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Abstract

In this paper, we study a probabilistically robust transoptimization problem under imperfect
channel state information (CSI) at the transmitter and unide multiuser multiple-input single-output
(MISO) downlink scenario. The main issue is to keep the plodiha of each user’s achievable rate outage
as caused by CSI uncertainties below a given threshold. Aslilsknown, such rate outage constraints
present a significant analytical and computational chgkerindeed, they do not admit simple closed-
form expressions and are unlikely to be efficiently complatab general. Assuming Gaussian CSI
uncertainties, we first review a traditional robust optiatian-based method for approximating the rate
outage constraints, and then develop two novel approximatiethods using probabilistic techniques.
Interestingly, these three methods can be viewed as impitngedifferent tractable analytic upper bounds
on the tail probability of a complex Gaussian quadratic foamd they provide convex restrictions, or safe
tractable approximations, of the original rate outage traimgs. In particular, a feasible solution from
any one of these methods will automatically satisfy the mteage constraints, and all three methods
involve convex conic programs that can be solved efficiemsing off-the-shelf solvers. We then proceed
to study the performance-complexity tradeoffs of thesehds through computational complexity and
comparative approximation performance analyses. Finsiliyulation results are provided to benchmark
the three convex restriction methods against the stateeofithin the literature. The results show that
all three methods offer significantly improved solution lityaand much lower complexity.

Index terms— MIMO precoder designs, imperfect channel state infornmatiobust optimization, outage
probability, multiuser MIMO
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. INTRODUCTION

In multiuser multi-antenna downlink channels, linear piding has been recognized as a practically
powerful technique that is capable of leveraging qualitg@ifvice (QoS) and improving system through-
put [3], [4]. Fundamentally, linear precoding methods assknowledge of the downlink channels at the
transmitter side, or simplghannel state informatio(CSI), and use it to perform interference management
and resource optimization among users. In particular, itasimon to assume perfect CSI. However,
such an assumption is considered idealistic for severalorea[5]. Firstly, in the time division duplex
(TDD) setting, where there is a reciprocity between thenkoéind downlink channels, CSl is acquired by
uplink channel estimation. As such, noise and limited trejrwill introduce errors into the acquired CSI.
Secondly, in the frequency division duplex (FDD) settindyerne users estimate the downlink channels
and inform the transmitter by rate-limited quantized CStdieack, the acquired CSI is plagued by
guantization errors, in addition to the channel estimagomrs mentioned above. Thirdly, the acquired
CSI may become outdated if the user mobility speed is fabgr the CSI update speed.

In general, imperfect CSI can lead to substantial perfoagaategradation, such as QoS outages, if not
taken care of properly. It is therefore natural to consither case of imperfect CSI and investigate how
CSI error effects may be mitigated through pertinent systesigns. In fact, the topic is important and
has received a great deal of attention lately. One branchs&arch focuses on achievable rate analyses,
wherein the aim is, roughly speaking, to study how perforceatiepends on system parameters (such as
those of the CSI errors) and to obtain implications for theigie of channel estimation and CSI feedback
schemes. There are several works in this direction, whetimapCSI feedback bit scaling and optimal
resource allocation for downlink/uplink training are sedf see, e.g., [6]-[9]. However, it is generally
very challenging to analyze the achievable rates of suckmel under imperfect CSI. In fact, in order
to obtain a more tractable problem, many of the existing wdik the linear precoder to be the relatively
simple zero-forcing (ZF) beamformer and analyze the sulmsetprgodic achievable rate performance
This implicitly assumes that the system is able to performirg across a large number of differently
faded frames [6]-[9]. In comparison, there are far fewenlteson theoutage rate metricwhich is
motivated by the scenario of one-frame coding over a sloatjifg environment. Most results in this
direction apply only to the single-user multiple-inputgg-output (MISO) scenario; see, e.g., [10]-[12].

This is primarily due to the fact that the outage rate prolitgbs difficult to evaluate and does not have
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a closed-form expression in genetal.

Another branch of research tackles the imperfect CSI probby optimizing the precoder design
based on a prescribed model of the CSI errors, rather tharsifog on a fixed precoder such as the ZF
beamformer. Currently, the CSI error models considereterliterature give rise to three different design
approaches. The first is theorst-case robust approachn which the CSI errors are assumed to lie within
a bounded set, and the goal is to design the precoder so thabliust against the worst-case QoS under
the prescribed CSI error model. Such an approach has atdracinsiderable attention in recent years;
some notable contributions include the robust secondra@alege program (SOCP) methods [14], [15], the
robust minimum-mean-square-error (MMSE) methods [154],[And semidefinite relaxation [17]-[19].

The second approach assumes a probabilistic CSl error raodelas the Gaussian model and optimizes
the precoder design with respect to (w.r.t.) the average Qufer that model. Such aawerage robust
approachaims at good on-average performance, as opposed to the gustiamse performance sought
by the worst-case robust approach. The average robust agpriten amounts to solving stochastic
optimization problems. For example, the very recent worR8],[ [21] tackle the ergodic sum rate
maximization problem by stochastic gradient-type methods

The third is theoutage-based approaclwhose design focus is on constraining QoS outages under a
probabilistic CSI error model. In contrast to the averadaish approach, this approach seeks to provide
“safe” performance, guaranteeing a certain chance (ofig lof success of QoS deliveries. The outage-
based approach is essential in delay-sensitive or lomdst@pplications, but dealing with the outage
probability appears to be hard, especially in the multius®rtext. Hence, it is of great interest to find
approximate solutions that are efficiently computable aaal give good approximation accuracies. For
instance, the works [22]-[24] employ techniques from [28¢g [26], [27] for the latest results) to
developconvex restrictionsor safe tractable approximationsf outage-based QoS constrained precoder
optimization problems. There are also endeavors that siuthge-based power allocation methods under

a fixed precoder structure [28]-[30].

