⊥2 .

Lemma A.7. If A1, A2 ∈ Sn+, then

range(A1 +A2) = range(A1) + range(A2).

Proof. Suppose y ∈ range(A1 + A2). Then there exists x ∈ Rn such
that y = (A1 + A2)x, and we have that y = y1 + y2, where y1 =
A1x ∈ range(A1), and y2 = A2x ∈ range(A2). Thus, we see that
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y ∈ range(A1) + range(A2), which serves to establish the inclusion
range(A1 + A2) ⊂ range(A1) + range(A2). (Note that this inclusion
holds for all matrices A1, A2 ∈ Rm×n – the additional assumption that
A1 and A2 are positive semidefinite is only needed to prove the reverse
inclusion.)

Taking the orthogonal complement of both sides of the reverse in-
clusion, we find that

range(A1 +A2)⊥ = null(A1 +A2)
⊂ (range(A1) + range(A2))⊥

= range(A1)⊥ + range(A2)⊥

= null(A1) + null(A2),

where we have used Lemma A.6, and the fact that A1 and A2 are
symmetric. Thus, we can prove the reverse inclusion by showing the
equivalent statement

null(A1 +A2) ⊂ null(A1) + null(A2).

Suppose x ∈ null(A1 +A2). Then we have that

xT(A1 +A2)x = xTA1x+ xTA2x = 0.

Because Ai is positive semidefinite, we have that xTAix ≥ 0 for i = 1, 2.
If the sum of two nonnegative numbers is equal to zero, then both of
those numbers must be equal to zero; thus,

xTA1x = xTA2x = 0.

Lemma A.2 then allows us to conclude that A1x = A2x = 0, and hence
that x ∈ null(A1) ∩ null(A2).

Lemma A.8 (Schur product theorem). Suppose X,Y ∈ Sn. If X,Y � 0,
then X ◦ Y � 0, where X ◦ Y denotes the entrywise (also called the
Hadamard or Schur) product of X and Y .

Proof. Since Y � 0, there exist vectors v1, . . . , vn ∈ Rn such that

Y =
n∑
k=1

vkv
T
k .
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The (i, j)-entry of X ◦ Y is then

(X ◦ Y )ij = XijYij = Xij

(
n∑
k=1

vkv
T
k

)
ij

=
n∑
k=1

Xij(vk)i(vk)j

and, for all z ∈ Rn, we have that

zT(X ◦ Y )z =
n∑
i=1

n∑
j=1

(X ◦ Y )ijzizj

=
n∑
i=1

n∑
j=1

n∑
k=1

Xij(vk)i(vk)jzizj

=
n∑
i=1

n∑
j=1

n∑
k=1

Xij(z ◦ vk)i(z ◦ vk)j

=
n∑
k=1

(z ◦ vk)TX(z ◦ vk).

Because X � 0, we have that (z ◦ vk)TX(z ◦ vk) ≥ 0 for k = 1, . . . , n,
and therefore that

zT(X ◦ Y )z =
n∑
k=1

(z ◦ vk)TX(z ◦ vk) ≥ 0.

Thus, we have that zT(X ◦ Y )z ≥ 0 for all z ∈ Rn, and hence that
X ◦ Y � 0.

Corollary A.9. Suppose X ∈ Sn, and |Xij | ≤ 1 for all i and j. Let
arcsin(X) be the entrywise inverse sine of the matrix X. If X � 0,
then arcsin(X) � X.

Proof. The Taylor series expansion of arcsin(X)−X is

arcsin(X)−X =
∞∑
n=1

(1)(3)(5) · · · (2n− 1)
(2)(4)(6) · · · (2n)(2n+ 1)X

〈2n+1〉,

where X〈k〉 denotes the entrywise kth power of X. Since X � 0,
Lemma A.8 (applied inductively) implies that X〈2n+1〉 � 0 for all pos-
itive integers n, and hence that arcsin(X) − X � 0. Rearranging this
matrix inequality, we find that arcsin(X) � X.
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The following lemma is a generalization of a result given by Sturm
and Zhang [93].

Lemma A.10. Suppose A,X ∈ Sn. If X � 0 and rank(X) = r, then
there exist vectors x1, . . . , xr ∈ Rn such that

X =
r∑

k=1
xkx

T
k and xT

kAxk = A •X
r

, k = 1, . . . , r.

Moreover, such vectors can be found efficiently.

Algorithm A.1: equilibration of a dyadic expansion
Input: v1, . . . , vr ∈ Rn such that X =

∑r
k=1 vkv

T
k

1 repeat
2 find i, j ∈ {1, . . . , r} such that vT

i Avi < (A •X)/r < vT
j Avj

3 find θ̂ ∈ (0, π/2) such that
(cos(θ̂)vi + sin(θ̂)vj)TA(cos(θ̂)vi + sin(θ̂)vj) = (A •X)/r

4
[
vi vj

]
:=
[
vi vj

] [cos(θ̂) − sin(θ̂)
sin(θ̂) cos(θ̂)

]
5 until vT

kAvk = (A •X)/r for k = 1, . . . , r

Proof. We will argue that Algorithm A.1 can be used to find the vectors
x1, . . . , xr. Since X � 0 and rank(X) = r, we can use the eigenvalue
decomposition of X to find vectors v1, . . . , vr ∈ Rn such that

X =
r∑

k=1
vkv

T
k .

These vectors are a dyadic expansion of X, but may not satisfy the
condition vT

kAvk = (A •X)/r for k = 1, . . . , r. Observe that

1
r

r∑
k=1

vT
kAvk = 1

r

r∑
k=1

A • (vkvT
k ) = 1

r

(
A •

(
r∑

k=1
vkv

T
k

))
= A •X

r
.

Thus, the average value of vT
1 Av1, . . . , v

T
r Avr is equal to (A•X)/r. This

implies that if vT
1 Av1, . . . , v

T
r Avr are not all equal to (A • X)/r, then

there must exist i, j ∈ {1, . . . , r} such that

vT
i Avi <

A •X
r

< vT
j Avj .
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Consider the function gij : [0, π/2]→ R such that

gij(θ) = (cos(θ)vi + sin(θ)vj)TA(cos(θ)vi + sin(θ)vj).

