
Beyond Convex Relaxation: A Polynomial–Time Non–Convex

Optimization Approach to Network Localization

Senshan Ji∗, Kam–Fung Sze∗, Zirui Zhou∗, Anthony Man–Cho So∗ and Yinyu Ye†

∗Department of Systems Engineering & Engineering Management

The Chinese University of Hong Kong

Shatin, N. T., Hong Kong

Email: {ssji,kfsze,zrzhou,manchoso}@se.cuhk.edu.hk
†Department of Management Science & Engineering

Stanford University

Stanford, CA 94305

Email: yyye@stanford.edu

Abstract—The successful deployment and operation of
location–aware networks, which have recently found many ap-
plications, depends crucially on the accurate localization of the
nodes. Currently, a powerful approach to localization is that of
convex relaxation. In a typical application of this approach, the
localization problem is first formulated as a rank–constrained
semidefinite program (SDP), where the rank corresponds to the
target dimension in which the nodes should be localized. Then,
the non–convex rank constraint is either dropped or replaced
by a convex surrogate, thus resulting in a convex optimization
problem. In this paper, we explore the use of a non–convex sur-
rogate of the rank function, namely the so–called Schatten quasi–
norm, in network localization. Although the resulting optimization
problem is non–convex, we show, for the first time, that a first–
order critical point can be approximated to arbitrary accuracy
in polynomial time by an interior–point algorithm. Moreover,
we show that such a first–order point is already sufficient for
recovering the node locations in the target dimension if the input
instance satisfies certain established uniqueness properties in the
literature. Finally, our simulation results show that in many cases,
the proposed algorithm can achieve more accurate localization
results than standard SDP relaxations of the problem.

I. INTRODUCTION

Determining the locations of nodes is a fundamental task in

many wireless network applications. From target tracking [1]

to emergency response [2], from logistics support [3] to mobile

advertising [4], the information collected or transmitted by

a node depends crucially on its location. As it is typically

impractical to manually position the nodes or equip them

with Global Positioning System (GPS) receivers, a key re-

search question is how signal metrics (such as received signal

strength, time of arrival, angle of arrival, etc. [5]) obtained

by individual nodes through direct communication with their

neighbors can be used to localize the entire network. One of

the most common settings under which the above question is

studied is when distances between neighboring nodes can be

measured or estimated (this can be achieved using various

ranging techniques; see, e.g., [3]). Under this setting, the

network localization problem becomes that of determining the

node positions in R
2 or R3 so that they are consistent with the

given distance measurements. As is well known, such a fixed–

dimensional localization problem is intractable in general [6],

[7]. Consequently, there has been significant research effort

in developing algorithms that can accurately and efficiently

localize the nodes in a given dimension; see, e.g., [8] and the

references therein. One powerful approach is that of convex

relaxation, which was first adopted by Doherty et al. [9] and

has since been extensively developed in the literature; see,

e.g., [10]–[19]. Such an approach is very natural as far as

polynomial–time solvability is concerned, and it often pro-

duces accurate localization results in practice. However, due

to the intractability of the fixed–dimensional localization prob-

lem, existing convex relaxation–based localization algorithms

will most likely not be able to localize all input instances in the

required dimension in polynomial time. Thus, it is reasonable

to ask whether there are other polynomial–time implementable

approaches that can achieve better localization performance.

To address the above question, it is instructive to start

by revisiting the semidefinite programming (SDP) relaxation

proposed by Biswas and Ye [20]. The crucial observation

underlying Biswas and Ye’s derivation is that the fixed–

dimensional localization problem can be formulated as a rank–

constrained SDP feasibility problem, i.e., problem of the form

find Z

such that E(Z) = u, rank(Z) = d,

Z symmetric and positive semidefinite.

(1)

Here, the linear operator E and vector u are determined by

the available distance measurements, and d ≥ 1 is the target

dimension in which the input instance should be localized

(see Section II for details). Thus, by dropping the non–convex

rank constraint, one immediately obtains an SDP relaxation

of the fixed–dimensional localization problem. As it turns

out, the Biswas–Ye SDP relaxation has a nice geometric

interpretation. Specifically, So and Ye [11] showed that there is

a correspondence between the rank–r solutions to the Biswas–

Ye SDP relaxation and the r–dimensional localizations of the

input instance. Now, in wireless network applications, we are

mostly interested in finding a d–dimensional localization of the
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input instance, where d = 2 or 3. Thus, if the solution obtained

after solving the Biswas–Ye SDP relaxation happens to have

rank d, then we know by the result of So and Ye that we have

found a localization in the required dimension. However, it

is known that standard interior–point algorithms for solving

SDPs (such as those used in the solver SeDuMi [21]) will

always return the solution with the highest rank [11]. Since

the Biswas–Ye SDP relaxation does not have any mechanism

to eliminate the high–rank solutions, it is unlikely that those

algorithms will return a solution with the required rank.

Fortunately, not all is lost, as we could equip the Biswas–Ye

SDP relaxation with a suitable penalty function f (also known

as a regularizer) to filter out some of the high–rank solutions.

In other words, instead of solving the original Biswas–Ye SDP

relaxation, which is an SDP feasibility problem, we consider

its regularized version:

minimize f(Z)

subject to E(Z) = u,

Z symmetric and positive semidefinite.

(2)

Since our goal is to find a low–rank solution, it is tempting to

use f(·) = rank(·) as the regularizer. However, the resulting

optimization problem (2) will be at least as hard as the original

localization problem. Thus, we need to take the computational

complexity of Problem (2) into account when choosing the

regularizer f . Recently, the idea of using regularizers to find

low–rank solutions to SDPs has generated significant interest

due to its applications in low–rank matrix recovery; see, e.g.,

the references in [22]. One of the most commonly used and

studied regularizers is the so–called nuclear norm, which in

the context of Problem (2) means taking f(·) = tr(·). The

motivation behind such a choice is twofold. First, since the

trace function is linear, Problem (2) is still an SDP and

hence can be solved efficiently. Secondly, recall that for a

symmetric and positive semidefinite matrix, its rank is equal

to the number of non–zero singular values, and its trace is

the sum of all its singular values. Thus, by minimizing the

trace function in Problem (2), it is hoped that the solution

will have a smaller number of non–zero singular values and

hence a lower rank. In the context of network localization,

trace regularization was first proposed by Biswas et al. in [12].

