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Abstract. In this paper we study the problem of recovering a low-rank matrix from a number3
of random linear measurements that are corrupted by outliers taking arbitrary values. We consider4
a nonsmooth nonconvex formulation of the problem, in which we explicitly enforce the low-rank5
property of the solution by using a factored representation of the matrix variable and employ an `1-6
loss function to robustify the solution against outliers. We show that even when a constant fraction7
(which can be up to almost half) of the measurements are arbitrarily corrupted, as long as certain8
measurement operators arising from the measurement model satisfy the so-called `1/`2-restricted9
isometry property, the ground-truth matrix can be exactly recovered from any global minimum10
of the resulting optimization problem. Furthermore, we show that the objective function of the11
optimization problem is sharp and weakly convex. Consequently, a subgradient Method (SubGM)12
with geometrically diminishing step sizes will converge linearly to the ground-truth matrix when13
suitably initialized. We demonstrate the efficacy of the SubGM for the nonconvex robust low-rank14
matrix recovery problem with various numerical experiments.15
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1. Introduction. Low-rank matrices are ubiquitous in computer vision [8, 23],19

machine learning [40], and signal processing [13] applications. One fundamental com-20

putational task is to recover a low-rank matrix X? ∈ Rn1×n2 from a small number of21

linear measurements22

(1.1) y = A(X?),23

where A : Rn1×n2 → Rm is a known linear operator. Such a task arises in quantum24

tomography [1], face recognition [8], linear system identification [18], collaborative fil-25

tering [10], etc. We refer the interested reader to [13,53] for more detailed discussions.26

Although in many interesting scenarios the number of linear measurements m is27

much smaller than n1n2, the low-rank property of X? suggests that its degrees of28

freedom can also be much smaller than n1n2, thus making the task of recovering X?29

possible. This has been demonstrated in, e.g., [10], where a nuclear norm minimiza-30

tion appproach for recovering a low-rank matrix from random linear measurements31

is studied. Despite the strong theoretical guarantees of such approach (see also [21]),32

most existing methods for solving the nuclear norm minimization problem do not33

scale well with the problem size (i.e., n1, n2, and m). To overcome this computatio-34

nal bottleneck, one approach is to enforce the low-rank property explicitly by using a35

factored representation of the matrix variable in the optimization formulation. Such36
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an approach has already been explored in some early works on low-rank semidefi-37

nite programming (see, e.g., [5,6] and the references therein) but has gained renewed38

interest lately in the study of low-rank matrix recovery problems. For the purpose39

of illustration, let us first consider the case where the ground-truth matrix X? is40

symmetric positive semidefinite with rank r. Instead of optimizing, say, an `2-loss41

function involving an n × n symmetric positive semidefinite matrix variable X with42

either a constraint or a regularization term controlling the rank of X, we consider the43

factorization X = UUT and optimize the loss function over the n× r matrix variable44

U :45

minimize
U∈Rn×r

{
ξ(U) :=

1

m
‖y −A(UUT)‖22

}
.(1.2)46

47

There are two obvious advantages with the formulation (1.2). First, the recovered48

matrix will automatically satisfy the rank and positive semidefinite constraints. Se-49

cond, when the rank of the ground-truth matrix is small, the size of the variable U50

can be much smaller than that of X. Although the quadratic nature of UUT renders51

the objective function ξ in (1.2) nonconvex, recent advances in the analysis of the52

landscapes of structured nonconvex functions allow one to show that when the linear53

measurement operator A satisfies certain restricted isometry property (RIP), local54

search algorithms (such as gradient descent) are guaranteed to find a global mini-55

mum of (1.2) and exactly recover the underlying low-rank matrix X? [4,19,35,41,52].56

Moreover, it was shown in [42, 50] that (1.2) satisfies an error bound condition, indi-57

cating that simple gradient descent with an appropriate initialization will converge to58

a global minimum at a linear rate; see [12] for a comprehensive review.59

1.1. Our Goal and Main Results. In this paper, we consider the robust low-60

rank matrix recovery problem, in which the measurements are corrupted by outliers.61

Specifically, we assume that62

(1.3) y = A(X?) + s?,63

where s? ∈ Rm is an outlier vector such that a small fraction of its entries (the64

outliers) have an arbitrary magnitude and the remaining entries are zero. Moreover,65

the set of nonzero entries is assumed to be unknown. Outliers are prevalent in the66

context of sensor calibration [31] (because of sensor failure), face recognition [16] (due67

to self-shadowing, specularity, or saturations in brightness), video surveillance [26]68

(where the foreground objects are modeled as outliers), etc.69

It is well known that the `2-loss function is sensitive to outliers, thus rende-70

ring (1.2) ineffective for recovering the underlying low-rank matrix. As illustrated in71

the top row of Figure 1, the global minima of ξ in (1.2) are perturbed away from the72

underlying low-rank matrix because of the outliers, and a larger fraction of outliers73

leads to a larger perturbation. By contrast, the `1-loss function is more robust against74

outliers and has been widely utilized for outlier detection [8,24,31]. This motivates us75

to adopt the `1-loss function together with the factored representation of the matrix76

variable to tackle the robust low-rank matrix recovery problem:77

(1.4) minimize
U∈Rn×r

{
f(U) :=

1

m
‖y −A(UUT)‖1

}
.78

The robustness of the `1-loss function against outliers can be seen from the bottom row79

of Figure 1, where the global minima of (1.4) correspond precisely to the underlying80
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Fig. 1: Landscapes of the objective functions U 7→ ξ(U) = 1
m
‖y−A(UUT)‖22 (top row) and

U 7→ f(U) = 1
m
‖y − A(UUT)‖1 (bottom row) for low-rank matrix recovery with different

percentages of outliers in the measurement vector y (1.3). Here, the ground-truth matrix
X? is given by X? = U?U?T with U? = [0.5 0.5]T and 40 measurements are taken to form
y. For display purpose, we plot − log(ξ(U)) and − log(f(U)) instead of ξ(U) and f(U).

low-rank matrix X? even in the presence of outliers. However, compared with (1.2),81

the exact recovery property of (1.4) (i.e., when the global minima of (1.4) yield the82

ground-truth matrix X?) and the convergence behavior of local search algorithms for83

solving (1.4) are much less understood. This stems in part from the fact that (1.4) is a84

nonsmooth nonconvex optimization problem, but most of the algorithmic and analysis85

techniques developed in the recent literature on structured nonconvex optimization86

problems apply only to the smooth setting.87

In view of the above discussion, we aim to (i) provide conditions in terms of the88

number of linear measurements m and the fraction of outliers that can guarantee the89

exact recovery property of (1.4) and (ii) design a first-order method to solve (1.4) and90

establish guarantees on its convergence performance. To achieve (i), we utilize the91

notion of `1/`2-restricted isometry property (`1/`2-RIP), which has been introduced92

previously in the context of low-rank matrix recovery [46, 48] and covariance estima-93

tion [11]. We show that if the fraction of outliers is slightly less than 1
2 , then as long94

as the measurement operator A and its restriction AΩc onto the complement of the95

support set Ω of the outlier vector s? possess the `1/`2-RIP, any global minimum U?96

of (1.4) must satisfy U?U?T = X?. To tackle (ii), we propose to use a subgradient97

method (SubGM) to solve (1.4). As a key step in the convergence analysis of the98

SubGM, we show that under the aforementioned setting for the fraction of outliers99

and the `1/`2-RIP of the operators A and AΩc , the objective function f in (1.4) is100

sharp (see Definition 1) and weakly convex (see Definition 2). Consequently, we can101

apply (a slight variant of) the analysis framework in [14] to show that when initialized102

close to the set of global minima of (1.4), the SubGM with geometrically diminishing103

step sizes will converge R-linearly to a global minimum. To the best of our knowledge,104
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this is the first time an exact recovery condition (i.e., the `1/`2-RIP of A and AΩc) for105

the optimization formulation (1.4) is shown to also imply its regularity (i.e., sharpness106

and weak convexity). We summarize the above results in the following theorem:107

Theorem 1 (informal; see Theorem 3 for the formal statement). Consider the108

measurement model (1.3), where the ground-truth matrix X? is symmetric positive109

semidefinite with rank r. Suppose that the fraction of outliers is less than half and both110

operators A and AΩc possess the `1/`2-RIP (see Subsection 3.1 and Subsection 3.2).111

Then, every global minimum of (1.4) corresponds to the ground-truth matrix X?112

and the objective function f is sharp (see Definition 1) and weakly convex (see De-113

finition 2). Consequently, when applied to (1.4), the SubGM with an appropriate114

initialization will converge to the ground-truth matrix X? at a linear rate.115

Before we proceed, several remarks are in order. First, for various random measu-116

rement operators A, such as sub-Gaussian measurement operators and the quadratic117

measurement operators in [11], as long as the number of measurements is sufficiently118

large, the operators A and AΩc will possess the `1/`2-RIP with high probability. This119

is the case, for instance, when A is a Gaussian measurement operator with m & nr120

measurements.1 In particular, when combined with Theorem 1, we see that the low-121

rank matrix X? in (1.3) can be recovered using an information-theoretically optimal122

number of measurements. Second, although at first glance (1.4) seems to be more123

difficult to solve than (1.2) because of nonsmoothness, Theorem 1 implies that (1.4)124

can be solved as efficiently as its smooth counterpart (1.2), in the sense that both125

can be solved by first-order methods that have a linear convergence guarantee.126

