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Abstract—This paper considers multi-input single-output
(MISO) downlink multicasting with finite-alphabet inputs when
perfect channel state information is known at the transmitter.
Two advanced transmit schemes, namely the beamformed (BF)
Alamouti scheme and the stochastic beamforming (SBF) scheme,
for maximizing the finite-alphabet-constrained multicast rate
are studied. We show that the transmit optimization for these
two schemes can be formulated as an SNR-based max-min-fair
(MMF) problem with Gaussian inputs, which can be handled
via the semidefinite relaxation (SDR) technique. Apart from
transmit optimization, we analyzed the rate performance of the
two schemes. Our analytical results show that for BF Alamouti,
the multicast rate degrades with the number of users M at
a rate of

√
M , which is better than the traditional transmit

beamforming scheme. For SBF, the multicast rate degradation
is less sensitive to the increase in the number of users and
outperforms BF Alamouti for large M . All the results were
verified by numerical simulations.

Index Terms—multicast, transmit beamforming, finite-
alphabet input, semidefinite relaxation (SDR).

I. INTRODUCTION

As an efficient way of delivering common information
to multiple users simultaneously, transmit beamforming for
physical-layer multicasting has received considerable attention
in the last decade [1]. The signal-to-noise ratio (SNR)-based
max-min-fair (MMF) formulation, together with the semidefi-
nite relaxation (SDR) technique [1], has been demonstrated
to offer a reasonably good multicast rate; see [2] and the
references therein. In our recent work [3], extensions to rank-
two beamforming and stochastic beamforming were proposed
to further improve the multicast rate, especially for those large-
scale multicast systems [4]. We should mention that in existing
beamforming studies, Gaussian signaling is usually assumed.
While such an assumption is crucial to quantifying the limit
of the system, it may not be adequate for practical systems
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as they usually involve non-Gaussian finite-alphabet inputs,
such as M -PSK and M -QAM. Recently, there has been a
growing interest in transmit optimizations with non-Gaussian,
finite-alphabet inputs; notable works include [5]–[9] on various
single/multi-user MIMO transceiver designs.

In this letter, driven by practical considerations, we focus
on the scenario of multiuser multi-input single-output (MISO)
downlink multicasting with finite-alphabet inputs. We assume
that perfect channel state information is known at the transmit-
ter and our goal is to maximize the finite-alphabet-constrained
multicast rate by judiciously designing the transmit schemes.
As the main contribution of this paper, two transmit schemes
are investigated—beamformed (BF) Alamouti and stochastic
beamforming (SBF). For the proposed transmit schemes, by
converting the MISO channel into an equivalent single-input
single-output (SISO) one, we show that the finite-alphabet-
constrained multicast rate optimization problems can both
be turned into the classic SNR-based MMF problem with
Gaussian inputs. Hence, the semidefinite relaxation (SDR)
technique [10] can be employed to deliver an (approximate)
solution for our considered problem. To quantify the perfor-
mance of the BF Alamouti and SBF schemes, we study their
approximation accuracy—i.e., the rate gap between the SDR-
based approximate solution and the optimal solution to the
SDR problem. Building upon existing SDR approximation
results [1], [3], we derive analytic rate gaps of the two schemes
under finite-alphabet inputs. In particular, our results reveal
that the BF Alamouti and SBF schemes are generally better
than transmit beamforming. Moreover, BF Alamouti is suitable
for small number of users while SBF can achieve better rate
performance for large number of users. All these results are
new for MISO multicasting with finite-alphabet inputs and
they are consistent with and complement those in [3], where
Gaussian inputs are assumed.

II. THE BEAMFORMED ALAMOUTI SCHEME

A. System Model and Problem Statement
Consider a multi-user MISO downlink, where a multi-

antenna base station sends common information to M single-
antenna users. Assuming quasi-static and flat-fading channels,
the receive signal at user i (i = 1, . . . ,M) is given by

yi(n) = hHi x(n) + vi(n), n = 1, . . . , 2T, (1)

where hi ∈ CN is the channel vector from an N -antenna
base station to the ith user, 2T represents the data frame
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length, vi(n) ∼ CN (0, 1) is the additive white Gaussian
noise, and x(n) is the transmit signal carrying the common
information. For the classic multicast beamforming scheme,
x(n) is generated as

x(n) =
√
Pws(n), n = 1, . . . , 2T, (2)

where P is the transmit power, w ∈ CN is the beamforming
vector, and s(n) ∈ C is the information symbol, which
is usually assumed to be Gaussian distributed [1]. Herein,
deviating from (2), we introduce a new rank-two beamforming
scheme, called beamformed (BF) Alamouti. Particularly, we
consider the multicast system with finite-alphabet inputs.