It is clear that gij is a continuous function of θ. Moreover, we have that

gij(0) = vT
i Avi <

A •X
r

and gij(π/2) = vT
j Avj >

A •X
r

.

Therefore, we can use the intermediate-value theorem to conclude that
there exists θ̂ ∈ (0, π/2) such that gij(θ̂) = (A • X)/r. Suppose we
replace vi and vj by

ṽi = cos(θ̂)vi + sin(θ̂)vj and ṽj = − sin(θ̂)vi + cos(θ̂)vj .

We can write the vector of replacement variables as[
ṽi ṽj

]
=
[
vi vj

]
Q,

where we define the matrix Q ∈ R2×2 such that

Q =
[
cos(θ̂) − sin(θ̂)
sin(θ̂) cos(θ̂)

]
.

Since Q is orthogonal, we have that

ṽiṽ
T
i + ṽj ṽ

T
j =

[
ṽi ṽj

] [
ṽi ṽj

]T
=
([
vi vj

]
Q
) ([

vi vj
]
Q
)T

=
[
vi vj

]
(QQT)

[
vi vj

]T
=
[
vi vj

] [
vi vj

]T
= viv

T
i + vjv

T
j .

Thus, we still have a dyadic expansion for X after replacing vi and vj
by ṽi and ṽj . Moreover, we chose θ̂ so that

ṽT
i Aṽi = gij(θ̂) = A •X

r
.

Combining these observations, we see that each iteration of the loop
in Algorithm A.1 strictly reduces the number of indices k such that
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vT
kAvk 6= (A •X)/r. This implies that the algorithm terminates after
at most r − 1 iterations, and that v1, . . . , vr satisfy

r∑
k=1

vkv
T
k = X and vT

kAvk = A •X
r

, k = 1, . . . , r

when the algorithm terminates. Therefore, we can take x1, . . . , xr to be
the output of Algorithm A.1.

The following lemma shows how to minimize a general quadratic
function of a vector variable. This result is used in the next section,
but is included here because it is a result from linear algebra.

Lemma A.11. Suppose P ∈ Sn, q ∈ Rn, and r ∈ R. Then

min
x∈Rn

{
xTPx+ 2qTx+ r

}
=

r − qTP †q P � 0, q ∈ range(P ),
−∞ otherwise.

Proof. There are three cases to consider.

(1) First, consider the case when P 6� 0. Then there exists a
vector x1 ∈ R such that xT

1Px1 < 0, and the function

g(t) = (tx1)TP (tx1) + 2qT(tx1) + r

= (xT
1Px1)t2 + 2(qTx1)t+ r

is a strictly concave single-variable quadratic function. Since such
functions are unbounded below, we can conclude that

min
x∈Rn

{
xTPx+ 2qTx+ r

}
= −∞.

(2) Next, consider the case when q /∈ range(P ). Let x2 be the
orthogonal projection of q onto range(P )⊥ = null(P ). Because
q /∈ range(P ), x2 must be nonzero. Then the function

h(t) = (tx2)TP (tx2) + 2qT(tx2) + r = 2‖x2‖2t+ r

is a non-constant linear function. Since such functions are un-
bounded below, we can conclude that

min
x∈Rn

{
xTPx+ 2qTx+ r

}
= −∞.
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(3) Finally, consider the case when P � 0 and q ∈ range(P ). The
orthogonal projection of q onto range(P ) is PP †q. Our assump-
tion that q ∈ range(P ) implies that q = PP †q. Then completing
the square gives

xTPx+ 2qTx+ r = (x+ P †q)TP (x+ P †q) + (r − qTP †q).

Since P � 0, this implies that

xTPx+ 2qTx+ r ≥ r − qTP †q

for all x ∈ Rn. Moreover, equality holds if we choose x = −P †q.
Therefore, we can conclude that

min
x∈Rn

{
xTPx+ 2qTx+ r

}
= r − qTP †q.

The following result is frequently called the Schur-complement char-
acterization of positive-semidefinite block matrices, and is often used to
convert inequalities involving quadratic forms into matrix inequalities.
We will see an example of such a conversion in the next section when
we show that the Lagrangian relaxation of a quadratic optimization
problem is a semidefinite program.

Corollary A.12. Suppose A ∈ Sn, B ∈ Rn×m, and C ∈ Sm. The matrix

M =
[
A B

BT C

]

is positive semidefinite if and only if A � 0, range(B) ⊂ range(A),
and C −BTA†B � 0.

Proof. We have that M � 0 if and only if

min
(x,y)∈Rn×Rm


[
x

y

]T [
A B

BT C

] [
x

y

] = 0.
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Using Lemma A.11, we find that

min
(x,y)∈Rn×Rm


[
x

y

]T [
A B

BT C

] [
x

y

]
= min

y∈Rm

{
min
x∈Rn

{
xTAx+ 2xTBy + yTCy

}}
= min

y∈Rm

{
yT(C −BTA†B)y A � 0, By ∈ range(A),

−∞ otherwise

}

=

0 A � 0, range(B) ⊂ range(A), C −BTA†B � 0,
−∞ otherwise.

Thus, we see that M � 0 if and only if A � 0, range(B) ⊂ range(A),
and C −BTA†B � 0.

Remark A.1. The matrix S = C −BTA†B in Corollary A.12 is called
the Schur complement of A in M .

A.2 Optimization

A.2.1 Lagrangian duality

Consider a general optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

The Lagrangian of this problem is defined to be

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x),

and the Lagrange dual function is defined to be

g(λ, ν) = inf
x∈D

L(x, λ, ν),

where D = (∩mi=0 dom(fi)) ∩ (∩pi=1 dom(hi)) is the domain of the op-
timization problem. The vectors λ and ν are called Lagrange multipli-
ers for the inequality and equality constraints, respectively. For every
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x̃ ∈ Rn that is feasible for the original optimization problem, and all
vectors λ ∈ Rm

+ and ν ∈ Rp, we have that

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +
p∑
i=1

νihi(x̃) ≤ f0(x̃)

because fi(x̃) ≤ 0 and λi ≥ 0 for i = 1, . . . ,m, and hi(x̃) = 0 for
i = 1, . . . , p. Thus, we have that

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃).

