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Robust Convex Approximation Methods for
TDOA-Based Localization under NLOS Conditions
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Abstract—In this paper, we develop a novel robust optimization
approach to source localization using time-difference-of-arrival
(TDOA) measurements that are collected under non-line-of-sight
(NLOS) conditions. A key feature of our approach is that it
does not require knowledge of the distribution or statistics of
the NLOS errors, which are often difficult to obtain in practice.
Instead, it only assumes that the NLOS errors have bounded
supports. Based on this assumption, we formulate the TDOA-
based source localization problem as a robust least squares (RLS)
problem, in which a location estimate that is robust against the
NLOS errors is sought. Since the RLS problem is non-convex,
we propose two efficiently implementable convex relaxation-
based approximation methods to tackle it. We then conduct a
thorough theoretical analysis of the approximation quality and
computational complexity of these two methods. In particular,
we establish conditions under which they will yield a unique
localization of the source. Simulation results on both synthetic
and real data show that the performance of our approach under
various NLOS settings is very stable and is significantly better
than that of several existing non-robust approaches.

Index Terms—Robust Localization, Time-Difference of Arrival
(TDOA), Non-Line of Sight (NLOS), Convex Relaxation

I. INTRODUCTION

The accurate localization of a signal-emitting source is key
to a number of applications, such as emergency service [1] and
response [2], mobile computing [3], and target tracking [4]. In
a typical scenario, the localization is facilitated by a network
of sensors, which collect location metrics of the source. Two
commonly used metrics are the source signal’s time of arrival
(TOA) and time-difference of arrival (TDOA). Assuming the
signal propagation speed is fixed and known, the former
gives rise to range measurements between the source and the
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sensors, while the latter to range-difference measurements.
These measurements can then be used to estimate the source
location. We refer the uninitiated reader to [5], [6] and the
references therein for an overview of various localization
concepts and techniques.

Naturally, errors in the TOA and TDOA measurements
will have an adverse effect on localization accuracy. A pre-
dominant type of error arises from the so-called non-line-of-
sight (NLOS) condition—i.e., when the direct, or line-of-sight
(LOS), paths between the source and the sensors are blocked,
thereby resulting in additional, variable propagation delay of
the source signal. NLOS errors are common in indoor and
urban settings, and if not treated properly, they can severely
degrade the quality of the estimated location. Therefore, the
problem of NLOS identification and mitigation has attracted
much attention in recent years. One popular approach is to
utilize certain knowledge of the NLOS errors (such as their
joint probability distribution, statistics, or physical attributes)
and estimate the source location via a maximum-likelihood
or penalty function formulation; see, e.g., [7]–[11] and the
references therein. Such an approach is effective when the
NLOS errors are modeled accurately. However, since the
characteristics of the NLOS errors are generally environment
and time dependent, it can be costly and tedious to build
good models of them. To circumvent this difficulty, researchers
have considered approaches that are less reliant on precise
knowledge of the NLOS errors. We refer the reader to [7],
[12]–[15] and the references therein for some of the latest
advances in this direction.

Although there is a vast literature addressing the issue of
NLOS identification and mitigation in localization, most of it
focuses on TOA-based systems. Given the less stringent syn-
chronization requirements and wide applicability of TDOA-
based systems, it is natural to ask whether the techniques
developed for TOA-based systems can be applied to TDOA-
based ones. As it turns out, the answer is not so straightfor-
ward. First, in a TDOA measurement, the error caused by the
NLOS condition is the difference of the NLOS errors incurred
at two different sensors. As such, its distribution is different
from that of the NLOS error at each sensor and does not admit
a simple characterization in general. This not only complicates
the implementation of maximum-likehood estimators (cf. [9],
[16]) but also degrades the performance of TDOA-based lo-
calization methods that do not take the effects of NLOS errors
into account; see Section V. Second, by exploiting the fact that
the NLOS error in a TOA measurement is always non-negative
and is typically much larger than the measurement noise, one
can limit the region in which the source lies, thereby improving
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the localization accuracy [14], [17]–[19]. On the other hand,
due to potential cancellations of the NLOS errors at different
sensors, the error caused by the NLOS condition in a TDOA
measurement can be negative and/or small in magnitude. Thus,
the above strategy does not work. Nevertheless, the analysis
in [20] shows that when many of the source-sensor paths
are NLOS, one can achieve better localization performance
with TDOA measurements than with TOA measurements. This
conforms with the intuition that smaller errors should produce
more accurate estimates. Unfortunately, it is not clear if the
theoretical localization performance established in [20] can be
realized by an efficient algorithm.

From the above discussion, we see that the algorithmic
aspects of TDOA-based localization under NLOS conditions
are still under-explored and deserve further investigation. In
this paper, we take a step in this direction by developing a
robust optimization approach to NLOS mitigation in TDOA-
based localization. Our approach does not need to distinguish
between LOS and NLOS measurements, nor does it require
a priori knowledge of the distribution or statistics of the
NLOS errors. All it assumes is that the magnitudes of the
NLOS errors are upper bounded by some given constants.
The rationale behind this approach is that it is often easier
to estimate the support of the NLOS error distribution than
the distribution itself. In addition, such an approach is less
sensitive to misspecifications of the error distribution model.

Based on the upper bounds on the magnitudes of the NLOS
errors, we formulate the source localization problem as a
robust least squares (RLS) problem. The RLS problem is
non-convex and generally intractable. Worse yet, it is not
immediately amenable to convex relaxation techniques. To
circumvent these difficulties, we first construct an auxiliary
problem that approximates the original RLS problem. Al-
though the auxiliary problem is still non-convex, it can be
tackled by convex relaxation techniques. Moreover, we can
rigorously identify the conditions under which the auxiliary
problem is equivalent to the RLS problem. These conditions
have a simple interpretation in the context of NLOS TDOA-
based localization and offer much insight into the efficacy of
our proposed approach; see Section IV-A. Then, we propose a
second-order cone relaxation (SOCR) and a natural semidefi-
nite relaxation (SDR) of the auxiliary problem, both of which
are polynomial-time solvable [21, Lecture 6] and can be easily
implemented using off-the-shelf softwares (e.g., CVX [22]).
Curiously, it can be shown that the natural SDR is weaker than
the SOCR, which is contrary to the widely-held belief that
second-order cone relaxations are weaker than semidefinite
relaxations (compare, e.g., [23]–[25]). Nevertheless, by adding
a set of valid inequalities to the SDR, we obtain a refined
SDR that is provably tighter than the SOCR and is also
efficiently solvable. As our final theoretical contribution, we
establish sufficient conditions for the SOCR and the refined
SDR to yield a unique localization of the source. Interestingly,
our simulation results show that the sufficient conditions are
satisfied under a wide variety of settings; see Section V.

It should be emphasized that our approach, which is based
on the robust optimization methodology, is very different from
the robust statistics-based approach that has been extensively

investigated in the literature (see, e.g., [11], [15], [26] and
the references therein). The latter is mainly developed for
TOA-based localization, where the NLOS measurements can
be treated as outliers and the aggregate measurement error
is modeled as a random variable with simple mixture dis-
tribution. By estimating certain statistical parameters of the
error distribution, one obtains source location estimates that
are statistically efficient and not unduly affected by outliers.
However, it is non-trivial to develop an analogous approach
for TDOA-based localization, as the error distribution typically
has much more complex properties and cannot be captured by
a simple model. By contrast, the former only assumes that the
NLOS errors have bounded magnitudes and aims at producing
source location estimates that have high accuracy regardless
of the realization of the NLOS errors. As such, the robust
optimization-based approach does not require the specification
of any error distribution model and hence can be easily applied
to TDOA-based localization.

We note that the robust optimization methodology has
been used before to deal with uncertainties in the sensors’
positions [27] and in the NLOS errors in TOA-based localiza-
tion [14]. Our work is closer in spirit to the latter, though the
development is different. Specifically, the formulation in [14]
essentially assumes that the vector of NLOS errors lies in
a ball. This, together with the S-lemma [21], immediately
yields a tractable reformulation of the corresponding robust
problem. However, the ball constraint imposes a non-trivial
correlation structure among the NLOS errors, which is difficult
to justify. By contrast, our formulation assumes that the vector
of NLOS errors lies in a box and hence does not have the
said issue. Moreover, as the S-lemma no longer applies in our
setting, we need to develop new analytical tools to reformulate
the resulting robust problem into a tractable form. Lastly, we
conduct a thorough analysis of our formulations, which yields
new theoretical results for TDOA-based localization.

