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Abstract—Consider a multi-input multi-output (MIMO) chan-
nel wiretapped by multiple multi-antenna eavesdroppers. Assum-
ing imperfect eavesdroppers’ channel state information (CSI) at
the transmitter, an outage-constrained secrecy rate maximization
(OC-SRM) problem is considered. Specifically, we aim to design
the transmit covariance matrix such that the outage secrecy
rate is maximized for a given outage probability. The OC-SRM
problem is challenging, and as a compromise, we resort to a
recently developed Bernstein-type inequality approach to obtain a
safe (conservative) approximate solution for OC-SRM. The merit
of the proposed safe design lies in its tractability. In particular,
a safe solution can be efficiently computed by alternately solving
two convex conic optimization problems. The efficacy of the
proposed design is demonstrated by simulations.

Index Terms—MIMO wiretap channel, Outage secrecy rate,
Bernstein-type inequality, Physical-layer security.

I. INTRODUCTION

Physical-layer secrecy has emerged as a promising new ap-
proach to the information security problem. In contrast to

the widely used cryptographic approach, the idea of physical-
layer secrecy is to exploit the channel capacity difference
between the legitimate receiver and the eavesdroppers to
securely convey the confidential information to the intended
receiver [1]. Recently, with the success of multi-input multi-
output (MIMO) communications, there has been increasing
interest in using the MIMO degrees of freedom (d.o.f.) to
enhance physical-layer security [2]–[9]. To fully exploit the
MIMO d.o.f., perfect channel state information (CSI) of the
links is desired at the transmitter. However, in practice the
perfect CSI assumption may be too stringent, especially for the
eavesdroppers’ channels. As such, there have been a number of
works that investigate physical-layer secrecy under imperfect
CSI, e.g., the deterministically bounded CSI error model [3],
[4] and the random CSI error model [5]–[8], [10]. Here, we
focus on the latter.

In this letter, we consider a robust transmit design for
an outage-constrained secrecy-rate maximization (OC-SRM)
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problem under the assumption of Gaussian CSI errors for the
eavesdroppers’ channels. Specifically, we aim to optimize the
covariance matrix of the transmit signal such that the outage
secrecy rate is maximized while satisfying a given outage
probability requirement. We should mention that apart from
the outage-based design formulation, alternatively one can
optimize the average (or ergodic) secrecy rate by taking ex-
pectation over all possible channel realizations; see, e.g., [11].
In contrast to the average-based design, the outage-based
design caters for the delay-critical scenario and provides a
probabilistic guarantee for secrecy performance. The OC-SRM
problem has been studied in the previous works, e.g., [5]–[8],
where both the legitimate receiver and the eavesdropper have a
single antenna, i.e., multi-input single-output (MISO) wiretap
channel. In particular, the work [5] proposed an approximate
solution to the OC-SRM problem for MISO wiretap channels,
but the approach developed in [5] is not applicable for the
MIMO case. In [6], the authors considered an artificial noise
(AN)-aided secrecy outage design and analyzed the optimal
power allocation for fixed transmit directions. In [7], [8], the
authors characterized the optimal transmit covariance structure
and derived a closed-form secrecy outage expression for the
case of one MISO eavesdropper. Here we consider a more gen-
eral scenario—multiple eavesdroppers are present, and both
the legitimate receiver and the eavesdroppers have multiple
antennas, i.e., MIMO wiretap channels. The considered MIMO
OC-SRM problem is more challenging than its SISO/MISO
counterparts, owing to the nonconvex and nonsmooth secrecy
rate function and the more complicated probabilistic con-
straint, which generally has no closed-form expression. To
tackle these challenges, we adopt an approximation technique
to extract a safe (conservative) solution1 for OC-SRM. Unlike
[6]–[8], the proposed approach does not require explicitly
calculating the outage probability. The key to this is to employ
a Bernstein-type inequality [12] and a conjugate reformulation
of the secrecy rate function [13] (see also [9]). The former
circumvents the difficulty of the outage probability calculation,
while the latter renders a tractable solution for the safe
approximation by alternately solving two convex optimization
problems.