A. Contributions

This paper considers outage-based precoder optimizadipecifically, the scenario of interest is the

multiuser MISO downlink, and the Gaussian CSI error modehdspted. We focus on a rate outage

1The work [13] provides integral expressions of the rate geitprobability under Gaussian CSI errors and ZF beamforming
However, the results are too complicated for practical quec optimization.
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constrained problem, in which the goal is to optimize ussighal covariance matrices for total transmit
power minimization while satisfying achievable rate owagpnstraints. As in [22]-[24], our designs
follow the convex restriction philosophy. In other wordse iormulate tractable convex optimization
problems whose solutions will automatically satisfy theerautage specifications. It should be noted that
convex restriction methods do not require Monte-Carlo (M@&npling, say, for rate outage verification
or optimization purposes, as in some other concurrent wi@¥ks In general, MC sampling will become
prohibitively costly under very low outage specificatioakhough it is also fair to say that MC sampling
allows one to consider non-restrictive approximationsjciwhmay bring advantages in approximation
accuracies. We now summarize our contributions as follows.

1. We develop two novel convex restriction methods for therexhentioned rate outage constrained
problem using probabilistic techniques. We show that tinesthods, together with a traditional robust
optimization-based convex restriction method, can be &tws implementing different tractable
analytic upper bounds on the tail probability of a complexu€aan quadratic form. Furthermore,
all three methods involve convex conic optimization protdethat can be efficiently solved by an
interior-point method (IPM). We use simulations to demaatst that the presented methods perform
better than the one developed in [22]-[24], in terms of batmputational complexity and solution
quality.

2. We analyze the performance-complexity tradeoff of thredhpresented convex restriction methods.
The complexity orders of the three methods, when implentkhiea generic IPM, are shown. We
then analyze the relative tightness of these methods. lildhme emphasized that the tightness
analysis is particularly non-trivial from a theoreticalevipoint. The insights obtained from our

analyses are in agreement with the simulation results.

B. Organization and Notations

The rest of this paper is organized as follows. The systemeiaiad problem statement are given in
Section Il. Our overall approach to developing convex retitin methods is then discussed in Section Il
In Section 1V, the three convex restriction methods are garesxl. The complexity and comparative
approximation performance of these three methods are zathin Section V. Simulation results are then
provided in Section VI, and conclusions are drawn in Sectitin

We use boldfaced lowercase letters (ea).fo represent vectors and boldfaced uppercase letters (e.g
A) to represent matrice®R” and C" stand for the sets ofi-dimensional real and complex vectors,

respectively, whil&s™ andH" stand for the sets of x n real symmetric matrices and complex Hermitian
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matrices, respectivelR, andR, , denote the sets of nonnegative and positive real numbesgsectvely.
The superscriptsT” and ‘H’ represent the transpose and (Hermitian) conjugate tgspespectively.
For a matrixA € S” (or A € H"), we write A - 0 and A > 0 to mean thatA is positive semidefinite
and positive definite, respectiveljir(A), Amax(A), andAnin(A) denote the trace, maximum eigenvalue,
and minimium eigenvalue ofl, respectively. For convenience, we defiie(A) = max{Ayax(—A), 0}.
vec(A) stands for the vector obtained by stacking the column veatrA. [a]; and[A];; (or simply

a; and A;;) stand for theith entry ofa and (7, j)th entry of A, respectively. For a compleA, we use
Re{A} andIm{A} to denote its real and imaginary parts, respectivElydenotes the: x n identity
matrix. Given scalarg, ..., a,, we useDiag(ay,...,a,) to denote then x n diagonal matrix whose

ith diagonal entry isz;. || - |, | - |

1, and|| - || represent the vector Euclidean norm, vectamorm,
and matrix Frobenius norm, respectiveB{-}, Prob{-}, andexp(-) denote the statistical expectation,
probability function and exponential function, respeelyv We write x ~ CN(u,C) if x — p is a

circularly symmetric complex Gaussian random vector withiagiance matrixC' > 0.

[I. PROBLEM FORMULATION

We consider a multiuser MISO downlink scenario, wherein dtiramtenna base station sends inde-
pendent messages to a humber of single-antenna users ouasastptic channel. The system model
adopted is standard and is briefly described as follows. Netlenote the number of antennae at the
base station, and the number of users. The received signal of user= 1,..., K, is modeled as
yi(t) = hx(t) + v;(t), whereh; € C is the channel of user x(t) € C™t is the transmit signal from
the base station;(t) is noise with distributiorCA/(0, o?). We assume a general vector-Gaussian linear
precoding strategy, where the transmit signal is giverty = Zfil x;(t) with z;(t) € CNt denoting
an information signal for user Each user’s information signal is independently vectau&sian encoded
and is characterized hy;(t) ~ CN (0, S;), whereS; > 0 denotes the signal covariance matrix. On the
user side, each user decodes only its own information sigméltreats other users’ information signals
as interference. Under the above system setup, the acleenadb of useri may be formulated as

h! S;h, )

i=1,... K. 1

R; = log, (1 +

The problem of interest here is to design the signal coveeanatrices S, }X, via arate constrained

formulation. To facilitate its description, let us assurne the time being thak, ..., hx are known at
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the base station; i.e., perfect CSI. The rate constraineblgm (under perfect CSl) is formulated as

K
o W, 2 TH(S) (22)
s.t. RZ'ZT‘Z', ’izl,...,K, (Zb)
Sl?"'ysKth (ZC)

where eachr; > 0 is a pre-specified constant and describes the system’sreeggemt on user’s
information rate. As can be seen above, the aim of the ratstined problem is to find a set of
signal covariance matrices such that the system’s rateregments are met using the smallest possible
total transmission power. The rate constrained problemmisrgortant formulation to study, as it offers
insights into how other design formulations can be handied.instance, optimization solutions derived
for the rate constrained problem have been used as a bag&iingublock (in the form of a sub-solver)
for tackling sum rate maximization and max-min-fairnesshpems [31], [32].