Therefore, for every feasible x̃, every nonnegative vector λ, and every
vector ν, we have that g(λ, ν) ≤ f0(x̃). This implies that g(λ, ν) is a
lower bound on the optimal value of the original optimization problem.
We call g(λ, ν) the Lagrange dual function. In order to find the tightest
such lower bound, we solve the Lagrange dual problem

maximize g(λ, ν)
subject to λ ≥ 0.

Note that the Lagrange dual problem is convex even when the original
optimization problem is not: the dual function is concave because it
is the pointwise infimum of affine functions of the dual variables λ
and ν. We have argued that the Lagrange dual problem provides a
lower bound on the optimal value of the original optimization problem;
this result is called weak duality. The difference between the optimal
value of the original optimization problem and the optimal value of the
Lagrange dual problem is called the duality gap. Because the Lagrange
dual problem is convex, and provides a lower bound on the original
optimization problem, we sometimes call it the Lagrangian relaxation
of the original problem.

Intuitively, the Lagrangian dual problem uses linear combinations
of the constraints to construct lower bounds on the optimal value of
an optimization problem. Perhaps surprisingly, this simple method of
generating lower bounds actually produces tight lower bounds in many
cases. We say that strong duality holds when the optimal value of the
Lagrangian dual problem is equal to the optimal value of the original
optimization problem. Although strong duality is not guaranteed to
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hold in general, there are a number of sufficient conditions for strong
duality that are easy to check and often satisfied in practical problems.
Sufficient conditions for strong duality that are stated in terms of prop-
erties of the constraint functions are sometimes called constraint qualifi-
cations. The most common constraint qualification is Slater’s theorem;
in order to state this result, we need some additional terminology: we
say that an optimization problem is strictly feasible if there exists a vec-
tor x0 ∈ Rn such that fi(x0) < 0 for i = 1, . . . ,m, and hi(x0) = 0 for
i = 1, . . . , p; a convex optimization problem is an optimization problem
such that f0, . . . , fm are convex, and h1, . . . , hp are affine. We are now
prepared to state Slater’s theorem. (We omit the proof, which is tech-
nical, and given in many texts on convex optimization, such as [10].)

Theorem A.13 (Slater’s theorem). There is strong duality for strictly
feasible convex optimization problems.

A.2.2 Linear programming

A linear program in primal standard form is an optimization problem
of the form

minimize cTx

subject to Ax = b

x ≥ 0,

(LP)

where x ∈ Rn is the optimization variable, and A ∈ Rm×n, b ∈ Rm,
and c ∈ Rn are problem data. The Lagrangian for this problem is

L(x, y, s) = cTx+ yT(b−Ax)− sTx = (c− (ATy + s))Tx+ bTy.

This is a linear function of x, which is unbounded below unless the
coefficient of x is equal to zero. Thus, we have that

g(y, s) = min
x∈Rn

L(x, y, s)

= min
x∈Rn

{
(c− (ATy + s))Tx+ bTy

}
=

bTy ATy + s = c,

−∞ otherwise.
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Then the Lagrange dual problem of (LP) is

maximize bTy

subject to ATy + s = c

s ≥ 0,

(LD)

where y ∈ Rm and s ∈ Rn are the optimization variables. Note that
(LD) is also a linear program, and that its dual is (LP). We call (LD)
a linear program in dual standard form. It is a remarkable fact that
strong duality holds for linear programs whenever one of (LP) and
(LD) is feasible.

A.2.3 Semidefinite programming

A semidefinite program (SDP) in primal standard form is an optimiza-
tion problem of the form

minimize C •X
subject to Ai •X = bi, i = 1, . . . ,m

X � 0,

(SDP)

where X ∈ Sn is the optimization variable, and A1, . . . , Am ∈ Sn,
b ∈ Rm, and C ∈ Sn are problem data. The Lagrangian for (SDP) is

L(X, y, S) = C •X +
m∑
i=1

yi(bi −Ai •X)− S •X

=
(
C −

[
m∑
i=1

yiAi + S

])
•X + bTy,

the Lagrange dual function is

g(y, S) = min
X∈Sn

L(X, y, S)

= min
X∈Sn

{(
C −

[
m∑
i=1

yiAi + S

])
•X + bTy

}

=

bTy
∑m
i=1 yiAi + S = C,

−∞ otherwise.
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and the Lagrange dual problem is

maximize bTy

subject to
∑m
i=1 yiAi + S = C

S � 0,

(SDD)

where y ∈ Rm and S ∈ Sn are the optimization variables. We call
(SDD) a semidefinite program in dual standard form, and it is easy to
check that its Lagrangian relaxation is (SDP).

Note the strong similarities between (LP) and (SDP). In order to
emphasize these similarities, we define the linear operatorA : Sn → Rm

such that

A(X) =


A1 •X

...
Am •X

 .
Then we can write (SDP) as

minimize C •X
subject to A(X) = b

X � 0.

Observe that

〈y,A(X)〉 =
m∑
i=1

yi(Ai •X) =
(

m∑
i=1

yiAi

)
•X =

〈
m∑
i=1

yiAi, X

〉
.

Since the adjoint operator A∗ : Rm → Sn of A : Sn → Rm is defined
by the relation 〈y,A(X)〉 = 〈A∗(y), X〉, we have that

A∗(y) =
m∑
i=1

yiAi.

Therefore, we can write (SDD) as

maximize bTy

subject to A∗(y) + S = C

S � 0

in order to emphasize the similarity to (LD). Since SDPs are convex
optimization problems, strong duality holds whenever one of (SDP)
and (SDD) is strictly feasible.
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A.2.4 Polynomial optimization

A polynomial optimization problem is an optimization problem of the
form

minimize p0(x)
subject to pi(x) ≤ 0, i = 1, . . . ,m,

where x ∈ Rn is the optimization variable, and p0, . . . , pm are poly-
nomials. We claim that every polynomial optimization problem can be
reformulated as a quadratic optimization problem (that is, a polyno-
mial optimization problem with quadratic polynomials). We will not
prove this claim in general, but the following example will hopefully
convince the reader that such a reformulation is always possible.

Example A.1. Consider the polynomial optimization problem

minimize x3
1 + x2

1x2
subject to x4

2 − 1 ≤ 0.