Notations: vec(A) denotes the vectorization of matrix A
by stacking its columns; A ≽ 0 means that A is a Hermitian
positive semidefinite matrix; Hn(Hn

+) denotes the set of n-by-
n Hermitian (positive semidefinite) matrices; ⊗ denotes the
Kronecker product.

1By “safe solution” we mean that a solution, which is obtained from solving
a conservative approximation of OC-SRM, always fulfills the secrecy outage
probabilistic constraint.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an MIMO wiretap channel, where a source node
intends to transmit confidential information to a legitimate
receiver in the presence of multiple eavesdroppers. For ease
of exposition, we call the source, the legitimate receiver and
the eavesdropper as Alice, Bob and Eve, respectively. We
assume that all nodes have multiple antennas, and denote by
H ∈ CNt×Nb and Gk ∈ CNt×Ne,k the channel matrices from
Alice to Bob, and to the kth Eve respectively, with Nt, Nb

and Ne,k being the number of transmit antennas, Bob’s receive
antennas and kth Eve’s receive antennas, respectively. Then,
the received signals at Bob and Eves may be written as

yb(t) = HHx(t) + nb(t), (1a)

ye,k(t) = GH
k x(t) + ne,k(t), k = 1, . . . ,K, (1b)

where K is the number of Eves; nb(t) ∼ CN (0, I) and
ne,k(t) ∼ CN (0, I), ∀k are i.i.d. standard complex Gaussian
noise; x(t) ∈ CNt is the coded confidential signal, whose
distribution follows CN (0,W) with W ≽ 0 being the covari-
ance matrix of the transmitted signal. Given W, an achievable
secrecy rate of the MIMO Gaussian wiretap channel is given
by [1]

Rs = min
k=1,...,K

fk(W), (2)

where fk(W) , Cb(W) − Ce,k(W), Cb(W) , ln |I +
HHWH| and Ce,k(W) , ln |I + GH

k WGk|. Physically,
the rate Rs represents the information rate at which Bob can
correctly decode the confidential information, while Eves can
retrieve almost no information from their observations [1].

In this work, we assume that Alice has perfect knowledge of
Bob’s CSI H and imperfect knowledge of Eves’ CSIs Gk,∀k.
The latter is modeled by a random Gaussian model:

vec(Gk) ∼ CN (ḡk,Ck), k = 1, . . . ,K, (3)

where ḡk = vec(Ḡk) is Alice’s estimate of the kth-Eve
channel Gk, and Ck ∈ HNtNe,k

+ is the associated channel
uncertainty covariance. In addition, Gk is assumed to be
independent of Gl for any k ̸= l. Under the above setting,
the outage-constrained secrecy rate maximization (OC-SRM)
problem may be formulated as follows [7], [8], [10]:

max
W,R

R (4a)

s.t. Pr{Gk}K
k=1

{
min

k=1,...,K
fk(W) ≥ R

}
≥ 1− ρ, (4b)

Tr(W) ≤ P, W ≽ 0, (4c)

where the constant P > 0 represents the transmit power
budget, and 0 < ρ < 0.5 is a given parameter specifying
the secrecy outage probability—the chance of the achievable
secrecy rate falling below the target rate R in the presence of
random CSI uncertainty.

The difficulty of solving the OC-SRM problem (4) lies
in the probabilistic constraint (4b), which generally has no
closed-form expression. Even if it has, the resulting OC-SRM
problem is likely to be intractable. In the sequel, we will
propose a safe solution for problem (4) by employing recent
advances in chance-constrained optimization.

III. A BERNSTEIN-TYPE INEQUALITY-BASED SAFE
APPROXIMATION OF THE OC-SRM PROBLEM

The development of the safe OC-SRM approximation is
based on the following observation: If we can find an easy-
to-handle function φ(W, R) such that φ(W, R) ≤ 0 =⇒
(4b) holds for all W and R, then any (W, R) satisfying
φ(W, R) ≤ 0 fulfills the probabilistic constraint (4b), and
thus is a safe solution to problem (4).