Although Theorem 1 is concerned with the setting where X? is symmetric positive127

semidefinite, it can be extended to the general setting where X? is a rank-r n1×n2 ma-128

trix. Specifically, by using the factorization X = UV T with U ∈ Rn1×r, V ∈ Rn2×r129

and utilizing the nonsmooth regularizer ‖UTU − V TV ‖F (or ‖UTU − V TV ‖1) to130

account for the ambiguities in the factorization caused by invertible transformations,131

we formulate the general robust low-rank matrix recovery problem as follows:132

(1.5) minimize
U∈Rn1×r,V ∈Rn2×r

{
g(U ,V ) :=

1

m
‖y −A(UV T)‖1 + λ‖UTU − V TV ‖F

}
.133

Here, λ > 0 is a regularization parameter. We remark that the regularizer used in134

the above formulation is motivated by but different from that used in [35,42,52]. The135

latter, which is given by ‖UTU − V TV ‖2F , is smooth but is not as well suited for136

robustifying the solution against outliers. In Section 4 we show that all the results137

established for (1.4) in Theorem 1 carry over to (1.5) for any λ > 0 (but the choice138

of λ affects the sharpness and weak convexity parameters; see the discussion after139

Proposition 6).140

1.2. Related Work. By analyzing the optimization geometry, recent works [4,141

19,28, 35, 42] have shown that many local search algorithms with either an appropri-142

ate initialization or a random initialization can provably solve the low-rank matrix143

recovery problem (1.2) when the measurement operator A satisfies the RIP. In par-144

ticular, gradient descent with an appropriate initialization is shown to converge to145

a global optimum at a linear rate [42, 51], while quadratic convergence is establis-146

hed for the cubic regularization method [47]. Key to these results is certain error147

bound conditions, which elucidate the regularity properties of the underlying opti-148

mization problem. Recently, the above results have been extended to cover general149

1See Subsection 1.3 for the meaning of the notation &.
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smooth low-rank matrix optimization problems whose objective functions satisfy the150

restricted strong convexity and smoothness properties [27,51,52].151

For the robust low-rank matrix recovery problem, existing solution methods can152

be classified into two categories. The first is based on the convex approach [8, 25,153

31]. Although such approach enjoys strong statistical guarantees, it is computational154

expensive and thus not scalable to practical problems. The second category is based155

on the nonconvex approach. This includes the alternating minimization methods156

[22, 33, 45, 49], which typically use projected gradient descent for low-rank matrix157

recovery and thresholding-based truncation for identification of outliers. However,158

these methods typically require performing an SVD in each iteration for projection159

onto the set of low-rank matrices. Recently, a median-truncated gradient descent160

method has been proposed in [30] to tackle (1.2), where the gradient is modified to161

alleviate the effect of outliers. The median-truncated gradient descent is shown to162

have a local linear convergence rate [30], but such guarantee requires m & nr log n163

measurements. Moreover, the maximum number of outliers that can be tolerated is164

not explicitly given. By contrast, our result only requires m & nr measurements165

(which matches the optimal information-theoretic bound) and explicitly bounds the166

fraction of outliers that can be present. We also note that a SubGM has been proposed167

in [31] for solving (1.4) in the setting where A is a certain quadratic measurement168

operator. As reported in [31], the SubGM exhibits excellent empirical performance169

in terms of both computational efficiency and accuracy. In this paper, we provide170

a rigorous justification for the empirical success of the SubGM, thus answering a171

question that is left open in [31].172

Finally, we remark that our work is closely related to the recent works [2,14,15,54]173

on subgradient methods for nonsmooth nonconvex optimization. A projected subgra-174

dient method is proven to converge linearly for the robust subspace recovery pro-175

blem [54] and sublinearly for orthonormal dictionary learning [2]. It is shown in [14,15]176

that if the optimization problem at hand is sharp (see Definition 1) and weakly con-177

vex (see Definition 2), various subgradient methods for solving it will converge at a178

linear rate. Currently, only a few applications are known to give rise to sharp and179

weakly convex optimization problems, such as robust phase retrieval [15, 17] and ro-180

bust covariance estimation with quadratic sampling [14]. Thus, our result expands181

the repertoire of optimization problems that are sharp and weakly convex and contri-182

butes to the growing literature on the geometry of structured nonsmooth nonconvex183

optimization problems.184

1.3. Notation. Let us introduce the notations used in this paper. Finite-185

dimensional vectors and matrices are indicated by bold characters. The symbols I and186

0 represent the identity matrix and zero matrix/vector, respectively. The set of r× r187

orthogonal matrices is denoted by Or := {R ∈ Rr×r : RTR = I}. The subdifferential188

of the absolute value function | · | is denoted by Sign; i.e., Sign(a) :=

{
a/|a|, a 6= 0,

[−1, 1], a = 0.
189

We use Sign(A) to denote the matrix obtained by applying the Sign function to each190

element of the matrix A. Furthermore, we use ‖A‖F to denote the Frobenius norm191

of the matrix A and ‖a‖ to denote the `2-norm of the vector a. Finally, we use x . y192

(resp. x & y) to indicate that x ≤ cy (resp. x ≥ cy) for some universal constant c > 0.193

2. Problem Setup and Preliminaries. Consider the general optimization194

problem195

(2.1) inf
x∈Rn

h(x),196

This manuscript is for review purposes only.
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where h : Rn → R is a lower semi-continuous, possibly nonsmooth and nonconvex,197

function. Let h? denote the optimal value of (2.1) and198

X := {z ∈ Rn : h(z) ≤ h(x), ∀x ∈ Rn}199

denote the set of global minima of h. We assume that X 6= ∅. Given any x ∈ Rn, the200

distance between x and X is defined as201

dist(x,X ) := inf
z∈X
‖x− z‖.202

Since h can be nonsmooth, we utilize tools from generalized differentiation to for-203

mulate the optimality condition of (2.1). The (Fréchet) subdifferential of h at x is204

defined as205

(2.2) ∂h(x) :=

{
d ∈ Rn : lim inf

y→x

h(y)− h(x)− 〈d,y − x〉
‖y − x‖

≥ 0

}
,206

where each d ∈ ∂h(x) is called a subgradient of h at x. We say that x is a critical207

point of h if 0 ∈ ∂h(x).208

2.1. Sharpness and Weak Convexity. Since our goal is to consider a set of209

problems that can be solved by the SubGM with a linear rate of convergence, let us210

introduce two regularity notions for h that are central to our study.211

Definition 1 (sharpness; cf. [7]). We say that h : Rn → R is sharp with para-212

meter α > 0 if213

h(x)− h? ≥ α dist(x,X )214

for all x ∈ Rn.215

Definition 2 (weak convexity; see, e.g., [44]). We say that h : Rn → R is weakly216

convex with parameter τ ≥ 0 if x 7→ h(x) + τ
2‖x‖

2 is convex.217

Suppose that h is sharp and weakly convex with parameters α > 0 and τ ≥ 0,218

respectively. It is known that for any x /∈ X with dist(x,X ) < 2α
τ , we have 0 /∈ ∂h(x);219

i.e., x is not a critical point of h [14, Lemma 3.1]. This suggests the possibility of220

finding a global minimum of h by initializing local search algorithms with a point221

that is close to X . To explore such possibility, let us consider using the SubGM in222

Algorithm 2.1 to solve the nonsmooth nonconvex optimization problem (2.1).223

Algorithm 2.1 Subgradient Method (SubGM) for Solving (2.1)

Initialization: set x0 and µ0;

1: for k = 0, 1, . . . do
2: compute a subgradient dk ∈ ∂h(xk);
3: update the step size µk according to a certain rule;
4: update xk+1 = xk − µkdk;
5: end for

2.2. Convergence of SubGM for Sharp Weakly Convex Functions. Un-224

like gradient descent, the SubGM with a constant step size may not converge to225

a critical point of a nonsmooth function in general, even when the function is con-226

vex [3,32,38]. To ensure the convergence of the SubGM, a set of diminishing step sizes227

is generally needed [20, 38]. As it turns out, for a sharp weakly convex function h,228

the SubGM with step sizes that are diminishing at a geometric rate can still be shown229

to converge linearly to a global minimum when initialized close to X . Specifically, let230

(2.3) κ := sup
{
‖d‖ : d ∈ ∂h(x),dist(x,X ) <

2α

τ

}
,231

This manuscript is for review purposes only.
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which can be shown to satisfy κ ≥ α; cf. [14, Lemma 3.2]. Then, we have the following232

result:233

Theorem 2 (local linear convergence of SubGM). Suppose that the function234

h : Rn → R is sharp and weakly convex with parameters α > 0 and τ ≥ 0, re-235

spectively. Suppose further that the SubGM in Algorithm 2.1 is initialized with a236

point x0 satisfying dist(x0,X ) < 2α
τ and uses the geometrically diminishing step sizes237

