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Abstract—In this paper, we consider a simple and low-
complexity discrete first-order method called the Generalized
Power Method (GPM) for large-scale MIMO detection. The GPM
is essentially a projected gradient method and exploits the fact
that the projection onto the discrete MPSK or QAM constellation
is efficiently computable. As our main contribution, we first show
that under certain conditions on the channel and additive noise,
the GPM will converge to the true symbol vector in a finite
number of iterations. We then show that the aforementioned
conditions will be satisfied with high probability under standard
probabilistic models of the channel and noise. Besides enjoying
strong theoretical guarantees, the proposed method is shown
in our simulations to be competitive with existing methods in
terms of both detection performance and numerical efficiency. We
believe that our techniques will find further applications in the
development of high-performance detection methods for massive
MIMO.

I. INTRODUCTION

MIMO detection, a topic that has been extensively studied
in the early 2000s, has received renewed interest as recent
research activities suggest [1]. The major driving force for
revisiting such a seemingly well-established topic is massive
MIMO, in which the base station can be equipped with tens or
hundreds of antennas. This is in sharp contrast to the MIMO
systems available in current wireless standards, which have
about 4 to 8 antennas and are regarded as small-scale MIMO.
Massive MIMO is one of the most sought-after technologies in
future wireless standards, most notably in 5G. It allows a large
number of users to be served simultaneously in both the uplink
and downlink. MIMO detection is an essential component
for the uplink MIMO scenario and plays a crucial role in
minimizing the impact of multiuser interference, especially in
the presence of a massive number of users. MIMO detection
is also important to massive connectivity for machine type
communications [2] (with applications such as autonomous
vehicles and internet of things) – yet another exciting emerging
concept from massive MIMO.

One of the new challenges that arises in recent studies
of MIMO detection is the large problem size. While some
high-performance MIMO detection methods, such as sphere
decoding [3], work extremely well in small-scale MIMO,
their complexities tend to increase very quickly with the
problem size, thus rendering them impractical in large-scale
MIMO. This makes low-complexity detection methods like

zero-forcing (ZF), minimum mean square error (MMSE)
and their variants—which are previously seen as sub-optimal
in small-scale MIMO—attractive again [4], [5]. There has
also been some interest in simple heuristics for maximum-
likelihood (ML) MIMO detection, such as the likelihood
ascent search detectors [6]. It is worthwhile to mention the new
developments in [7], [8], in which massive MIMO detection
under practical and stringent signal quantization constraints is
considered and efficient methods are developed.

In this paper, we propose a discrete first-order method for
handling ML MIMO detection. The terminology stems from
the fact that our proposed method takes a negative gradient
step at the current iterate and projects the resulting point onto
the discrete MPSK or QAM constellation to obtain the next
iterate. The viability of such a method relies crucially on the
fact that the projection onto the MPSK or QAM constellation
is efficiently computable, even though neither constellation
forms a convex set. Since the idea of applying gradient-type
methods to handle ML MIMO detection problems is rather
natural and may not be new (see, e.g., [9]), we focus on
addressing some fundamental theoretical issues concerning
the proposed method. Our contribution is twofold. First, we
identify the conditions under which the iterates generated
by our discrete first-order method will converge to the true
symbol vector. Note that such a result does not follow from
and is in fact stronger than existing convergence results for
projected gradient methods. Indeed, the existing results at
best assert only the convergence of the iterates to an ML
estimator (i.e., an optimal solution to the non-convex ML
estimation problem) of the true symbol vector. However, there
is no guarantee that the ML estimator is the true symbol
vector that we wish to recover. Second, we show that the
our method enjoys finite convergence and provide an explicit
bound on the number of iterations needed for convergence.
As a by-product of our analysis, we show that for the MPSK
constellation, our proposed method has the same recovery
guarantee as the computationally more expensive semidefinite
relaxation (SDR) detector in a certain signal-to-noise ratio
(SNR) regime; cf. [10]. This demonstrates that our discrete
first-order method is competitive with the SDR detector in
terms of both theoretical guarantees and numerical efficiency.