However, computational experiments show that such a strategy

may not be very effective, especially when the number of

available distance measurements is small (see Section V for

details). This motivates us to search for other regularizers that

are more effective in finding low–rank solutions.

In that regard, an attractive proposal is the so–called Schat-

ten p–regularization. Specifically, for any given p ∈ (0, 1],
consider the regularizer fp, where

fp(Z) =
∑

i≥1

(σi(Z))p

and σi(Z) is the i–th largest singular value of Z . The value

(fp(Z))1/p is known as the Schatten p–quasi–norm of Z ,

hence the name of the regularization. The Schatten p–quasi–

norm has several nice analytical properties that make it a

natural candidate for a regularizer. First, when Z is con-

strained to be symmetric and positive semidefinite, we have

f1(Z) = tr(Z). Thus, Schatten p–regularization includes trace

regularization as a special case. Secondly, as p ց 0, we have

fp(Z) → rank(Z) for all Z . This suggests that Schatten p–

regularization can be effective in finding a low–rank solution

to Problem (2), especially when p is small. In fact, Schatten

p–regularization has already been shown to enjoy some nice

theoretical properties in the recovery of general low–rank

matrices; see, e.g., [23], [24]. Despite these promising results,

there is an obstacle when using the Schatten p–quasi–norm as

regularizer, namely, it is NP–hard to minimize the Schatten

p–quasi–norm over a system of linear matrix inequalities for

any fixed p ∈ (0, 1); cf. [25]. Although there are algorithms

for finding stationary points of a Schatten p–quasi–norm

minimization problem (see, e.g, [26]–[28]), none of them

has a polynomial–time complexity. Furthermore, when applied

to the network localization problem, it is not clear whether

the aforementioned algorithms will give better localization

results or even preserve the class of instances that can be

exactly localized in the required dimension by the original

(unregularized) convex relaxation. In fact, to the best of our

knowledge, there is no prior work that applies the Schatten

p–regularization approach to network localization problems.

This necessitates a study on the viability of such approach.

In this paper, we make a first step towards understanding

the theoretical and computational issues surrounding the use

of Schatten p–regularization in network localization. The

starting point of our investigation is the following Schatten

p–regularized SDP problem:

minimize tr(CZ) + µ · fp(Z)

subject to A(Z) = b,

Z symmetric and positive semidefinite,

(3)

where the symmetric matrix C, linear operator A and vector

b are arbitrary, and µ > 0 is a given penalty parameter. Such

a formulation provides a unified framework for regularizing

several existing SDP relaxations of the network localization

problem using the Schatten p–quasi–norm. In particular, the

regularized Biswas–Ye SDP relaxation (2) is just a special

case of Problem (3). Our first contribution is to show that

a point satisfying certain first–order optimality conditions of

Problem (3) can be approximated to arbitrary accuracy in

polynomial time via a potential reduction algorithm, which is a

type of interior–point algorithm. This extends the result of Ge

et al. [25] on ℓp–quasi–norm–regularized linear programming

and is, to the best of our knowledge, the first polynomial–time

complexity result for Problem (3). Although this result only

implies that we can find a first–order critical point and not

a global minimizer of the Schatten p–regularized Biswas–Ye

SDP relaxation (2) in polynomial time, such a point can still

be useful in obtaining a low–dimensional localization of the

input instance. To see this, observe that the first–order critical

point is, by definition, feasible for the original Biswas–Ye SDP

relaxation. Moreover, due to the presence of a regularizer, this
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feasible point is likely to have a lower rank than the solution

returned by standard interior–point algorithms for solving the

Biswas–Ye SDP relaxation. Hence, by the aforementioned

result of So and Ye [11], the localization corresponding to the

first–order critical point will tend to lie in a lower dimension.

Another important issue concerning the proposed regulariza-

tion approach is whether it preserves the localizability prop-

erties of the underlying unregularized problem. Specifically, it

is known that the Biswas–Ye SDP relaxation [20] and its trace

regularization [12] can localize the input instance in the target

dimension if it satisfies certain uniqueness property [11], [12],

and a natural question is whether this still holds if we use

the potential reduction algorithm to solve the corresponding

Schatten p–regularizations. We show that the answer is in fact

affirmative. In the language of matrix recovery, this result es-

sentially says that if the original convex relaxation can recover

the low–rank matrix that encodes the localization of the input

instance in the target dimension, then so can its Schatten p–

regularization. This is in sharp contrast with the recovery of

general low–rank matrices, where it is possible that a target

low–rank matrix can be recovered by a convex regularization

but not by the Schatten p–regularization; cf. [29].

Finally, we validate our Schatten p–regularization approach

via extensive numerical simulations. In particular, we show

that our proposed approach is indeed more effective in finding

a low–dimensional localization of an input instance than the

Biswas–Ye SDP relaxation [20] or its trace regularization [12].

In fact, even when the number of available distance measure-

ments is small, our approach can still succeed in localizing

the input instance in the target dimension, whereas the above

two approaches would often fail to do so.

The paper is organized as follows. In Section II, we intro-

duce the network localization problem and review some of its

convex relaxations. In Section III, we design and analyze an

interior–point algorithm for solving the Schatten p–regularized

SDP problem (3). In Section IV, we analyze the localizability

properties of two Schatten p–regularized SDP relaxations of

the network localization problem. We then present our simu-

lation results in Section V and conclude in Section VI.