µk = ρkµ0, where the initial step size µ0 satisfies238

(2.4) µ0 ≤
α2

2τκ2

(
1−

(
max

{ τ
α

dist(x0,X )− 1, 0
})2

)
239

and the decay rate ρ satisfies240

(2.5) 1 > ρ ≥ ρ :=

√
1−

(
2α

dist0

− τ
)
µ0 +

κ2

dist
2

0

µ2
0241

with242

(2.6) dist0 = max

{
dist(x0,X ), µ0

max{κ2, 2α2}
α

}
.243

Then, the iterates {xk}k≥0 generated by the SubGM will converge linearly to a point244

in X :245

dist(xk,X ) ≤ ρkdist0, ∀k ≥ 0.246

We note that a similar result has been established in [14, Corollary 6.1]. Neverthe-247

less, compared with [14, Corollary 6.1], which requires α
κ ≤

√
1

2−γ and dist(x0,X ) ≤248

γα
τ for some γ ∈ (0, 1), Theorem 2 is less restrictive and allows the larger initialization249

region dist(x0,X ) < 2α
τ . In particular, as α

κ tends to 1, so does γ, and the decay rate250

ρ in [14, Corollary 6.1] approaches 1. Thus, one can no longer use [14, Corollary 6.1]251

to conclude that the SubGM converges linearly when α
κ = 1. By contrast, the linear252

convergence result in Theorem 2 is still valid in this case. Theorem 2 can be proven253

by refining the arguments in the proof of [14, Theorem 6.1]. We refer the reader to254

the companion technical report [29] of this paper for details.255

Before we proceed, it is worth elaborating on the implication of Theorem 2 when256

h is convex. In this case, we can take τ = 0, which, in view of (2.4), shows that257

µ0 can be arbitrarily chosen. If we choose µ0 ≥ α dist(x0,X )
max{κ2,2α2} , then by (2.6) we have258

dist0 = µ0
max{κ2,2α2}

α , which implies that the decay rate ρ satisfies259

ρ =

√
1− 2α2

max{κ2, 2α2}
+

κ2α2

(max{κ2, 2α2})2
=

{√
1− α2

κ2 , κ2 ≥ 2α2,
κ
2α , κ2 < 2α2.

260

In particular, this is in line with the results in [20, Theorem 4.4].261

3. Nonconvex Robust Low-Rank Matrix Recovery: Symmetric Posi-262

tive Semidefinite (PSD) Case. In the last section we saw that the SubGM with263

suitable initialization and step sizes converges linearly to a global minimum of a sharp264

weakly convex function. Naturally, it is of interest to identify concrete problems that265

possess these two regularity properties. In this section we focus on the robust low-rank266

matrix recovery problem (1.4) and establish, for the first time, a connection between267

the exact recovery condition of `1/`2-RIP and the regularity properties of sharpness268

and weak convexity of the objective function f in (1.4). Specifically, we first show that269
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if the fraction of outliers is slightly less than 1
2 and certain measurement operators270

arising from the measurement model (1.3) possess the `1/`2-RIP, then the sharpness271

condition in Definition 1 holds for (1.4). Consequently, all global minima of (1.4)272

lead to the exact recovery of the ground-truth matrix X?. We then show that (1.4)273

also satisfies the weak convexity condition in Definition 2. Hence, by the convergence274

result (Theorem 2) in the last section, we conclude that the SubGM can be utilized275

to find a global minimum of (1.4) efficiently.276

To begin, let us collect some preparatory results. Let X? = U?U?T be a277

factorization of X?, where U? ∈ Rn×r. Note that for any R ∈ Or, we have278

X? = U?R(U?R)T. Thus, all elements in the set279

U := {U?R : R ∈ Or}280

are valid factors of X?. Furthermore, it is clear that the function f in (1.4) is constant281

on the set U . The following result connects dist(U ,U) and the distance between UUT282

and U?U?T for any given U ∈ Rn×r:283

Lemma 1 ( [42, Lemma 5.4]). Given any U? ∈ Rn×r, define X? = U?U?T.284

Then, for any U ∈ Rn×r, we have285

2
(√

2− 1
)
σ2
r(X?) dist2(U ,U) ≤ ‖UUT −U?U?T‖2F ,286

where σr denotes the r-th largest singular value.287

3.1. `1/`2-Restricted Isometry Property. Since the `1/`2-RIP [11, 46, 48]288

of the linear measurement operator A : Rn×n → Rm in (1.4) plays an impor-289

tant role in our subsequent analysis, let us first provide a condition under which290

A will possess such property. Recall that A can be specified by a collection of291

m n × n matrices A1, . . . ,Am. In other words, given any X ∈ Rn×n, we have292

A(X) = (〈A1,X〉, . . . , 〈Am,X〉). We now show that if A1, . . . ,Am have indepen-293

dent and identically distributed (i.i.d.) standard Gaussian entries, then A will possess294

the `1/`2-RIP with high probability.295

Proposition 1 (`1/`2-RIP of Gaussian measurement operators). Let r ≥ 1 be296

given. Suppose that m & nr and the matrices A1, . . . ,Am ∈ Rn×n defining the297

linear measurement operator A have i.i.d. standard Gaussian entries. Then, for298

any 0 < δ <
√

2
π , there exists a universal constant c > 0 such that with probability299

exceeding 1− exp(−cδ2m), A will possess the `1/`2-RIP; i.e., the inequalities300

(3.1)

(√
2

π
− δ

)
‖X‖F ≤

1

m
‖A(X)‖1 ≤

(√
2

π
+ δ

)
‖X‖F301

hold for any rank-2r matrix X ∈ Rn×n.302

The proof of Proposition 1 is given in Appendix A. It is worth noting that simi-303

lar `1/`2-RIPs hold for other types of measurement operators such as the quadratic304

measurement operators in [11] and those defined by sub-Gaussian matrices. Thus,305

although our results are stated for Gaussian measurement operators, they can be306

readily extended to cover other measurement operators that possess similar RIPs.307

3.2. Sharpness and Exact Recovery. Assuming that the linear measurement308

operator A possesses the `1/`2-RIP (3.1), our first goal is to identify further conditions309

on the measurement model (1.3) so that any global minimum U? of (1.4) can be used310
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to recover the ground-truth matrix X? via U?U?T = X?. Towards that end, let311

Ω ⊆ {1, . . . ,m} denote the support of the outlier vector s? and Ωc = {1, . . . ,m} \ Ω.312

Furthermore, let p = |Ω|
m be the fraction of outliers in y. Throughout, we do not make313

any assumption on the location of the non-zero entries of s?. Instead, we assume that314

AΩc , the linear operator defined by the matrices in {Ai : i ∈ Ωc}, also possesses the315

`1/`2-RIP; i.e., we have316

(3.2)

(√
2

π
− δ

)
‖X‖F ≤

1

m(1− p)
‖[A (X)]Ωc‖1 ≤

(√
2

π
+ δ

)
‖X‖F317

for any rank-2r matrix X. When each Ai is generated with i.i.d. standard Gaussian318

entries, Proposition 1 implies that AΩc will satisfy (3.2) with high probability as long319

as p is a constant. This follows from the fact that |Ωc| = (1− p)m & nr if m & nr.320

Proposition 2 (sharpness and exact recovery with outliers: PSD case). Let 0 <321

δ < 1
3

√
2
π be given. Suppose that the fraction of outliers p satisfies322

(3.3) p <
1

2
− δ√

2/π − δ
,323

and that the linear operators A and AΩc possess the `1/`2-RIP (3.1) and (3.2), re-324

spectively. Then, the objective function f in (1.4) satisfies325

f(U)− f(U?) ≥ α dist(U ,U)326

for any U ∈ Rn×r, where327

(3.4) α =

√
2
(√

2− 1
)(

2(1− p)

(√
2

π
− δ

)
−

(√
2

π
+ δ

))
σr(X

?) > 0.328

In particular, the set U is precisely the set of global minima of (1.4) and the objective329

function f is sharp with parameter α > 0.330

Proof of Proposition 2. Using (1.3) and (1.4), we compute331

f(U)− f(U?) =
1

m

∥∥A (UUT −X?
)
− s?

∥∥
1
− 1

m
‖s?‖1

=
1

m

∥∥[A (UUT −X?
)]

Ωc

∥∥
1

+
1

m

∥∥[A (UUT −X?
)]

Ω
− s?