The BF Alamouti scheme was first proposed in [3], [11],
which can be seen as a rank-two generalization of the transmit
beamforming scheme [1]. It consists of the following three
main steps: 1) Group the consecutive information symbols into
multiple 2 × 1 vectors s(m) = [ s(2m − 1) s(2m) ]T for
m = 1, . . . , T ; 2) map s(m) into a 2 × 2 Alamouti code
C(s(m)), i.e.,

C(s(m)) =

[
s(2m− 1) s(2m)
−s∗(2m) s∗(2m− 1)

]
;

3) multiply C(s(m)) by an N × 2 rank-two beamforming
matrix B. As a result, the transmit signal X(m) ∈ CN×2 for
the mth transmission block is given by

X(m) = [ x(2m−1) x(2m) ] =
√
PBC(s(m)), m = 1, . . . , T.

Herein we consider the case where s(m) is drawn uniformly
from a given finite-alphabet set S, e.g., S = {±1 ± j} for
QPSK. Then, at the receiver side, by treating B as part of
the channel and applying the standard Alamouti detection, the
MISO received signal model

yi(m) =
√
PhHi BC(s(m)) + vi(m), m = 1, . . . , T

can be turned into the following equivalent SISO one

yi(n) =
√
snri(BBH)s(n) + vi(n), n = 1, . . . , 2T,

where we define snri(A) , PhHi Ahi for A � 0, yi(m) =
[yi(2m− 1), yi(2m)]T , and vi(m) = [vi(2m− 1), vi(2m)]T .
This completes the description of the BF Alamouti scheme.
Now, our problem of interest is to design the beamforming
matrix B such that the finite-alphabet-constrained multicast
rate is maximized; i.e.,

max
B∈CN×2

min
i=1,...,M

Ri(BBH) s.t. Tr(BBH) ≤ 1, (3)

where Ri(BBH) is user-i’s achievable rate under finite-
alphabet inputs [5]:

Ri(BBH) = log |S| − |S|−1
∑
sm∈S

Evi
[
log

∑
sk∈S

edm,k(BBH)
]
.

Here, dm,k(A) , |vi|2 − |
√
P snri(A)sm,k + vi|2, sm,k ,

sm − sk,∀sm, sk ∈ S, and vi ∼ CN (0, 1).
In contrast to the case of Gaussian inputs, problem (3)

appears to be more challenging due to the complex form of the
rate function Ri. Nevertheless, the following lemma reveals
some nice properties of Ri:

Lemma 1 ([5], [12]) The rate function Ri(BBH) is nonde-
creasing and concave w.r.t. snri(BBH).

The nondecreasing property follows directly from Theorem 1
in [12] and the concavity is due to Theorem 1 in [5]. In light
of Lemma 1, we can express problem (3) as the following
much simpler SNR-based max-min-fair (MMF) problem:

(MMF) max
B∈CN×2

min
i=1,...,M

hHi BBHhi s.t. Tr(BBH) ≤ 1.

Problem (MMF) is identical to the multicasting problem
under Gaussian inputs [3], which is known to be NP-hard
in general [3], [11]. To generate an approximate solution to
(MMF) in an efficient manner, a widely used technique is
SDR. Specifically, by letting W = BBH � 0 and dropping
the rank-two constraint on W, we get an SDR of (MMF):

(SDR) max
W�0

min
i=1,...,M

hHi Whi s.t. Tr(W) ≤ 1.

Problem (SDR) is a convex problem and can be effi-
ciently solved. Let W? be an optimal solution to (SDR). If
rank(W?) ≤ 2, then an optimal solution to problem (3) can
be obtained through eigendecomposition; otherwise a rank-two
Gaussian randomization in Algorithm 1 can be employed to
generate an approximate solution B̂ to (3). In the sequel, we
shall develop a sufficient condition under which (SDR) has an
optimal rank-two solution and analyze the SDR approximation
accuracy of the Gaussian randomization procedure.