II. PRELIMINARIES

Let us begin by formally introducing the network localiza-

tion problem. Let G = (V,E) be a given network, and let

d ≥ 1 be the target dimension in which the network should

reside. The nodes of G are partitioned into two sets: the set

Vs of sensors, and the set Va = V \Vs of anchors. We assume

that for all i ∈ Va, the position ai ∈ R
d of anchor i is known.

The partition of V induces two edge sets Ess, Eas, where

Ess = {(i, j) ∈ E : i, j ∈ Vs},
Eas = {(i, j) ∈ E : i ∈ Va, j ∈ Vs}.

Each edge (i, j) ∈ Ess (resp. (i, j) ∈ Eas) is associated with

a positive weight dij (resp. d̄ij ), which can be regarded as the

measured Euclidean distance between i and j.

When all the distance measurements are noiseless, the goal

of the network localization problem is simply to assign a

position xi ∈ R
d to each sensor i ∈ Vs, so that the assigned

positions are consistent with the distance measurements; i.e.,

they satisfy

‖xi − xj‖22 = d2ij for (i, j) ∈ Ess,

‖ai − xj‖22 = d̄2ij for (i, j) ∈ Eas.
(4)

On the other hand, when the distance measurements are noisy,

there may not be any solution to the constraints in (4). In

this case, the assigned positions should be as consistent with

the distance measurements as possible. One way to formalize

this is to adopt a maximum likelihood estimation approach;

see, e.g., [10]. Specifically, we model the noisy distance

measurements as

dij = d′ij + ǫij for (i, j) ∈ Ess,

d̄ij = d̄′ij + ǭij for (i, j) ∈ Eas,

where d′ij (resp. d̄′ij) is the actual Euclidean distance between

i, j ∈ Vs (resp. i ∈ Va and j ∈ Vs); ǫij and ǭij are mean–

zero normal random variables with variance σ2
ij and σ̄2

ij ,

respectively, and all random variables involved are statistically

independent of each other. Then, the maximum likelihood

estimates of the actual sensor positions can be found by

solving the following optimization problem [10]:

min
xi∈Rd, i∈Vs







∑

(i,j)∈Ess

(‖xi − xj‖2 − dij)
2

σ2
ij

+
∑

(i,j)∈Eas

(‖ai − xj‖2 − d̄ij)
2

σ̄2
ij







. (5)

As is well known, both (4) and (5) are non–convex and

intractable [6]. In an early work, Biswas et al. [10] have

shown that both problems can be reformulated as rank–

constrained SDPs. To state the results of Biswas et al., let us

first introduce some notation. Let ei be the i–th standard basis

vector whose dimension will be clear from the context; Id be

the d× d identity matrix; Sn, Sn
+, Sn

++ be the sets of n× n
symmetric, symmetric positive semidefinite and symmetric

positive definite matrices, respectively; (u; v) ∈ R
m+n be the

column vector obtained by placing the column vector u ∈ R
m

on top of the column vector v ∈ R
n.

Proposition 1. (cf. [10]) The following hold:

1) Let

F0 =























Z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tr(KijZ) = d2ij for (i, j) ∈ Ess,

tr(K̄ijZ) = d̄2ij for (i, j) ∈ Eas,

Z1:d,1:d = Id,

Z ∈ Sd+|Vs|
+























,

where Kij = (0; ei − ej)(0; ei − ej)
T ∈ Sd+|Vs|

+ for

(i, j) ∈ Ess, and K̄ij = (ai;−ej)(ai;−ej)
T ∈ Sd+|Vs|

+

for (i, j) ∈ Eas. Then, Problem (4) is equivalent to the

following rank–constrained SDP feasibility problem:

find Z

such that Z ∈ F0, rank(Z) = d.
(6)
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2) Let Kij and K̄ij be as above, and

F1 =



















































































































W

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W =





Z
D

D̄



,

D = Diag({Dij}(i,j)∈Ess
),

D̄ = Diag({D̄ij}(i,j)∈Eas
),

Dij =

[

1 uij

uij vij

]

for (i, j) ∈ Ess,

D̄ij =

[

1 ūij

ūij v̄ij

]

for (i, j) ∈ Eas,

tr(KijZ) = vij for (i, j) ∈ Ess,

tr(K̄ijZ) = v̄ij for (i, j) ∈ Eas,

Z1:d,1:d = Id,

Z ∈ Sd+|Vs|
+ , D ∈ S2|Ess|

+ , D̄ ∈ S2|Eas|
+



















































































































,

where D = Diag({Dij}(i,j)∈Ess
) denotes the 2|Ess| ×

2|Ess| block–diagonal matrix whose (i, j)–th diagonal

block is Dij , and similarly for D̄. Then, Problem (5)

is equivalent to the following rank–constrained SDP

problem:

minimize tr(CW )

subject to W ∈ F1, rank(W ) = d+ |Ess|+ |Eas|,
(7)

where C takes the form C = Diag(0, C0, C1),
C0 is the 2|Ess| × 2|Ess| block–diagonal matrix

whose (i, j)–th diagonal block is the 2 × 2 ma-

trix σ−2
ij (−dij ; 1)(−dij ; 1)

T (where (i, j) ∈ Ess),

and C1 is the 2|Eas| × 2|Eas| block–diagonal matrix

whose (i, j)–th diagonal block is the 2 × 2 matrix

σ̄−2
ij (−d̄ij ; 1)(−d̄ij ; 1)

T .

In view of Proposition 1 and the discussions in Section I,

we formulate the Schatten p–regularizations of (6) and (7) as

min {fp(Z) : Z ∈ F0} (8)

and

min {tr(CW ) + µ · fp(W ) : W ∈ F1} , (9)

respectively. Note that both (8) and (9) are instances of

Problem (3). In the next section, we will focus on Problem (3)

and show that a first–order critical point can be approximated

to arbitrary accuracy in polynomial time. Before we proceed,

however, let us remark that besides (4) and (5), several

other variants of the network localization problem (such as

those in [12], [30], [31]) can also be reformulated as rank–

constrained SDPs. As such, their corresponding Schatten p–

regularizations can be written in the form shown in (3). In

particular, our algorithm and complexity analysis apply to

these regularizations as well.