Our notations are standard. We use Cn to denote the set of
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n-dimensional complex vectors. For a complex number z ∈ C,
we use <(z) and =(z) to denote its real and imaginary parts,
respectively. For a complex vector z ∈ Cn, we denote its
2-norm and ∞-norm by ‖z‖2 and ‖z‖∞, respectively. For a
complex matrix Z ∈ Cm×n, we denote its conjugate transpose
by Z∗ and its operator norm by ‖Z‖op. Given a closed set
C ⊆ Cn and a point z ∈ Cn, we use ΠC(z) to denote a
projection of z onto C; i.e.,

ΠC(z) ∈ arg min
x∈C
‖z − x‖22.

II. ML MIMO DETECTION

Consider a complex-valued linear MIMO model

y = Hx? + ν, (1)

where y ∈ Cm is the received signal vector, H ∈ Cm×n
is the channel matrix, x? ∈ Cn is the transmitted symbol
vector, and ν ∈ Cm is the noise vector. We assume that
m ≥ n throughout, but special emphasis will be put on the
setting where both m and n are large and m > n. We also
assume that the entries of ν are independent and identically
(i.i.d.) Gaussian random variables with mean zero and variance
σ2
ν , and that each symbol xi is drawn from some discrete

constellation S. We focus on the case where S is either the
(4u2)-QAM constellation

Qu = {z ∈ C : <(z),=(z) = ±1,±3, · · · ,±(2u− 1)}

or the MPSK constellation

SM = {exp (2πik/M) : k = 0, 1, . . . ,M − 1},

with i =
√
−1 being the imaginary unit. The goal of MIMO

detection is to recover x?, or to recover as many entries of x?

as possible. Towards that end, we consider the following ML
estimation problem:

min
x

F (x) = ‖y −Hx‖22

s.t. xj ∈ S, j = 1, . . . , n.
(2)

It has long been known that when |S| > 1, Problem (2) is NP-
hard in general [11]. In view of this hardness result, there has
been much interest in the past in designing polynomial-time
algorithms, such as the SDR-based detectors (see [12] and
the references therein), for finding an approximate solution
to the ML estimation problem (2). However, motivated by
the developments in massive MIMO, the interest has recently
shifted to the design of low-complexity detection methods. In
the next section, we present a numerically efficient discrete
first-order method for solving Problem (2) and analyze its
convergence behavior.

III. GENERALIZED POWER METHOD FOR MIMO
DETECTION

As alluded to in Section I, our proposed method is iterative
in nature. We summarize the method in Algorithm 1. Each
iteration consists of a gradient step (line 3) and a projection
step (line 4). We remark that Algorithm 1 can be viewed as an

instantiation of a general algorithmic scheme called the Gen-
eralized Power Method (GPM) [13]. Hence, for convenience,
we shall refer to Algorithm 1 by the same name. However, one
should not confuse our instantiation of the GPM with those in
[13], [14], [15]. The former is developed for MIMO detection,
while the latter are developed for other problems.

Algorithm 1 Generalized Power Method for MIMO Detection
1: input: initial point x0 ∈ Sn and step sizes {αk}k≥0
2: if stopping criterion is not met then
3: ∇F (xk)←− 2H∗(Hxk − y)
4: xk+1 ←− ΠSn

(
xk − αk

m∇F (xk)
)

5: k ←− k + 1
6: end if

The above description leaves some flexibility in the choice
of the stopping criterion, the initial point, and the step sizes.
In this work, we terminate the GPM if xk+1 = xk

′
for some

k′ ≤ k+ 1. Note that such a stopping criterion will eventually
be met, as the number of feasible solutions is finite. One
obvious drawback of this stopping criterion is that we need to
save all the previous iterates, which means that the memory
requirement could be large. However, in our experiments,
the GPM always stops in at most 100 or so iterations; see
Section IV for more details. For the initial point x0 ∈ Sn
and step sizes {αk}k≥0, our theoretical results indicate that
an arbitrary initialization and constant step size suffice to
ensure finite convergence of the method. In practice, however,
more judicious choices will greatly enhance the detection
performance of the method. These will be detailed in Section
IV.

Since the GPM requires only two matrix-vector multiplica-
tions, one vector addition, and one projection onto the very
structured set Sn in each iteration, it is extremely efficient
and scalable, making it particularly suitable for large array
sizes and high-order digital modulation schemes. Furthermore,
the GPM enjoys strong theoretical guarantees. The following
theorem, which constitutes the main contribution of this paper,
shows that under certain conditions on the channel matrix H
and the noise vector ν, the iterates generated by the GPM will
converge to the true symbol vector x? in a finite number of
iterations.