To formulate the rate constrained problem under imperf&it € is essential to first describe the CSI

error model. In the imperfect CSI case, the actual channekoh user can be represented by
hi:ﬁi—i—ei, i=1,..., K,

whereh; € CMt is the presumed channel at the base station,ear@ C" is the channel error vector.
We adopt the commonly used Gaussian channel error modele spe[22], [33], [34]. Specifically, each

channel error vector is assumed to have a circularly syniecnedmplex Gaussian distribution, viz.
e; ~ CN(O, Cz)

for some known error covariance mati¥; = 0. Now, consider the following probabilistically robust

design formulation:

Rate outage constrained problem: Given rate requirements,,...,rx > 0 and maximum tolerable

outage probabilitieg, ..., px € (0,1], solve

K
i Tr(S; 3a
Sl,...%LDeHNt ; r(S;) (3a)
s.t. Proby,. e (h:,c0) {Ri>ri}>1—p;i=1,..., K, (3b)

Si,..., Sk = 0. (3c)
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The above rate outage constrained problem emphasizesedidelity—a feasible solution to prob-
lem (3) guarantees that under CSI errors, each user, sayi, as@ still reliably decode its ratg-message
at least(1— p;) x 100% of the time. This kind of design is desirable for, e.g., dedapsitive applications,
where the system is requested to provide stable or low-eutagformance.

The rate outage constrained problem (3) is not known to bepateionally tractable, which is in sharp
contrast to the well-known fact that the perfect CSl-basate iconstrained problem (2) is efficiently
solvable? The main challenge lies in the rate outage probability gaitgs in (3b), which do not
admit simple closed-form expressions. In the sequel, wé dékcribe our approach for overcoming

the computational difficulties arising from problem (3).

[Il. PROPOSEDCONVEX RESTRICTIONAPPROACH AN OVERVIEW
A. A Restriction Approach for Proble(3)

Our strategy for tackling the rate outage constrained prab(3) is to pursue @&onvex restriction
approach, also known asfe tractable approximatiom the chance constrained optimization literature;
see, e.g., [38]. The idea is to develop convex and efficiatipputable upper bounds on the rate outage

probabilities in (3b). The key technical challenge can bstralsted as follows:

Challenge 1: Lete ~ CN(0,1,) be a standard circularly symmetric complex Gaussian rangector|
and (Q,r,s) € H" x C" x R be an arbitrary 3-tuple of (deterministic) variables. Femal efficiently

computable convex functiofi : H" x C" x R — R such that

Prob{e’Qe + 2Re{er} + 5 < 0} < f(Q,r,s). 4)

Clearly, once a functiorf having the properties stipulated in Challenge 1 is found, hage the

implication
f(Q,r,s)<p ()
—> Prob{e” Qe + 2Re{ef'r} +5s >0} > 1 —p. (6)

Hence, the constraint (5) gives a convex restriction or saijgroximation of the generally intractable

probabilistic constraint (6). Returning to the rate outagestrained problem (3), we note that the rate

2Specifically, problem (2) can be reformulated as a semidefgriogram (SDP), which is polynomial-time solvable [336];

see also the classic contributions [31], [37] related ts tbpic.
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outage constraints in (3b) can be expressed as
Prob{e” Q;e + 2Re{ef’r;} +5; >0} > 1 —p;, i=1,..., K,

wheree ~ CN(0, I,,) and

1 1 -
Qi=c?| =8-S s |c ri=c?| =5 -3 8| h, (7a)
i ki v ki
_ 1 _
si=hl ;si—Zsk hi—o2, 7 =2" —1. (7b)
v ki

Thus, we see the relevance of Challenge 1 in tackling theaati@ge constrained problem (3). Table |
summarizes all the convex restrictions of problem (3) to beetbped in later sections. One noteworthy
feature of the formulations in Table | is that they are all icoprograms with linear matrix inequality
(LMI) and second-order cone (SOC) constraints. As suchy ta be easily solved by off-the-shelf
convex optimization softwares, e.g-VX [39] and SeDuM [40].

B. Beamforming as Rank-one Solutions

In formulating the rate outage constrained problem (3),allew an information theoretic (and arguably
standard) development, where the achievable rates to lmaingd (cf. (1)) are based on the assumption
of vector-Gaussian encoded transmit signals. In practioe, would naturally be interested in finding
conveniently implementable physical-layer transceiv@resnes that can approach such rates. When the
solution(S7,. .., S%) to problem (3) satisfies the rank conditieamk(.S;") < 1 for all 4, it is known that
the achievable rates can be attained using single-strearantit beamforming (for each user). However,
if the solution does not satisfy the rank condition, more hésficated transceiver schemes would be
required, e.g., beamformed space-time coding, and moentigcstochastic beamforming; see [44] and
the references therein. On the other hand, it is common iotipeato fix the transceiver scheme as
single-stream beamforming for implementation simplicitgt us consider the problem formulation in
such a scenario.

In beamforming, each user’s information signal takes thenfe;(t) = w;s;(t), wherew; € CMt is the
beamforming vector anel(t) € C is useri’s data stream. We may mode|(t) asz;(t) ~ CN(0, w,w??),
and the beamforming achievable rates can be obtained byitstihg S; = wlw{{, LSk = wKwﬁ

into the achievable rate formula in (1). Using the fact that= fwinH < S, = 0, rank(S;) < 1, the
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TABLE |I. Summary of the convex restrictions of the rate outage caim&td problem (3).