∥∥
1
− 1

m
‖s?‖1

≥ 1

m

∥∥[A (UUT −X?
)]

Ωc

∥∥
1
− 1

m

∥∥[A (UUT −X?
)]

Ω

∥∥
1

=
2

m

∥∥[A (UUT −X?
)]

Ωc

∥∥
1
− 1

m

∥∥A (UUT −U?U?T
)∥∥

1

≥

(
2(1− p)

(√
2

π
− δ

)
−

(√
2

π
+ δ

))∥∥U?U?T −UUT
∥∥
F

≥ α dist(U ,U),

332

where the second inequality follows from the `1/`2-RIP of A and AΩc and the last333

inequality follows from Lemma 1. The characterization of the set of global minima334

of (1.4) follows immediately from the above inequality and the choice of p in (3.3).335
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One interesting consequence of Proposition 2 is that for the robust low-rank ma-336

trix recovery problem (1.4), the sharpness condition (which characterizes the geometry337

of the optimization problem around the set of global minima) coincides with the exact338

recovery property (which is of statistical nature). Moreover, condition (3.3) suggests339

that the smaller δ is, the higher the outlier ratio p can be. On the other hand, given an340

outlier ratio p, condition (3.3) requires that δ <
√

2
π−
√

2/π

3/2−p , which indirectly imposes341

a condition on the number of measurements m. Indeed, Proposition 1 implies that in342

order for a Gaussian measurement operator A to possess the `1/`2-RIP with positive343

probability, we need m & nr
/(√

2
π −
√

2/π

3/2−p
)2

measurements. Putting it another way,344

the larger the number of measurements m is, the higher the outlier ratio p can be.345

We shall elaborate on this point with experiments in Section 5.346

3.3. Weak Convexity. In the last subsection we established the sharpness of347

(1.4) and showed that any of its global minimum will lead to the exact recovery348

of the ground-truth matrix X?, even when the fraction of outliers is up to almost349
1
2 . In this subsection we further establish the weak convexity of (1.4), thus opening350

up the possibility of using the machinery developed in Section 2 to obtain provable351

convergence guarantees for the SubGM when it is applied to solve (1.4). Towards352

that end, we note that the `1-norm, being a convex function, is subdifferentially353

regular [37, Example 7.27] (see [37, Definition 7.25] for the definition of subdifferential354

regularity). Hence, by the chain rule for subdifferentials of subdifferentially regular355

functions [37, Corollary 8.11 and Theorem 10.6], we have356

(3.5)

∂f(U) =
1

m

[(
A∗
(
Sign

(
A(UUT)− y

)))T
U +A∗

(
Sign

(
A(UUT)− y

))
U
]
.357

We are now ready to prove the following result. Note that the weak convexity para-358

meter τ in (3.6) is independent of the fraction of outliers.359

Proposition 3 (weak convexity: PSD case). Suppose that the measurement360

operator A satisfies the `1/`2-RIP (3.1). Then, the objective function f in (1.4) is361

weakly convex with parameter362

(3.6) τ = 2
(√ 2

π
+ δ
)
.363

Proof of Proposition 3. For any U ′,U ∈ Rn×r, let ∆ = U ′ −U . Then, we have364

f(U ′) =
1

m

∥∥A(U ′U ′T −X?)− s?
∥∥

1
365

=
1

m

∥∥A(UUT −X? + U∆T + ∆UT + ∆∆T)− s?
∥∥

1
366

≥ 1

m

∥∥A(UUT −X? + U∆T + ∆UT)− s?
∥∥

1
− 1

m

∥∥A(∆∆T)
∥∥

1
367

≥ 1

m

∥∥A(UUT −X? + U∆T + ∆UT)− s?
∥∥

1
−

(√
2

π
+ δ

)∥∥∆∆T
∥∥
F

368

≥ f(U) +
1

m

〈
d,A(U∆T + ∆UT)

〉
− τ

2
‖∆‖2F369

370

for any d ∈ Sign(A(UUT)− y), where the second inequality follows from the `1/`2-371

RIP ofA and the last inequality is due to the convexity of the `1-norm and ‖∆∆T‖F ≤372
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‖∆‖2F . Substituting (3.5) into the above equation gives373

f(U ′) ≥ f(U) + 〈D,U ′ −U〉 − τ

2
‖U ′ −U‖2F , ∀ D ∈ ∂f(U).374

This completes the proof.375

3.4. Putting Everything Together. With the results in Subsection 3.2 and376

Subsection 3.3 in place, in order to show that the SubGM enjoys the convergence377

guarantees in Theorem 2 when applied to the robust low-rank matrix recovery pro-378

blem (1.4), it remains to determine κ, the bound on the norm of any subgradient of379

f in a neighborhood of U ; see (2.3). This is established by the following result:380

Proposition 4 (bound on subgradient norm: PSD case). Suppose that the mea-381

surement operator A satisfies the `1/`2-RIP (3.1). Then, for any U ∈ Rn×r satisfying382

dist(U ,U) ≤ 2α
τ , we have383

(3.7) ‖D‖F ≤ κ = 2

(√
2

π
+ δ

)(
‖U?‖F +

2α

τ

)
, ∀D ∈ ∂f(U).384

Proof of Proposition 4. Recall from (2.2) that385

(3.8) lim inf
U ′→U

f(U ′)− f(U)− 〈D,U ′ −U〉
‖U ′ −U‖F

≥ 0386

for any D ∈ ∂f(U). Now, for any U ′ ∈ Rn×r,387

|f(U ′)− f(U)| = 1

m

∣∣∥∥y −A(U ′U ′T)
∥∥

1
−
∥∥y −A(UUT)

∥∥
1

∣∣388

≤ 1

m

∥∥A(U ′U ′T −UUT)
∥∥

1
389

≤

(√
2

π
+ δ

)∥∥U ′U ′T −UUT
∥∥
F

390

=

(√
2

π
+ δ

)∥∥(U ′ −U)UT + U ′(U ′ −U)T
∥∥
F

391

≤

(√
2

π
+ δ

)
(‖U‖+ ‖U ′‖)‖U ′ −U‖F ,392

393

where the second inequality follows from the `1/`2-RIP of A. It follows that394

lim inf
U ′→U

|f(U ′)− f(U)|
‖U −U ′‖F

≤ lim
U ′→U

(
√

2/π + δ)(‖U‖+ ‖U ′‖)‖U ′ −U‖F
‖U ′ −U‖F

395

= 2

(√
2

π
+ δ

)
‖U‖.396

397

Upon taking U ′ = U + tD, t→ 0 and invoking (3.8), we get398

‖D‖F ≤ 2

(√
2

π
+ δ

)
‖U‖, ∀ D ∈ ∂f(U).399

To complete the proof, it remains to note that for any U ∈ Rn×r satisfying dist(U ,U) ≤400
2α
τ , where α, τ are given in (3.4), (3.6), respectively, the triangle inequality yields401

‖U‖ ≤ ‖U?‖F + 2α
τ .402
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By collecting Proposition 2, Proposition 3, and Proposition 4 together and in-403

voking Theorem 2, we obtain the following guarantees for the SubGM2 when it is404

applied to the robust low-rank matrix recovery problem (1.4):405

Theorem 3 (nonconvex robust low-rank matrix recovery: PSD case). Consider406

the measurement model (1.3), where X? is an n× n rank-r symmetric positive semi-407

definite matrix. Let 0 < δ < 1
3

√
2
π be given. Suppose that the fraction of outliers p in408

the measurement vector y satisfies (3.3), and that the linear operators A, AΩc possess409

the `1/`2-RIP (3.1), (3.2), respectively. Let α, τ , and κ be given by (3.4), (3.6), and410

(3.7), respectively. Under such setting, suppose that we apply the SubGM in Algo-411

rithm 2.1 to solve (1.4), where the initial point U0 satisfies dist(U0,U) < 2α
τ and the412

geometrically diminishing step sizes µk = ρkµ0 are used with µ0, ρ satisfying (2.4),413

(2.5), respectively. Then, the sequence of iterates {Uk}k≥0 generated by the SubGM414

will converge to a point in U at a linear rate:415

dist(Uk,U) ≤ ρk max

{
dist(U0,U), µ0

max{κ2, 2α2}
α

}
.416

Moreover, the ground-truth matrix X? can be exactly recovered by any point U? ∈ U417

via X? = U?U?T.418

We remark that a similar result for the smooth counterpart (1.2) without any out-419

liers is established in [42, Theorem 3.3]. Our Theorem 3 implies that the nonsmooth420

problem (1.4) can be solved as efficiently as its smooth counterpart (1.2), even in the421

presence of a substantial fraction of outliers in the measurement vector.422

3.5. Initializing the SubGM. We now discuss some potential initialization423

strategies for the SubGM. A common approach to generating an appropriate initi-424

alization for matrix recovery-type problems is the spectral method. In our context,425

this entails simply computing the rank-r approximation of 1
mA

∗(y) = 1
m

∑m
i=1 yiAi,426

where A∗ is the adjoint operator of A. Specifically, let PΠQT be a rank-r SVD of427
1
mA

∗(y), where P ,Q have orthonormal columns and Π is an r × r diagonal matrix428

with the top r singular values of 1
mA

∗(y) along its diagonal. In the symmetric po-429

sitive semidefinite case, we may assume without loss of generality that A1, . . . ,Am430

are symmetric. Then, we can take U0 = PΠ1/2 as the initialization. The main idea431

behind this approach is that when there is no outlier (i.e., y = A(X?) as in (1.1)),432

we have 1
mA

∗(y) = 1
mA

∗(A(X?)) ≈X? when 1
mA

∗A is close to an unitary operator433

for low-rank matrices. Thus, U0 is also expected to be close to U . However, when434

the measurements are corrupted by outliers, it is possible that 1
mA

∗(y) is perturbed435

away from 1
mA

∗(A(X?)) and thus U0 may not be close enough to U . To mitigate the436

influence of outliers, Li et al. [30] have recently proposed a truncated spectral method437

for initialization, in which the spectral method is applied to an operator that is formed438

by using those measurements whose absolute values do not deviate too much from the439

median of the absolute values of certain sampled measurements; see Algorithm 3.1.440

They showed that under appropriate conditions, the truncated spectral method can441

output an initialization that satisfies the requirement of Theorem 3.442

Theorem 4 (proximity of initialization to optimal set: PSD case; cf. [30, The-443

orem 3.3]). Let r ≥ 1 be given and set c = ‖X?‖F√
rσr(X?)