The remainder of this paper is organized as follows. In
Section II, we describe the TDOA measurement model under
NLOS conditions, based on which we give an RLS formulation
of the source localization problem. Next, in Section III, we
introduce the auxiliary problem that approximates the RLS
problem and present the SOCR and SDR methods for tack-
ling the auxiliary problem. In Section IV, we identify the
conditions under which the auxiliary problem is equivalent
to the RLS problem. We also analyze the relative tightness,
complexity, and unique localizability of the proposed convex
relaxations of the auxiliary problem. Then, in Section V, we
illustrate our proposed methods via numerical simulations on
both synthetic and real data. Finally, we close with some
concluding remarks in Section VI.

The following notation will be adopted throughout the
article. Bold face lower case letters and bold face upper case
letters denote vectors and matrices, respectively. ai denotes
the ith element of the vector a and Ai,j denotes the (i, j)th
element of the matrix A. 0k×l denotes the k × l all-zero
matrix; 1k and Ik denote the k × 1 all-one column vector
and the k × k identity matrix, respectively. Given numbers
a1, . . . , al, Diag(a1, . . . , al) denotes the l× l diagonal matrix
with a1, . . . , al on the diagonal. tr(A) and rank(A) stand for
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the trace and rank of A, respectively. Rn and Sn denote the
sets of n-dimensional real vectors and n × n real symmetric
matrices, respectively. For A,B ∈ Sn, A � B means that
A−B is positive semidefinite.

II. PROBLEM FORMULATION

Consider the problem of using TDOA measurements from
a wireless sensor network with N + 1 sensors to localize one
unknown source, where the signal propagation paths between
the source and the sensors are possibly NLOS. By designating
the zeroth sensor as the reference sensor, we assume that the
TDOA measurement model takes the form

ti =
1

c
(‖x− si‖ − ‖x− s0‖+ ni + ei) for i = 1, . . . , N,

(1)

where x ∈ Rd is the source location that needs to be estimated;
si ∈ Rd (for i = 0, 1, . . . , N ) is the location of the ith sensor,
which is assumed to be known; c is the signal propagation
speed, which is also assumed to be known; 1

cni and 1
c ei (for

i = 1, . . . , N ) are the measurement noise and NLOS error at
the ith sensor, respectively; d is the dimension in which the
source and sensors reside. Naturally, the case where d ≤ 3 is
of most practical interest, though it should be noted that our
subsequent development applies to any d ≥ 1.

By multiplying c on both sides of (1), we obtain the range-
difference measurements

di = ‖x− si‖ − ‖x− s0‖+ ni + ei for i = 1, . . . , N.
(2)

To localize the source, a typical approach is to treat the errors
ni, ei as random variables and formulate an (approximate)
maximum-likelihood estimation problem; see, e.g., [9], [16].
However, the efficacy of this approach depends on how well
the error distributions can be modeled. While it has been
widely accepted that the measurement noise ni can be modeled
using the Gaussian distribution (see, e.g., [5], [14], [16]–[20]),
the environment- and time-varying nature of NLOS errors
makes it difficult to build an accurate model of the distribution
of ei. Even if one has such a model, its complexity can render
the resulting maximum-likelihood problem intractable. As an
alternative, we propose a robust optimization approach to
source localization using the TDOA measurement model (1).
To begin, let us state our assumptions on the measurement
noise ni and NLOS error ei, where i = 1, . . . , N :

(a) The magnitude of the measurement noise ni is small
compared with the range between the source and the
reference sensor; i.e., |ni| � ‖x− s0‖.

(b) The magnitude of the NLOS error ei is bounded by some
given constant ρi ≥ 0; i.e., |ei| ≤ ρi.

Assumption (a) is standard in the localization literature (see,
e.g., [28]) and can be satisfied using suitable hardware (see,
e.g., [29]). Assumption (b) is motivated by the fact that it
is easier to estimate the support of a distribution than the
distribution itself [30]. In practice, the upper bounds ρi (for
i = 1, . . . , N ) can be estimated in the calibration stage using
some training data. In the sequel, we shall make no other

assumptions on the distributions of ni and ei besides (a)
and (b).

Now, the range-difference measurements (2) are equivalent
to

di − ei − ‖x− si‖ = −‖x− s0‖+ ni for i = 1, . . . , N.
(3)

Upon squaring both sides of (3) and invoking Assumption (a),
we have

(di − ei)2 − 2(di − ei)‖x− si‖ − 2sTi x+ 2sT0 x

+‖si‖2 − ‖s0‖2 ≈ −2‖x− s0‖ni

for i = 1, . . . , N , or equivalently,

(ai + ∆ai)
Ty − (bi + ∆bi) ≈ −2‖x− s0‖ni

for i = 1, . . . , N, (4)

where y =
[
xT , ‖x− s1‖, . . . , ‖x− sN‖

]T ∈ Rd+N ,

ai =
[
2(s0 − si)T ,01×(i−1),−2di,01×(N−i)

]T ∈ Rd+N ,
(5)

∆ai =
[
01×d,01×(i−1), 2ei,01×(N−i)

]T ∈ Rd+N ,
bi = ‖s0‖2 − ‖si‖2 − d2i , ∆bi = −e2i + 2diei. (6)

Based on (4) and Assumptions (a) and (b), we formulate the
source localization problem as the following worst-case robust
least squares (RLS) problem:

min
y=[xT ,rT ]T∈Rd+N

max
−ρ≤e≤ρ

N∑
i=1

∣∣aTi y − bi + ∆aTi y −∆bi
∣∣2

s.t. ‖x− si‖ = ri for i = 1, . . . , N.
(7)

Here, we use r = [r1, . . . , rN ]
T , e = [e1, . . . , eN ]

T , and
ρ = [ρ1, . . . , ρN ]

T to denote the vectors whose ith entries
(for i = 1, . . . , N ) are the range between the source and the
ith sensor, the NLOS error at sensor i, and the upper bound
on the magnitude of the NLOS error at sensor i, respectively.
Roughly speaking, our goal is to find the source location
x such that for i = 1, . . . , N , the deviation of the range
difference ‖x − si‖ − ‖x − s0‖ from the measured value di
is small, regardless of the realization of the NLOS error ei.

III. CONVEX APPROXIMATIONS OF THE RLS PROBLEM

To develop efficient methods for tackling the RLS prob-
lem (7), we proceed as follows. Observe that for any given
y = [xT , rT ]T , we have

max
−ρ≤e≤ρ

N∑
i=1

∣∣aTi y − bi + ∆aTi y −∆bi
∣∣2

=

N∑
i=1

(
max

−ρi≤ei≤ρi

∣∣aTi y − bi + ∆aTi y −∆bi
∣∣)2

and

aTi y − bi + ∆aTi y −∆bi = aTi y − bi + e2i − 2(di − ri)ei.
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Hence, Problem (7) is equivalent to

min
y=[xT ,rT ]T

∈Rd+N

N∑
i=1

(
max

−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣)2

s.t. ‖x− si‖ = ri for i = 1, . . . , N. (8)

In particular, both the objective function and the constraints of
Problem (8) are non-convex in general. To transform (8) into
a form that is more amenable to algorithmic treatment, let us
first tackle the objective function. By the triangle inequality,
we have∣∣aTi y − bi + e2i − 2(di − ri)ei

∣∣
≤
∣∣aTi y − bi∣∣+

∣∣e2i − 2(di − ri)ei
∣∣ .

Hence,

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

≤
∣∣aTi y − bi∣∣+ max

−ρi≤ei≤ρi

∣∣e2i − 2(di − ri)ei
∣∣ . (9)

It is elementary to verify that

max
−ρi≤ei≤ρi

∣∣e2i − 2(di − ri)ei
∣∣

=

{
max

{∣∣ρ2i ± 2ρi(di − ri)
∣∣ , (di − ri)2} if |di − ri| ≤ ρi,

max
{∣∣ρ2i ± 2ρi(di − ri)

∣∣} otherwise.
(10)

In fact, the above equality can be simplified as follows:
Proposition 1: The following holds:

max
−ρi≤ei≤ρi

∣∣e2i − 2(di − ri)ei
∣∣ = max

{
ρ2i ± 2ρi(di − ri)

}
= ρ2i + 2ρi|di − ri|. (11)

Proof: The second equality is straightforward. To estab-
lish the first equality, consider the following cases:
Case 1: |di − ri| ≤ ρi.