III. A POTENTIAL REDUCTION ALGORITHM AND ITS

COMPLEXITY ANALYSIS

In this section, we design and analyze a potential reduction

algorithm for approximating a first–order critical point of the

Schatten p-regularized SDP problem (3), thereby extending

both the techniques and results in Ye [32] and Ge et al. [25].

To begin, let us write our problem of interest, namely Problem

(3), in a more explicit form:

Γ∗ = minimize tr(CZ) + µ · fp(Z)

subject to tr(AiZ) = bi for i = 1, . . . ,m,

Z ∈ Sn
+.

(10)

Here, C,A1, . . . , Am are given n×n symmetric matrices, b ∈
R

m is a given vector, and µ > 0 is a given penalty parameter.

For notational convenience, let π : Sn
+ → R and F ⊂ Sn

+

be the objective function and feasible region of Problem (10),

respectively; i.e.,

π(Z) = tr(CZ) + µ · fp(Z),

F = {Z ∈ Sn
+ : tr(AiZ) = bi for i = 1, . . . ,m}.

We shall make the following assumptions:

1) The feasible region F is bounded; i.e., there exists an

R < ∞ such that ‖Z‖2F = tr(Z2) ≤ R2 for all Z ∈ F .

2) A lower bound θ > −∞ on the optimal value of the

(unregularized) SDP problem

min{tr(CZ) : Z ∈ F} (11)

is known or can be efficiently estimated.

3) A strictly feasible solution Z0 to Problem (10) (i.e.,

Z0 ∈ F satisfies Z0 ∈ Sn
++) is available or can

be efficiently constructed, whose smallest eigenvalue

λmin(Z0) satisfies λmin(Z0) ≥ r for some r > 0.

It should be noted that these assumptions are quite mild. In-

deed, for the network localization formulations we considered,

viz. (8) and (9), the feasible regions are bounded whenever the

underlying network G is connected. Moreover, the objective

matrix C in both formulations is positive semidefinite, which

implies that θ = 0 is a lower bound on the optimal values

of their unregularized counterparts (cf. Problem (11)). In fact,

we shall further assume that θ = 0 in our analysis. This is

just to simplify the exposition and will not compromise the

generality of our results.

Regarding the third assumption, one can show that Problem

(10) can be transformed into one whose feasible region con-

tains a known strictly feasible point. Due to space limitation,

we shall not discuss the details here. Instead, we defer the

complete treatment to the full version of this paper.

Since finding an optimal solution to Problem (10) is in-

tractable in general, let us consider the task of computing its

first–order critical points. Note that some care must be taken

when defining such a point, because the objective function π is

non–differentiable on Sn
+\Sn

++. In the sequel, we shall adopt

the following definitions:

Definition 1. Let Z ∈ F and ǫ ≥ 0 be given. Suppose that

rank(Z) = r, and let Z = UΛUT be the spectral decompo-

sition of Z , where U ∈ R
n×r has orthonormal columns and

Λ = Diag(λ1, . . . , λr) ∈ Sr
++ is diagonal. For any s ∈ R,

define Λs = Diag(λs
1, . . . , λ

s
r) and Zs = UΛsUT . We say that
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1) Z is an ǫ–optimal solution to Problem (10) if π(Z) ≤
Γ∗ + ǫ;

2) Z is an ǫ–first–order critical point of Problem (10) if

there exists a multiplier y ∈ R
m such that

UTCU + µpΛp−1 −
m
∑

i=1

yi
(

UTAiU
)

∈ Sr
+ (12)

and

0 ≤ tr (CZ + µpZp −∑m
i=1 yiAiZ)

π(Z)
≤ ǫ. (13)

A 0–first–order critical point will simply be called a

first–order critical point.

We remark that the above definitions resemble the opti-

mality conditions for problems with differentiable objective

functions. Indeed, condition (12) can be regarded as dual

feasibility, and condition (13) with ǫ = 0 is complementarity

between the primal and dual variables. Furthermore, the term

π(Z) in (13) is to ensure that an ǫ–first–order critical point

has certain invariance properties; see [33] for a more thorough

discussion.

Before delving into the details, let us give a high level

overview of our algorithm. Essentially, the algorithm has two

ingredients: a potential function that measures its progress,

and an update rule that computes the next iterate based on the

current one. Roughly speaking, in each iteration, the update

rule will choose as the next iterate a strictly feasible point that

achieves the maximum potential reduction. Now, if we can

show that the potential value decreases by at least a constant

(say δ > 0) in each step, and that the algorithm can terminate

when the potential value is below a certain threshold, then

we know that the algorithm will terminate in finite number of

steps. To establish polynomial–time convergence, it remains to

show that δ can be made not too small, and that the potential

value corresponding to the initial iterate is not too large.

To implement the above idea, we first define a potential

function φ : Sn
+ → R via

φ(Z) = ρ log(π(Z))− log det(Z),

where ρ > 0 is a parameter to be determined later. Intuitively,

the term − log det(Z) serves as a barrier and forces the iterates

of the algorithm to stay in the interior of F . This is because

whenever Z tends to a positive semidefinite but not positive

definite matrix, the value − log det(Z) will tend to ∞.

Now, consider a generic iteration of the algorithm. Suppose

that the current iterate Z̄ is strictly feasible for Problem

(10). The following proposition gives a condition under which

the algorithm can terminate and declare Z̄ an approximately

global optimal solution to Problem (10).

Proposition 2. Let ǫ > 0 and ρ > n/p be fixed. Suppose that

φ(Z̄) ≤ φ =

(

ρ− n

p

)

log(ǫ) +
n

p
log(µn). (14)

Then, Z̄ is an ǫ–optimal solution to Problem (10).