A. A Safe Approximation of OC-SRM (4)

The development of the safe approximation consists of the
following three steps:

Step 1: Decouple the probabilistic constraint: To begin, by
noting the independence between Gk and Gl, ∀k ̸= l, we
have

(4b) ⇐⇒
∏K

k=1 PrGk
{fk(W) ≥ R} ≥ 1− ρ (5a)

⇐= PrGk
{fk(W) ≥ R} ≥ 1− ρ̄,∀k, (5b)

where ρ̄ = 1−(1−ρ)1/K . Physically, (5b) can be seen as a per-
Eve secrecy outage probability. The per-Eve outage probability
constraint (5b) is still not convenient to process, owing to the
log-det function in fk. Our next step is to turn fk into a more
convenient form.

Step 2: A convenient approximation of fk: We need the
following lemma:

Lemma 1 The following implication holds true:

∃Sk ∈ HNe,k

+ such that

PrGk

{
Tr

(
GH

k WGkSk

)
≤ tk

}
≥ 1− ρ̄ (6a)

=⇒ PrGk
{fk(W) ≥ R} ≥ 1− ρ̄, (6b)

where tk = Cb(W)−R− Tr(Sk) + ln |Sk|+Ne,k.

The proof of Lemma 1 is relegated to Appendix A. With the
implication (6), our challenge now turns to the probabilistic
constraint (6a). By letting gk = vec(Gk) and invoking the
identity Tr(AHBCD) = vec(A)H(DT ⊗B)vec(C), we have

Tr
(
GH

k WGkSk

)
= gH

k (ST
k ⊗W)gk. (7)

Since gk ∼ CN (ḡk,Ck), we can apply the following change
of variable

gk = ḡk +C
1/2
k vk (8)

with vk ∼ CN (0, INtNe,k
). Now, substituting (7) and (8) into

(6a) yields

(6a) ⇐⇒ Prvk

{
vH
k Akvk + 2Re{vH

k uk}+ ck ≥ 0
}
≥ 1−ρ̄,

(9)
where Ak = −C

1
2

k

(
ST
k ⊗W

)
C

1
2

k ,uk = −C
1
2

k

(
ST
k ⊗W

)
ḡk

and ck = tk − ḡH
k

(
ST
k ⊗W

)
ḡk.

Step 3: A Bernstein-type inequality-based safe approxima-
tion: The equivalence in (9) implies that the outage proba-
bility in (6a) can be characterized by the quadratic inequality
vH
k Akvk + 2Re{vH

k uk} + ck ≥ 0 with respect to (w.r.t.)
the Gaussian random vector vk. Such a chance constraint
can be safely approximated using the following Bernstein-type
inequality [12]:
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Lemma 2 ([12]) For any (A,u, c) ∈ Hn × Cn × R, v ∼
CN (0, In) and ρ ∈ (0, 1], the following implication holds:

Tr(A)−
√
−2 ln(ρ) · x+ ln(ρ) · y + c ≥ 0,∥∥∥∥[vec(A)√

2u

]∥∥∥∥
2

≤ x,

yIn +A ≽ 0, y ≥ 0

=⇒ Prv
{
vHAv + 2Re{vHu}+ c ≥ 0

}
≥ 1− ρ,

(10)

where x and y are slack variables. Moreover, the system (10)
is convex in (A,u, c, x, y).

