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ABSTRACT

Due to their computational efficiency and strong empirical perfor-
mance, semidefinite relaxation (SDR)–based algorithms have gained
much attention in multiple–input multiple–output (MIMO) detec-
tion. In the case of a binary phase–shift keying (BPSK) constella-
tion, the theoretical performance of the SDR approach is relatively
well–understood. However, little is known about the case of quadra-
ture amplitude modulation (QAM) constellations, although simula-
tion results suggest that the SDR approach should work well in the
low signal–to–noise ratio (SNR) region. In this paper we make a first
step towards explaining such phenomenon by showing that in the
case of QAM constellations, several commonly used SDR–based al-
gorithms will provide a constant factor approximation to the optimal
log–likelihood value in the low SNR region with exponentially high
probability. Our result gives some theoretical justification for using
SDR–based algorithms for the MIMO detection of QAM signals, at
least in the low SNR region.

Index Terms— Multiple–Input Multiple–Output (MIMO) De-
tection, Quadrature Amplitude Modulation (QAM), Semidefinite
Relaxation, Performance Analysis, Approximation Algorithm

1. INTRODUCTION

As is well–known, multiple antennae communication systems can
provide substantial performance gain over their single antenna coun-
terparts (see, e.g., [13]). In order to fully realize such gain, however,
the receiver must be able to detect the vector of transmitted symbols
in an efficient manner. Consequently, the problem of multiple–input
multiple–output (MIMO) detection has received considerable atten-
tion over the years. For a linear channel that satisfies certain stan-
dard assumptions, a symbol vector that minimizes the error proba-
bility can be found by solving the maximum–likelihood (ML) de-
tection problem (see, e.g., [16]). Unfortunately, the ML detection
problem is NP–hard in the worst case [15], and thus an efficient
(i.e. polynomial–time) algorithm for solving it is not likely to ex-
ist. In fact, currently there is not even an efficient algorithm for
solving the ML detection problem in the MIMO setting, where the
channel is assumed to follow certain stochastic model (and hence
is not completely arbitrary). As a result, many sub–optimal but ef-
ficient heuristics have been proposed for solving the ML detection
problem (see, e.g., [1] for a brief overview). One such heuristic —
called the semidefinite relaxation (SDR) detector — has attracted
a lot of interest recently (see, e.g., [12, 5, 17, 1, 10, 8, 7, 18, 6]).
Roughly speaking, the SDR detector solves a convex relaxation of
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the ML detection problem, which can be expressed as a semidef-
inite program (SDP). As such, the SDR detector is computation-
ally efficient. Moreover, in the case of a binary phase–shift keying
(BPSK) constellation, the theoretical performance of the SDR detec-
tor is fairly well–understood. For instance, it is known that the SDR
detector will provide a constant factor approximation to the optimal
log–likelihood value in the low signal–to–noise ratio (SNR) region
almost surely [3], and that it achieves full receive diversity [2]. Un-
fortunately, the analyses presented in [3, 2] depend crucially on the
structure of the channel matrix. As a result, they do not extend to
cover the case of quadrature amplitude modulation (QAM) constel-
lations. In fact, little is known about the theoretical performance of
the SDR detector in the case of QAM constellations, although simu-
lation results suggest that it should work well in the low SNR region.

Our goal in this paper is to make a first step towards remedy-
ing such a situation. Specifically, we introduce a framework for
analyzing the performance of the SDR detector for QAM constel-
lations. We show that for the 4q–QAM constellation, where q ≥ 1
is fixed, a version of the SDR detector will provide a constant factor
approximation to the optimal log–likelihood value in the low SNR
region with high probability. In fact, we can show that the proba-
bility approaches 1 exponentially fast as the channel size increases.
Together with a recent result of Ma et al. [6], we see that in the
case of QAM constellations, the same is true for several other com-
monly used SDR detectors. Our work is similar in spirit to that of
Kisialiou and Luo [3]. However, they differ in that our analysis is
non–asymptotic in nature, which allows us to determine the perfor-
mance of the SDR detector when the channel size is finite. Moreover,
our techniques are more general in the sense that they do not have
a strong dependence on the structure of the channel matrix. As a
result, we are able to analyze the performance of the SDR detector
not only for the QAM constellations but also for some other signal
constellations (see, e.g, [11]).