Proof: By the arithmetic–mean geometric–mean inequal-

ity, we have

fp(Z)

n
=

1

n

n
∑

i=1

(σi(Z))
p ≥

(

n
∏

i=1

σi(Z)

)

p

n

= (det(Z))p/n

for all Z ∈ Sn
+. In particular, for any Z ∈ F ,

n

p
log(π(Z)) − log det(Z) ≥ n

p
log(µn),

where we use the assumption that tr(CZ) ≥ θ = 0 for all

Z ∈ F . Thus, if condition (14) is satisfied, then we have

π(Z̄) ≤ ǫ, which, together with the fact that Γ∗ ≥ 0, implies

the desired result.

Suppose then condition (14) is not satisfied at the current

iterate Z̄ . Let DZ̄ ∈ Sn be such that tr(AiDZ̄) = 0 for i =
1, . . . ,m, and consider the next iterate Z̄+ = Z̄ + DZ̄ . The

change in potential value is given by

φ(Z̄+)− φ(Z̄) = ρ
[

log(π(Z̄+))− log(π(Z̄))
]

+ log det(Z̄)− log det(Z̄+). (15)

To bound this change, we need the following proposition. Due

to space limitation, we omit the proof in this paper.

Proposition 3. The following hold:

1) The function Z 7→ log(π(Z)) is concave on Sn
++.

2) For each p ∈ (0, 1), the function Z 7→ fp(Z) is

differentiable on Sn
++, and ∇fp(Z) = pZp−1.

Now, let D = Z̄−1/2DZ̄Z̄
−1/2 and C̄ = Z̄1/2CZ̄1/2. By

the concavity of Z 7→ log(π(Z)), we have

log(π(Z̄+))− log(π(Z̄)) ≤ tr
[

(C + µpZ̄p−1)DZ̄

]

π(Z̄)

=
tr
[

(C̄ + µpZ̄p)D
]

π(Z̄)
. (16)

Moreover, if we restrict ‖D‖2F ≤ β < 1, then it can be shown

that (cf. [34, Section 9.3])

log det(Z̄)− log det(Z̄+) ≤ −tr(D) +
β2

2(1− β)
, (17)

which, together with the fact that tr(AiZ̄
+) = bi for i =

1, . . . ,m, implies that Z̄+ is strictly feasible for Problem (10).

Upon substituting (16) and (17) into (15), we obtain

φ(Z̄+)− φ(Z̄) ≤ ρ

π(Z̄)
tr
[

(C̄ + µpZ̄p)D
]

− tr(D) +
β2

2(1− β)
. (18)

In order to achieve maximum potential reduction, we choose

D (and hence DZ̄) to minimize the right–hand side of (18).

Considering the constraints on D, this is equivalent to solving

minimize tr

[(

ρ

π(Z̄)
(C̄ + µpZ̄p)− I

)

D

]

subject to tr(Z̄1/2AiZ̄
1/2D) = 0 for i = 1, . . . ,m,

‖D‖2F ≤ β2.
(19)
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Let Q = (ρ/π(Z̄))(C̄ + µpZ̄p) − I . Since Problem (19) is

convex and satisfies the Slater condition, its KKT conditions,

which are given below, are both necessary and sufficient for

optimality.

2λD = AT (ν)−Q, (20a)

A(D) = 0, (20b)

‖D‖2F = β2, (20c)

λ ≥ 0. (20d)

Here, A : Sn → R
m is the linear operator given by

A(D) =
(

tr
(

Z̄1/2A1Z̄
1/2D

)

, . . . , tr
(

Z̄1/2AmZ̄1/2D
))

,

and AT : Rm → Sn is its adjoint operator; i.e.,

AT (ν) =

m
∑

i=1

νiZ̄
1/2AiZ̄

1/2.

Upon applying A to both sides of (20a) and using (20b) and

the assumption that A has full row rank, we have

ν = (AAT )−1A(Q). (21)

Then, using (20a), (20c) and (20d), we find λ =
(2β)−1

∥

∥

(

I −AT (AAT )−1A
)

Q
∥

∥

F
. Together with (20a), this

implies that

D = −β

(

I −AT (AAT )−1A
)

Q

‖(I −AT (AAT )−1A)Q‖F
. (22)

Since the linear operator H = I − AT (AAT )−1A is a

projection (and hence H2 = H), after substituting (22) into

(18), we can bound the change in potential value by

φ(Z̄+)−φ(Z̄) ≤ −β
∥

∥

(

I −AT (AAT )−1A
)

Q
∥

∥

F
+

β2

2(1− β)
.

(23)

Now, consider two cases.

Case 1:
∥

∥

(

I −AT (AAT )−1A
)

Q
∥

∥

F
≥ 1. Then, upon setting

β = 1/3, say, we have φ(Z̄+)− φ(Z̄) ≤ −1/4 from (23). In

other words, by taking Z̄+ as the next iterate, we can achieve

a potential reduction of at least 1/4.

Case 2:
∥

∥

(

I −AT (AAT )−1A
)

Q
∥

∥

F
< 1. In this case, we

show that Z̄ is an ǫ–first–order critical point of Problem (10),

from which we conclude that the algorithm can terminate.

First, observe that
∥

∥

(

I −AT (AAT )−1A
)

Q
∥

∥

F
< 1 is, by

(21), equivalent to ‖Q−AT (ν)‖2F < 1, or more explicitly,
∥

∥

∥

∥

ρ

π(Z̄)
(C̄ + µpZ̄p) +AT (µ)− I

∥

∥

∥

∥

2

F

< 1. (24)

This, together with the Cauchy–Schwarz inequality and the

definition of C̄, implies that

n−√
n

ρ
<

tr
[

Z̄
(

C + µpZ̄p−1 −∑m
i=1 ȳiAi

)]

π(Z̄)
<

n+
√
n

ρ
,

where ȳ = −(π(Z̄)/ρ)ν ∈ R
m. Upon setting ∆ = min{p, ǫ},

ρ = (n +
√
n)/∆ and S̄ = C + µpZ̄p−1 −∑m

i=1 ȳiAi, we

obtain

ρ >
n

p
and 0 <

tr(Z̄S̄)

π(Z̄)
< ǫ.