If −ρi ≤ di − ri ≤ 0, then

ρ2i − 2ρi(di − ri) ≥
∣∣ρ2i + 2ρi(di − ri)

∣∣ ,
ρ2i − 2ρi(di − ri) ≥ (di − ri)2 + 2(di − ri)2 = 3(di − ri)2.

On the other hand, if 0 ≤ di − ri ≤ ρi, then

ρ2i + 2ρi(di − ri) ≥
∣∣ρ2i − 2ρi(di − ri)

∣∣ ,
ρ2i + 2ρi(di − ri) ≥ (di − ri)2 + 2(di − ri)2 = 3(di − ri)2.

Hence, we conclude from (10) that (11) holds.
Case 2: |di − ri| > ρi.

If di − ri > ρi, then trivially,

ρ2i + 2ρi(di − ri) ≥
∣∣ρ2i − 2ρi(di − ri)

∣∣ .
Similarly, if di − ri < −ρi, then

ρ2i − 2ρi(di − ri) ≥
∣∣ρ2i + 2ρi(di − ri)

∣∣ .
Using (10), this again establishes (11).

Since the function

y 7→
∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i

is non-negative and convex in y for i = 1, . . . , N , Proposi-
tion 1 and (9) imply that the function

y 7→
N∑
i=1

(∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i
)2

(12)

is a convex majorant of the non-convex objective function of
Problem (8). This motivates the following approximation of
Problem (8):

min
y=[xT ,rT ]T∈Rd+N

N∑
i=1

(∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i
)2

s.t. ‖x− si‖ = ri for i = 1, . . . , N.
(13)

Although Problem (13) is still non-convex, it can be tackled by
convex relaxation techniques. Indeed, by relaxing ‖x− si‖ =
ri to ‖x − si‖ ≤ ri (for i = 1, . . . , N ) in Problem (13) and
introducing the auxiliary variables η0 and η = [η1, . . . , ηN ]

T ,
we obtain the following second-order cone relaxation (SOCR)
of Problem (13):

min
y=[xT ,rT ]T∈Rd+N

η∈RN, η0∈R

η0

s.t.
∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i ≤ ηi

for i = 1, . . . , N, (14a)
‖x− si‖ ≤ ri

for i = 1, . . . , N, (14b)

‖η‖2 ≤ η0. (14c)

Note that the constraint (14c) is equivalent to∥∥∥∥∥
[
η0 −

1

4
,ηT

]T∥∥∥∥∥ ≤ η0 +
1

4

and hence it can be expressed as a second-order cone con-
straint. Also, note that if di < 0, then di − ri < 0,
which implies that the constraint (14a) can be simplified to∣∣aTi y − bi∣∣− 2ρi(di − ri) + ρ2i ≤ ηi.

To derive a semidefinite relaxation (SDR) of Problem (13),
we first observe that(∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i

)2
= max

{(
±
(
aTi y − bi

)
± 2ρi(di − ri) + ρ2i

)2}
.

Hence, Problem (13) is equivalent to

min
y=[xT ,rT ]T∈Rd+N,

τ∈RN

N∑
i=1

τi

s.t.
(
aTi y − bi + 2ρi(di − ri) + ρ2i

)2 ≤ τi
for i = 1, . . . , N, (15a)(

aTi y − bi − 2ρi(di − ri) + ρ2i
)2 ≤ τi

for i = 1, . . . , N, (15b)(
−aTi y + bi + 2ρi(di − ri) + ρ2i

)2 ≤ τi
for i = 1, . . . , N, (15c)(

−aTi y + bi − 2ρi(di − ri) + ρ2i
)2 ≤ τi

for i = 1, . . . , N, (15d)
‖x− si‖ = ri for i = 1, . . . , N, (15e)
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where τ = [τ1, . . . , τN ]T . Now, let vj =
[01×(j−1), 1,01×(d+N−j)]

T be the jth basis vector in
Rd+N , Y = yyT , and

ci = ai + 2ρivd+i, c̄i = ai − 2ρivd+i,

Ci = cic
T
i , C̄i = c̄ic̄

T
i ,

κi = ρ2i + 2diρi + bi, κ̄i = ρ2i + 2diρi − bi,
θi = ρ2i − 2diρi + bi, θ̄i = ρ2i − 2diρi − bi.

Since y =
[
xT , rT

]T
, the constraints (15a)–(15d) can be

expressed as

tr
(
C̄iY

)
+ 2κ̄ic̄

T
i y + κ̄2i ≤ τi, (16a)

tr (CiY ) + 2θ̄ic
T
i y + θ̄2i ≤ τi, (16b)

tr (CiY )− 2κic
T
i y + κ2i ≤ τi, (16c)

tr
(
C̄iY

)
− 2θic̄

T
i y + θ2i ≤ τi, (16d)

while the constraint (15e) can be expressed as

tr (QiY )− 2s̄Ti y + ‖si‖2 = 0, (17)

where

Qi =

[
Id 0d×N

0N×d Di

]
∈ Sd+N ,

Di = Diag(0, . . . , 0, −1︸︷︷︸
i

, 0, . . . , 0) ∈ SN ,

s̄i =
[
sTi ,01×N

]T ∈ Rd+N .

Moreover, we have the equivalence

Y = yyT ⇐⇒

Z =

[
Y y

yT 1

]
� 0(d+N+1)×(d+N+1), rank(Z) = 1.

(18)

Thus, by dropping the non-convex rank constraint rank(Z) =
1 in (18) (cf. [31]), we obtain the following SDR of Prob-
lem (13):

min
Y ∈Sd+N

y∈Rd+N, τ∈RN

N∑
i=1

τi

s.t. (16a)–(16d), (17),[
Y y

yT 1

]
� 0(d+N+1)×(d+N+1).

(19)

IV. ANALYSIS OF THE CONVEX APPROXIMATIONS

In the previous section, we tackle the non-convex RLS
problem (7) in two steps. First, we replace the non-convex
objective function of Problem (7) by the convex majorant (12).
Then, we apply convex relaxation techniques to the resulting
problem (i.e., Problem (13)), thereby leading to the SOCR-
based and SDR-based approximation methods (14) and (19)
for the RLS problem (7). In this section, we conduct a theo-
retical analysis of this two-step approach. Specifically, we first
identify the conditions under which the RLS problem (7) and
the convex majorant-based approximation (13) are equivalent

and interpret them in the context of NLOS TDOA-based local-
ization. Then, we study the relative tightness of the SOCR (14)
and the SDR (19). Contrary to what one would expect, we
show that the latter is actually not tighter than the former.
Motivated by this result, we proceed to develop a refined
SDR (see (21) below), which is provably tighter than the
SOCR (14). Next, we analyze the computational complexity of
the proposed convex relaxation-based approximation methods.
Lastly, we establish sufficient conditions for the SOCR (14)
and the refined SDR (21) to yield a unique localization of the
source and discuss how these conditions can be verified in
practice.

A. Exactness Analysis

Since the objective function of the RLS problem (7), or
equivalently, that of Problem (8), is non-convex, we propose
in Section III to approximate the ith summand of the latter,
namely

Si(y) = max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣ ,

by the convex majorant

S+
i (y) =

∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i ,

where i = 1, . . . , N and y = [xT , rT ]T . To understand when
such approximation is exact, let us first derive an explicit
expression for Si(y).

Proposition 2: The following holds for i = 1, . . . , N :

Si(y) = max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

=



aTi y − bi + 2ρi|di − ri|+ ρ2i

if aTi y − bi ≥ 0,

max
{
aTi y − bi + 2ρi|di − ri|+ ρ2i ,

(di − ri)2 −
(
aTi y − bi

) }
if aTi y − bi < 0 and |di − ri| ≤ ρi,

max
{∣∣aTi y − bi ± 2ρi(di − ri) + ρ2i

∣∣}
if aTi y − bi < 0 and |di − ri| > ρi.

Since the proof of Proposition 2 is rather tedious, we relegate
it to the Appendix. Now, armed with Proposition 2, we can
prove the following result:

Proposition 3: Consider a fixed i ∈ {1, . . . , N}. If ρi = 0,
then Si(y) = S+

i (y). Otherwise, we have Si(y) = S+
i (y) if

and only if aTi y − bi ≥ 0.
Proof: The claim for the case where ρi = 0 is trivial.

Hence, we shall focus on the case where ρi > 0. Suppose that
aTi y − bi ≥ 0. Then, Proposition 2 yields

Si(y) = aTi y − bi + 2ρi|di − ri|+ ρ2i

=
∣∣aTi y − bi∣∣+ 2ρi|di − ri|+ ρ2i

= S+
i (y).