B. Approximation Accuracy Analysis for BF Alamouti
To facilitate the analysis of the SDR approximation accu-

racy, let us denote by

R?(P ) , min
i=1,...,M

Ri(W
?) (4)

the “multicast rate” associated with the optimal solution to
(SDR). Clearly, R?(P ) serves as an upper bound on the
maximum multicast rate of BF Alamouti; i.e.,

R?(P ) ≥ R?ALAM(P ) ≥ min
i=1,...,M

Ri(B̂B̂H)

holds for any feasible B̂ of (3), where R?ALAM(P ) denotes
the optimal value of (3). Let ρmin = mini=1,...,M hHi W?hi.
The following proposition reveals a further relationship among
R?(P ), R?ALAM(P ), and mini=1,...,M Ri(B̂B̂H):

Proposition 1 Consider problems (MMF) and (SDR):
a) When M ≤ 8, one can always find in polynomial time

an optimal W? of (SDR) such that rank(W?) ≤ 2.
Thus, R?(P ) = R?ALAM(P ) holds and problem (MMF),
or equivalently problem (3), can be optimally solved.

b) When M > 8, by using the rank-two Gaussian random-
ization in Algorithm 1, one can generate from W? a
feasible solution B̂ to problem (3) that satisfies

R?ALAM(P )− min
i=1,...,M

Ri(B̂B̂H) ≤ min{R?ALAM(P ), γ(P )}

with probability at least 1 − (5/6)L, where L denotes
the number of Gaussian randomizations and

γ(P ) , 1− log 2+
1

|S|
∑
sm∈S

log
(∑

sk∈S e
−
|sm,k|

2Pρmin

12.22
√
M∑

sk∈S e
−|sm,k|2Pρmin

)
.
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The proof of Proposition 1 is relegated to Appendix A. The
first part of Proposition 1 gives a sufficient condition under
which the SDR is tight, while the second part identifies a
worst-case multicast rate gap of the SDR-based approximation.
Roughly speaking, the rate gap scales up at a rate of

√
M as

the number of users M increases.1 While this result is better
than that for transmit beamforming [1], [3], BF Alamouti may
still suffer from rate degradation when M is large. In the next,
we will introduce another beamforming scheme—stochastic
beamforming, which is able to achieve better multicast rate
performance than BF Alamouti, especially for large M .

Algorithm 1 Gaussian Randomization Procedure for (3)
1: For j = 1 to L, generate two independent random vectors
ξj1, ξ

j
2 ∼ CN (0,W?), define B̃j = 1√

2
[ ξj1 ξj2 ] and

B̂j = B̃j

/√
Tr(B̃jB̃H

j );

2: Let j? := arg max
j=1,...,L

min
i

snri(B̂jB̂
H
j ) and B̂ = B̂j? .

III. THE STOCHASTIC BEAMFORMING SCHEME

Stochastic beamforming (SBF) was originally introduced in
[3] for multicast beamforming under Gaussian inputs. The key
idea is to adopt a randomize-in-time beamforming strategy [3],
rather than keeping w invariant over the whole transmission
[cf. (2)]. Specifically, the transmit signal of SBF takes the form

x(n) =
√
Pw(n)s(n), n = 1, . . . , 2T, (5)

where the beamformer w(n) varies randomly in time accord-
ing to some prespecified distribution (to be specific shortly).
At the receiver side, by treating w(n) as part of the channel,
SBF renders a virtual fast-fading SISO received signal model:

yi(n) =
√
PhHi w(n)s(n) + vi(n), n = 1, . . . , 2T. (6)

By letting the transmitter send the random seed for gener-
ating w(n) and its covariance W to the users as part of
the preamble of the transmitted data frame, SBF receivers
can presume simple coherent symbol reception and channel
decoding. Hence, SBF is just as efficient as those of fixed
beamforming with channel coding in terms of implementation.
Consequently, the multicast rate of SBF under finite-alphabet
inputs can be deduced as follows:

RSBF(W) = min
i=1,...,M

Ew

[
Ri(ww

H)
]
, (7)

where w denotes a generic random variable of w(n) with
mean zero and covariance matrix E[wwH ] = W. Notice
that Tr(W) ≤ 1 is implicitly assumed in order to satisfy
the transmit power constraint.