Method H Convex Restriction Formulation
min Tr(S
S;eHNt ¢, eR Zz:l
i=1,...,
: i+t T (8)
Method I: st Q L zoi=1 K
Sphere Bounding T si — tid;
(Folklore; cf. [41]-[43]) S1,...,8k =0, t1,...,tk 20,
where Q;, r; and s; are defined in the same way as (7), ahd= @;21 (1—pi)/2, i =
2N
1. K.
K
min Tr(S;
Slel}ﬂit,zl y; ER, Zz:; ( )
Method I1: s.t. Tr(Q:) — /2In(1/ps) -xi + In(pi) yi + 8 >0, i =1,..., K,
Bernstein-Type vee(Qi) (9)
. SIZ‘77::17...7K7
Inequality V2r;
(This paper) yiln, +Q; =0, i=1,..., K,
Yi,.- - YK ZO, 517...751{ t 07
where@Q;, r; ands; are defined in the same way as (7} 1,..., K.
K
min Tr(S
ST;GHNf,:ci,yT;E]R, ; ( )
Method 111 ek TH(Q) + 51 > 20T - N
s.t. i)+ si > n pi) (xit+yi), 1=1,..., K,
Decomposition-Based 1 (10)
L. —HTil‘Sxi,i:l,...,K,
Large Deviation V2
Inequality v ||[vec(Qd)|| < wi, i=1,..., K,
(This paper) S1,...,8Kx = 0,
where Q;, »; and s; are defined in the same way as (7), and> 1/+/2 is chosen so that
(1 —1/2v}))vi = VIn(1/p:),i=1,..., K.

rate outage constrained problem under beamforming canrbeufated as

IE’LHEHM ZTr (11a)
s.t. Proby, o (h:,ch) {Ri>ri}>1—p;i=1,..., K, (11b)
Si,...,Sk =0, (11c)
rank(S;) <1, i=1,..., K. (11d)

Now, when we compare the beamforming problem (11) with the catage constrained problem (3),
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10

we see that the latter can be alternatively considered asla nelaxation of the former—in fact,
this is exactly the idea of the well-known semidefinite ralgon (SDR) technique [45], [46]. This
connection allows us to apply results in SDR to handle thembeaming problem. Specifically, it is
immediate that a rank-one solution to the rank-relaxed lprob(3), if exists, is also a solution to
the beamforming problem (11). Moreover, one can recovernk-ome approximate solution to the
beamforming problem (11) from a higher rank solution to thekrrelaxed problem (3) via a standard
Gaussian randomization procedure [45]. Note that the atvawveesults also apply to the convex restriction
counterparts of problems (3) and (11). Table Il shows thesSian randomization procedure for the
beamforming problem, assuming that one of the convex ctistni formulations in Table | is employed.
While obtaining a rank-one beamforming solution is not oaimfocus in this paper, quite surprisingly,
we find via simulations that the three convex restrictiomfolations in Table lusually yield rank-
one solutions (higher than 99% of the tested cases). Thaslitained rank-one solutions can be used
directly as safe approximate solutions to the beamformiogplpm (11) without the need of the Gaussian
randomization procedure. This suggests that beamforminddcbe an optimal transceiver scheme for
the convex restriction formulations in Table I. We shalluretto this point in Section VI. In the next

two sections, we will present the convex restriction methfmd tackling Challenge 1.

TABLE I1. Gaussian randomization procedure for problem (11).

Given a number of randomizations, an optimal solution(ST, ..., Sk ) to an employed convex restriction formulation in
Table I.

Step 1. Fori=1,..., K, generate a set af random vectorauf“, ¢=1,...,L, fromCN(0,S}).

Step 2. Fort=1,...,L, letu!” = w'® /||w!”| fori =1,..., K and solve a power control problem by substitutisig=
piu§f>(u§0)H,i =1,..., K, into the employed convex restriction formulation; i.eg aptimize onlyp1,...,px >0
in the employed convex restriction formulation. For edchet (pﬁl), e 7p%)) be an optimal solution and‘® be

the associated optimal value.
Step 3. Let

(" =arg min P([)7
0=1,...,L

and outputw; = \/py*)ug[*), 1=1,..., K, as an approximate solution to problem (11).

IV. DERIVATION OF CONVEX RESTRICTIONMETHODS

Since the convex restriction approach proposed in the @uevsection entails finding convex upper

bounds on the violation probabiliyrob{e Qe+ 2Re{e’r}+ s < 0}, it is natural to aim at finding the
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11

tightest one. However, even if such a bound can be found, yt moa be efficiently computable; cf. [47].

Hence, it is worthwhile to find bounds that are not necessé#hig tightest but are more amenable to
computation. In the sequel, we will derive three differemtex upper bounds on the violation probability.
The resulting convex restriction methods differ in termgoth computational complexity and tightness.
In Sections V and VI, we will compare these methods in moraitieia theoretical analysis and numerical

simulations.