2. PRELIMINARIES

2.1. The MIMO Detection Problem

Consider an MIMO system with ñ transmit and m̃ receive antennae
(with m̃ ≥ ñ), whose input–output relationship is modeled as:

ỹ =
√

ρ/ñ H̃x̃ + ṽ (1)

Here, H̃ ∈ Cm̃×ñ is the channel matrix whose entries are inde-
pendent standard complex Gaussian random variables (see [13, Ap-
pendix A]); ṽ ∈ Cm̃ is an additive white Gaussian noise with unit
variance, i.e. ṽ is a standard circular symmetric complex Gaussian
random vector that is independent of H̃; ρ > 0 is the (appropriately



scaled) SNR per receive antenna; ỹ ∈ Cm̃ is the vector of received
signals; and x̃ ∈ Sñ is the vector of transmitted symbols whose en-
tries are chosen from some constellation set S ⊂ C. In this paper
we shall focus on the case where S is the 4q–QAM constellation
set for some fixed integer q ≥ 1, i.e. S =

{
sR + jsI : sR, sI ∈

{±1,±3,±5, . . . ,±(2q − 1)}}. It would be convenient for our
subsequent exposition to reformulate the complex–valued model (1)
into an equivalent real–valued model. Towards that end, let n = 2ñ
and m = 2m̃. Define:

y =

[ <(ỹ)

=(ỹ)

]
, H̄ =

√
2

[
<(H̃) −=(H̃)

=(H̃) <(H̃)

]
, v =

[ <(ṽ)

=(ṽ)

]

(2)
Note that H̄ ∈ Rm×n and y, v ∈ Rm, and that the entries of H̄ are
standard Gaussian random variables. Then, it is straightforward to
verify that (1) is equivalent to the following real–valued model:

y =
√

ρ/n H̄x̄ + v (3)

where x̄ ∈ Sq ≡ {±1,±3,±5, . . . ,±(2q − 1)}n. Under certain
standard assumptions, the ML detection problem associated with (3)
is given by:

min
x̄∈Sq

‖y −
√

ρ/n H̄x̄‖22 (4)

An optimal solution to (4) is also known as an optimal ML solution,
which has the property that it minimizes the probability of error in
the joint detection of the transmitted symbols (see, e.g., [16]). How-
ever, it is still not known whether there exists a provably efficient
algorithm for computing such a solution.

2.2. Semidefinite Relaxation of the ML Detection Problem

In the absence of a provably efficient algorithm, a popular approach
for tackling the ML detection problem (4) is to consider its semidef-
inite relaxation. There are many ways to relax problem (4) into an
SDP; see, e.g., [17, 10, 7, 8, 18]. For the sake of simplicity, we
shall follow the approach of Mao et al. [7]. We remark that this
does not limit the applicability of our results, as the recent work of
Ma et al. [6] allows us to transfer those results to other semidefinite
relaxations as well.

To begin, observe that for any integer q ≥ 1, we have:

Sq =
{
x1 + 2x2 + · · ·+ 2q−1xq : x1, . . . , xq ∈ {−1, 1}n}

(5)

In other words, given a symbol s ∈ {±1,±3, . . . ,±(2q − 1)}, we
can express it as s = s1 + 2s2 + · · ·+ 2q−1sq , where s1, . . . , sq ∈
{−1, 1}. Note that the bits s1, . . . , sq need not correspond to the ac-
tual information bits that are mapped into the symbol s. In particular,
the following ML detection problem:

vml = min
x∈{−1,1}qn

‖y −
√

ρ/n Hx‖22 (6)

where H =
[

H̄ 2H̄ 4H̄ · · · 2q−1H̄
] ∈ Rm×qn —

which is equivalent to problem (4) due to the representation (5) —
does not depend on how the information bits are mapped to the
symbols. Now, upon homogenization, we may relax problem (6)
into the following SDP (see, e.g., [3]):

vsdp = inf {tr(QX) : diag(X) = 1, X º 0} (7)

where 1 ∈ Rqn+1 is the vector of all ones, and

Q =

[
(ρ/n)HT H −

√
ρ/n HT y

−
√

ρ/n yT H ‖y‖22

]
∈ R(qn+1)×(qn+1)

Since Q º 0 and problem (7) is a relaxation of problem (6), we
clearly have 0 ≤ vsdp ≤ vml. We should emphasize that both vml

and vsdp depend on the particular realizations of H̄ and v, since y is
related to H̄ and v via (3).