Conversely, suppose that aTi y−bi < 0. Consider the following
cases:
Case 1: |di − ri| ≤ ρi.
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By Proposition 2, we have

Si(y) = max
{
aTi y − bi + 2ρi|di − ri|+ ρ2i ,

(di − ri)2 −
(
aTi y − bi

) }
.

It is clear that aTi y−bi+2ρi|di−ri|+ρ2i < S+
i (y). Moreover,

if |di− ri| = 0, then (di− ri)2− (aTi y− bi) =
∣∣aTi y − bi∣∣ <

S+
i (y). Otherwise, we have |di − ri| > 0, which implies that

(di − ri)2 − (aTi y − bi) ≤ ρ2i +
∣∣aTi y − bi∣∣ < S+

i (y).

Hence, we conclude that Si(y) < S+
i (y) in this case.

Case 2: |di − ri| > ρi.
Proposition 2 states that

Si(y) = max
{∣∣aTi y − bi ± 2ρi(di − ri) + ρ2i

∣∣}
in this case. Suppose that di − ri > ρi > 0. Then, since
aTi y − bi < 0 and 2ρi(di − ri) > 0, we have∣∣aTi y − bi + 2ρi(di − ri) + ρ2i

∣∣ < S+
i (y)

and ∣∣aTi y − bi − 2ρi(di − ri) + ρ2i
∣∣ < S+

i (y).

It follows that Si(y) < S+
i (y). The case where di − ri <

−ρi < 0 can be handled in a similar manner.
Proposition 3 characterizes the conditions under which

the convex majorant approximation (12) of the non-convex
objective function of the RLS problem (7) is exact. To see
its implications on the efficacy of the proposed approach, let
us consider a fixed i ∈ {1, . . . , N} and use (2), (5), (6) to
compute

aTi y − bi = 2(s0 − si)Tx− 2di‖x− si‖
− ‖s0‖2 + ‖si‖2 + d2i

= (di − ‖x− si‖)2 − ‖x‖2 + 2sT0 x− ‖s0‖2

= (ni + ei)
2 − 2‖x− s0‖(ni + ei).

This shows that the sign of aTi y−bi is completely determined
by that of (ni + ei)

2 − 2‖x− s0‖(ni + ei). In particular, we
have the following two scenarios:
Scenario A: ni + ei ≤ 0 or ni + ei ≥ 2‖x− s0‖.

From the measurement model (1), we see that this scenario
occurs, e.g., when the path from the source to the reference
sensor is highly NLOS (so that the estimate of ‖x∗ − s0‖
is significantly positively biased, where x∗ ∈ Rd is the true
location of the source) and the path from the source to the ith
sensor is (almost) LOS (so that the estimate of ‖x∗ − si‖ is
lightly positively biased), or when the path from the source
to the reference sensor is (almost) LOS and the path from the
source to the ith sensor is highly NLOS. Note that in this
scenario, we have aTi y−bi ≥ 0. Thus, Proposition 3 suggests
that our approach should perform well. This is corroborated
by our simulation results; see Scenarios 1, 2, 4, and 7 in
Section V-A.
Scenario B: 0 < ni + ei < 2‖x− s0‖.

By reasoning in a similar manner as above, we see that
this scenario occurs, e.g., when the path from the source to
the reference sensor is (almost) LOS and the path from the
source to the ith sensor is mildly NLOS (so that ni + ei <
2‖x − s0‖). In this scenario, we have aTi y − bi < 0. Thus,

Proposition 3 suggests that our approach may not perform so
well; see Scenarios 2, 3, 6, and 9 in Section V-A.

B. Relative Tightness Analysis

In Section III, we propose two convex relaxations of Prob-
lem (13), namely the SOCR (14) and the SDR (19). It is
natural to ask which relaxation is tighter. Roughly speaking, if
the SDR (19) is tighter than the SOCR (14), then the feasible
set of (19) is contained in that of (14), which implies that the
optimal value of (14) is at most that of (19). This motivates
us to formalize the tightness question as follows:

Question (Q): Given an arbitrary feasible solution (Ȳ , ȳ, τ̄ )
to the SDR (19) with objective value vSDR =

∑N
i=1 τ̄i, does

there exist a feasible solution (y′,η′, η′0) to the SOCR (14)
with objective value vSOCR = η′0 ≤ vSDR?

In view of the works [23]–[25], one would expect that the
answer to (Q) is affirmative; i.e., the SDR (19) is tighter than
the SOCR (14). However, this is not the case, as the following
example shows:

Example 1: Consider 5 sensors located at s0 = [0, 0]T ,
s1 = [10, 0]T , s2 = [0, 10]T , s3 = [−10, 0]T , and s4 =
[0,−10]T , respectively, with s0 being the reference sensor.
Suppose that the source is located at x∗ = [7, 6]T . The exact
(i.e., without measurement noise and NLOS errors) and noisy
range-difference measurements are shown in Table I,1 while
the optimal values of the SOCR (14) and the SDR (19), as well
as their corresponding estimates of x∗, are shown in Table II.

TABLE I
EXACT AND NOISY RANGE-DIFFERENCE MEASUREMENTS

d1 d2 d3 d4

exact -2.5113 -1.1573 8.8082 8.2447
noisy -5.0683 -2.7352 6.0505 6.3506

Clearly, there is no feasible solution to the SOCR (14) that
has an objective value of at most 11260, which implies that
the SDR (19) is not tighter than the SOCR (14). �

Given the above example, an immediate question is whether
one can derive a tighter relaxation than the SOCR (14). The
answer is affirmative. To motivate the development, observe
that given any feasible solution (Ȳ , ȳ, τ̄ ) to the SDR (19)
with ȳ =

[
x̄T , r̄T

]T
, the constraint (17) and[

Y y

yT 1

]
� 0(d+N+1)×(d+N+1) ⇐⇒ Y � yyT

imply that

‖x̄−si‖2 ≤ Ȳd+i,d+i and r̄2i ≤ Ȳd+i,d+i for i = 1, . . . , N.
(20)

Hence, the first inequality in (20) is always weaker than the
inequality ‖x̄− si‖ ≤ r̄i. Note that the latter is present in the

1The measurement noise and NLOS errors are generated according to the
procedure described in Section V-A, where we set σ = 0.3 and ωi = 3 for
i = 0, 1, . . . , 4.



7

TABLE II
OPTIMAL VALUES AND SOURCE LOCATION ESTIMATES OF THE VARIOUS FORMULATIONS

SOCR (14) SDR (19) Refined SDR (21)
opt. value 47551 11260 60672

loc. estimate [8.6185, 6.6479]T [0.1049, 2.1406]T [7.6458, 5.8385]T

SOCR (14). This suggests that we can tighten the SDR (19) by
including this latter inequality; i.e., consider the refined SDR

min
Y ∈Sd+N

y=[xT ,rT ]T∈Rd+N, τ∈RN

N∑
i=1

τi

s.t. (16a)–(16d), (17),
‖x− si‖ ≤ ri, for i = 1, . . . , N,

(21a)[
Y y

yT 1

]
� 0(d+N+1)×(d+N+1).

(21b)

As it turns out, the inclusion of the set of constraints (21a)
is sufficient to guarantee that the refined SDR (21) is tighter
than the SOCR (14):

Theorem 1: Let (Ȳ , ȳ, τ̄ ) be a feasible solution to the
refined SDR (21) with objective value vSDR =

∑N
i=1 τ̄i, where

ȳ =
[
x̄T , r̄T

]T
. Then, the solution (ȳ, η̄, η̄0), where

η̄i =
∣∣aTi ȳ − bi∣∣+ 2ρi|di − r̄i|+ ρ2i for i = 1, . . . , N

and η̄0 = ‖η̄‖2, is feasible for the SOCR (14) and has
objective value vSOCR = η̄0 ≤ vSDR.

Proof: It is straightforward to verify that (ȳ, η̄) sat-
isfies the constraint (14a). Moreover, since ȳ satisfies the
constraint (21a), it also satisfies the constraint (14b). Finally,
by construction, (η̄, η̄0) satisfies the constraint (14c). Hence,
(ȳ, η̄, η̄0) is feasible for (14).

Now, since Ci, C̄i � 0(d+N)×(d+N) for i = 1, . . . , N ,
by (16a)–(16d) and (21b), we have

τ̄i ≥
(∣∣aTi ȳ − bi∣∣+ 2ρi|di − r̄i|+ ρ2i

)2
= η̄2i

for i = 1, . . . , N.