A. Method I: Sphere Bounding

It has long been known that the probabilistic constraint @y be approximated in a conservative
fashion using robust optimization techniques—see, e4d]{43]—although its application to the mul-
tiuser MISO downlink scenario has not been explicitly cdesed. Let us concisely review the idea here.
Consider an arbitrary sef c C" satisfyingProb{e € B} > 1 — p. One can easily show that the

following implication holds:

07 Q6 + 2Re{d6r} +5 >0
forall 6 €¢ B

— Prob{e!Qe + 2Re{e’r} + 5 >0} > 1 —p. (12)

In particular, the worst-case robust constraint on theHafid side (LHS) of (12) is a safe approximation
of the probabilistic constraint (6). Note that in this apgeb, we have the freedom to choose theZet
in principle. However, in order to have a more tractable fgob it is desirable to choos#8 so that the
conditionProb{e € B} > 1 — p can be easily verified and the resulting worst-case robusstcaint is

efficiently computable. Given these considerations, a comohoice ofB3 is the ball
B={6cC":|é] <d},

where

—1
(I)Xgn(l -p)

d=
2

(13)

is the ball radius an@;j() is the inverse cumulative distribution function of the (tal) Chi-square
random variable withm degrees of freedom. It is routine to verify thHatob{e € B} = 1 — p and hence
the implication (12) holds. Moreover, using tidelemma [48], it can be shown that the semi-infinite

constraint on the LHS of (12) is equivalent to the followingstem of LMIs:

Q-+, T

ri s — td?
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12

which is efficiently computable. This yields the followingrozex restriction method for tackling the

probabilistic constraint (6):

Method | (Sphere Bounding): The following feasibility problem is a convex restrictiof ®):
Find Q,r,s,t

+tI r
s.t. @+t =0,

rH s — td?

t>0,

whered = |/, (1 - p)/2.

2n

By applying Method | to the rate outage constrained probl&jn e obtain the convex restriction
formulation (8) in Table I. Such a formulation has severaéiasting connections. Firstly, the sphere
bounding formulation (8) takes exactly the same form asithanhother design context, namely, SDR for
the worst-case robust beamforming problem [17], which sl@ath worst-case robust constraints rather
than the outage constraints. The notable difference betwee two formulations is that the worst-case
robust SDR formulation pre-specifies the ball rafjis, while the sphere bounding formulation (8) controls
the d;'s according to the requirements of the maximum tolerablagel probabilitieg;’s. Secondly, it
is worthwhile to mention that two independent studies [183] have shown that the worst-case robust
SDR formulation, or equivalently, the sphere bounding falation (8), is guaranteed to have rank-one
solutions under some mild conditions. Thirdly, althoughthl | is widely known, we should point out
a perhaps less known interpretation that puts Method | utideframework of Challenge 1. Specifically,

let f:H" x C" x R — Ry U {400} be the indicator of the set
F={(Q,r,s) e H" x C" x R: 6" Q& + 2Re{6" 1} + 5 > 0 V6 € B},

which is defined as
1 — Prob{e € B} if 67Q6& 4 2Re{6"r} +5>0 V6 € B,

+00 otherwise

[(Q.r,s) =
Then, f is convex (as a function) if and only # is convex (as a set), and
Prob{e’ Qe + 2Re{eflr} + s < 0} < f(Q,7,s);

i.e., f is an upper bound on the violation probability (see (4)). &uer, if Prob{e € B} > 1 — p,

then the worst-case robust constraint on the LHS of (12) isvatent to the constrainf(Q,r,s) < p
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13

(see (5)). This shows that wheh is a ball, the functionf defined above satisfies the requirements of
Challenge 1, and Method | is simply an implementation of tbavex restriction approach proposed in

Section IlI-A.

B. Method II: Bernstein-Type Inequality

An alternative way of implementing the convex restrictiggpeoach in Section IlI-A is to use large
deviation techniques. In this subsection, we propose thiesBain-type inequality method, which is based

on the following large deviation inequality for complex Gaian quadratic forms:
Lemma 1 Lete ~ CN(0,1,), and letQ € H" andr € C" be given. Then, for any > 0, we have
Prob {e”Qe + 2Re{e'r} > T(n)} > 1 -7, (14)
whereY : R, — R is defined by
T(n) = Te(Q) — 2/ 1QIIF + 2| — nA*(Q).

Lemma 1 can be established by extending the correspondsudf iie [49] for real Gaussian quadratic
forms; see Appendix A for the derivation. The inequality Y(1gta so-called Bernstein-type inequalty,
which bounds the probability that the quadratic foefQe + 2Re{e’r} of complex Gaussian random
variables deviates from its medn(Q). This explains the name of the method.

SinceY is monotonically decreasing, its inverse mappifig : R — R, is well defined. In particular,

the Bernstein-type inequality (14) can be expressed as
Prob{e’Qe + 2Re{e'r} +s >0} > 1 — e~ T (=s),

which suggests us to takg(Q,r,s) = e~ '(=%) in Challenge 1. The resulting safe approximation

f(@Q,r,s) < p (see (5)) is then equivalent to

Tr(Q) — v2In(1/p)\/ Q% + 2lIr[* + In(p) - AT(Q) + 5 > 0. (15)

By introducing suitable slack variables, one can easilystitat the above constraint is equivalent to

the following system of LMI and SOC constraints:

Roughly speaking, a Bernstein-type inequality bounds tbability that a sum of random variables deviates from ieam

The famous Markov, Chebyshev, and Chernoff inequalitiesathbe viewed as Bernstein-type inequalities.

August 25, 2014 DRAFT



14

Method |l (Bernstein-Type Inequality): The following feasibility problem is a convex restrictioh(6):
Find Q,r,s,z,y
st. Tr(Q) —v/2In(1/p) -z +1n(p) -y +s >0,
VIRIE +2lIr|? < =,
ylI, +Q = 0,

y = 0.

Upon applying Method 1l to the rate outage constrained mnob(3), we obtain the convex restriction
formulation (9) in Table I. From a computational perspestigne would expect that Method Il is more
costly to implement than Method I, as the former involves aanmomplicated set of constraints. This
is indeed the case, as we shall see in Section V. On the othat, fimm an approximation quality

perspective, our analysis in Section V shows that Methodhitdts better performance than Method |I.