Theorem 1. Consider the MIMO model (1). Let {xk}k≥0 be
the sequence of iterates generated by Algorithm 1 with step
sizes {αk}k≥0 satisfying∥∥∥∥2αk

m
H∗ν

∥∥∥∥
∞
<

1

c
and

∥∥∥∥I − 2αk
m
H∗H

∥∥∥∥
op

≤ β < 1

4
,

(3)
where c = 4

mins 6=s′∈S |s−s′|
< ∞ (hence, we have c = 2 for

S = Qu and c = 2
sin(π/M) for S = SM ). Then, we have

‖xk+1 − x?‖2 ≤ 4β‖xk − x?‖2



for all k ≥ 0. In particular, after at most k? =⌈
ln
(

2
c‖x0−x?‖2

)
/ ln(4β)

⌉
iterations, we have xk = x? for

all k ≥ k?; i.e., the GPM admits finite convergence.

In view of Theorem 1, the natural next step is to study when
condition (3) holds. The following theorem provides a setting
under which condition (3) will hold with high probability.

Theorem 2. Suppose that the entries of the channel matrix
H are i.i.d. standard complex Gaussian random variables, the
noise variances satisfies σ2

ν ≤ m
4c2 logn , and the aspect ratio

satisfies γ := m
n ≥

20
β2 > 1. Then, with the constant step size

αk = 1
2 for all k ≥ 0, condition (3) will hold with probability

at least 1−
√

2
π ·

1
n − 4 exp

(
−m8

)
− 2 exp(−n).

Before we outline the proofs of Theorems 1 and 2, three
remarks are in order. First, most existing detection methods
focus on finding an optimal solution to the ML estimation
problem (2). At first sight, it seems that the GPM, which
is essentially a projected gradient method for solving (2), is
doing the same. However, Theorem 1 reveals that the GPM
is actually achieving more – it can provably recover the true
symbol vector x? under certain conditions. Second, when H
has i.i.d. standard complex Gaussian entries, the GPM has an
interesting connection to some well-known detection methods.
To explain the connection, observe that since E[H∗H] = mI ,
one would expect that H is tightly concentrated around its
mean; i.e.,H∗H ≈ mI . Thus, if we take αk = 1

2 for all k ≥ 0
in Algorithm 1, then the gradient in line 3 is approximately
∇F (xk) ≈ 2(mxk−H∗y) and the projected gradient in line
4 is approximately

xk+1 ≈ ΠSn

(
1

m
H∗y

)
.

Upon noting that (H∗H)−1 ≈ 1
mI , we see that the GPM

can be viewed as an iterative version of the zero-forcing (ZF)
detector

xZF = ΠSn
(
(H∗H)−1H∗y

)
.

On the other hand, if we fix δ > 0 and take αk = 1
2(m+δ) for

all k ≥ 0 in Algorithm 1, then the projected gradient in line
4 is approximately

xk+1 ≈ ΠSn

(
1

m+ δ

(
H∗y + δxk

))
.

In particular, the GPM can be viewed as an iterative version
of the minimum mean square error (MMSE) detector

xMMSE = ΠSn
(

(H∗H + δI)
−1
H∗y

)
.

Third, it is interesting to note that under the setting of
Theorem 2, the SDR of the ML estimation problem (2) for
the MPSK constellation is tight [10]. In other words, we
can recover an ML estimator of the true symbol vector by
solving the SDR of Problem (2). However, our convergence
result in Theorem 1 is stronger, as it guarantees that the GPM
will converge to the true symbol vector itself. Moreover, the

GPM is numerically more efficient than the SDR detector. This
demonstrates the power and potential of our proposed method.

Proof of Theorem 1. Define

wk =

(
I − 2αk

m
H∗H

)
(xk − x?)

and

zk = xk − αk
m
∇F (xk) = x? +wk +

2αk
m
H∗ν,

where the second equality follows from (1). Then, the update
scheme of the GPM can be expressed as

xk+1 = ΠSn

(
x? +wk +

2αk
m
H∗ν

)
.