. Suppose that the matrices444

A1, . . . ,Am ∈ Rn×n defining the linear measurement operator A are symmetric and445

2In practice, we can just take Sign(0) = 0 when applying the SubGM to solve (1.4).
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Algorithm 3.1 Truncated Spectral Method for Initialization [30]

Input: measurement vector y; sensing matrices A1, . . . ,Am; threshold β > 0;

1: set y1 = {yi}bm/2ci=1 , y2 = {yi}mbm/2c+1;
2: Compute the rank-r SVD of

E =
1

bm/2c

bm/2c∑
i=1

yiAiI{|yi|≤β·median(|y2|)}

and denote it by PΠQT , where

I{|yi|≤β·median(|y2|)} =

{
1 if |yi| ≤ β ·median(|y2|),
0 otherwise;

Output: U0 = PΠ1/2, V0 = QΠ1/2;

have i.i.d. standard Gaussian entries on and above the diagonal, and that the num-446

ber of measurements m satisfies m & β2c2nr2 log n, where β = 2 log
(
r1/4c1/2 + 20

)
.447

Furthermore, suppose that the fraction of outliers p in the measurement vector y448

satisfies p . 1√
rc

. Then, with overwhelming probability, Algorithm 3.1 outputs an ini-449

tialization U0 ∈ Rn×r satisfying dist(U0,U) . σr(X
?) and hence also the requirement450

of Theorem 3 (as σr(X
?) is of the same order as 2α

τ ).451

Note that the requirements on the number of measurements and the fraction of452

outliers that can be tolerated are slightly more stringent than those in Proposition 1453

and Theorem 3. However, as will be illustrated in Section 5, our numerical expe-454

riments show that even a randomly initialized SubGM can very efficiently find the455

global minimum and hence recover the ground-truth matrix X?. A theoretical jus-456

tification of such a phenomenon will be the subject of a future study. We suspect457

that it may be possible to relax the requirement on the initialization in Theorem 3 or458

to show that the SubGM enters the region
{
U : dist(U ,U) < 2α

τ

}
very quickly even459

though the random initialization lies outside of this region.460

4. Nonconvex Robust Low-Rank Matrix Recovery: General Case. In461

this section we consider the general setting where X? is a rank-r n1 × n2 matrix. To462

extend the nonsmooth nonconvex formulation (1.4) to this setting, a natural approach463

is to use the factorization X = UV T with U ∈ Rn1×r and V ∈ Rn2×r. However, such464

a factorization is ambiguous in the sense that if X = UV T, then X = (UT )(V T−T)T465

for any invertible matrix T ∈ Rr×r. To address this issue, we introduce the nonsmooth466

nonconvex regularizer467

(4.1) φ(U ,V ) := ‖UTU − V TV ‖F ,468

which aims to balance the factors U and V , and solve the following regularized469

problem:470

(4.2) minimize
U∈Rn1×r,V ∈Rn2×r

{
g(U ,V ) :=

1

m
‖y −A(UV T)‖1 + λ‖UTU − V TV ‖F

}
.471

Here, λ > 0 is a regularization parameter. We remark that a similar regularizer,472

namely,473

φ̃(U ,V ) := ‖UTU − V TV ‖2F ,474
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has been introduced in [35, 42, 52] to account for the ambiguities caused by in-475

vertible transformations when minimizing the squared `2-loss function (U ,V ) 7→476
1
m‖y−A(UV T)‖22. However, such a regularizer is not entirely suitable for the `1-loss477

function, as it is no longer clear that the resulting problem will satisfy the sharpness478

condition in Definition 1.479

To simplify notation, we stack U and V together as W =
[
UT V T

]T
and write480

g(W ) for g(U ,V ). Observe that the regularizer φ achieves its minimum value of 0481

when U and V have the same Gram matrices; i.e., UTU = V TV . Now, let X? =482

ΦΣΨT be a rank-r SVD of X?, where Φ ∈ Rn1×r,Ψ ∈ Rn2×r have orthonormal483

columns and Σ ∈ Rr×r is a diagonal matrix. Define484

U? = ΦΣ1/2, V ? = ΨΣ1/2, W ? =
[
U?T V ?T

]T
.485

The orthogonal invariance of g (i.e., g(W ) = g(WR) for any R ∈ Or) implies that g486

is constant on the set487

W := {W ?R : R ∈ Or} .488

4.1. Sharpness and Exact Recovery. Our immediate goal is to show that W489

is the set of global minima of (4.2). Towards that end, let 0 < δ < 1
3

√
2
π be given.490

Suppose that the fraction of outliers p in the measurement vector y satisfies (3.3),491

and that the linear operators A : Rn1×n2 → Rm and AΩc : Rn1×n2 → R|Ωc| possess492

the `1/`2-RIP (3.1) and (3.2), respectively.3 Using the argument in the proof of493

Proposition 2, we get494

(4.3) g(W )− g(W ?) ≥

(
2(1− p)

(√
2

π
− δ

)
−

(√
2

π
+ δ

))
‖UV T −X?‖F ,495

where496

g(W ) =
1

m
‖y −A(UV T)‖1.497

In particular, we see that g(W ) > g(W ?) whenever UV T 6= X?. Since U?TU? =498

V ?TV ? by construction, we conclude that W ? is a global minimum of (4.2), as W ? is499

a global minimum of both the first term g and the second term φ of g. It then follows500

from the orthogonal invariance of g that every element in W is a global minimum501

of (4.2). The following result further establishes that W is exactly the set of global502

minima of (4.2) and g is sharp.503

Proposition 5 (sharpness and exact recovery with outliers: general case). Let504

0 < δ < 1
3

√
2
π be given. Suppose that the fraction of outliers p satsifies (3.3), and that505

the linear operators A and AΩc possess the `1/`2-RIP (3.1) and (3.2), respectively.506

Then, the objective function g in (4.2) satisfies507

g(W )− g(W ?) ≥ α dist(W ,W)508

for any W ∈ R(n1+n2)×r, where509

(4.4) α =

√√
2− 1 ·min

{
2(1− p)

(√
2

π
− δ

)
−

(√
2

π
+ δ

)
, 2λ

}
· σr(X?) > 0.510

3It can be shown that modulo the constants, the Gaussian measurement operator A : Rn1×n2 →
Rm will possess the `1/`2-RIPs (3.1) and (3.2) with high probability as long as m & max{n1, n2}r.
To avoid any distraction caused by the new constants, we shall simply use the `1/`2-RIPs (3.1)
and (3.2) in our derivation.
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In particular, the set W is precisely the set of global minima of (4.2) and the objective511

function g is sharp with parameter α > 0.512

Proof of Proposition 5. Let ζ(p, δ) = 2(1 − p)
(√

2
π − δ

)
−
(√

2
π + δ

)
. Since513

U?TU? = V ?TV ?, we have φ(W ?) = 0 by (4.1) and514

g(W )− g(W ?) =
1

m
‖y −A(UV T)‖1 −

1

m
‖y −A(X?)‖1 + λ‖UTU − V TV ‖F515

≥ ζ(p, δ)‖X? −UV T‖F + λ‖UTU − V TV ‖F516

≥ min {ζ(p, δ), 2λ}
(
‖X? −UV T‖F +

1

2
‖UTU − V TV ‖F

)
517

≥ min {ζ(p, δ), 2λ}
√
‖X? −UV T‖2F +

1

4
‖UTU − V TV ‖2F518

≥ min

{
ζ(p, δ)

2
, λ

}
‖WWT −W ?W ?T‖F519

≥ min

{
ζ(p, δ)

2
, λ

}√
2
(√

2− 1
)
σr(W

?) dist(W ,W)520

= min {ζ(p, δ), 2λ}
√√

2− 1σ1/2
r (X?) dist(W ,W),521522

where the first inequality follws from (4.3), the fourth inequality follows from523