Note that the SDP (7) can be solved to any desired accuracy
in polynomial time [14], and efficient implementations are available
(see, e.g., [4]). However, we still need a rounding procedure that,
given any feasible solution X̂ ∈ R(qn+1)×(qn+1) to (7), converts it
into a feasible solution x̂ ∈ {−1, 1}qn to (6). Below is one such
procedure (cf. [3]):
Randomized Rounding Procedure

1. Partition the matrix X̂ ∈ R(qn+1)×(qn+1) as:

X̂ =

[
U u

uT 1

]
(8)

where u ∈ Rqn and U ∈ Rqn×qn. Note that since X̂ º 0
and diag(X̂) = 1, we must have |ui| ≤ 1 for i = 1, . . . , qn.

2. Let x1, . . . , xm be m independent qn–dimensional random
vectors, each of whose entries are independent and identically
distributed according to the following distribution:

Pr(xi
j = 1) =

1 + uj

2
, Pr(xi

j = −1) =
1− uj

2
(9)

where 1 ≤ i ≤ m and 1 ≤ j ≤ qn. Set x̂i = (xi, 1) ∈
Rqn+1, where i = 1, . . . , m.

3. Let i∗ = arg min1≤i≤m

(
x̂i

)T
Qx̂i, and define x̂′ = x̂i∗ .

Set vsdr = x̂′T Qx̂′, and return x̂ = (x̂′1, . . . , x̂
′
qn) ∈

{−1, 1}qn as our candidate solution. Note that x̂ is feasible
for (6), and that vsdr = ‖y −

√
ρ/n Hx̂‖22. It follows that

vml ≤ vsdr .
Naturally, we are interested in the performance of the above round-
ing procedure, and one measure is the so–called approximation ratio.
Specifically, we would like to establish a probabilistic upper bound
on the ratio vsdr/vml, where the probability is computed over all
possible realizations of H̄ and v, as well as the random vectors gen-
erated according to (9). We remark that such a performance measure
has been used before to evaluate the performance of the SDR detec-
tor in the case of an BPSK constellation [3]. Intuitively, if the ratio is
close to 1, then we may conclude that the solution generated by the
rounding procedure is close (in terms of the log–likelihood value)
to the optimal ML solution. In the next section we show that the
aforementioned SDP–based procedure will actually achieve a con-
stant approximation ratio (i.e. independent of m̃ and ñ) in the low
SNR region with high probability. This gives a strong indication that
the SDR detector is a good heuristic for solving the ML detection
problem, at least in the low SNR region.

3. ANALYSIS OF THE SEMIDEFINITE RELAXATION

To begin, let q ≥ 1 be fixed, and consider a particular realization of
(H̄, v) (and hence of Q). Let X̂ ∈ R(qn+1)×(qn+1) be a feasible
solution to (7) with objective value vsdp and partition X̂ according
to (8). Let x̂1, . . . , x̂m be the random vectors generated in Step 2
of the randomized rounding procedure. Set Γ ≡ Ex̂

[
(x̂1)T Qx̂1

]
,

whereEx̂ denotes the mathematical expectation w.r.t. the distribution
defined in (9). Then, by Markov’s inequality and the fact that the
random vectors x̂1, . . . , x̂m are i.i.d., we have:

Pr
x̂

(vsdr ≥ 2Γ) =
[
Pr
x̂

(
(x̂1)T Qx̂1 ≥ 2Γ

)]m

≤ 2−m (10)



Now, let û = (u, 1) ∈ Rqn+1, where u ∈ Rqn is given by (8). Note
that:

Γ = Ex̂

[
qn+1∑
i=1

qn+1∑
j=1

Qij x̂
1
i x̂

1
j

]
≤ ûT Qû +

qn∑
i=1

Qii

Since X̂ º 0, we have U º uuT by the Schur complement. It
follows that X̂ º ûûT , whence ûT Qû = tr(QûûT ) ≤ tr(QX̂) =
vsdp. In particular, we conclude that:

Γ ≤ vsdp +
ρ

n
tr(HT H) ≤ vsdp + ρqλmax(HT H) (11)

where λmax(HT H) is the largest eigenvalue of HT H .
Now, if we could show that the values vsdp and ρqλmax(HT H)

are within a constant factor of each other with high probability
(w.r.t. the realizations of (H̄, v)), then (10) and (11) would imply
that vsdr and vsdp (and hence vsdr and vml) are within a constant
factor of each other with high probability (w.r.t. the realizations of
(H̄, v) and x̂). To carry out this idea, we first need an estimate
on the largest singular value of the random matrix H . In fact, as
the following proposition shows, it suffices to estimate the largest
singular value of H̄:

Proposition 1 Let H =
[

H̄ 2H̄ 4H̄ · · · 2q−1H̄
] ∈

Rm×qn, where H̄ is given by (2). Then, we have ‖H‖2 =√
(4q − 1)/3 · ‖H̄‖2, where ‖A‖2 denotes the largest singular

value of the matrix A.

The proof of Proposition 1 is deferred to the full version of this paper.
Now, we use an ε–net argument to estimate ‖H̄‖2 (see, e.g., [9]). We
begin with a definition.

Definition 1 Let D ⊂ Rn and ε > 0 be fixed. We say that a subset
N ⊂ D is an ε–net of D if for every p ∈ D, there exists an p′ ∈ N
such that ‖p− p′‖2 ≤ ε.

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The following result shows that
the largest singular value of an m × n matrix A can be estimated
using appropriate ε–nets:

Fact 1 ([9, Proposition 2.3]) Let ε, δ > 0 be fixed. Let N
be an ε–net of Sn−1, and let M be an δ–net of Sm−1. Then,
for any m × n matrix A, we have ‖A‖2 ≤ (1 − ε)−1(1 −
δ)−1 supw∈M,z∈N

∣∣wT Az
∣∣.

Armed with Fact 1, we are ready to establish the following result:

Proposition 2 Let H̄ be as in (2). Then, we have:

Pr
H̄

(
‖H̄‖2 >

√
8m

)
≤ exp(−m/16) for m ≥ 1

Proof (cf. [9, Proposition 2.4]) Let N be an (1/2)–net of Sn−1,
and let M be an (1/2)–net of Sm−1. It is known that these nets can
be chosen with |M | ≤ 6m and |N | ≤ 6n. Now, observe that for
w ∈ M and z ∈ N , the random variable wT H̄z is Gaussian with
mean 0 and variance 1. In particular, for any θ > 0 and m ≥ 1, we
have:

Pr
H̄

(∣∣∣wT H̄z
∣∣∣ > θ

√
m

)
≤

√
2

π
· 1

θ
√

m
· exp

(
−θ2m

2

)
(12)

It then follows from Fact 1 and the union bound that:

Pr
H̄

(‖H̄‖2 > θ
√

m
) ≤ 4

θ

(
36 exp

(
−θ2

2

))m

(recall that m ≥ n). The desired result now follows by setting θ =√
8. tu

As a corollary to Propositions 1 and 2, we have:

Pr
H̄

(
λmax(HT H) >

8(4q − 1)

3
m

)
≤ exp(−m/16) (13)

Next, we need to show that vsdp is large (on the order of m) with
high probability (w.r.t. the realizations of (H̄, v)), so that it is com-
parable to λmax(HT H). By the SDP weak duality theorem, it suf-
fices to consider the dual of (7) and exhibit a dual feasible solution
with large objective value. We remark that such an idea has been
used in the work of Kisialiou and Luo [3]. However, our approach
differs from that of [3] in that we are able to obtain a non–asymptotic
result.