Introduce the variables x3 = x2
1 and x4 = x2

2. Then we can write our
optimization problem as

minimize x1x3 + x2x3
subject to x2

4 − 1 ≤ 0
x2

1 − x3 ≤ 0
x3 − x2

1 ≤ 0
x2

2 − x4 ≤ 0
x4 − x2

2 ≤ 0.

This is a quadratic optimization problem. We can convert every poly-
nomial optimization problem into a quadratic optimization problem by
introducing variables in this way.

Thus, we can restrict our attention to quadratic optimization prob-
lems, which can be written in the form

minimize xTP0x+ 2qT
0 x+ r0

subject to xTPix+ 2qT
i x+ ri ≤ 0, i = 1, . . . ,m,

where x ∈ Rn is the optimization variable, and P0, . . . , Pm ∈ Sn,
q0, . . . , qm ∈ Rn, and r0, . . . , rm ∈ R are problem data. The Lagrangian
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for this problem is

L(x, λ) = (xTP0x+ 2qT
0 x+ r0) +

m∑
i=1

λi(xTPix+ 2qT
i x+ ri)

= xT
(
P0 +

m∑
i=1

λiPi

)
x+ 2

(
q0 +

m∑
i=1

λiqi

)T

x

+
(
r0 +

m∑
i=1

λiri

)
= xTP (λ)x+ 2q(λ)Tx+ r(λ),

where we define

P (λ) = P0 +
m∑
i=1

λiPi, q(λ) = q0 +
m∑
i=1

λiqi,

and r(λ) = r0 +
m∑
i=1

λiri.

We can use Lemma A.11 to compute the Lagrange dual function:

g(λ) = min
x∈Rn

L(x, λ)

=

r(λ)− q(λ)TP (λ)†q(λ) P (λ) � 0, q(λ) ∈ range(P (λ)),
−∞ otherwise.

Then the Lagrange dual problem is

maximize r(λ)− q(λ)TP (λ)†q(λ)
subject to P (λ) � 0

q(λ) ∈ range(P (λ))
λ ≥ 0.

Applying an epigraph transformation, we obtain the equivalent problem

maximize µ

subject to µ ≤ r(λ)− q(λ)TP (λ)†q(λ)
P (λ) � 0
q(λ) ∈ range(P (λ))
λ ≥ 0.
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Using Corollary A.12, we can combine the first three constraints into
a matrix inequality:

maximize µ

subject to
[
P (λ) q(λ)
q(λ)T r(λ)− µ

]
� 0

λ ≥ 0.

Introducing a slack variable for the matrix inequality, and recalling our
definitions of P (λ), q(λ), and r(λ), we arrive at the problem

maximize µ

subject to µEn+1,n+1 −
∑m
i=1 λiCi + S = C0

λ ≥ 0
S � 0,

where the optimization variables are λ ∈ Rm, µ ∈ R, and S ∈ Sn+1,
and we define

En+1,n+1 =
[
0 0
0 1

]
and Ci =

[
Pi qi
qT
i ri

]
, i = 0, . . . ,m.

Note that this is a semidefinite program in dual form. (It is not quite in
standard dual form because of the inequality λ ≥ 0, but this is a minor
difference). The corresponding primal-form semidefinite program is

minimize C0 •X
subject to Ci •X ≤ 0, i = 1, . . . ,m

En+1,n+1 •X = 1
X � 0.

We can also derive the primal form of the relaxation directly from the
original quadratic optimization problem. First, we write the quadratic
optimization problem as

minimize C0 •

[x
1

] [
x

1

]T


subject to Ci •

[x
1

] [
x

1

]T
 ≤ 0, i = 1, . . . ,m.
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Now we observe that
[
x

1

] [
x

1

]T
∣∣∣∣∣∣x ∈ Rn


= {X ∈ Sn+1 |En+1,n+1 •X = 1, X � 0, rank(X) = 1}.

Thus, we can reformulate our quadratic optimization problem in terms
of a matrix variable:

minimize C0 •X
subject to Ci •X ≤ 0, i = 1, . . . ,m

En+1,n+1 •X = 1
X � 0
rank(X) = 1.

Relaxing the rank constraint (which is difficult to handle) yields the
primal-form semidefinite relaxation that we found above. The deriva-
tion of the primal relaxation directly from the quadratic optimization
problem is important because it shows us when the primal relaxation is
equivalent to the original problem: we require that there exist a rank-1
solution of the SDP. Moreover, the derivation shows us how to recover
a solution of the original problem from a rank-1 solution of the SDP
relaxation. In particular, if X = x̃x̃T is a rank-1 solution of the SDP,
then x = x̃n+1x̃1:n is a solution of the original quadratic optimization
problem, where x̃1:n = (x̃1, . . . , x̃n) is the vector consisting of the first
n components of x̃.



B
Linear Programs and Cardinality

In this appendix we review techniques for finding reduced-cardinality
solutions of linear programs. Techniques for sparsification (also called
purification) of solutions to linear programs are often included in proofs
of the so-called fundamental theorem of linear programming [65], and
are closely related to Carathéodory’s theorem [24]. Because computing
a minimum-cardinality solution of a system of linear equations is an
NP-hard problem [36], we do not hope to develop a sparsification algo-
rithm that always returns a minimum-cardinality solution of the linear
program. Nevertheless, we will give an algorithm that is often effective
at reducing the cardinality of a given solution of a linear program, and
has some performance guarantees. Such an algorithm is important be-
cause sparse solutions are often desirable, and interior-point algorithms
typically converge to the analytic center of the optimal face, which is
a maximum-cardinality solution. We then give a theorem relating car-
dinality and the uniqueness of solutions for linear programs.

131
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B.1 Sparsification for linear programs

Suppose we are given a solution x of (LP), and we want to find another
solution x+ with card(x+) < card(x). The process of using a given
x to find such an x+ is called sparsification, rounding, or purification.
If we had an efficient method for sparsification that worked on every
solution that does not have minimum cardinality, then we could find
a minimum-cardinality solution by applying our sparsification method
at most n times. However, we know that the problem of finding a
minimum-cardinality solution of (LP) is NP-hard. Thus, we do not
expect to find an efficient sparsification algorithm that always works.
Nonetheless, we still hope to find a method that often performs well in
practice. We begin by making the assumption

x+
j = 0 whenever xj = 0. (B.1)

The following example shows that this assumption can yield suboptimal
results in some cases.