‖X? −UV T‖2F +
1

4
‖UTU − V TV ‖2F = ‖U?V ?T −UV T‖2F +

1

4
‖UTU − V TV ‖2F524

=
1

4
‖WWT −W ?W ?T‖2F + ν(W )525

526

with527

ν(W ) =
1

2
‖UV T −U?V ?T‖2F +

1

4
‖UTU − V TV ‖2F528

− 1

4
‖UUT −U?U?T‖2F −

1

4
‖V V T − V ?V ?T‖2F529

=
1

2
‖UTU?‖2F +

1

2
‖V TV ?‖2F −

〈
UV T,U?V ?T

〉
530

+
1

2
‖U?V ?T‖2F −

1

4
‖U?U?T‖2F −

1

4
‖V ?V ?T‖2F531

=
1

2
‖UTU? − V TV ?‖2F +

1

2
‖U?V ?T‖2F −

1

4
‖U?U?T‖2F −

1

4
‖V ?V ?T‖2F532

=
1

2
‖UTU? − V TV ?‖2F ≥ 0533

534

(recall that U?TU? = V ?TV ?), the fifth inequality is from Lemma 1, and the last535

equality follows from the fact that σr(W
?) =

√
2σ

1/2
r (X?). This completes the proof.536

By comparing Proposition 2 and Proposition 5, we see that the fraction of outliers537

that can be tolerated for exact recovery is the same in both the symmetric positive538

semidefinite and general cases. Moreover, the sharpness parameter α in (4.4) demon-539

strates the role that the regularizer φ plays: When the regularizer φ is absent (which540

corresponds to λ = 0), although every element inW is still a global minimum of (4.2),541

we cannot guarantee that there is no other global minimum. Indeed, when λ = 0, the542
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pair (U?T ,V ?T−T) is a global minimum of (4.2) for any invertible matrix T ∈ Rr×r.543

However, when λ > 0, the regularizer φ ensures that the pair (U?T ,V ?T−T) is a544

global minimum of (4.2) only when T ∈ Or.545

4.2. Weak Convexity. Let us now establish the weak convexity of the objective546

function g in (4.2).547

Proposition 6 (weak convexity: general case). Suppose that the measurement548

operator A satisfies the `1/`2-RIP (3.1). Then, the objective function g in (4.2) is549

weakly convex with parameter550

(4.5) τ =

√
2

π
+ δ + 2λ.551

Proof of Proposition 6. Since g = g + λφ, it suffices to show that g and φ are552

both weakly convex. Similar to (3.5), we apply the chain rule for subdifferentials [37,553

Corollary 8.11 and Theorem 10.6] to get554

∂g(W ) =
1

m

[
A∗
(
Sign

(
A(UV T)− y

))
V(

A∗
(
Sign

(
A(UV T)− y

)))T
U

]
.555

Using this and the argument in the proof of Proposition 3, we can show that for any556

W ,W ′ ∈ R(n1+n2)×r,557

g(W ′) ≥ g(W ) + 〈D,W ′ −W 〉 −

(√
2

π
+ δ

)
‖(U ′ −U)(V ′ − V )T‖F558

≥ g(W ) + 〈D,W ′ −W 〉 −

(√
2/π + δ

2

)
‖W ′ −W ‖2F , ∀ D ∈ ∂g(W );559

560

i.e., the function g is weakly convex with parameter τg =
√

2
π + δ.561

Next, define the matrices562

W =
[
UT −V T

]T
, W ′ =

[
U ′

T −V ′T
]T

563

and note that WTW = UTU−V TV . Furthermore, define the function ψ : Rr×r → R564

by ψ(C) = ‖C‖F , whose subdifferential is565

∂ψ(C) =

{ {
C
‖C‖F

}
, C 6= 0,

{B ∈ Rr×r : ‖B‖F ≤ 1} , C = 0.
566

Upon setting ∆ = W ′ −W and ∆ = W ′ −W , we compute567

φ(W ′) = ‖W ′TW ′‖F
= ‖WTW + WT∆ + ∆TW + ∆T∆‖F
≥ ‖WTW + WT∆ + ∆TW ‖F − ‖∆T∆‖F

≥ ‖WTW ‖F +
〈
Ψ,WT∆ + ∆TW

〉
− ‖∆T∆‖F ,

(4.6)568

where the last inequality holds for any Ψ ∈ ∂ψ(WTW ) due to the convexity of the569

Frobenius norm. Since the Frobenius norm is subdifferentially regular [37, Example570

7.27], the chain rule for subdifferentials [37, Corollary 8.11 and Theorem 10.6] yields571

(4.7) ∂φ(W ) =
{
W (Ψ + ΨT) : Ψ ∈ ∂ψ(WTW )

}
.572
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It follows from (4.6) and (4.7) that573

φ(W ′) ≥ φ(W ) + 〈Φ,W ′ −W 〉 − ‖∆T∆‖F574

≥ φ(W ) + 〈Φ,W ′ −W 〉 − ‖W ′ −W ‖2F , ∀Φ ∈ ∂φ(W );575576

i.e., the function φ is weakly convex with parameter τφ = 2.577

Putting the above results together, we conclude that g = g+λφ is weakly convex578

with parameter τ = τg + λτφ, as desired.579

Unlike the sharpness condition in Proposition 5 that requires λ > 0, the weak580

convexity condition in Proposition 6 holds even when λ = 0. Although the parameters581

α and τ in (4.4) and (4.5) increase as λ increases from 0, the former becomes constant582

when λ ≥
2(1−p)

(√
2/π−δ

)
−
(√

2/π+δ
)

2 . In view of Theorem 2, it is desirable to choose583

λ so that the local linear convergence region
{
x : dist(x,X ) < 2α

τ

}
of the SubGM is584

as large as possible. Such consideration suggests that we should set585

λ =
2(1− p)

(√
2/π − δ

)
−
(√

2/π + δ
)

2
.586

4.3. Putting Everything Together. As in Subsection 3.4, before we can in-587

voke Theorem 2 to establish convergence guarantees for the SubGM when applied to588

the general robust low-rank matrix recovery problem (4.2), we need to bound the norm589

of any subgradient of g in a neighborhood of W. This is achieved by the following590

result:591

Proposition 7 (bound on subgradient norm: general case). Suppose that the592

measurement operator A satisfies the `1/`2-RIP (3.1). Then, for any W ∈ R(n1+n2)×r593

satisfying dist(W ,W) ≤ 2α
τ , we have594

‖D‖F ≤ κ = max

{√
2

π
+ δ, λ

}(
‖W ?‖F +

2α

τ

)
, ∀ D ∈ ∂g(W ).(4.8)595

596

Proof of Proposition 7. Observe that for any W ,W ′ ∈ R(n1+n2)×r,597

|g(W ′)− g(W )| ≤ |g(W ′)− g(W )|+ λ |φ(W ′)− φ(W )|598

≤ 1

m

∥∥A(UV T −U ′V ′T)
∥∥

1
+ λ

(∥∥UTU −U ′TU ′
∥∥
F

+
∥∥V TV − V ′TV ′

∥∥
F

)
599

≤

(√
2

π
+ δ

)∥∥UV T −U ′V ′T
∥∥
F

+ λ
(∥∥UTU −U ′TU ′

∥∥
F

+
∥∥V TV − V ′TV ′

∥∥
F

)
600

≤

(√
2

π
+ δ

)
(‖V ‖F ‖U −U ′‖F + ‖U ′‖F ‖V − V ′‖F )601

+ λ (‖U‖F + ‖U ′‖F ) ‖U −U ′‖F + λ (‖V ‖F + ‖V ′‖F ) ‖V − V ′‖F602

≤ max

{√
2

π
+ δ, λ

}
(‖W ‖F + ‖W ′‖F ) ‖W −W ′‖F ,603

604

where the third inequality follows from the `1/`2-RIP (3.1). Thus, similar to the605

derivation of (3.7), for any W ∈ R(n1+n2)×r satisfying dist(W ,W) ≤ 2α
τ , where α606
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and τ are given in (4.4) and (4.5), respectively, we have607

‖D‖F ≤ max

{√
2

π
+ δ, λ

}
‖W ‖F608

≤ max

{√
2

π
+ δ, λ

}(
‖W ?‖F +

2α

τ

)
, ∀ D ∈ ∂g(W ).609

610

By collecting Proposition 5, Proposition 6, and Proposition 7 together and invo-611

king Theorem 2, we obtain the following guarantees when the SubGM is used to solve612

the general robust low-rank matrix recovery problem (4.2):613

Theorem 5 (nonconvex robust low-rank matrix recovery: general case). Con-614

sider the measurement model (1.3), where X? is an n1 × n2 rank-r matrix. Let615

0 < δ < 1
3

√
2
π be given. Suppose that the fraction of outliers p in the measure-616

ment vector y satisfies (3.3), and that the linear operators A, AΩc possess the `1/`2-617

RIP (3.1), (3.2), respectively. Let α, τ , and κ be given by (4.4), (4.5), and (4.8),618

respectively. Under such setting, suppose that we apply the SubGM in Algorithm 2.1619

to solve (4.2), where the initial point W0 satisfies dist(W0,W) < 2α
τ and the geome-620

trically diminishing step sizes µk = ρkµ0 are used with µ0, ρ satisfying (2.4), (2.5),621

respectively. Then, the sequence of iterates {Wk}k≥0 generated by the SubGM will622

converge to a point in W at a linear rate:623

dist(Wk,W) ≤ ρk max

{
dist(W0,W), µ0

max{κ2, 2α2}
α

}
.624

Moreover, the ground-truth matrix X? can be exactly recovered by any point W ? ∈ W625

via X? = U?V ?T.626

4.4. Initializing the SubGM. In the general case, we can still use the trunca-627

ted spectral method in Algorithm 3.1 to obtain a good initialization for the SubGM.628

Specifically, we take W0 =
[
UT

0 V T
0

]T
as the initialization, where U0,V0 are the629

outputs of Algorithm 3.1. Then, we have the following result, which is essentially a630

restatement of [30, Theorem 3.3]:631

Theorem 6 (proximity of initialization to optimal set: general case). Let r ≥ 1632

be given and set n = n1 +n2, c = ‖X?‖F√
rσr(X?)