C. Method lll: Decomposition-Based Large Deviation Inelifya

Although the convex restrictions derived using Methods d dncan be formulated as semidefinite
programs (SDPs) and hence are polynomial-time solvaldg, ¢an still be expensive to solve in practice
if the size of the LMI constraint is large. Thus, it is of inést to develop convex restrictions of (6) that
involve simpler convex conic constraints, such as SOC caings. In this subsection, we propose yet
another convex restriction method that has such a propEng.method is based on the following large
deviation inequality for complex Gaussian quadratic farmiich, to the best of our knowledge, has not

appeared in the literature before:

Lemma 2 Lete ~ CN(0,1,), and letQ € H" andr € C" be given. Then, for any > 1/4/2 and

n > 0, we have

2
exp <—%> for 0 < n < 20vT,
Prob {e’Qe + 2Re{e"r} < Tr(Q) — n} < ; (16)
exp <—% + (91})2> for n > 20vT,

where

_ 1 1
0=1 T=U||Q||F+—2HTH-

o202 V2
Since the proof of Lemma 2 is quite technical, let us relegatie Appendix B and simply describe the

ideas here. A key step in the proof is to show that the quaetit@e + 2Re{e’r}, which is a sum
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of dependent random variables, can be decomposed into tv®, gach of which is a sum of certain
independent random variables. This allows us to bound thmenot generating function of each part
separately using standard arguments. By stitching thdtirguounds together in a judicious manner,
we obtain the desired inequality (16). We remark that theaidé decomposing a sum of dependent
random variables into sums of independent random varididssbeen used extensively in probability
theory; see, e.g., [27], [50]. Nevertheless, as mentiotede the inequality (16) appears to be new.
To derive a convex restriction of (6) using Lemma 2, weget Tr(Q) + s and choose to be the
solution to the quadratic equatidih — 1/(2v%))v = \/In(1/p) that satisfies > 1/1/2. Note that such a
v must exist, agl —1/(2v?))v = 0 whenv = 1/v/2 andv + (1—1/(2v?))v is monotonically increasing
on [1/v/2,00). Moreover, the choice of and the definition of) imply that§v = /In(1/p). Now, by
Lemma 2, the probabilistic constraint (6) will be satisfiéd{/M-T < n < 20vT, or equivalently,
n=2y/In(1/p) - T. On the other hand, iff > 26vT = 2./In(1/p) - T, then Lemma 2 yields

Prob {e”Qe + 2Re{e"'r} + s < 0} < exp <_%Tn + (91})2> < exp (—(0v)?) = p,
which implies that the probabilistic constraint (6) wililsbe satisfied. Thus, we have

Prob {eHQe + 2Refellr} + 5 < 0} < exp (—W) )

which suggests that we can taféQ, r, s) = exp (—(Tr(Q) + s)?/4T7?) in Challenge 1 (see (4)). The

resulting safe approximatiofi(@Q, r, s) < p (see (5)) can then be expressed as

Tr(Q) + s > 2+/In(1/p) - T. 17)

Using the definition off’, it is not hard to show that (17) can be expressed as a syst&@Gfconstraints.

In particular, we obtain the following convex restrictiorethod for tackling Challenge 1:

Method |11 (Decomposition-Based Large Deviation Inequality): Let v > 1/4/2 be such thaty =
In(1/p), whered = 1 —1/(2v?). Then, the following feasibility problem is a convex restion of (6):

Find Q,r,s,z,y

st Tr(Q) + s > 2y/In(1/p) - (z + y),
1

V2

v]|QlF < y.

el < =,
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Since the above convex restriction contains only SOC caimsy, it can be solved more efficiently
than the convex restrictions obtained using Methods | angdé Section V for details. By applying
Method 11l to the rate outage constrained problem (3), wainbthe convex restriction formulation (10)

in Table I.

V. PERFORMANCEANALYSES OF THEPROPOSEDCONVEX RESTRICTIONMETHODS

In the previous section, we present three tractable coresixiction formulations of the rate outage
constrained problem (3). This naturally leads to the qoastibout the relative performance of these
formulations. In the following subsections, we address tjuestion by comparing their computational
complexities, as well as their tightness in approximathmg ariginal rate outage constrained problem (3).
As will be seen from our analyses, the three formulationsitexla tradeoff between computational

efficiency and approximation quality.

A. Complexity Analysis

Recall that the three convex restriction formulations (8), and (10) involve only LMI and SOC
constraints. As such, they can all be solved by a standard #e¥, e.g., [48, Lecture 6]. This suggests
that the worst-case runtime of such a method can be used tparenthe computational complexities
of the different formulations. To set the stage for comparjdet us review the basic elements in the

complexity analysis of IPMs; see [48, Lecture 6] for detall®nsider the following conic program:

min ¢’z (18a)
zeR”
st. > zmAl-Biesy  forj=1,...,p, (18b)
i=1
Tiz—b ell  forj=p+1,...,m. (18c)

Here, A/, B/ ¢ Sk fori=1,...,nandj=1,...,p; TV € R¥*" andb’ € R% for j =p+1,...,m;
c € R"; S% is the set ofk x k real positive semidefinite matrices? is the second-order cone of dimension
kE>1;ie., Lk = {'v ERF vy > \Jod 4 +v,%,_1}. Note that the linear constraint’ z — b > 0 is
equivalent to the LMI constraini” z —b ¢ S}F and hence can be put into the form (18b). The complexity
of a generic IPM for solving (18) consists of two parts:

1) Iteration ComplexityGiven ane > 0, the number of iterations required to reachcaoptimal solution

to (18) is on the order of/3(K) - In(1/e), where 3(K) = 3°%_, k; + 2(m — p) is the so-called
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barrier parameter associated with the cdbe= Hle S’fj X ]"[;”ZPHL’“J‘. Roughly speaking, the
barrier parametef(K) measures the geometric complexity of the conic constran¢48).