Let Jk = {j : |wkj | ≥ 1
c}. Using condition (3), we have

|zkl − x?l | < 2
c for any l /∈ Jk. By definition of c, this implies

that
xk+1
l = ΠS(zkl ) = x?l . (4)

To proceed, we need the following lemma. Due to space
limitation, we defer its proof to the full version of this paper.

Lemma 1. Let z ∈ Cn and x ∈ Sn be given. Then, for all
q ∈ [1,∞] , we have

‖ΠSn(z)− x‖q ≤ 2‖z − x‖q. (5)

Now, let xJk denote the projection of x onto the coordinate
set Jk. We compute

‖xk+1 − x?‖2 = ‖xk+1
Jk
− x?Jk‖2 (6)

≤ 2‖zkJk − x
?
Jk
‖2 (7)

= 2

∥∥∥∥∥wk
Jk

+

(
2αk
m
H∗ν

)
Jk

∥∥∥∥∥
2

≤ 4‖wk
Jk
‖2 (8)

≤ 4‖wk‖2
≤ 4β‖xk − x?‖2, (9)

where (6) follows from (4), (7) follows from Lemma 1, (8)
follows from the definition of Jk and our assumption that∥∥ 2αk
m H∗ν

∥∥
∞ < 1

c , and (9) follows from condition (3). This
completes the proof.

Proof of Theorem 2. The first part of condition (3) is a direct
consequence of [10, Proposition 3.6], which says that for any
θ > 1

2 ,

Pr
H,ν

(‖H∗ν‖∞ > mθσν)

≤
√

2

π
· n · exp

(
−m

2θ−1

2

)
+ 4 exp

(
−m

8

)
.

Indeed, by choosing θ such that mθ =
√

4m log n and
assuming σν ≤

√
m

2c
√
logn

, we have

Pr
H,ν

(∥∥∥∥ 1

m
H∗ν

∥∥∥∥
∞
>

1

c

)
≤ Pr

H,ν
(‖H∗ν‖∞ > σν

√
4m log n)

≤
√

2

π
· 1

n
+ 4 exp

(
−m

8

)
.



To prove the second part of condition (3), we use the fact
that for any t > 0, the inequalities

σmax(H) ≤
√
m

(
1 +

√
n

m
+ t

)
σmin(H) ≥

√
m

(
1−

√
n

m
− t
)

hold simultaneously with probability at least 1−2 exp(−mt2);
see, e.g., [16, Exercise 9.5]. By setting t =

√
n
m =

√
1
γ and

noting that γ ≥ 20
β2 and β < 1

4 , we see that∥∥∥∥I − 1

m
H∗H

∥∥∥∥
op

≤ 4
√
γ

+
4

γ
≤ 4β√

20
+
β2

5
< β

holds with probability at least 1− 2 exp(−n).
Summarizing the above, we conclude that condition (3) will

hold with the probability stated in the theorem.

IV. SIMULATIONS

In this section, we present some numerical results to demon-
strate the effectiveness of our proposed GPM and to support
our theoretical findings. We study the symbol error rate (SER)
and complexity performance of the proposed GPM when
applied to the MIMO model (1) with the constellations Qu
and SM .

In our experiments, the entries of the channel matrix
H ∈ Cm×n are generated independently according to the
standard complex Gaussian distribution, and the entries of the
transmitted symbol vector x? are drawn independently and
uniformly from the constellation S. Under such a setting, we
define the SNR as

SNR =
E[‖Hx?‖22]

E[‖ν‖22]
=
mσ2

x

σ2
ν

= mδ,

where σ2
x = E[‖x?‖22] and δ :=

σ2
x

σ2
ν

. We focus on the Q2 (i.e.,
16-QAM) and S8 (i.e. 8-PSK) constellations with problem
sizes (m,n) = (64, 64) and (m,n) = (128, 64). We generate
106 problem instances (H,x?,ν) for each SNR value. For
16-QAM, we initialize our GPM using the result of the lattice
reduction-aided MMSE with decision feedback method (LRA
MMSE DF); for 8-PSK, we initialize our GPM by the MMSE
estimator.

Note that our theoretical results do not cover the above
choices of the problem size. Nevertheless, as we shall see
shortly, our proposed GPM still exhibits excellent detection
and numerical performance.