To begin, let us write down the dual of (7):

sup
{

tr(Z) : Q− Z º 0, Z ∈ R(qn+1)×(qn+1) diagonal
}

(14)

Let α > 0 and β ∈ R be parameters to be chosen, and define:

Z̄ =

[
−αI 0

0T β

]

In order for Z̄ to be feasible for (14), we must have Q− Z̄ º 0. By
the Schur complement, this is equivalent to:

yT

[
I − ρ

n
H

( ρ

n
HT H + αI

)−1

HT

]
y ≥ β (15)

(note that (ρ/n)HT H + αI is invertible for any α > 0). Now,
observe that:

yT

[
I − ρ

n
H

( ρ

n
HT H + αI

)−1

HT

]
y

≥
[
1− ρ

n
λmax

(
H

( ρ

n
HT H + αI

)−1

HT

)]
· ‖y‖22

We bound:

λmax

[
H

( ρ

n
HT H + αI

)−1

HT

]

≤ λmax(HHT ) · λmax

[( ρ

n
HT H + αI

)−1
]

≤ α−1λmax(HT H) (16)

On the other hand, since H̄ and v are independent, we see from
(3) that each entry of y is a Gaussian random variable with mean 0
and variance (ρ/n)

∑n
i=1 x̄2

i + (1/2), and that the entries are inde-
pendent. Thus, by standard concentration results on the norm of a
Gaussian random vector, we have:

Pr
(H̄,v)

[
‖y‖22 <

1

2

(
ρ +

1

2

)
m

]
≤ exp(−m/16) (17)

Upon putting together (13), (16) and (17), we see that by choosing
β = β0, where:

β0 ≡ 1

2

(
1− 8(4q − 1)ργ

3α

) (
ρ +

1

2

)
m, γ ≡ m

n
=

m̃

ñ
≥ 1

(18)
the inequality (15) will hold with probability (over all possible real-
izations of (H̄, v)) at least 1− 2 exp(−m/16). Moreover, we have
tr(Z̄) = β0 − qnα. Upon optimizing over α > 0 and noting that
vsdp ≥ tr(Z̄), we obtain the following result:



Proposition 3 Let q ≥ 1 be a fixed integer, and let γ ≡ m/n =
m̃/ñ ≥ 1. Define:

α = 2γ

√
4q − 1

3q

(
ρ +

1

2

)
, ρ0 =

3

2(64q(4q − 1)− 3)
(19)

and let β0 be as in (18). Suppose that the SNR ρ satisfies ρ ∈ (0, ρ0).
Then, with probability at least 1− 2 exp(−m/16), we have:

vsdp ≥
[

1

2

(
ρ +

1

2

)
−

√
8ρq(2ρ + 1)(4q − 1)

3

]
m > 0

We are now ready to prove the main result of this paper:

Theorem 1 Let q ≥ 1 be a fixed integer. Suppose that the SNR ρ
satisfies ρ ∈ (0, ρ0), where ρ0 is given by (19). Define:

µ1 =
8ρq(4q − 1)

3
, µ2 =

1

2

(
ρ +

1

2

)
−

√
8ρq(2ρ + 1)(4q − 1)

3

Then, we have:

Pr
(H̄,v,x̂)

[
vsdr ≤ 2

(
1 +

µ1

µ2

)
vml

]
≥ 1− 3 exp(−m/16)

In particular, in the low SNR region, the SDR detector will produce
a constant factor approximate solution to the ML detection problem
with exponentially high probability.

Proof By (11), (13), Proposition 3 and the fact that vsdp ≤ vml, we
have:

Γ ≤ vsdp +
8ρq(4q − 1)

3
m ≤

(
1 +

µ1

µ2

)
vml

with probability at least 1−2 exp(−m/16). The desired result then
follows from (10). tu

Note that Theorem 1, as it is stated, applies only to the partic-
ular semidefinite relaxation (originally proposed by Mao et al. [7])
described in Section 2.2. However, using the equivalence result of
Ma et al. [6], one can show, among other things, that Theorem 1 actu-
ally applies to the semidefinite relaxation developed by Sidiropoulos
and Luo [10] as well.

Finally, we should point out that we have made no attempt in
optimizing the constants in our proofs. With a more refined analysis,
those constants can certainly be improved.

4. CONCLUSION

In this paper we gave some theoretical justification for using SDR–
based algorithms for the MIMO detection of QAM signals in the low
SNR region.
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