To maximize the SBF multicast rate RSBF(W), we need to
optimize the distribution of w, which is a challenging task. In
this letter, as a compromise, we consider an easy-to-generate
distribution, namely the Gaussian distribution [3], which is
able to achieve a provably good multicast rate.2

1To obtain this result, we have used the fact that a log-sum-exp function
can be well approximated by a pointwise maximum function [13].

2There are also other choices of SBF distributions, e.g., elliptic and
Bingham SBFs; readers may refer to [3] for details.

For the Gaussian SBF, w follows a complex Gaussian
distribution CN (0,W). In this case, it remains to optimize
the covariance matrix W, viz.,

max
W�0

min
i=1,...,M

Ew

[
Ri(ww

H)
]

s.t. Tr(W) ≤ 1. (8)

Problem (8) is a stochastic optimization problem. By evaluat-
ing the expectation, it can be shown that

Claim 1 Problem (8) is equivalent to problem (SDR).

The proof of Claim 1 is provided in Appendix B. Claim 1
implies that the optimal covariance for generating Gaussian
SBF beamformers is identical to the optimal W? to (SDR).
Moreover, since Ri(wwH) is concave w.r.t. snri(wwH) (cf.
Lemma 1), by Jensen’s inequality, it can be shown that the
objective of (8) is upper bounded by R?(P ) [cf. (4)], i.e.,
RSBF(W

?) ≤ R?(P ). Conversely, we have

Proposition 2 For Gaussian SBF, it holds that

0 ≤ R?(P )−RSBF(W
?) ≤ min{R?(P ), γGauss(P )}, (9)

where

γGauss(P ) = 1−log 2+ 1

|S|
∑
sm∈S

log
(∑

sk∈S
2

2+|sm,k|2Pρmin∑
sk∈S e

−|sm,k|2Pρmin

)
.

The proof of Proposition 2 is relegated to Appendix C.
Compared to Proposition 1(b), the rate gap of Gaussian SBF in
(9) is insensitive to M , which implies that Gaussian SBF may
achieve better rate performance than BF Alamouti, especially
for large number of users. This will be further confirmed by
our numerical results in Sec. IV.

IV. SIMULATION RESULTS AND CONCLUSIONS

In this section, we provide numerical results to compare
the performance of the three transmit schemes, namely the
transmit beamforming scheme, BF Alamouti scheme, and
Gaussian SBF scheme. The simulation settings are as follows:
The base station has N antennas and serves M users; QPSK
and 16-ary QAM modulation schemes are adopted; the number
of Gaussian randomization is L = 30MN . All the channels
are randomly generated with each entry being i.i.d. CN (0, 1).

Fig. 1 investigates the rate behaviors of various methods
when we set the number of users N = 8 and increase
the number of users M by fixing P = 0 dB. For ease of
presentation, we normalize each user’s achievable rate by
log |S|, and thus the maximum rate is 1 bps/Hz. This figure
shows that as expected, Gaussian SBF is less sensitive to M ,
as compared with transmit beamforming and BF Alamouti.
Particularly, it outperforms other schemes when M > 32.
This suggests that for large-scale system, it is more desirable
to adopt the SBF scheme. In addition, for M = 8 we see
that BF Alamouti coincides with the SDR upper bound, which
is consistent with Proposition 1 (a). In Fig. 2, we show the
bit error rate (BER) results for different transmit strategies.
Specifically, we show a relatively long code–a rate-1/3 turbo
code with an information length of 960 bits–for N = 8,
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M = 24, 16-ary QAM modulated case and a relatively short
code–rate-1/2 turbo code with an information length of 286
bits–for N = 8, M = 32, 64-ary QAM modulated case. Note
that we adopt the channel coding scheme in [14] with 10
decoding iterations. As a performance lower bound, we plot
the result of “SDR bound”, which runs a virtual single-user
SISO channel with SNR Pρmin. From the plots, we see that
even with a short code (which means that T is not relatively
large), both BF Alamouti and Gaussian SBF own better BER
performance than transmit beamforming, and they are within
1dB away from the SISO lower bound.