A. Symbol Error Rate

We begin by studying the SER versus SNR performance
of various methods. For 16-QAM, we compare our proposed
GPM with the zero-forcing decision feedback detector (ZF
DF), the minimum mean square error detector (MMSE), the
lattice reduction-aided MMSE with decision feedback method
(LRA MMSE DF), and the lattice reduction-aided ZF with
decision feedback method (LRA ZF DF). The results for 16-
QAM are summarized in Figure 1. For (m,n) = (64, 64), the

performance of GPM is very close to that of LRA MMSE
DF. For (m,n) = (128, 64), however, the GPM outperforms
all other methods. In particular, at SER = 10−5, the SNR gain
of GPM over LRA MMSE DF and LRA ZF DF is about 2
dB .
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Fig. 1. SER vs SNR for 16-QAM MIMO Detection

For 8-PSK, we compare the GPM with the ZF DF, MMSE,
and MMSE DF methods. As shown in Figure 2, the GPM
improves the SER of the MMSE method and even outperforms
the MMSE DF method in both the (m,n) = (64, 64) and
(m,n) = (128, 64) cases. More precisely, Figure 2 shows that
at SER = 10−5, the SNR gains of the GPM over the MMSE
DF method are around 4 dB and 2 dB for (m,n) = (64, 64)
and (m,n) = (128, 64), respectively. It is also worth noting
that the case where m = 2n requires smaller SNR to achieve
the same SER for both 16-QAM and 8-PSK constellations.
This is in part due to the fact that a bigger ratio between m
and n implies better conditioning of the channel matrix H .
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Fig. 2. SER vs SNR for 8-PSK MIMO Detection



B. Step Size Rules

Next, we discuss the choice of step sizes for the GPM. For
the case where m = 2n, the choice αk = 1

2(1+δ/m) for all k ≥
0 works well for both the 16-QAM and 8-PSK constellations.
However, for the case where m = n, it is not clear what a good
choice would be. We summarize the choices we made in our
simulations in Table I. We leave the problem of determining
how the choice of step sizes impacts the performance of the
GPM to a future study.

TABLE I
CHOICE OF STEP SIZES IN THE GPM

(m,n) 8-PSK 16-QAM

(64, 64) 1
2(1+8δ/m)

0.87−0.006·SNR
2(1+δ/m)

(128, 64) 1
2(1+δ/m)

1
2(1+δ/m)

C. Iteration Complexity

Lastly, we summarize the iterations needed by the GPM
in Table II. By convention, if the initial point x0 already
satisfies the stopping criterion, the number of GPM iterations
is counted as zero. As can be seen from the table, the maxi-
mum number of iterations (over all tested values of SNR and
all generated problem instances) is about 100. However, the
average number of iterations needed is much less. In particular,
for the problem size (m,n) = (128, 64), the average number
of iterations is less than 3 for both the 16-QAM and 8-PSK
constellations.

TABLE II
MAXIMUM AND AVERAGE NUMBER OF GPM ITERATIONS

16-QAM

(64,64)

SNR 6 10 14 18 22 26 30 34

Max 45 74 84 84 88 62 54 28

Average 1.85 1.92 2.26 1.96 1.09 0.23 0.016 0.0003

(128,64)

SNR 6 8 10 12 14 16 18

Max 86 104 106 89 60 28 3

Average 5.82 7.25 6.20 2.98 0.79 0.11 0.007

8-MPSK

(64,64)

SNR 6 12 18 24 30 36 42 48

Max 5 59 81 78 54 49 46 25

Average 1.05 2.92 5.94 2.18 1.23 1.02 0.99 0.98

(128,64)

SNR 6 8 10 12 14 16 18

Max 42 61 36 16 9 5 3

Average 4.71 4.30 3.03 1.79 1.13 0.90 0.87

V. CONCLUSION

We developed a discrete first-order method called the Gener-
alized Power Method (GPM) for MIMO detection with MPSK
and QAM constellations. The method is simple and has low
per-iteration complexity, thus making it highly attractive for
large-scale MIMO. Our convergence analysis and simulation
results demonstrate that the GPM is competitive with some
existing methods in terms of theoretical guarantees, detection
performance, and numerical efficiency. An interesting future
direction would be to study whether the algorithmic framework
developed in this paper can be extended or further enhanced to
tackle other detection problems that arise in massive MIMO.
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