Example B.1. Consider the LP feasibility problem

xi + xn = 1, i = 1, . . . , n− 1
x ≥ 0,

and suppose we are given the solution x = (1, . . . , 1, 0). If we assume
that x+

j = 0 whenever xj = 0, then we have that x+
n = 0. Then the

constraint x+
i + x+

n = 1 implies that x+
i = 1 for i = 1, . . . , n− 1. Thus,

we have that x+ = x, and we are unable to sparsify x. However, x is not
a minimum-cardinality solution of the feasibility problem: we have that
card(x) = n− 1, but x̃ = (0, . . . , 0, 1) is a solution with card(x̃) = 1.

Example B.1 shows that assumption (B.1) may not only lead to sub-
optimal results, but may even lead to arbitrarily poor results: for every
positive integer n, there is an instance of (LP) and a corresponding
initial solution such that our algorithm returns a solution whose cardi-
nality is n− 1 times the cardinality of a minimum-cardinality solution.
However, because we do not expect to find an algorithm that works on
every instance of (LP), we need to make a suboptimal assumption at
some point.
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We have stated our assumption as x+
j = 0 whenever xj = 0. Al-

though this statement is clear and intuitive, a different formulation
will prove useful in the development of our algorithm. An equivalent
assumption is that x+ has the form

x+ = (1 + αδ) ◦ x,

where we think of δ ∈ Rn as an update direction, and α ∈ R as a step
size. We will also sometimes find it convenient to write x+ as

x+ = x+ αXδ,

where X = diag(x). We want to choose α and δ such that x+ is a
solution of (LP), and card(x+) < card(x). Since the cardinality of x+

is strictly less than that of x, we must have that x+ 6= x, and hence
that α 6= 0.

• In order to maintain optimality, we require that

cTx+ = cTx.

Substituting in x+ = x + αXδ and simplifying, we obtain the
condition

(Xc)Tδ = 0.

• We also need x+ to satisfy the equality constraint

Ax+ = b.

As before, we substitute in our expression for x+, and then sim-
plify; this gives the condition

AXδ = 0.

• The updated solution must satisfy x+ = (1 + αδ) ◦ x ≥ 0. Since
x ≥ 0, this is equivalent to the condition

1 + αδj ≥ 0 whenever xj 6= 0.

Because the value of δj does not affect x+ if xj = 0, we will
assume that δj = 0 whenever xj = 0. Then our condition for
x+ ≥ 0 becomes

1 + αδj ≥ 0, j = 1, . . . , n.
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• Finally, we have that card(x+) < card(x) if and only if there
exists j ∈ {1, . . . , n} such that 1 + αδj = 0 and xj 6= 0.

To summarize this analysis, we want to choose α and δ satisfying the
following conditions:

(Xc)Tδ = 0
(AX)δ = 0

δj = 0 whenever xj = 0
1 + αδj ≥ 0, j = 1, . . . , n
1 + αδ̂ = 0 for some ̂ ∈ {1, . . . , n}.

It turns out that the first constraint is implied by the second constraint.
The main idea is that because x+

j = 0 whenever xj = 0, the updated
solution x+ automatically satisfies complementary slackness. Therefore,
x+ is optimal whenever it is feasible. We make this argument more
precise in the proof of the following proposition.

Proposition B.1. If x is a solution of (LP), then (AX)δ = 0 implies
(Xc)Tδ = 0.

Proof. Let x be a solution of (LP), and let (y, s) be a solution of (LD).
Then x and (y, s) satisfy the KKT conditions

ATy + s = c

Ax = b

x, s ≥ 0
s ◦ x = 0.

Now observe that

(Xc)Tδ = (X(ATy + s))Tδ = yT(AX)δ + (s ◦ x)δ,

where we use ATy+s = c in the first step, and Xs = s◦x in the second
step. Since we assume that (AX)δ = 0, and complementary slackness
implies that s ◦ x = 0, we see that (Xc)Tδ = 0.

Note that this argument only works if x is a solution of (LP). In
particular, if we had an arbitrary feasible point x, and we wanted to
find another feasible point x+ with the same objective value, we could
not ignore the condition (Xc)Tδ = 0.
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An algorithm for LP sparsification. An algorithm for LP sparsifica-
tion is given in Algorithm B.1. Using the observations above, we will
prove that the algorithm returns a solution of the LP, and derive a
bound on the cardinality of this solution. The statement of our algo-
rithm uses one piece of nonstandard notation: let I[x] ∈ R(n−card(x))×n

denote the matrix whose rows are the rows of the n×n identity matrix
corresponding to the zero components of the vector x ∈ Rn.

Algorithm B.1: sparsification for linear programs
Input: a solution x of (LP)

1 repeat
2 find a nonzero δ ∈ null

([
AX
I[x]

])
(if possible)

3 find ̂ ∈ argmax
j=1,...,n

{|δj |}

4 α := −1/δ̂
5 x := (1 + αδ) ◦ x
6 until null

([
AX
I[x]

])
= {0}

Proposition B.2. Algorithm B.1 returns a solution x+ of (LP) with
card(x+) ≤ card(x).

Proof. In our preliminary analysis of the LP-sparsification problem, we
showed that x+ is a solution of (LP) with card(x+) < card(x) if α
and δ satisfy the following properties:

(AX)δ = 0 (B.2)
δj = 0 whenever xj = 0, (B.3)

1 + αδj ≥ 0, j = 1, . . . , n (B.4)
1 + αδ̂ = 0 for some ̂ ∈ {1, . . . , n}. (B.5)

In Algorithm B.1 we choose δ such that[
AX

I[x]

]
δ = 0.

The first block of this equation says that (AX)δ = 0, while the second
block says that I[x]δ = 0. Recall that I[x] denotes the matrix whose
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rows are the rows of the identity matrix corresponding to the zero
components of x. Therefore, we have that δj = 0 whenever xj = 0. In
summary our choice of δ implies that (B.2) and (B.3) are satisfied.