2) Per-lteration Computation Costn each iteration, a search direction is found by solving/stesm
of n linear equations im unknowns. The computation cost is dominated by (i) the fdionaof
the n x n coefficient matrix H of the linear system, and (ii) the factorization Bf. The cost of
forming H is on the order of

p p m
Clmm=nY K +n° Y K en > &,
j=1 7=1

Jj=p+1

due to (18b) due to (18c)

while the cost of factorizingd is on the order of’,. = n>. Hence, the total computation cost per
iteration is on the order o'y, + Chact-

By combining the above two parts, it follows that the compiexf a generic IPM for solving (18) is
on the order of,/3(K) - (Ctorm + Cact) - In(1/€).
Armed with the above results, we are now ready to analyze tmeptexities of the three convex

restriction formulations (8), (9), and (10). First, notathhrough the transformation

H"> S — Re(S) ~Im(S) e s*,
Im(S) Re(S)
we can convert the complex-valued conic programs (8), (®, @0) into equivalent real-valued conic
programs of the form (18); see, e.g., [51]. For the sake opkaity, let us assume that the decision
variables in (8), (9), and (10) are real-valued. Now, coasfdrmulation (8), which ha& LMI constraints
of size N; + 1, K LMI constraints of sizeV;, and X' LMI constraints of sizel. Moreover, for all three
formulations (8), (9), and (10), the number of decision alakésn is on the order ofK N?. Hence,
the complexity of a generic IPM for solving (8) is on the oradrthe quantity shown on the first row
of Table Ill. In a similar fashion, we can determine the coexjiles of the formulations (9) and (10),
and the results are shown on the second and third row of Tébleespectively. From Table I, it is
straightforward to show that Method Il has the lowest waase complexity, followed by Method | and

then Method If. This is also consistent with our simulation results, as hallsee in Section VI.

4As an illustration, consider the simple case whé&fe= N; andn = KN? = N;. For largeN;, the dominating terms in
the complexities of Methods | to Il argv2N7 /N (N; + 1), 3v2N; /N (N; + 2), and2N7 /N (N: + 5), respectively.
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TABLE I11. Complexity analysis of the convex restriction formulagan Table |.

Method H Complexity Order (suppressing the(1/¢) term; n = O(K N?))

Method I:
] 2K(N: +1) -n- [K ((Ne +1)> + NP + 1) + Kn (Ne + 1)* + N7 + 1) +n?]
Sphere Bounding

Method |1:

VRN +2) -+ [2K (N7 +1) +2Kn (N +1) + K (NZ + Ne +1)° + 0
Bernstein-Type Inequality

Method I11:
Decomposition-Based VE({N:+5)-n- [K (N? +1) + KEn (Nf +1) + K <(Nt + 17+ (N + 1)2> + nﬂ
Large Deviation Inequality

B. Relative Tightness Analysis

Given the conservative nature of the formulations in Tablenlimmediate question is how well they
approximate the original rate outage constrained probBmWhile this remains a formidable challenge
even in the field of chance constrained optimization, in gubsection we tackle the more manageable
task of analyzing the relative tightness of the differemtrfalations. As we shall see, Method Il generally
yields the tightest approximation of problem (3) among threé presented methods.

1) Method 1l vs. Method IlI: Let us first compare the convex restriction formulations g8y (10)
derived using Methods Il and Ill, respectively. The follogi result shows that as long as the outage
probabilitiespy, ..., px are sufficiently small, every feasible solution to (10) isd#le for (9). Thus,
from a power minimization perspective, the performancehef ¢convex restriction formulation (9) will

be no worse than that of (10).

Theorem 1 Consider the convex restriction formulatio(®) and (10). Suppose that

p< e (<2 (V2= Dl +1)7)). (19)

whereg; = Ci_l/th, fori=1,..., K. Then, every feasible solution {&0) is feasible for(9).

The proof of Theorem 1 can be found in Appendix C. We remark lfesides condition (19), there
could be other conditions under which the conclusion of Taeepl holds. Indeed, as will be shown in
Section VI, the performance of the convex restriction folatian (9) can be considerably better than
that of (10), even though condition (19) is not satisfied.

2) Method | vs. Method ll:Let us now turn our attention to the convex restriction folations (8)
and (9) derived using Methods | and I, respectively. The parative analysis of these two formulations

is much more involved than that of the formulations (9) and) (dresented above, in part because the
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structure of the constraints in (8) is quite different frohat in (9). In particular, we are only able to

guarantee that the performance of (9) is no worse than th@)ainder a stronger set of conditions:

Theorem 2 Consider the convex restriction formulatio8) and (9). Let {(S;,#;)}X, be a feasible

solution to(8), with {(Q;, 7, 5;)}/X, given by(7). Suppose that
AT(Qi) = AT (—Qy) (20)
and
pi < min {exp (<21V7) 1= @y (2max { Ny, (2/N:) + Nillgil*}) } (21)
whereg; = CZ._I/QFLZ-, fori =1,..., K. Then, there exis{(7;,7;)}/X, such that{(S;,7;,7:)}X, is a
feasible solution td9).

Theorem 2 is proven in Appendix D. Compared with Theorem lgdfem 2 requires not only the
violation probabilitiespy, ..., px to be small but also the eigenvalue condition (20) on the tgolu
{Qi}E . Nevertheless, such a condition has a nice interpretatiothé context of the rate outage
constrained problem (3). Indeed, the following result i@plthat the condition (20) can be ensured
if the total transmission power associated with an optinedlition to (8) is not concentrated on a few

users:

Proposition 1 Let {S;}X, be given transmit signal covariance matrices, and defig}X , via (7).