It follows that

vSDR =

n∑
i=1

τ̄i ≥
n∑
i=1

η̄2i = η̄0 = vSOCR,

as desired.
The reader may notice that the conclusion of Theorem 1

remains valid even without the constraint (17). Nevertheless,
its inclusion in the refined SDR (21) serves to further tighten
the relaxation.

As an illustration of Theorem 1, consider Example 1 again.
From Table II, we see that the optimal value of the refined
SDR (21) is higher than that of the SOCR (14). Moreover, the
estimate of x∗ produced by (21) is closer to the truth than that
produced by (14).

C. Complexity Analysis

It is well-known that both the SOCR (14) and the refined
SDR (21) can be solved in polynomial time by a standard
interior-point method; see, e.g., [21, Lecture 6]. To compare
their worst-case computational complexities, we first recall
that the complexity of a generic interior-point method for
solving a mixed second-order cone and semidefinite cone
programming problem is on the order of

√
µ ·
(
m

Nsoc∑
i=1

(nsoci )
2

+m2
Nsd∑
i=1

(
nsdi
)2

+m

Nsd∑
i=1

(
nsdi
)3

+m3

)
· ln(1/ε),

where m is the number of variables, NSOC (resp. NSD) is
the number of second-order cone (resp. semidefinite cone)
constraints, nSOC

i (resp. nSD
i ) is the dimension of the ith

second-order cone (resp. semidefinite cone),

µ =

NSD∑
i=1

nSD
i + 2NSOC

is the so-called barrier parameter and measures the geometric
complexities of the cones involved, and ε > 0 is the solution
precision; see, e.g., [21, Lecture 6] or [32, Section V-A]. Now,
the SOCR (14) has d + 2N + 1 variables, 4N semidefinite
cone constraints of size 1 (corresponding to the 4N linear
inequality constraints (14a)), N second-order cone constraints
of size d+1 (corresponding to (14b)), and 1 second-order cone
constraint of size N + 2 (corresponding to (14c)). Hence, its
worst-case complexity is on the order of

√
N ·

[
N(d+N)(d2 +N) + (d+N)3

]
· ln(1/ε).

On the other hand, the refined SDR (21) has
(
d+N+1

2

)
+d+2N

variables, 6N semidefinite cone constraints of size 1 (cor-
responding to the 6N linear inequality constraints (16a)–
(16d), (17)), N second-order cone constraints of size d + 1
(corresponding to (21a)), and 1 semidefinite cone constraint
of size d+N + 1 (corresponding to (21b)). Hence, its worst-
case complexity is on the order of

(d+N)6.5 · ln(1/ε).

The above analysis and the results in Section IV-B show that
there is a tradeoff between performance and computational
complexity in the SOCR (14) and the refined SDR (21). It
should be noted, however, that the above complexity bounds
are based on a worst-case analysis. In practice, the structure
of the constraint matrices often allows the refined SDR (21)
to be solved much more efficiently.
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D. Unique Localizability Analysis

Another fundamental issue concerning the convex relax-
ations (14) and (21) is whether they can uniquely localize
the source. Specifically, we say that the SOCR (14) (resp. the
refined SDR (21)) uniquely localizes the source if the x-
component of the solution is invariant over the set of optimal
solutions to (14) (resp. (21)). In this subsection, we study
conditions under which the convex relaxations (14) and (21)
can uniquely localize the source. We begin with the following
proposition:

Proposition 4: Suppose there exists an i ∈ {1, . . . , N} such
that

‖x∗ − si‖ = r∗i

holds for all optimal solutions (y∗,η∗, η∗0)
(resp. (Y ∗,y∗, τ ∗)) to (14) (resp. (21)), where
y∗ =

[
(x∗)T , (r∗)T

]T
. Then, the SOCR (14) (resp. the

refined SDR (21)) uniquely localizes the source.
Proof: We shall establish the proposition for the

SOCR (14). The argument for the refined SDR (21) is
similar. Let (y∗,η∗, η∗0) and (ȳ∗, η̄∗, η∗0) be two optimal
solutions to (14), with y∗ =

[
(x∗)T , (r∗)T

]T
and ȳ∗ =[

(x̄∗)T , (r̄∗)T
]T

(note that η∗0 is the optimal value and hence
must be the same for the two optimal solutions). Since the set
of optimal solutions to (14) is convex, the solution(

y∗ + ȳ∗

2
,
η∗ + η̄∗

2
, η0

)
is also optimal for (14). By assumption, we have

‖x∗ − si‖ = r∗i , ‖x̄∗ − si‖ = r̄∗i ,∥∥∥∥x∗ + x̄∗

2
− si

∥∥∥∥ =
r∗i + r̄∗i

2

for some i ∈ {1, . . . , N}. This implies that∥∥∥∥x∗ − si2
+
x̄∗ − si

2

∥∥∥∥ =
‖x∗ − si‖

2
+
‖x̄∗ − si‖

2
.

Since the Euclidean norm is strictly convex, we conclude that
x∗ − si = x̄∗ − si, or equivalently, x∗ = x̄∗, as desired.

Although Proposition 4 provides a sufficient condition
for unique localization by the SOCR (14) and the refined
SDR (21), the condition is difficult to verify both analytically
and computationally. Nevertheless, it can be used to estab-
lish another sufficient condition that is efficiently verifiable.
Specifically, consider the following proposition:

Proposition 5: Let Y ∈ Sd+N be decomposed as

Y =

[
Y 11 Y 12

Y T
12 Y 22

]
,

where Y 11 ∈ Sd, Y 12 ∈ Rd×N , and Y 22 ∈ SN . Suppose that
every optimal solution (Y ∗,y∗, τ ∗) to the refined SDR (21)
satisfies rank(Y ∗11) ≤ 1. Then, the refined SDR (21) uniquely
localizes the source.

Proof: The constraint (21b) implies that Y ∗11 � x∗(x∗)T ,
where y∗ =

[
(x∗)T , (r∗)T

]T
. Since rank(Y ∗11) ≤ 1, we

have Y ∗11 = x∗(x∗)T . This, together with (17), implies that
‖x∗ − si‖2 = Y ∗d+i,d+i for i = 1, . . . , N . However, by (21a)

and (21b), we have ‖x∗−si‖2 ≤ (r∗i )2 and Y ∗d+i,d+i ≥ (r∗i )2.
Hence, we have Y ∗d+i,d+i = (r∗i )2, which, by Proposition 4,
implies that the refined SDR (21) uniquely localizes the
source.

We claim that the sufficient condition stated in Propo-
sition 5 can be efficiently verified a posteriori. Indeed, it
is known that standard interior-point methods for solving
semidefinite programs will always return a solution with the
highest rank [33]; cf. [23]. Hence, once we solve the refined
SDR (21) by an interior-point method and obtain an optimal
solution (Y ∗,y∗, τ ∗), it suffices to check if the rank condition
rank(Y ∗11) ≤ 1 is satisfied. If so, then every optimal solution
to (21) will satisfy the same rank condition, which implies that
the sufficient condition stated in Proposition 5 holds. As our
simulation results in the next section show, the rank condition
is usually satisfied.

V. NUMERICAL RESULTS

In this section, we use both synthetic and real data to
test the performance of the proposed SOCR- and SDR-based
robust methods and three non-robust methods: the SDR-
based method in [27]2 (cf. [34]), the weighted least squares
(WLS)-based method in [35] (see also [36] and [37]), and
the reduced-complexity SDR-based method in [38]. In the
following, we use “SDR-Non-Robust”, “WLS-Non-Robust”,
and “RC-SDR-Non-Robust” to denote the methods in [27],
[35], and [38], respectively, and use “SOCR-Robust” and
“SDR-Robust” to denote the proposed SOCR- and SDR-based
robust methods (14) and (21), respectively. All methods are
implemented using MATLAB R2012b on a DELL personal
computer equipped with a 3.3GHz Intel(R) Core(TM) i5-2500
CPU and 8GB RAM. The SOCR and SDR are solved using
the MATLAB toolbox CVX [22], and the solver is SDPT3 [39].

A. Performance Evaluation Using Synthetic Data

Let us begin by describing the experimental setup used in
this subsection. We assume that the reference sensor is located
at s0 = [0, 0]T , and the other N sensors are uniformly placed
on a circle with center (0, 0) and radius 10; i.e.,

si = 10

[
cos

2π(i− 1)

N
, sin

2π(i− 1)

N

]T
for i = 1, . . . , N.