To conclude, we have considered the multicast rate op-
timization for MISO downlink with finite-alphabet inputs.
Two new beamforming schemes, namely beamformed (BF)
Alamouti and Gaussian stochastic beamforming (SBF), were
investigated. We have shown that for both schemes, the mul-
ticast rate optimization problem under finite-alphabet inputs
can be recast as that under Gaussian inputs. From there, we
have also analyzed the rate performances of the two schemes.
Simulation results demonstrate that BF Alamouti and Gaussian
SBF can achieve better rate performance than traditional
transmit beamforming, and Gaussian SBF is superior to other
schemes when there are many users in the system.
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APPENDIX

A. Proof of Proposition 1

The proof relies on the existing SDR approximation results
for problem (MMF) [1], [3]. Specifically, the first part of
Proposition 1 follows directly from Proposition 5 in [3]. To
prove the second result, notice that for any B, we have

RLB
i (BBH) ≤ Ri(BBH) ≤ RUB

i (BBH) (10)

where RLB
i (BBH) , log |S| − 1 + log 2− |S|−1

∑
sm∈S log∑

sk∈S exp(−|sm,k|
2PhHi BBHhi/2) and RUB

i (BBH) ,
log |S| − 1

|S|
∑
sm∈S log

∑
sk∈S exp(−|sm,k|

2PhHi BBHhi).
The first inequality in (10) follows from Theorem 1
in [6] and the second inequality is due to Jensen’s
inequality Evi [log

∑
sk∈S exp(dm,k(BBH))] ≥

log
∑
sk∈S exp(Evi [dm,k(BBH)]). It also follows from

Theorem 4 in [3] that the Gaussian randomization procedure
in Algorithm 1 yields a beamforming matrix B̂ such that

min
i=1,...,M

hHi B̂B̂Hhi ≥ (12.22M)−1 min
i=1,...,M

hHi W?hi (11)

holds with probability at least 1 − (5/6)L. Combining (10)
and (11) yields

R?ALAM(P )−miniRi(B̂B̂H) ≤ R?(P )−miniRi(B̂B̂H)

≤ miniR
UB
i (W?)−miniR

LB
i (B̂B̂H),

≤ miniR
UB
i (W?)−miniR

LB
i

(
(12.22M)−1W?

)
, γ(P ),

where the last inequality is due to (11). This, together with the
nonnegativity of miniRi(B̂B̂H), produces the desired result.

B. Proof of Claim 1

By using the property of Gaussian SBF [3, Theorem 1], we
have

Ew∼CN (0,W)

[
Ri(ww

H)
]

=Eξ
{
c− |S|−1

∑
sm∈S

Evi
[
log

∑
sk∈S

e|vi|
2−|
√
Pρiξsm,k+vi|2

]
︸ ︷︷ ︸

,f(ρi,ξ)

}
,

where c = log |S|, ρi = hHi Whi, vi ∼ CN (0, 1), and ξ fol-
lows an exponential distribution with unit mean. Note that for
a given ξ, f(ρi, ξ) is nondecreasing w.r.t. ρi (recall Lemma 1).
Then, it is easy to see that Eξ[f(ρi, ξ)] is nondecreasing
w.r.t. ρi, and thus RSBF(W) = mini=1,...,M Eξ[f(ρi, ξ)] is
nondecreasing w.r.t. mini=1,...,M ρi. In other words, maximiz-
ing RSBF(W) amounts to maximizing mini=1,...,M ρi, which
completes the proof.

C. Proof of Proposition 2

Define ρi = hHi W?hi and ξi = |hHi w|2/ρi. Since w ∼
CN (0,W?), it can be shown that ξi follows an exponential
distribution with unit mean. Hence, we have

RSBF(W
?) = min

i=1,...,M
Ew∼CN (0,W?)

[
Ri(ww

H)
]

≥ min
i=1,...,M

Ew∼CN (0,W?)

[
RLB
i (wwH)

]
≥ min
i=1,...,M

{
c− 1

|S|
∑
sm∈S

log(
∑
sk∈S

Eξi
[
e−|sm,k|

2Pξiρi/2
]
)
}

=c− |S|−1
∑
sm∈S log(

∑
sk∈S

2
2+|sm,k|2Pρmin

), (12)

where c = log |S|+ log 2− 1, RLB
i is defined in (10), and the

second inequality is due to Jensen’s inequality. Also, we have

R?(P ) = min
i=1,...,M

Ri(W
?) ≤ min

i=1,...,M
RUB
i (W?),

which together with (12) and the nonnegativity of RSBF(W)
yields the desired result in (9).
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