Now, it remains to prove that S̄ ∈ Sn
+, which would imply

that (12) holds. Towards that end, it suffices to show that

Z̄1/2S̄Z̄1/2 ∈ Sn
+. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues

of Z̄1/2S̄Z̄1/2. By (24), we have
∑n

i=1

(

λi − π(Z̄)/ρ
)2 ≤

(

π(Z̄)/ρ
)2

. This implies that λn ≥ 0, as desired.

In summary, the above derivation shows that in a generic

iteration, we either reduce the potential value by at least 1/4
(Case 1), in which case we continue to the next iteration; or

we reach an ǫ–first–order critical point (Case 2), in which case

we terminate.

To complete the description of the algorithm and establish

polynomial–time convergence, it remains to show that the

algorithm can be initialized with a strictly feasible solution to

Problem (10) whose potential value is not too large. Towards

that end, recall that by assumption, we have a strictly feasible

solution Z0 to Problem (10) that satisfies ‖Z0‖F ≤ R and

λmin(Z0) ≥ r. It can then be shown that

φ(Z0) ≤ φ = ρ log
(

R‖C‖F + µRpn1−p/2
)

− n log r. (25)

In particular, if we initialize the algorithm with Z0, then Propo-

sition 2, (25), and the discussion in the preceding paragraph

imply that the algorithm terminates in at most

η =
φ− φ

1/4
= O

(

n

∆
log

(

R

ǫr′

(

‖C‖F + µn1−p/2
)

))

iterations, where r′ = min{r, 1}. Note that for every fixed

p ∈ (0, 1) and ǫ > 0, η is polynomially bounded by the input

parameters. Moreover, each iteration is clearly polynomial–

time implementable. Thus, we have proven the following

theorem, which is the main result of this paper:

Theorem 1. Let p ∈ (0, 1) and ǫ > 0 be fixed. The

potential reduction algorithm described above returns either

an ǫ–optimal solution or an ǫ–first–order critical point of the

Schatten p–regularized SDP problem (10) in polynomial time.

IV. LOCALIZABILITY ANALYSIS

One of the nice features of the Biswas–Ye SDP relax-

ation [20] and its trace regularization [12] is that for input

instances satisfying certain uniqueness properties, positions of

the sensors in the required dimension can be exactly recovered

by solving those relaxations [11], [12], [16]. Thus, it is natural

to ask whether this feature is preserved by the Schatten p–

regularizations of those relaxations, especially in view of the

fact that we can only compute a first–order critical point in

polynomial time. In this section, we show that the answer is

affirmative. We begin with some definitions.

Definition 2. Consider an instance of the network localization

problem L = (G, (d, d̄), a, d), where G = (Vs∪Va, Ess∪Eas)
is the network, d = (dij)(i,j)∈Ess

and d̄ = (d̄ij)(i,j)∈Eas
are

the vectors of distance measurements, a = (ai)i∈Va
is the

vector of anchor positions, and d ≥ 1 is the target dimension

(see Section II). We say that

1) (cf. [11], [16]) L is uniquely d–localizable if (i) Va 6= ∅,

(ii) there is a unique set of sensor positions {x̄i ∈
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R
d : i ∈ Vs} in R

d that satisfy the given distance

measurements, and (iii) for any l > d, when the position

of each anchor i ∈ Va is regarded as the point (ai;0) in

R
l, there is no set of sensor positions in R

l that satisfy

the given distance measurements;

2) (cf. [12]) L is d–localizable if (i) Va = ∅, (ii) there is

a set of sensor positions {x̄i ∈ R
d : i ∈ Vs} in R

d

that satisfy the given distance measurements, and (iii)

for any l 6= d, there is no set of sensor positions in R
l

that satisfy the given distance measurements (except the

set {(x̄i;0) ∈ R
l : i ∈ Vs} when l > d).

We remark that these notions of localizability are closely

related to those of rigidity, which have been used extensively

in the localizability analysis of network localization problems;

see, e.g., [16] and the references therein.

Our first result in this section states that when the input

instance L is uniquely d–localizable, the unique set of sensor

positions in R
d can still be recovered if we apply our potential

reduction algorithm to the Schatten p–regularized Biswas–Ye

SDP relaxation (8). It extends the corresponding result in [11,

Theorem 2].

Proposition 4. Let L be a given instance of the network

localization problem and p ∈ (0, 1) be fixed. Consider the

corresponding Schatten p–regularized Biswas–Ye SDP relax-

ation (8). Suppose that L is uniquely d–localizable, and let

Z̄ be any first–order critical point of Problem (8). Then, we

have Z̄ ∈ F0 and rank(Z̄) = d; cf. (4) and (6).

Proof: By definition, we have Z̄ ∈ F0. Moreover, the

results in [11, Theorem 2] show that when L is uniquely d–

localizable, F0 contains only one element, and its rank is d.

This completes the proof.

In a similar fashion, we can prove the following result

concerning the recoverability of d–localizable instances by

certain Schatten p–regularization. It extends the corresponding

result in [12, Theorem 1]. We defer the proof to the full version

of this paper.

Proposition 5. Let L be a given instance of the network

localization problem with Va = ∅ and p ∈ (0, 1) be fixed.

Consider its Schatten p–regularized SDP relaxation:

min
{

fp(Y ) : tr(KijY ) = d2ij for (i, j) ∈ Ess, Y ∈ S|V |
+

}

.

(26)

Suppose that L is d–localizable. Let Ȳ be any first–order

critical point of Problem (26). Then, Ȳ is feasible for (26)

and rank(Ȳ ) = d. In particular, we have Ȳ = X̄T X̄ for

some X̄ ∈ R
d×|V |. Moreover, the positions of the sensors

x̄1, . . . , x̄|V | ∈ R
d, which form the columns of X̄ , are

centered; i.e., they satisfy
∑

i∈V x̄i = 0.