The source location is chosen uniformly at random from a disk
centered at (0, 0) with radius 15. It is worth noting that the
source may lie outside of the convex hull of the sensors. The
range-difference measurements are generated according to (2),
where ei = Ui−U0 for i = 1, . . . , N , and Ui is uniformly dis-
tributed between 0 and ωi for i = 0, 1, . . . , N . Here, ω0 and ωi
(for i = 1, . . . , N ) are the upper bounds on the NLOS errors in
the range measurements between the source and the reference
sensor and between the source and the ith sensor, respectively.
In particular, we have |ei| ≤ ρi = max{ω0, ωi} for i =
1, . . . , N . The measurement noise vector n = [n1, . . . , nN ]

T

is generated according to a Gaussian distribution with mean

2In our simulations, we actually use a strengthened version of the SDR-
based method in [27], which is obtained by adding the valid inequalities
ti ≥ 0 for i = 1, . . . ,M to the SDR (20) in [27].
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zero and covariance matrix Σ = 0.5σ2
(
IN + 1N1TN

)
, where

σ > 0 is a parameter controlling the power of the measurement
noise. The localization performance is measured by the root
mean square error (RMSE) criterion, which is defined as

RMSE =

√√√√ 1

M

M∑
i=1

‖x̂i − x∗i ‖2. (22)

Here, M is the number of Monte Carlo (MC) runs; x̂i and
x∗i are the estimated and true location of the source in the ith
run, respectively. In our experiments, we use M = 3000 MC
runs.

1) Performance Comparison: To evaluate the performance
of the various methods, we consider nine different scenarios,
which we divide into three groups. In the first group of three
scenarios, we test how the signs and magnitudes of NLOS
errors in the TDOA measurements (i.e., the ei’s) affect the
localization performance. This is to validate the conclusions
obtained from the exactness analysis in Section IV-A. In
the second group of three scenarios, we investigate how the
power of measurement noise (i.e., σ2) affects the localization
performance under different levels of NLOS errors in the
TDOA measurements. In the last group of three scenarios,
we examine how the number of sensors (i.e., N + 1) affects
the localization performance under different levels of NLOS
errors in the TDOA measurements.
Group I: Varying the Signs and Magnitudes of NLOS Errors
in the TDOA Measurements

In this group of experiments, we fix the number of sensors
at 5 (and hence N = 4) and set σ = 0.3.
• Scenario 1: In this scenario, we set ω0 = 5α and ωi =

0.5 for i = 1, . . . , 4, where α varies from 0.1 to 1. In
particular, the NLOS effect on the path from the source
to the reference sensor is likely to be more pronounced
than those from the source to the other sensors. Thus, the
ei’s are likely to be negative. According to the analysis in
Section IV-A, the convex majorant approximation (12) of
the non-convex objective function of the RLS problem (7)
should be exact under such setting, which suggests that
the robust methods should perform well. As Fig. 1 shows,
this is indeed the case.

• Scenario 2: Fig. 2 shows the simulation results when
ω0 = 3 and ωi = 5α for i = 1, . . . , 4, where α again
varies from 0.1 to 1. Note that when α is small (and hence
ωi is small), the ei’s are likely to be negative; when α is
large, the ei’s are likely to be positive. From the figure,
we clearly see that the robust methods outperform the
non-robust methods. Moreover, we note that the robust
methods perform better when the ei’s are more negative,
which is consistent with our findings in Section IV-A.

• Scenario 3: In this scenario, we set ω0 = 0.5 and ωi =
5α for i = 1, . . . , 4, where α varies from 0.1 to 1. In
particular, the NLOS effect on the path from the source
to the reference sensor is likely to be less pronounced than
those from the source to the other sensors, which implies
that the ei’s are likely to be positive. Our analysis in
Section IV-A suggests that the robust methods may have
a worse performance. This is confirmed by the results in
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Fig. 1. Comparison of RMSE of different methods: σ = 0.3, ω0 = 5α, and
ωi = 0.5, where i = 1, . . . , 4 and α = 0.1, 0.2, . . . , 1.
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Fig. 2. Comparison of RMSE of different methods: σ = 0.3, ω0 = 3, and
ωi = 5α, where i = 1, . . . , 4 and α = 0.1, 0.2, . . . , 1.

Fig. 3. We also see that WLS-Non-Robust has the best
performance when α is small.

Summary: From Scenarios 1–3, we see that the performance
of the robust methods is consistent with that predicted by the
analysis in Section IV-A. In Table III, we record the number of
MC runs in which SDR-Robust yields a solution (Y ∗,y∗, τ ∗)
that satisfies the rank condition rank(Y ∗11) ≤ 1 and hence
uniquely localizes the source (see Proposition 5).3 Out of all
the instances tested, more than 93% of them can be uniquely
localized by SDR-Robust, and that SDR-Robust tends to yield
a unique localization of the source when the ei’s are more
negative. It is also worth noting that when the ei’s are positive
and have small magnitudes, WLS-Non-Robust has the best
performance. However, its performance degrades rapidly as the
ei’s become more negative. In comparison, the robust methods
have rather stable performance in all investigated scenarios.
Group II: Varying the Power of Measurement Noise

3We regard Y ∗
11 to have rank at most one if the ratio between its second-

largest and largest eigenvalue is less than 10−5.
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Fig. 3. Comparison of RMSE of different methods: σ = 0.3, ω0 = 0.5, and
ωi = 5α, where i = 1, . . . , 4 and α = 0.1, 0.2, . . . , 1.

TABLE III
NUMBER OF MC RUNS WITH RANK(Y ∗

11) ≤ 1 FOR SCENARIOS 1–3
(3000 RUNS IN TOTAL)

α 0.1 0.2 0.4 0.6 0.8 1
Scenario 1 2623 2615 2871 2950 2989 2997
Scenario 2 2944 2912 2879 2787 2872 2867
Scenario 3 2619 2686 2773 2772 2763 2700

In this group of experiments, we fix the number of sensors
at 5 (and hence N = 4). Moreover, in each of the scenarios
below, we vary σ from 0.1 to 0.6.

• Scenario 4: In this scenario, we set ω0 = 5 and ωi = 0.5
for i = 1, . . . , 4. Similar to Scenario 1, the ei’s are likely
to be negative under this setting. Hence, based on the
findings in Section IV-A, we expect the robust methods
to perform well. As can be seen from Fig. 4, this is
indeed the case. In fact, the robust methods perform sig-
nificantly better than the non-robust methods. Moreover,
the performance of the non-robust methods is not very
stable, which suggests that these methods are sensitive to
negative NLOS errors in the TDOA measurements.

• Scenario 5: In this scenario, we set ωi = 3 for i =
0, 1, . . . , 4. Under this setting, the NLOS effect on all
source-sensor paths are comparable. Hence, the ei’s can
be small due to cancellations of the NLOS errors. Fig. 5
shows the performance of various methods. We see that
the robust methods perform better than the non-robust
methods. Also, WLS-Non-Robust performs better than
SDR-Non-Robust. A possible explanation for this is that
when the ei’s are small, SDR-Non-Robust can be fooled
into thinking that the individual range measurements
between the source and the sensors, which are introduced
as decision variables in the formulation, also have small
errors.

• Scenario 6: In this scenario, we set ω0 = 0.5 and ωi = 5
for i = 1, . . . , 4. Similar to Scenario 3, the ei’s are likely
to be positive under this setting. From Fig. 6, we see
that the robust methods suffer some performance loss as
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Fig. 4. Comparison of RMSE of different methods: σ = 0.1, 0.2, . . . , 0.6,
ω0 = 5, and ωi = 0.5 for i = 1, . . . , 4.
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Fig. 5. Comparison of RMSE of different methods: σ = 0.1, 0.2, . . . , 0.6
and ωi = 3 for i = 0, 1, . . . , 4.

compared to Scenario 4, which corroborates the analysis
in Section IV-A.

Summary: From Scenarios 4–6, we see that the performance
of the robust methods is very stable, and the results support
the findings in Section IV-A. SDR-Non-Robust and WLS-Non-
Robust are not sensitive to positive ei’s. However, their per-
formance becomes quite unstable and degrades dramatically in
the presence of negative ei’s. A comparison of Fig. 4 and Fig. 6
reveals that positive ei’s cause a higher RMSE than negative
ones, which is consistent with the analysis in [20]. Finally, in
Table IV, we record the number of MC runs in which SDR-
Robust uniquely localizes the source. Again, we see that a
high percentage (more than 94%) of the tested instances can
be uniquely localized by SDR-Robust, and that SDR-Robust
tends to yield a unique localization of the source when the
ei’s are more negative.
Group III: Varying the Number of Sensors

In this group of experiments, we set σ = 0.3. Moreover, in
each of the scenarios below, we vary the number of sensors
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Fig. 6. Comparison of RMSE of different methods: σ = 0.1, 0.2, . . . , 0.6,
ω0 = 0.5, and ωi = 5 for i = 1, . . . , 4.