Now, by replacing the hard probabilistic constraint (4b) with
the implication (5b), and then by invoking Lemmas 1 and
2, we arrive at the desired safe approximation of OC-SRM,
which is shown in (11). From the above development, it can
be verified that any feasible solution of (11) must satisfy (6b),
owing to the implications in Lemmas 1 and 2. Moreover, it
follows from (5) that such a feasible solution also satisfies the
probabilistic constraint (4b).

max
W,R,{Sk,xk,yk}K

k=1

R

s.t. Tr(C
1
2

k (S
T
k ⊗W)C

1
2

k ) +
√
−2 ln ρ̄ · xk − ln ρ̄ · yk

+R− ln |I+HHWH|+Tr(Sk)− ln |Sk|
+ ḡH

k (ST
k ⊗W)ḡk ≤ Ne,k, k = 1, . . . ,K,∥∥∥∥∥∥

vec(C 1
2

k (S
T
k ⊗W)C

1
2

k )
√
2C

1
2

k (S
T
k ⊗W)ḡk

∥∥∥∥∥∥
2

≤ xk, k = 1, . . . ,K,

ykINtNe,k
−C

1
2

k (S
T
k ⊗W)C

1
2

k ≽ 0, k = 1, . . . ,K,

yk ≥ 0, Sk ≽ 0, k = 1, . . . ,K,

Tr(W) ≤ P, W ≽ 0.
(11)

B. An Alternating Optimization Approach to (11)
A merit of the safe approximation (11) is that it has

all its constraints explicitly expressed, which facilitates the
numerical optimization of W. In particular, one can verify
that when fixing either W or {Sk}Kk=1, problem (11) becomes
convex w.r.t. the remaining variables. It should however be
noted that problem (11) is nonconvex w.r.t. all the variables
jointly. For this reason, we employ alternating optimiza-
tion (AO) to handle problem (11). The AO algorithm for
problem (11) is summarized in Algorithm 1. Notice that in
lines 3 and 4 of Algorithm 1, the two convex subproblems
can be efficiently solved using a general-purpose conic op-
timization solver, e.g., SeDuMi [14]. Moreover, as a basic
property of AO, one can check that the (n − 1)st iterate
(Wn−1, {Sn−1

k , xn−1
k , yn−1

k }Kk=1, R
n−1) (cf. line 3) is a fea-

sible solution for the subproblem solved in the nth iteration
(cf. line 4). Hence the AO algorithm yields a nondecreasing
sequence of the outage secrecy rate, i.e., Rn ≥ · · · ≥ R0.

Remark 1 The complexity of the AO algorithm can be roughly
estimated through the complexity of solving the AO sub-
problems times the total number of AO iterations. The latter
relies heavily on the stopping criterion, namely the tolerance
ϵ (cf. Algorithm 1). In general, the smaller ϵ is, the more AO
iterations are needed. According to our numerical experience

Algorithm 1 AO Algorithm for the Safe Approximation (11)

1: Initialize n = 1, ϵ > 0 and S0
k = I, k = 1, . . . ,K;

2: repeat
3: Fix Sk = Sn−1

k ,∀k and solve problem (11) to get
(Wn−1, {xn−1

k , yn−1
k }Kk=1, R

n−1);
4: Fix W = Wn−1 and solve problem (11) to get

({Sn
k , x

n
k , y

n
k }Kk=1, R

n);
5: n = n+ 1;
6: until |Rn −Rn−1| < ϵ
7: Output (Wn, Rn).

in Sec. IV, around ten AO iterations are enough to deliver a
reasonably good transmit solution.

IV. SIMULATION RESULTS AND CONCLUSIONS

In this section, we demonstrate the performance gains of the
proposed safe design by comparing it with the plain SVD [3]
and the projected SVD [15]. Plain SVD maximizes Bob’s
channel capacity without considering Eves’ receptions; i.e.,
transmitting over the eigenmodes of H with powers on each
eigenmode determined by water-filling, whereas projected
SVD aims to completely null out Eves’ receptions by first
projecting the transmit signal onto the nullspace of Eves’
estimated concatenated channels Ḡ , [Ḡ1 . . . , ḠK ] and then
performing plain SVD. The simulation settings are as follows
unless otherwise specified: Nt = 5, Nb = Ne,k = 2, ∀k,
K = 2, ρ = 0.01, P = 10dB, ϵ = 0.01, Ck = σ2I, ∀k
and σ2 = 0.002; each entry of H and Ḡk is randomly
generated following CN (0, 1). All results were averaged over
100 independent channel trials.