. Suppose that the matrices A1, . . . ,Am ∈633

Rn1×n2 defining the linear measurement operator A have i.i.d. standard Gaussian634

entries, and that the number of measurements m satisfies m & β2c2nr2 log n, where635

β = 2 log
(
r1/4c1/2 + 20

)
. Furthermore, suppose that the fraction of outliers p in636

the measurement vector y satisfies p . 1√
rc

. Then, with overwhelming probability,637

Algorithm 3.1 outputs an initialization W0 ∈ R(n1+n2)×r satisfying dist(W0,U) .638

σr(X
?) and hence also the requirement of Theorem 5.639

5. Experiments. In this section we conduct experiments to illustrate the per-640

formance of the SubGM when applied to robust low-rank matrix recovery problems.641

The experiments on synthetic data show that the SubGM can exactly and efficiently642

recover the underlying low-rank matrix from its linear measurements even in the pre-643

sence of outliers, thus corroborating the result in Theorem 3.644

We generate the underlying low-rank matrix X? = U?U?T by generating U? ∈645

Rn×r with i.i.d. standard Gaussian entries. Similarly, we generate the entries of the m646

sensing matrices A1, . . . ,Am ∈ Rn×n (which define the linear measurement operator647
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A) in an i.i.d. fashion according to the standard Gaussian distribution. To generate648

the outlier vector s? ∈ Rm, we first randomly select pm locations. Then, we fill each649

of the selected location with an i.i.d. mean 0 and variance 100 Gaussian entry, while650

the remaining locations are set to 0. Here, p is the ratio of the nonzero elements in s?.651

According to (1.3), the measurement vector y is then generated by y = A(X?) + s?;652

i.e., yi = 〈Ai,X
?〉+ s?i for i = 1, . . . ,m.653

To illustrate the performance of the SubGM for recovering the underlying low-654

rank matrix X? from y, we first set n = 50, r = 5, and p = 0.3. Throughout the655

experiments, we initialize the SubGM with a randomly generated standard Gaussian656

vector, as it gives similar practical performance as the one obtained by the truncated657

spectral method in Algorithm 3.1. We first run the SubGM for 104 iterations using658

the geometrically diminishing step sizes µk = ρkµ0, where the initial step size µ0659

and decay rate ρ are selected from {0.1, 0.5, 1, 10} and {0.80, 0.81, 0.82, . . . , 0.99},660

respectively. For each pair of parameters (µ0, ρ), we plot the distance of the last661

iterate to U (i.e., dist(U104 ,U)) in Figure 2a. When the SubGM diverges, we simply662

set dist(U104 ,U) = 104 for the purpose of presenting all results in the same figure.663

As observed from Figure 2a, the SubGM diverges when µ0 is large, say, µ0 = 10. On664

the other hand, it converges to a global minimum when µ0 = 1, ρ ∈ [0.93, 0.99] and665

µ0 = 0.5, ρ ∈ [0.95, 0.99]. It is worth noting that the SubGM converges to a global666

minimum when µ0 = 1, ρ = 0.93, but not when µ0 = 0.5, ρ = 0.93. This is consistent667

with Theorem 2, which shows that a larger initial step size µ0 allows for a smaller668

decay rate ρ. Such a phenomenon can also be observed in the case where µ0 = 0.1,669

for which the SubGM fails to find a global minimum even when ρ ∈ [0.95, 0.99].670

In Figure 2b, we fix µ0 = 1 and plot the convergence behavior of the SubGM671

with ρ ∈ {0.9, 0.93, 0.96, 0.99}. As observed from the figure, when ρ is not too small672

(say, larger than 0.93), the distances {dist(Uk,U)}k≥0 converge to 0 at a linear rate,673

thus implying that the SubGM with geometrically diminishing step sizes can exactly674

recover the underlying low-rank matrix X?. We observe that a smaller ρ gives fas-675

ter convergence. This corroborates the results in Theorem 2, which guarantee that676

{dist(Uk,U)}k≥0 decays at the rate O(ρk) as long as ρ is not too small (i.e., satisfying677

(2.5)). We also consider the SubGM with the Polyak step size rule [36], which, in the678

context of (1.4), is given by µk = f(Uk)−f?
‖dk‖2 , where f? is the optimal value of (1.4) and679

dk ∈ ∂f(Uk) (the method terminates when dk = 0). The convergence rate of such680

method for sharp weakly convex minimization has been analyzed in [14]. We plot681

the convergence behavior of the SubGM with the Polyak step size rule in Figure 2b,682

which also shows its linear convergence. However, we note that the Polyak step size683

rule is generally not easy to implement, as it requires the knowledge of f?.684

Then, we consider the SubGM with piecewise geometrically diminishing step si-685

zes, which dates as far back as to the work [39] and has recently been used in [54].686

Specifically, we set µk = 1
2bk/Nc

with N ∈ {50, 100, 200}. Compared to the vanilla687

strategy µk = ρkµ0, the piecewise strategy allows for a smaller decay rate ρ (here,688

we use ρ = 1
2 ) and keeps the same step size for N iterations. As can be seen from689

Figure 2c, the method converges at a piecewise linear rate. Nevertheless, we observe690

that the piecewise strategy is slightly less efficient than the vanilla one in general.691

We also consider a modified backtracking line search strategy in [34] to choose the692

step size. Although such a strategy is generally designed for smooth problems, it is693

empirically used in [54] for a nonsmooth nonconvex optimization problem to achieve694

fast convergence. Inspired by the strategy of choosing geometrically diminishing step695

sizes, we modify the backtracking line search strategy in [34] by (i) setting µk = µk−1696
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and (ii) reducing it according to µk ← µkρ until the condition f(Uk − µkdk) >697

f(Uk) − ηµk‖dk‖ is satisfied. We set η = 10−3, ρ = 0.85, µ0 = 1 and plot the698

convergence behavior of the resulting method in Figure 2d. As can be seen from the699

figure, the method converges at a linear rate. Moreover, we observe empirically that700

the choice of parameters above works for other settings (i.e., different n, r,m, p). We701

leave the convergence analysis of the SubGM with backtracking line search as a future702

work.703
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Fig. 2: Behavior of SubGM when applied to robust low-rank matrix recovery with
n = 50, r = 5, m = 5nr, and p = 0.3.

Next, we study the performance of the SubGM with geometrically diminishing704

step sizes by varying the outlier ratio p and the number of measurements m. In these705

experiments we run the SubGM for 2×103 iterations with initial step size µ0 = 1 and706

decay rate ρ = 0.99. We also conduct experiments on the median-truncated gradient707

descent (MTGD) with the setting used in [30]. In particular, we initialize the MTGD708

with the truncated spectral method in Algorithm 3.1 and run it for 104 iterations.709

For each pair of p and m, 10 Monte Carlo trials are carried out, and for each trial710
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we declare the recovery to be successful if the relative reconstruction error satisfies711
‖X̂−X?‖F
‖X?‖F ≤ 10−6, where X̂ is the reconstructed matrix. Figure 3 displays the phase712

transition of MTGD and SubGM using the average result of 10 independent trials.713

In this figure, white indicates successful recovery while black indicates failure. It is of714

interest to observe that when the outlier ratio p is small, both the SubGM and MTGD715

can exactly recover the underlying low-rank matrix X? even with only m = 2nr716

measurements. On the other hand, given sufficiently large number of measurements717

(say m = 7nr), the SubGM is able to exactly recover the ground-truth matrix even718

when half of the measurements are corrupted by outliers, while the MTGD fails in719

this case. In particular, by comparing Figure 3a with Figure 3b, we observe that the720

SubGM is more robust to outliers than MTGD, especially in the case of high outlier721

ratio. We also observe from Figure 3 that with more measurements, the robust low-722

rank matrix recovery formulation (1.4) can tolerate not only more outliers but also723

a higher fraction of outliers. This provides further explanation to the observations724

made after the proof of Proposition 2.725
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Fig. 3: Phase transition of robust low-rank matrix recovery using (a) median-
truncated gradient descent (MTGD) [30] and (b) SubGM. Here, we fix n = 50, r = 5
and vary the outlier ratio p from 0 to 0.5. In addition, we vary m so that the ratio
m
nr varies from 2 to 7. Successful recovery is indicated by white and failure by black.
Results are averaged over 10 independent trials.