TABLE IV
NUMBER OF MC RUNS WITH RANK(Y ∗

11) ≤ 1 FOR SCENARIOS 4–6
(3000 RUNS IN TOTAL)

σ 0.1 0.2 0.3 0.4 0.5 0.6
Scenario 4 2999 2998 2997 2997 2992 2992
Scenario 5 2815 2844 2822 2821 2816 2794
Scenario 6 2681 2698 2709 2696 2690 2705

from 5 to 9 (and hence N varies from 4 to 8).
• Scenario 7: In this scenario, we set ω0 = 5 and ωi = 0.5

for i = 1, . . . , N . Similar to Scenarios 1 and 4, the
ei’s are likely to be negative under this setting. The
performance of the various methods is shown in Fig. 7.
As predicted by our analysis in Section IV-A, the robust
methods perform quite well. On the other hand, we see
that increasing the number of sensors generally improves
the performance of the non-robust methods.
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Fig. 7. Comparison of RMSE of different methods: σ = 0.3, ω0 = 5, and
ωi = 0.5, where i = 1, . . . , N and N = 4, 5, . . . , 8.

• Scenario 8: Fig. 8 shows the simulation results when σ =
0.3 and ωi = 3 for i = 0, 1, . . . , N . Similar to Scenario 5,

the ei’s can be small in this scenario. From the figure, we
see that the performance of the robust methods dominates
that of the non-robust methods. However, the non-robust
methods do exhibit significant performance improvement
as the number of sensors increases.
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Fig. 8. Comparison of RMSE of different methods: σ = 0.3 and ωi = 3,
where i = 0, 1, . . . , N and N = 4, 5, . . . , 8.

• Scenario 9: In this scenario, we set ω0 = 0.5 and ωi = 5
for i = 1, . . . , N . Similar to Scenarios 3 and 6, the ei’s
are likely to be positive under this setting. The simulation
results are shown in Fig. 9. As one would expect from
the analysis in Section IV-A, the performance of the
robust methods is rather marginal. In fact, SDR-Non-
Robust performs better than the robust methods, and its
performance improves as the number of sensors increases.
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Fig. 9. Comparison of RMSE of different methods: σ = 0.3, ω0 = 0.5, and
ωi = 5, where i = 1, . . . , N and N = 4, 5, . . . , 8.

Summary: The results in Scenarios 7–9 show that while
the performance of the non-robust methods improves as the
number of sensors increases, the performance of the robust
methods remains rather stable. This can be attributed to
the conservatism of the robust methods. Indeed, the robust
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methods are designed to guard against NLOS error vectors
e = [e1, . . . , eN ]T that lie inside the box −ρ ≤ e ≤ ρ.
However, in our experiments, we keep ρ fixed as the number of
sensors increases. Thus, the robust methods are not exploiting
the information offered by the additional sensors. Still, as can
be seen from Fig. 7–Fig. 9, the performance of the robust
methods is very competitive when compared to that of the
non-robust methods. Finally, we record the number of MC
runs in which SDR-Robust uniquely localizes the source in
Table V. The results are in line with our earlier observations.

TABLE V
NUMBER OF MC RUNS WITH RANK(Y ∗

11) ≤ 1 FOR SCENARIOS 7–9
(3000 RUNS IN TOTAL)

Number of Sensors 5 6 7 8 9
Scenario 7 2996 2998 2998 2998 2996
Scenario 8 2800 2882 2914 2926 2923
Scenario 9 2707 2670 2649 2668 2651

2) Sensitivity to Inaccurate Upper Bounds: We now turn to
investigate the performance sensitivity of the proposed robust
methods to the upper bounds on ei’s magnitudes. Suppose that
instead of the nominal upper bound on |ei|, namely ρi, we use
an inaccurate upper bound of the form ρ̃i = ρi(1+δ), where δ
is uniformly distributed between −β and β. The performance
sensitivity is measured by the relative change in RMSE; i.e.,

γ =
RMSE(ρ̃)− RMSE(ρ)

RMSE(ρ)
× 100%,

where ρ = [ρ1, . . . , ρN ]T and ρ̃ = [ρ̃1, . . . , ρ̃N ]T , and
RMSE(ρ) and RMSE(ρ̃) are the RMSE when the nominal
and inaccurate upper bounds are used, respectively. We fix the
number of sensors at 5 (and hence N = 4) and vary β from
0.05 to 0.3. The performance of the robust methods under
different levels of NLOS errors in the TDOA measurements
is shown in Fig. 10–Fig. 12. From the figures, we see that
the robust methods are relatively insensitive to inaccuracies in
the upper bounds, and the RMSE has a notable increase only
when β = 0.3.
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Fig. 10. Sensitivity of the robust methods to inaccurate upper bounds: β =
0.05, 0.1, . . . , 0.3, σ = 0.3, ω0 = 0.5, and ωi = 5 for i = 1, . . . , 4.
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Fig. 11. Sensitivity of the robust methods to inaccurate upper bounds: β =
0.05, 0.1, . . . , 0.3, σ = 0.3, and ωi = 3 for i = 0, 1, . . . , 4.
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Fig. 12. Sensitivity of the robust methods to inaccurate upper bounds: β =
0.05, 0.1, . . . , 0.3, σ = 0.3, ω0 = 5, and ωi = 0.5 for i = 1, . . . , 4.

B. Performance Evaluation Using Real Data

In this subsection, we test the various methods using real
measurement data downloaded from [40]. The detailed de-
scription of the dataset can be found in [41]; here we summa-
rize its key aspects. There are 44 nodes deployed in a room
of area 14m × 13m, whose locations are shown in Fig. 13
(nodes that are used as sensors are marked by a triangle (4);
see more details below). Each node can communicate with any
other node, and the NLOS TOA measurement between node
i and node j (for i, j ∈ {1, . . . , 44} and i 6= j) is modeled as

T̃ij =
1

c
‖si − sj‖+ µTOA +

1

c
(ñij + ẽij) , (23)

where si and sj are the locations of node i and node j,
respectively; µTOA is the mean positive bias of the TOA
measurement due to NLOS propagation of signals; 1

c ñij and
µTOA + 1

c ẽij are the measurement noise and NLOS error
in the TOA measurement, respectively. The aggregate TOA
measurement error ε̃ij = ñij + ẽij is assumed to have
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mean zero and standard deviation cσTOA. Moreover, the errors
{ε̃ij}i,j are assumed to be independent. Although the precise
values of µTOA and σTOA are not known, they can be estimated
from the measurement data. Specifically, the sample estimates
of µTOA and σTOA are µ̂TOA = 10.9ns and σ̂TOA = 6.1ns,
respectively. The estimated TOA measurement bias µ̂TOA is
then subtracted from the NLOS TOA measurements to form
unbiased (or LOS) TOA measurements. In other words, the
LOS TOA measurement between node i and node j (for
i, j ∈ {1, . . . , 44} and i 6= j) is given by T̄ij = T̃ij − µ̂TOA.
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Fig. 13. Sensor and source geometry in a real room [41]: 4: sensor, ◦:
source.

For our experiments, we need to extract NLOS TDOA
measurements from the LOS TOA measurements in the
dataset. This is done using (23). Specifically, given a node
k ∈ {1, . . . , 44}, we obtain the NLOS TDOA measurement
T kij between node i and node j with respect to node k (for
i, j ∈ {1, . . . , 44}, i > j, k 6= i, and k 6= j) by

T kij = T̃ik − T̃jk = T̄ik − T̄jk. (24)

Upon expanding (24), we have

T kij =
1

c
(‖si − sk‖ − ‖sj − sk‖) +

1

c
(ñik − ñjk + ẽik − ẽjk)

=
1

c
(‖si − sk‖ − ‖sj − sk‖) +

1

c

(
nkij + ekij

)
,

where nkij = ñik − ñjk and ekij = ẽik − ẽjk are the mea-
surement noise and NLOS error in the TDOA measurement,
respectively. Using the statistics of {ε̃ij}i,j , it can be deduced
that the aggregate TDOA measurement error εkij = nkij+ekij =

ε̃ik − ε̃jk has mean zero and standard deviation
√

2cσTOA. To
gain further insights into the distribution of εkij , we plot both
the histogram of the values

{
εkij
}
i,j,k

obtained from the dataset
and the probability density function (PDF) of the Gaussian
distribution N

(
0, 2c2σ̂2

TOA

)
in Fig. 14. As can be seen from

the figure, the empirical distribution of the values
{
εkij
}
i,j,k

is well approximated by the Gaussian distribution. Hence,
we shall assume that εkij follows the Gaussian distribution
N
(
0, 2c2σ̂2

TOA

)
.