Fig. 1 plots the outage secrecy rates against the average
transmit power P . In the legend, ‘Bernstein computable lower
bound’ represents the Rn returned by Algorithm 1, which is a
theoretically guaranteed outage secrecy rate when the transmit
solution Wn is used; ‘AO with perfect CSI’ represents the
result of the AO algorithm in [9], where perfect CSI is assumed
at the transmitter. Here, we include the result of AO with
perfect CSI as a benchmark to evaluate the secrecy rate loss
induced by imperfect CSI. The remaining three curves were
obtained by substituting the corresponding transmit solutions
W into (4b) to find an R such that

R = supR̂{R̂ | Pr{ min
k=1,...,K

fk(W) ≥ R̂} ≥ 1− ρ}. (12)

In general, the supremum in (12) has no closed-form expres-
sion, and thus we resort to Monte-Carlo (MC) simulations
to evaluate R. From the figure, we see that the proposed
safe design outperforms plain SVD and projected SVD. In
particular, there is at least 1 bit per channel use secrecy
rate gap between the proposed design and the two SVD-
based designs. It should however be noted that the two SVD-
based designs admit semi-closed-form solution and thus have
much lower complexities than the proposed AO design. In
addition, we see from Fig. 1 that when the power is small, the
Bernstein computable lower bound almost coincides with its
MC result, which implies that the proposed safe approximation
can achieve a good approximation accuracy for small powers.
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Fig. 2 shows the relationship between the outage secrecy
rate and Eves’ channel uncertainty level σ2 for various meth-
ods. As expected, with the increase of σ2, the outage secrecy
rates of all methods decrease. Moreover, the proposed safe
design always achieves a higher outage secrecy rate than the
other two SVD-based designs.
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Fig. 1. The outage secrecy rate versus the average transmit power
with σ2 = 0.002.
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Fig. 2. The outage secrecy rate versus σ2 with P = 10dB.

To conclude, we have considered an outage-constrained
secrecy rate maximization (OC-SRM) problem for an MIMO
channel overheard by multiple MIMO Eves. To handle the
OC-SRM problem, we resort to a Bernstein-type inequality
approach to obtain a safe approximate solution. We show that a
safe solution can be computed by alternately solving two con-
vex optimization problems. Simulation results demonstrated
that the proposed safe design outperforms some existing
methods and can achieve good approximation accuracies for
small transmit powers or low channel uncertainty levels.

APPENDIX

A. Proof of Lemma 1
We need the following lemma:

Lemma 3 ([13]) Let E ∈ CN×N be any matrix such that E ≻
0. Consider the function ν(S,E) = −Tr(SE) + ln |S| + N .
Then,

ln |E−1| = max
S∈CN×N ,S≽0

ν(S,E). (13)

By invoking Lemma 3, we can re-express Ce,k(W) as

Ce,k(W) = − ln |(I+GH
k WGk)

−1|
= −max

Sk≽0
ν(Sk, I+GH

k WGk)

= min
Sk≽0

−ν(Sk, I+GH
k WGk) , φe,k(W,Sk),

(14)

where φe,k(W,Sk) , −ν(Sk, I + GH
k WGk) = Tr((I +

GH
k WGk)Sk)−ln |Sk|−Ne,k. By substituting (14) into (5b),

we have

PrGk
{fk(W) ≥ R} ≥ 1− ρ̄

⇐⇒ PrGk

{
min
Sk≽0

φe,k(W,Sk) ≤ Cb(W)−R
}
≥ 1− ρ̄

⇐= PrGk
{φe,k(W,Sk) ≤ Cb(W)−R} ≥ 1− ρ̄

for some Sk ≽ 0

⇐⇒ PrGk

{
Tr

(
GH

k WGkSk

)
≤ tk

}
≥ 1− ρ̄

for some Sk ≽ 0,

where tk = Cb(W) − R − Tr(Sk) + ln |Sk| + Ne,k. This
completes the proof of Lemma 1.
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