V. SIMULATION RESULTS

In this section, simulation results are presented to demon-

strate the effectiveness of the Schatten p–regularization ap-

proach to network localization. For simplicity, we consider

the setting where the distance measurements are accurate.

All simulations are implemented in MATLAB and run on a

2.66GHz CPU PC with 3 GB memory. We shall compare the

following three approaches:

1) SDR: the original Biswas–Ye SDP relaxation [20] (i.e.,

Problem (6) without the rank constraint)

2) TRACE: trace regularization of the Biswas–Ye SDP

relaxation [12]

3) SCHATTEN: Schatten 0.5–regularization of the Biswas–

Ye SDP relaxation

Specifically, TRACE (resp. SCHATTEN) corresponds to Prob-

lem (8) with p = 1 (resp. p = 0.5) when there are anchors,

or Problem (26) with p = 1 (resp. p = 0.5) when there is

no anchor. In particular, the former is a convex optimization

problem, while the latter is not. The value p = 0.5 for the

Schatten regularization is chosen just for illustration. Due

to space limitation, we shall discuss the effects of different

choices of p ∈ (0, 1) in the full version of this paper.

To evaluate the performance of the above approaches, we

consider three criteria. The first is position error (PE), which

measures the discrepancy between the computed locations and

true locations of the sensors. It is defined as

PE =

√

1

|V |
∑

i∈V

‖xi − x̄i‖22,

where xi ∈ R
d is the position of sensor i as computed by

a particular approach, and x̄i ∈ R
d is the true position. The

second is edge error (EE), which measures the discrepancy

between the computed distances and the given distance mea-

surements. It is defined as

EE =
√

(∆ss +∆as)/|E|,

where ∆ss =
∑

(i,j)∈Ess

∣

∣‖xi − xj‖2 − dij
∣

∣

2
and ∆as =

∑

(i,j)∈Eas

∣

∣‖ai − xj‖2 − d̄ij
∣

∣

2
. An advantage of using EE

over PE as the evaluation criterion is that the true positions

of the sensors need not be known. The last criterion is the

rank of the solution matrix obtained by a particular approach.

Recall that if the rank of the solution equals to d, which is the

target dimension in which the nodes should reside, then we

have found a localization of the network in R
d [11]. Thus, this

criterion is meaningful in evaluating how faithful the solution

is from the dimension requirement.

A. Performance on Unit–Disk Graphs

In our first experiment, we randomly place 50 sensors and 3
anchors over a unit square, and connect two nodes by an edge

if their distance is at most ρ, where ρ = 0.16, 0.17, . . . , 0.30.

We generate 100 such networks and solve them using the

aforementioned three approaches. The results are shown in

Figures 1 and 2. As can be seen from the figures, the

SCHATTEN approach outperforms the other two in terms of

EE and the solution rank when the network is sparse (i.e.,

when ρ is small). In particular, the SCHATTEN approach

tends to produce localizations that are more faithful to the

distance measurements and dimension requirement. On the

other hand, the SCHATTEN approach incurs a slightly higher
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PE than SDR. However, this does not necessarily imply that

the approach cannot localize the nodes accurately, as the input

instance could have multiple localizations in R
2.

B. Performance on Globally Rigid Graphs

In our second experiment, we focus on input instances

that have a unique localization in R
2. In other words, the

underlying graphs of these instances are globally rigid in R
2;

see, e.g., [16]. It is known (see, e.g., [35]) that every globally

rigid graph in R
2 can be constructed from K4, the complete

graph on 4 vertices, by applying a sequence of two types of

operations: (i) edge addition, where we add an edge to connect

some pair of non–adjacent vertices, and (ii) 1–extension, where

we subdivide an edge (i, j) by a new vertex k and add a

new edge (k, l) for some l 6∈ {i, j}. Thus, to create an input

instance with a unique localization in R
2, we first generate

a random globally rigid graph in R
2 with a given number of

vertices by repeatedly applying 1–extension to K4. Then, we

perform a number of edge additions. Finally, we randomly

place the vertices of the resulting graph over the unit square.

Using the above procedure, we generate two sets of test

instances. In the first set, for a given number of extra edges

to be added by the edge addition operation, we generate 100
input instances with 50 sensors and no anchor. Then, we solve

these instances using the TRACE and SCHATTEN approaches.

We count the number of instances for which the TRACE and

SCHATTEN approaches return a rank–2 solution. The result

is shown in Figure 3. It demonstrates the effectiveness of the

Schatten p–regularization in finding a localization in the target

dimension, especially when the number of extra edges added

is small.
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Fig. 3. Number of exact recovery (i.e., rank–2 solution) cases with 50
sensors, globally rigid graphs

In the second set, for a given number of extra edges to be

added by the edge addition operation, we generate 100 input

instances with 50 sensors and 3 anchors. Then, we solve these

instances using all three approaches. The results are shown in

Figure 4. We see that the SCHATTEN approach outperforms

the other two both in terms of EE and solution rank. Figure 5

shows the localization results for one particular instance. As

can be seen from the figure, the localization produced by the

SCHATTEN approach is exact, while that produced by SDR

contains some error.
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Fig. 4. The average EE and solution rank with 50 sensors and 3 anchors,
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VI. CONCLUSION

In this paper, we investigated the use of the non–convex

Schatten quasi–norm as a regularizer for inducing low–rank

solutions to various SDP relaxations of the fixed–dimensional

localization problem. We showed that a first–order critical
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point of the Schatten–regularized SDP problem can be ap-

proximated to arbitrary accuracy in polynomial time by an

interior–point algorithm. We then demonstrated the viability of

our approach via both localizability analysis and simulations.

ACKNOWLEDGMENT

This research was supported by CUHK Direct Grant No.

2050493.