6. Conclusion. In this paper we gave a nonsmooth nonconvex formulation of726

the problem of recovering a rank-r matrix X? ∈ Rn1×n2 from corrupted linear mea-727

surements. The formulation enforces the low-rank property of the solution by using728

a factored representation of the matrix variable and employs an `1-loss function to729

robustify the solution against outliers. We showed that even when close to half of730

the measurements are arbitrarily corrupted, as long as certain measurement opera-731

tors arising from the measurement model satisfy the `1/`2-RIP, the formulation will732

be sharp and weakly convex. Consequently, the ground-truth matrix can be exactly733

recovered from any of its global minimum. Moreover, when suitably initialized, the734

SubGM with geometrically diminishing step sizes will converge to the ground-truth735

matrix at a linear rate.736
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Appendix A. Proof of Proposition 1.888

A.1. Preliminaries. We say that a random variableX is sub-Gaussian if Pr [|X| > t] ≤889

exp
(

1− t2

K2
1

)
, ∀ t ≥ 0 for some constant K1 > 0. This is equivalent to890

(A.1) (E[|X|p])1/p ≤ K2
√
p, ∀ p ≥ 1891

for some constant K2 > 0. The constants K1 and K2 differ from each other by at892

most an absolute constant factor; see [43, Lemma 5.5]. The sub-Gaussian norm of a893

sub-Gaussian random variable X is defined as ‖X‖ψ2
= supp≥1

{
p−1/2 E[|X|p]1/p

}
.894

We then have the following Hoeffding-type inequalty:895

Lemma 2 ( [43, Proposition 5.10]). Let X1, . . . , Xm be independent sub-Gaussian896

random variables with E[Xi] = 0 for i = 1, . . . ,m and K = maxi∈{1,...,m} ‖Xi‖ψ2
.897

Then, for any t > 0, we have898

(A.2) Pr

[
1

m

∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−cmt

2

K2

)
899

for some constant c > 0.900

We also need the following result on the covering number of the set of low-rank901

matrices:902

Lemma 3 ( [9, Lemma 3.1]). Let Sr = {X ∈ Rn×n : ‖X‖F = 1, rank(X) ≤ r}.903

Then, there exists an ε-net Sr,ε ⊂ Sr with respect to the Frobenius norm (i.e., for904

any X ∈ Sr, there exists an X ∈ Sr,ε such that ‖X −X‖F ≤ ε) satisfying |Sr,ε| ≤905 (
9
ε

)(2n+1)r
.906

A.2. Isometry Property of a Given Matrix.907
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Lemma 4. Suppose that the matrices A1, . . . ,Am ∈ Rn×n defining the linear mea-908

surement operator A have i.i.d. standard Gaussian entries. Then, for any X ∈ Rn×n909

and 0 < δ < 1, there exists a constant c1 > 0 such that with probability exceeding910

1− 2 exp(−c1δ2m), we have911

(A.3)

(√
2

π
− δ

)
‖X‖F ≤

1

m
‖A(X)‖1 ≤

(√
2

π
+ δ

)
‖X‖F .912

Proof of Lemma 4. Since Ai has i.i.d. standard Gaussian entries, the random913

variable 〈Ai,X〉 is Gaussian with mean zero and variance ‖X‖2F . It follows that914

(A.4) E[|〈Ai,X〉|] =

√
2

π
‖X‖F , E[‖A(X)‖1] = m

√
2

π
‖X‖F .915

Now, let Zi = |〈Ai,X〉| − E[|〈Ai,X〉|], which satisfies E[Zi] = 0. We claim that Zi916

is a sub-Gaussian random variable. To establish the claim, it suffices to bound the917

sub-Gaussian norm of Zi. Towards that end, we first observe that Pr [|〈Ai,X〉| > t] ≤918

2 exp
(
− t2

2‖X‖2F

)
. Together with (A.4), this implies that for any t > E[|〈Ai,X〉|],919

Pr [|Zi| > t] = Pr [|〈Ai,X〉| > t+ E[|〈Ai,X〉|]] + Pr [|〈Ai,X〉| < −t+ E[|〈Ai,X〉|]]920

≤ 2 exp

(
− (t+ E[|〈Ai,X〉|])2

2‖X‖2F

)
+ Pr [|〈Ai,X〉| < −t+ E[|〈Ai,X〉|]]921

≤ 2 exp

(
− (t+ E[|〈Ai,X〉|])2

2‖X‖2F

)
≤ exp

(
1− t2

‖X‖2F

)
,922

923

where the second inequality follows because Pr [|〈Ai,X〉| < −t+ E[|〈Ai,X〉|]] = 0 for924

all t > E[|〈Ai,X〉|]. Since exp
(

1− t2

‖X‖2F

)
≥ 1 for all t ≤ E[|〈Ai,X〉|] =

√
2
π‖X‖F ,925

we then have Pr [|Zi| > t] ≤ exp
(

1− t2

‖X‖2F

)
, ∀t ≥ 0. This, together with (A.1),926

implies that (E[|Zi|p])1/p ≤ cp1/2‖X‖F , ∀ p ≥ 1, where c > 0 is a constant. It follows927

that ‖Zi‖ψ2
≤ c‖X‖F ; i.e., Zi is a sub-Gaussian random variable, as desired.928

Now, applying the Hoeffding-type inequality in Lemma 2 with t = δ‖X‖F and929

K = c‖X‖F gives930

Pr

[
1

m
|‖A(X)‖1 − E[‖A(X)‖1]| > δ‖X‖F

]
≤ 2 exp(−c1mδ2)931

for some constant c1 > 0. Using (A.4), we conclude that (A.3) holds with probability932

at least 1− 2 exp(−c1mδ2). This completes the proof.933

A.3. Proof of Proposition 1. We now utilize an ε-net argument to show that934

(A.3) holds for all rank-r matrices with high probability as long as m & nr. Since935

the inequality (A.3) is scale invariant, without loss of generality, we may assume that936

‖X‖F = 1 and focus on the set Sr defined in Lemma 3.937

Proof of Proposition 1. We begin by showing that (A.3) holds for all X ∈ Sr,ε938

with high probability. Indeed, upon setting ε = δ
√
π

16 in Lemma 3 and utilizing a union939
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bound together with Lemma 4, we have940

Pr

[
max

X∈Sr,ε

1

m

∣∣∣∣∣‖A(X)‖1 −m
√

2

π
‖X‖F

∣∣∣∣∣ ≥ δ

2

]
≤ 2|Sr,ε| exp(−c1mδ2)

≤ 2

(
9

ε

)(2n+1)r

exp(−c1mδ2) ≤ exp(−c2mδ2)

(A.5)941

whenever m & nr.942

Next, we show that (A.3) holds for all X ∈ Sr. Towards that end, set943

(A.6) κr =
1

m
sup
X∈Sr

‖A(X)‖1944

and let X ∈ Sr be arbitrary. Then, there exists an X ∈ Sr,ε such that ‖X−X‖F ≤ ε.945

It follows from (A.5) that with high probability,946

1

m
‖A(X)‖1 =

1

m
‖A(X −X) +A(X)‖1 ≤

1

m
‖A(X −X)‖1 +

1

m
‖A(X)‖1

≤ 1

m
‖A(X −X)‖1 +

√
2

π
+
δ

2
.

(A.7)947

Noting that X−X has rank at most 2r, we can decompose it as X−X = ∆1 + ∆2,948

where 〈∆1,∆2〉 = 0 and rank(∆1), rank(∆2) ≤ r (this follows essentially from the949

SVD). Hence, we can compute950

1

m
‖A(X −X)‖1 ≤

1

m
[‖A(∆1)‖1 + ‖A(∆2)‖1]

=
1

m
[‖∆1‖F ‖A(∆1/‖∆1‖F )‖1 + ‖∆2‖F ‖A(∆2/‖∆2‖F )‖1]

≤ κr(‖∆1‖F + ‖∆2‖F ) ≤
√

2κrε,

951

where the last inequality is due to ‖∆1‖2F +‖∆2‖2F = ‖X−X‖2F ≤ ε2. This, together952

with (A.7), gives953

(A.8)
1

m
‖A(X)‖1 ≤

√
2

π
+
δ

2
+
√

2κrε.954

In particular, using the definition of κr in (A.6), we obtain κr ≤
√

2
π + δ

2 +
√

2κrε,955

or equivalently, κr ≤
√

2/π+δ/2

1−
√

2ε
. Plugging in our choice of ε yields

√
2κrε ≤ δ

2 . This,956

together with (A.8) and the fact that ‖X‖F = 1, implies957

1

m
‖A(X)‖1 ≤

(√
2

π
+ δ

)
‖X‖F .958

Similarly, using (A.5), we have959

1

m
‖A(X)‖1 ≥

1

m
‖A(X)‖1 −

1

m
‖A(X −X)‖1960

≥
√

2

π
− δ

2
− 1

m
‖A(X −X)‖1961

≥
√

2

π
− δ

2
−
√

2κrε ≥
√

2

π
− δ =

(√
2

π
− δ

)
‖X‖F962

963

with high probability. This completes the proof.964
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