We choose α = −1/δ̂, where δ̂ is a maximum-magnitude compo-
nent of δ. This choice of α implies that 1 + αδ̂ = 0, and

1 + αδj ≥ 1− |α||δj | = 1−
∣∣∣∣∣δjδ̂
∣∣∣∣∣ ≥ 0

for j = 1, . . . , n. Thus, conditions (B.4) and (B.5) are also satisfied.
This analysis shows that, after each iteration of the algorithm, x is

still a solution of (LP), and is at least as sparse as the original solution
provided to the algorithm. (If at least one iteration of the loop executes,
then x is strictly sparser than the original solution.)

Theorem B.1. If (LP) is solvable, then it has a solution x with
card(x) ≤ m. Moreover, Algorithm B.1 finds such a solution.

Proof. The termination condition for Algorithm B.1 is

null
([
AX

I[x]

])
= {0},

where
[
AX
I[x]

]
∈ R(m+n−card(x))×n. Since every strictly fat matrix has a

nontrivial nullspace, we must have that m+n−card(x) ≥ n when the
algorithm terminates. Rearranging this inequality, we find that Algo-
rithm B.1 returns a solution x with card(x) ≤ m.

The following example shows that the bound in Theorem B.1 is
tight: that is, the bound cannot be improved without additional hy-
potheses.

Example B.2. Supposem ≤ n, and consider the LP feasibility problem

xi = 1, i = 1, . . . ,m
x ≥ 0,

with variable x ∈ Rn. A minimum-cardinality solution of this problem
is x = e1 + · · · + em, which satisfies card(x) = m, where m is the
number of linear equality constraints.
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Remark B.1. Consider what happens when we apply Algorithm B.1
to an instance of (LP) with homogeneous equality constraints (that is,
with b = 0). Then we can always choose δ ∈ Rn such that

δj =

1 xj 6= 0,
0 xj = 0.

This choice of δ works because

(AX)δ = Ax = 0,

and supp(δ) ⊂ supp(x), where supp(z) = {i | zi 6= 0} is called the
support of the vector z. For this value of δ, we have that α = −1, and
hence that

x+ = (1 + αδ) ◦ x = (1− δ) ◦ x = 0
since either 1 − δj = 0 or xj = 0 for all j = 1, . . . , n. Thus, Algo-
rithm B.1 tells us that x = 0 is a solution of every solvable instance
of (LP) with homogeneous equality constraints. Note in particular the
(easy-to-overlook) hypothesis in Theorem B.1 that (LP) is solvable. For
example, consider the linear program

minimize −x1
subject to x2 = 0

x ≥ 0.

The linear constraint for this problem is homogeneous, but x = 0 is
not a solution: the problem is unbounded below, and not solvable.

B.2 Cardinality and uniqueness for linear programs

The following theorems relate the uniqueness of a solution of (LP) to
its cardinality.

Theorem B.2. A solution x of (LP) is unique if and only if

(i) x has the maximum cardinality among all solutions, and
(ii) null(Asupp(x)) = {0},

where Asupp(x) is the matrix whose columns are the columns of A
corresponding to the nonzero components of x.
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Proof. First, suppose x is the unique solution of (LP). It is trivially
true that x has the maximum cardinality among all solutions because
it is the only solution. In order to show that null(Asupp(x)) = {0},
we will argue by contradiction. Suppose there exists a nonzero vector
w ∈ Rn such that supp(w) ⊂ supp(x) and Aw = 0. (This is equivalent
to assuming that null(Asupp(x)) 6= {0} because supp(w) ⊂ supp(x)
implies that Aw = Asupp(x)wsupp(x).) Define z ∈ Rn such that

zj = (X†w)j =

wj/xj j ∈ supp(x),
0 otherwise.

Then we have that

(AX)z = Aw = 0 and I[x]z = 0,

where I[x] is the matrix consisting of the rows of the identity matrix
corresponding to the zero components of x. Thus, z is a nonzero vector
in null

([
AX
I[x]

])
, and Algorithm B.1 is able to find a solution x̃ of LP

whose cardinality is strictly less than that of x. This contradicts the
assumption that x is the unique solution of LP, and thereby proves
that null(Asupp(x)) = {0}.

Conversely, suppose that x and x̃ are distinct solutions of LP. We
can assume without loss of generality that x has the maximum car-
dinality among all solutions of LP. First, observe that (x + x̃)/2 is a
solution of LP with

supp((x+ x̃)/2) = supp(x) ∪ supp(x̃)

because x and x̃ are nonnegative vectors. This allows us to conclude
that supp(x̃) ⊂ supp(x) since otherwise (x+ x̃)/2 is a solution whose
cardinality is strictly greater than that of x, which violates our assump-
tion that x is a maximum-cardinality solution. Then we have that

Asupp(x)(xsupp(x) − x̃supp(x)) = Ax−Ax̃ = b− b = 0.

Additionally, xsupp(x)−x̃supp(x) is nonzero because x and x̃ are distinct
and supp(x̃) ⊂ supp(x). Thus, xsupp(x)− x̃supp(x) is a nonzero vector
in null(Asupp(x)).
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Remark B.2. Note that null(Asupp(x)) = {0} if and only if the columns
ofA corresponding to the nonzero components of x are linearly indepen-
dent. We use the slightly more abstruse condition null(Asupp(x)) = {0}
because it more easily generalizes to the analogous result for semidefi-
nite programming presented in the main body of the text.

Corollary B.3. If (LP) is solvable, and every solution has the same
cardinality, then (LP) has a unique solution.

Proof. Let x be a solution of (LP). Since every solution of (LP) has
the same cardinality, x must have the maximum cardinality among
all solutions. If we can show that null(Asupp(x)) = {0}, then we can
use Theorem B.2 to conclude that x is the unique solution of (LP).
Suppose w̃ ∈ null(Asupp(x)). Padding w̃ with zeros in the components
corresponding to the zero components of x yields a vector w ∈ Rn such
that supp(w) ⊂ supp(x) and wsupp(x) = w̃ ∈ null(Asupp(x)). Another
consequence of the fact that every solution has the same cardinality is
that Algorithm B.1 must terminate on the first iteration: that is,

null
([
AX

I[x]

])
= {0}.

Define the vector z ∈ Rn such that

zj = (X†w)j =

wj/xj j ∈ supp(x),
0 otherwise.