REFERENCES

[1] K. Zhou and S. I. Roumeliotis, “Multirobot Active Target Tracking with
Combinations of Relative Observations,” IEEE Trans. Robotics, vol. 27,
no. 4, pp. 678–695, 2011.

[2] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor Net-
works for Emergency Response: Challenges and Opportunities,” IEEE
Pervasive Comput., vol. 3, no. 4, pp. 16–23, 2004.

[3] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses,
and N. S. Correal, “Locating the Nodes: Cooperative Localization in
Wireless Sensor Networks,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 54–69, 2005.

[4] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network–Based Wire-
less Location: Challenges Faced in Developing Techniques for Accurate
Wireless Location Information,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 24–40, 2005.

[5] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative Localization in
Wireless Networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[6] J. B. Saxe, “Embeddability of Weighted Graphs in k–Space is Strongly
NP–Hard,” in Proc. 17th Allerton Conf. Commun., Control, and Com-

put., 1979, pp. 480–489.
[7] J. Aspnes, D. Goldenberg, and Y. R. Yang, “On the Computational

Complexity of Sensor Network Localization,” in Proc. ALGOSENSORS

2004, LNCS 3121, 2004, pp. 32–44.
[8] Y. Liu and Z. Yang, Location, Localization, and Localizability. New

York: Springer Science+Business Media, LLC, 2011.
[9] L. Doherty, K. S. J. Pister, and L. El Ghaoui, “Convex Position

Estimation in Wireless Sensor Networks,” in IEEE INFOCOM 2001,
vol. 3, 2001, pp. 1655–1663.

[10] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite Pro-
gramming Based Algorithms for Sensor Network Localization,” ACM
Trans. Sensor Networks, vol. 2, no. 2, pp. 188–220, 2006.

[11] A. M.-C. So and Y. Ye, “Theory of Semidefinite Programming for Sensor
Network Localization,” Math. Prog., vol. 109, no. 2, pp. 367–384, 2007.

[12] P. Biswas, K.-C. Toh, and Y. Ye, “A Distributed SDP Approach for
Large–Scale Noisy Anchor–Free Graph Realization with Applications
to Molecular Conformation,” SIAM J. Sci. Comput., vol. 30, no. 3, pp.
1251–1277, 2008.

[13] S. Kim, M. Kojima, and H. Waki, “Exploiting Sparsity in SDP Relax-
ation for Sensor Network Localization,” SIAM J. Opt., vol. 20, no. 1,
pp. 192–215, 2009.

[14] I. Shames, B. D. O. Anderson, and B. Fidan, “On the Use of Convex
Optimization in Sensor Network Localization and Synchronization,” in

Proc. 1st IFAC Workshop on Estimation and Control of Networked

Systems, 2009, pp. 228–233.
[15] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz, “Sensor Network

Localization, Euclidean Matrix Completions, and Graph Realization,”
Opt. Eng., vol. 11, no. 1, pp. 45–66, 2010.

[16] Z. Zhu, A. M.-C. So, and Y. Ye, “Universal Rigidity: Towards Accurate
and Efficient Localization of Wireless Networks,” in IEEE INFOCOM

2010, 2010.
[17] A. Javanmard and A. Montanari, “Localization from Incomplete Noisy

Distance Measurements,” in IEEE ISIT 2011, 2011, pp. 1584–1588.
[18] T. K. Pong and P. Tseng, “(Robust) Edge–Based Semidefinite Program-

ming Relaxation of Sensor Network Localization,” Math. Prog., vol.
130, no. 2, pp. 321–358, 2011.

[19] R. Sugihara and R. K. Gupta, “Sensor Localization with Deterministic
Accuracy Guarantee,” in IEEE INFOCOM 2011, 2011, pp. 1772–1780.

[20] P. Biswas and Y. Ye, “Semidefinite Programming for Ad Hoc Wireless
Sensor Network Localization,” in Proc. IPSN 2004, 2004, pp. 46–54.

[21] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB Toolbox for Optimization
over Symmetric Cones,” Opt. Meth. Softw., vol. 11, no. 1–4, pp. 625–
653, 1999.

[22] Low–Rank Matrix Recovery and Completion via Convex Optimization.
http://perception.csl.illinois.edu/matrix-rank/references.html.

[23] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi, “A Simplified Approach
to Recovery Conditions for Low Rank Matrices,” in IEEE ISIT 2011,
2011, pp. 2318–2322.

[24] A. Rohde and A. B. Tsybakov, “Estimation of High–Dimensional Low–
Rank Matrices,” Ann. Stat., vol. 39, no. 2, pp. 887–930, 2011.

[25] D. Ge, X. Jiang, and Y. Ye, “A Note on the Complexity of Lp

Minimization,” Math. Prog., vol. 129, no. 2, pp. 285–299, 2011.
[26] K. Mohan and M. Fazel, “Iterative Reweighted Least Squares for Matrix

Rank Minimization,” in Proc. 48th Annual Allerton Conf. Commun.,

Control, and Comput., 2010, pp. 653–661.
[27] M.-J. Lai, Y. Xu, and W. Yin, “Low–Rank Matrix Recovery Using

Unconstrained Smoothed–ℓQ Minimization,” 2012, preprint.
[28] F. Nie, H. Huang, and C. Ding, “Low–Rank Matrix Recovery via

Efficient Schatten p–Norm Minimization,” in Proc. AAAI-12, 2012.
[29] M. Wang, W. Xu, and A. Tang, “On the Performance of Sparse Recovery

via ℓp–Minimization (0 ≤ p ≤ 1),” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7255–7278, 2011.

[30] K. W. K. Lui, W.-K. Ma, H. C. So, and F. K. W. Chan, “Semi–Definite
Programming Algorithms for Sensor Network Node Localization with
Uncertainties in Anchor Positions and/or Propagation Speed,” IEEE

Trans. Signal Process., vol. 57, no. 2, pp. 752–763, 2009.
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