To test our proposed robust methods, we also need to derive
an upper bound on the magnitudes of the NLOS errors in the
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Fig. 14. Comparison of the histogram of the values
{
εkij

}
i,j,k

and the PDF

of N
(
0, 2c2σ̂2

TOA

)
.

TDOA measurements. Towards that end, we first note that
the magnitudes of the TDOA measurement noise are typically
much smaller than the largest magnitude of the NLOS errors.
In other words, we may assume that

∣∣nkij∣∣ � maxi,j,k
∣∣ekij∣∣

for i, j, k ∈ {1, . . . , 44} with i > j, k 6= i, and k 6= j.
Consequently, the largest magnitude of the NLOS errors can
be approximated by that of the aggregate TDOA measurement
errors; i.e.,

max
i,j,k

∣∣ekij∣∣ ≈ max
i,j,k

∣∣nkij + ekij
∣∣ = max

i,j,k

∣∣εkij∣∣ .
Now, since εkij is assumed to follow the distribution
N
(
0, 2c2σ̂2

TOA

)
, with a probability of 99%, it will satisfy∣∣εkij∣∣ ≤ 2.58
√

2cσ̂TOA = 6.6724m. Thus, for practical pur-
poses, we may use ρ = 6.6724 as an upper bound on the
magnitudes of the NLOS errors in the TDOA measurements.

Similar to Scenarios 7–9, we vary the number of sensors
from 5 to 9 (and hence N varies from 4 to 8) and study the
impact on the localization performance of various methods.
For N = 8, the set of indices of nodes that are chosen
as sensors is I = {15, 2, 9, 43, 37, 13, 17, 4, 40} (the chosen
nodes are marked by “4” in Fig. 13); for N = 4, 5, 6 or 7,
the nodes corresponding to the first N indices in I are chosen
as sensors. The index set I is constructed by first choosing
5 sensors with one sensor (node 15) at the center and the
other four (nodes 2, 9, 43, and 37) lying approximately on a
circle, and then adding sensors that are lying approximately
on the circle until a total of 9 sensors is reached. After fixing
the N + 1 sensors, the remaining 44 − (N + 1) nodes are
regarded as different sources. For each source, we construct the
NLOS TDOA measurements according to (24) with node 15
as the reference sensor. Finally, the localization performance is
measured by the RMSE criterion (22), with M = 44−(N+1).
This completes the description of our experimental setup.

Fig. 15 shows the localization performance of the different
methods. We see that our proposed methods have the best
performance when the number of sensors is small. On the
other hand, the performance of SDR-Non-Robust improves as
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the number of sensors increases. The results are in line with
those obtained using synthetic data.
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Fig. 15. Comparison of RMSE of different methods using real data: ρ =
6.6724 and N = 4, 5, . . . , 8.

Next, we compare the average running times of the various
methods in Fig. 16. From the figure, we see that SOCR-
Robust takes less computation time than SDR-Robust, which
corroborates the analysis in Section IV-C. We also see that
WLS-Non-Robust and SDR-Non-Robust take the least and
most computation time, respectively. It should be noted that
the comparison may not be fair, as WLS-Non-Robust is
implemented using problem-specific codes, while the other
four methods are implemented using a universal solver.
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Fig. 16. Comparison of average running times of different methods using
real data: ρ = 6.6724 and N = 4, 5, . . . , 8.

VI. CONCLUSION

In this paper, we presented an RLS formulation of the
TDOA-based source localization problem under NLOS con-
ditions. To tackle the non-convexity of the RLS problem, we
developed a two-step approach, where we first construct an
auxiliary problem to approximate the RLS problem and then

apply convex relaxation techniques to the former to obtain two
efficiently solvable convex approximations. Next, we analyzed
the quality and complexity of the proposed approximations.
In particular, we identified the conditions under which the
auxiliary problem is equivalent to the RLS problem and
established sufficient conditions under which the two convex
approximations will yield a unique localization of the source.
Extensive simulations on both synthetic and real data showed
that the proposed methods are robust against both NLOS
errors and inaccurate upper bounds on the magnitudes of the
NLOS errors. Moreover, the simulation results corroborated
the findings in our theoretical analysis. An interesting open
question is to determine whether the sufficient condition stated
in Proposition 5 is also necessary for the refined SDR (21) to
yield a unique localization of the source. We conjecture that
the answer is affirmative.

APPENDIX
PROOF OF PROPOSITION 2

Observe that∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

=
∣∣(ei − (di − ri))2 +

(
aTi y − bi

)
− (di − ri)2

∣∣ .
Thus, if |di − ri| ≤ ρi, then

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

= max
{ ∣∣(±ρi − (di − ri))2 +

(
aTi y − bi

)
− (di − ri)2

∣∣ ,∣∣aTi y − bi − (di − ri)2
∣∣ }

= max
{ ∣∣aTi y − bi ± 2ρi(di − ri) + ρ2i

∣∣ ,∣∣aTi y − bi − (di − ri)2
∣∣ }.

On the other hand, if |di − ri| > ρi, then

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

= max
{∣∣aTi y − bi ± 2ρi(di − ri) + ρ2i

∣∣} .
Hence, we have

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

=

{
max

{
|u+i |, |u

−
i |, |vi|

}
if |di − ri| ≤ ρi,

max
{
|u+i |, |u

−
i |
}

otherwise,
(25)

where

u+i = aTi y − bi + 2ρi(di − ri) + ρ2i ,

u−i = aTi y − bi − 2ρi(di − ri) + ρ2i ,

vi = aTi y − bi − (di − ri)2.

To establish the desired result, consider the following three
cases:
Case 1: aTi y − bi ≥ 0.

We have

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

= aTi y − bi + max
−ρi≤ei≤ρi

∣∣e2i − 2(di − ri)ei
∣∣

= aTi y − bi + 2ρi|di − ri|+ ρ2i .
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Case 2: aTi y − bi < 0 and |di − ri| ≤ ρi.
Since aTi y−bi < 0, we have |vi| = (di−ri)2−

(
aTi y − bi

)
.

This implies that |vi|+u+i = (di−ri+ρi)2 ≥ 0 and |vi|+u−i =
(di− ri− ρi)2 ≥ 0. Consider further the following sub-cases:

Case 2a: di − ri ≥ 0 and u+i < 0.
Then, we have u−i ≤ u+i < 0, which implies that |vi| ≥
−u−i = max

{
|u+i |, |u

−
i |
}

.
Case 2b: di − ri ≥ 0 and u+i ≥ 0.
If u−i ≥ 0, then |u+i | = u+i ≥ u−i = |u−i |. Otherwise, we

have |vi| ≥ −u−i = |u−i |. It follows that max
{
|u+i |, |vi|

}
≥

|u−i |.
Case 2c: di − ri < 0 and u−i < 0.
Then, we have u+i ≤ u−i < 0, which implies that |vi| ≥
−u+i = max

{
|u+i |, |u

−
i |
}

.
Case 2d: di − ri < 0 and u−i ≥ 0.
If u+i ≥ 0, then |u−i | = u−i ≥ u+i = |u+i |. Otherwise, we

have |vi| ≥ −u+i = |u+i |. It follows that max
{
|u−i |, |vi|

}
≥

|u+i |.
Upon combining the above sub-cases, we conclude that

max
{
|u+i |, |u

−
i |, |vi|

}
= max

{
aTi y − bi + 2ρi|di − ri|+ ρ2i ,

(di − ri)2 −
(
aTi y − bi

) }
.

Case 3: aTi y − bi < 0 and |di − ri| > ρi.
It follows directly from (25) that

max
−ρi≤ei≤ρi

∣∣aTi y − bi + e2i − 2(di − ri)ei
∣∣

= max
{∣∣aTi y − bi ± 2ρi(di − ri) + ρ2i

∣∣} .
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