Then we have that

(AX)z = Aw = Asupp(x)wsupp(x) = 0.

The condition I[x]z = 0 is also satisfied since

supp(z) = supp(w) ⊂ supp(x).

Thus, we find that z ∈ null
([

AX
I[X]

])
= {0}, which allows us to conclude

that z = 0. Then our definition of z implies that w = 0, and hence that
w̃ = 0, and null(Asupp(x)) = {0}.



C
Technical Probability Lemmas

This appendix contains the proofs of some technical probability lem-
mas that are used in our analysis of rounding methods in Chapter 3.
Although these results are standard, we include the proofs for complete-
ness, and so the results can be referenced in the exact form in which
they are needed rather than the more general forms in the literature.

C.1 Convex combinations of chi-squared random variables

More general versions of the lemmas in this section are given by Laurent
and Massart [60]. We state and prove specialized lemmas that can be
used directly in our analysis of randomized rounding methods.

Lemma C.1. Let y1, . . . , yr be independent, identically distributed chi-
squared random variables with d degrees of freedom, and θ1, . . . , θr be
nonnegative real numbers such that θ1 + · · · + θr = 1. Then, for all
c > 1, we have that

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ (ec exp(−c))

d
2 .

140
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Proof. For all t > 0, we have that

prob
(

r∑
i=1

θiyi ≥ cd
)

= prob
(
t
r∑
i=1

θiyi ≥ cdt
)

= prob
(

exp
(
t
r∑
i=1

θiyi

)
≥ exp(cdt)

)

= prob
(

r∏
i=1

exp(tθiyi) ≥ exp(cdt)
)
.

Applying Markov’s inequality gives the bound

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ exp(−cdt) E

(
r∏
i=1

exp(tθiyi)
)
.

Because y1, . . . , yr are independent, we can take the product outside
the expectation:

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ exp(−cdt)

r∏
i=1

E(exp(tθiyi)).

The expectation on the right side of this inequality is the moment-
generating function of yi evaluated at tθi. Since yi is a chi-squared
random variable with d degrees of freedom, this moment-generating
function is only defined for tθi < 1/2; we will assume that t < 1/2 to
ensure that this condition is satisfied. Then, using the formula for the
moment-generating function of a chi-squared random variable with d

degrees of freedom, our bound becomes

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ exp(−cdt)

r∏
i=1

(1− 2tθi)−
d
2 .

The Hessian of the right side of this inequality is

exp(−cdt)
(

r∏
i=1

(1− 2tθi)−
d
2

)(
z(θ)z(θ)T + 2

d
diag(z(θ))2

)
,

where we define the vector

z(θ) =
(

dt

1− 2tθ1
, . . . ,

dt

1− 2tθr

)
.
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This Hessian is positive semidefinite because it is a nonnegative mul-
tiple of the sum of a dyad and a diagonal matrix nonnegative entries.
Thus, the right side of our last bound is a convex function of θ. We are
interested in making a statement about all θ ∈ conv(e1, . . . , er), where
ej is the jth standard basis vector. Since the maximum of a convex
function over a polyhedron is achieved at a vertex, setting θ = ej gives
a bound that is independent of θ, and satisfied by all values of interest:

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ exp(−cdt)(1− 2t)−

d
2

= exp
(
−cdt− d

2 log(1− 2t)
)
.

(The result is the same for all j.) The first and second derivatives of
the right side of this inequality are

2cd
1− 2t

(
t− c− 1

2c

)
exp

(
−cdt− d

2 log(1− 2t)
)

and ((
d

1− 2t − cd
)2

+ 2d
(1− 2t)2

)
exp

(
−cdt− d

2 log(1− 2t)
)
,

respectively. Since the second derivative is positive for all t ∈ (0, 1/2),
the right side of our bound is a strictly convex function of t, which we
can minimize in order to obtain the tightest possible bound. By setting
the first derivative equal to zero, we find that the minimum occurs at
t = (c−1)/(2c). Note that this value of t satisfies our earlier assumption
that 0 < t < 1/2. Substituting this value of t into our bound gives

prob
(

r∑
i=1

θiyi ≥ cd
)
≤ exp

(
−d2(c− log(c)− 1)

)
.

= exp(log(c)− c+ 1)
d
2

= (ec exp(−c))
d
2 .

Lemma C.2. Let y1, . . . , yr be independent, identically distributed chi-
squared random variables with d degrees of freedom, and θ1, . . . , θr be
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nonnegative real numbers such that θ1 + · · · + θr = 1. Then, for all
c ∈ (0, 1), we have that

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ (ec exp(−c))

d
2 .

Proof. For all t > 0, we have that

prob
(

r∑
i=1

θiyi ≤ cd
)

= prob
(
−t

r∑
i=1

θiyi ≥ −cdt
)

= prob
(

exp
(
−t

r∑
i=1

θiyi

)
≥ exp(−cdt)

)

= prob
(

r∏
i=1

exp(−tθiyi) ≥ exp(−cdt)
)
.

Applying Markov’s inequality gives the bound

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ exp(cdt) E

(
r∏
i=1

exp(−tθiyi)
)
.

Because y1, . . . , yr are independent, we can take the product outside
the expectation:

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ exp(cdt)

r∏
i=1

E(exp(−tθiyi)).

The expectation on the right side of this inequality is the moment-
generating function of yi evaluated at −tθi. Since yi is a chi-squared
random variable with d degrees of freedom, this moment-generating
function is only defined for −tθi < 1/2; this condition is satisfied for all
values of t and θi satisfying our existing assumptions. Then, using the
formula for the moment-generating function of a chi-squared random
variable with d degrees of freedom, our bound becomes

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ exp(cdt)

r∏
i=1

(1 + 2tθi)−
d
2 .

The right side of this inequality is a convex function of θ ∈ Rr (the jus-
tification of this fact is similar to that of the corresponding observation
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in the proof of Lemma C.1). We are interested in making a statement
about all θ ∈ conv(e1, . . . , er), where ej is the jth standard basis vec-
tor. Since the maximum of a convex function over a polyhedron is
achieved at a vertex, setting θ = ej gives a bound that is independent
of θ, and satisfied by all values of interest:

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ exp(cdt)(1 + 2t)−

d
2

= exp
(
cdt− d

2 log(1 + 2t)
)
.

(The result is the same for all j.) The right side of this inequality is
a convex function of t, which we can minimize in order to obtain the
tightest possible bound. By setting the derivative equal to zero, we
find that the minimum occurs at t = (1 − c)/(2c). (The calculations
needed to prove that the right side of our bound is convex, and find its
minimizer are similar to the corresponding calculations in the proof of
Lemma C.1.) Note that this value of t satisfies our earlier assumption
that t > 0. Substituting this value of t into our bound gives

prob
(

r∑
i=1

θiyi ≤ cd
)
≤ exp

(
−d2(c− log(c)− 1)

)
= exp(log(c)− c+ 1)

d
2

= (ec exp(−c))
d
2 .

C.2 The bivariate normal distribution

Our analysis of randomized rounding methods also uses a classical re-
sult due to Sheppard [84]. We provide a modern derivation of this result
as well as a geometric interpretation.

Lemma C.3. Suppose x = (x1, x2) is a bivariate normal random vector
with mean vector and covariance matrix[

0
0

]
and

[
1 ρ

ρ 1

]
,
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respectively. Then the quadrant probabilities of x are

prob(x1 ≥ 0, x2 ≥ 0) = prob(x1 ≤ 0, x2 ≤ 0) = 1
4 + 1

2π arcsin(ρ),

prob(x1 ≤ 0, x2 ≥ 0) = prob(x1 ≥ 0, x2 ≤ 0) = 1
4 −

1
2π arcsin(ρ).

Proof. We will derive the first quadrant probability; the other quadrant
probabilities follow from symmetry. We can compute the first quadrant
probability by integrating the joint probability density function over
the first quadrant:

prob(x1 ≥ 0, x2 ≥ 0)

=
∫ ∞

0

∫ ∞
0

1
2π
√

1− ρ2 exp
(
−x

2
1 − 2ρx1x2 + x2

2
2(1− ρ2)

)
dx1 dx2.

Completing the square in x1 gives

prob(x1 ≥ 0, x2 ≥ 0)

=
∫ ∞

0

(∫ ∞
0

1
2π
√

1− ρ2 exp
(
−(x1 − ρx2)2

2(1− ρ2)

)
dx1

)
exp

(
−x

2
2

2

)
dx2.

Now we perform a change of variables in the inner integral with

x̃1 = x1 − ρx2√
1− ρ2 .

This change of variables gives

prob(x1 ≥ 0, x2 ≥ 0)

=
∫ ∞

0

∫ ∞
−ρx2/

√
1−ρ2

1
2π exp

(
− x̃

2
1 + x2

2
2

)
dx̃1 dx2.

We are now integrating the probability density function of a standard
bivariate normal distribution; the region of integration is shown in Fig-
ure C.1. Observe that the angle θ defined in the figure is given by
θ = arcsin(ρ). Because the standard bivariate normal distribution has
circular contours, the integral of its probability density function over
the shaded region in Figure C.1 is simply the angular width of the
region in radians, normalized by 2π: that is,

prob(x1 ≥ 0, x2 ≥ 0) = (π/2) + θ

2π = 1
4 + 1

2π arcsin(ρ).
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x̃1

x2

√
1− ρ2

−ρ

θ

Figure C.1: the region of integration in the x̃1-x2 plane

Corollary C.4. Suppose x = (x1, x2) is a bivariate normal random vec-
tor with mean vector and covariance matrix[

0
0

]
and

[
1 ρ

ρ 1

]
,

respectively. Let x̂1 = sgn(x1) and x̂2 = sgn(x2). Then

E(x̂1x̂2) = 2
π

arcsin(ρ).

Proof. We have that

E(x̂1x̂2) = prob(sgn(x1) = sgn(x2))− prob(sgn(x1) 6= sgn(x2))
= (prob(x1 ≥ 0, x2 ≥ 0) + prob(x1 ≤ 0, x2 ≤ 0))
− (prob(x1 ≤ 0, x2 ≥ 0) + prob(x1 ≥ 0, x2 ≤ 0)).

Plugging in the quadrant probabilities from Lemma C.3, we find that

E(x̂1x̂2) = 2
(1

4 + 1
2π arcsin(ρ)

)
− 2

(1
4 −

1
2π arcsin(ρ)

)
= 2
π

arcsin(ρ).



C.2. The bivariate normal distribution 147

v1

v2

θ

L(z)

(a) x̂1 = x̂2

v1

v2

θ

L(z)

(b) x̂1 6= x̂2

Figure C.2: two possible outcomes for L(z)

There is an appealing geometric interpretation of Corollary C.4.
Suppose v1 and v2 are given unit vectors in Rn. Let z ∈ Rn be a
standard normal random vector, and define xi = vT

i z for i = 1, 2. Then[
x1
x2

]
=
[
vT

1 z

vT
2 z

]
=
[
vT

1
vT

2

]
z

is a bivariate normal random vector with mean vector and covariance
matrix [

0
0

]
and

[
vT

1
vT

2

] [
vT

1
vT

2

]T

=
[

1 vT
1 v2

vT
1 v2 1

]
,

respectively. Let ρ = vT
1 v2 be the correlation of x1 and x2. Observe

that ρ satisfies

ρ = vT
1 v2 = cos(θ) = sin

(
π

2 − θ
)
.

and hence arcsin(ρ) = (π/2) − θ. Let L(z) be the projection of the
hyperplane with normal vector z onto the v1-v2 plane. We have that
x̂1 6= x̂2 if and only if v1 and v2 are on opposite sides of L(z), as shown
in Figure C.2. By symmetry, all lines L(z) are equally likely, so the
probability that x̂1 6= x̂2 is the area of the wedge between v1 and v2
plus the area of the wedge between −v1 and −v2, normalized by 2π
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(these wedges are shaded in Figure C.2):

prob(x̂1 6= x̂2) = θ + θ

2π = θ

π
.

Then we have that

E(x̂1x̂2) = prob(x̂1 = x̂2)− prob(x̂1 6= x̂2)
= 1− 2 prob(x̂1 6= x̂2)

= 1− 2 θ
π

= 2
π

(
π

2 − θ
)

= 2
π

arcsin(ρ).
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