Furthermore, letP; = Tr(S;) be the transmission power of usgrfor i = 1,..., K. Consider now a
fixed useri € {1,..., K}, and letC; be its channel error covariance matrix. Suppose tbat- 0 and
) -1
[fz < <1 + (Nt + 1)()‘maX(CZ)/)‘mm(CZ))> ) (22)
Zj:l Pj Vi

Then, we have™(Q;) > AT (—Q,).

We relegate the proof to Appendix E.

We emphasize that the conditions (20) and (21) in Theoreme2bgrno means necessary for the
convex restriction formulation (9) to outperform the foration (8). In fact, our simulation results in
Section VI suggest that the former formulation performs mbetter than the latter in fairly general

settings.

August 25, 2014 DRAFT



20

VI. SIMULATION RESULTS

This section presents simulation results to illustrate gheformance of the three convex restriction
methods for handling the rate outage constrained probl@m_ €3 us first describe the general simulation
setting. We assume that the users’ noise powers are ideaticagiven byo? = --- = o2 £ 2. We
fix o2 = 0.1, unless specified. The outage specifications for all usersalso set the same; i.en; =
.-+ = pg = p. In each simulation trial, the presumed chanrgis}X | are randomly and independently
generated according to the standard circularly symmetiopiex Gaussian distribution. The convex
restriction formulations listed in Table | are solved by tbenic optimization solveiSeDuM [40],

implemented through the parser softw&éX [39].

A. Simulation Example 1

We start with the simple case &f; = K = 3; i.e., three antennae at the base station, and three users.
The CSI errors are spatially i.i.d. and have standard @rbusymmetric complex Gaussian distributions;
i.e.,Cy =--- = Ck = oIy, wheres? > (0 denotes the error variance. We sét= 0.002. The outage
probability requirement is set tp = 0.1, which is equivalent to having 80% or higher chance of
satisfying the rate requirements. Recall from (7b) that 2™ — 1, which is the signal-to-interference-
and-noise ratio (SINR) requirement of uséor i = 1,..., K; cf. the termh[ S;h; / (32, ; h{’ Syphi+07?)
in (1). We sety; = --- = yx 2 ~. In addition to the presented methods, we evaluate the ipeafice of
the probabilistic SOCP method in [22], which considers grait beamforming structures and applies a
different chance constrained optimization techniqueoAfer reference purposes, we run a conventional
perfect-CSl-based SINR constrained design (e.g., [31fere the presumed channdls;} XX, are used
as if they were perfect CSIl. The aforementioned method wélichlled the “non-robust method” for
convenience. Both methods are implementedSejpuM throughCVX.

We first investigate the conservatism of the various methmdsvaluating their feasibility rates; i.e.,
the chance of getting a feasible solution to the rate outagstrained problem (3) undé60 realizations
of the presumed channe{®;}X ;. The obtained result is shown in Fig. 1(a), where the felitsivates
of the various methods are plotted against the SINR reqentsn,. Remarkably, the three presented
methods yield feasibility rates much higher than that of phhebabilistic SOCP method. In particular,
Method Il has the best feasibility rate performance, while teasibility rates of Methods | and Ill are a
close match: Fory > 7dB, Method I slightly outperforms Method IlI; foy < 7dB, we see the converse.

In addition to the feasibility rate, it is important to exaraithe transmit power consumptions of

the design solutions offered by the various methods. Filg) 4fows the result. It is based on channel
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Y(dB) Y(dB)

(@ (b)
Fig. 1. Feasibility and transmit power performance of the variowthods.V; = K = 3; p = 0.1; spatially i.i.d.
Gaussian CSI errors with? = 0.002.

realizations for which all methods yield feasible soluiaiy = 11dB; 181 such realizations were found
out of 500 realizations (the same realizations used in the last raswitig. 1(a)). As can be seen from
Fig. 1(b), Method Il yields the best average transmit powafggmance, followed by Methods | and IlI
(with Method | exhibiting noticeably better performance fo> 15dB), and then the probabilistic SOCP
method in [22]. As a reference, we also plot the transmit peveé the non-robust method in the figure,
so as to get an idea of how much additional transmit power avbel needed for the robust methods to
accommodate the outage specification. We see tha forl 1dB, the transmit power difference between
a proposed method and the non-robust method is abédB, which is reasonable especially when
compared to the probabilistic SOCP method. The gaps grigduilen otherwise. This seems to indicate
that imperfect CSI effects are more difficult to cope with whwee demand higher SINRs (or rates).
Now, let us consider the computation times of the varioushods. The result is illustrated in Fig. 2.
To obtain this result, we use a desktop PC with3GHz CPU and3GB RAM. Moreover, instead of
calling the convenient pars€@VX, we use direcGeDuM implementations of all the methods, done by
careful manual problem transformation and programming fidason of doing so is to bypass parsing
overheads, which may result in unfair runtime compariséimem the figure, we see that the runtime
ranking, from fast to slow, is: Method IIl, Method I, Method land the probabilistic SOCP method.
Interestingly and coincidentally, the runtime ranking b€ tproposed methods is exactly the opposite
of their performance ranking obtained from previous siriafaresults. The performance and runtime

rankings are also consistent with our analysis resultsepites in Section V.
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Fig. 2. Average runtimes of the various methods.

As the last result in this example, we numerically inspeet thnk-one beamforming solution issue
as discussed in Section IlI-B. Recall that for instanced theve rank-one solutions, beamforming
solution generation is simple (simple rank-one decomjosino Gaussian randomization). We examine
how frequent the formulations in Table | can yield rank-omdusons. Numerically, we declare that

(S1,...,Sk) is of rank one if the following conditions hold:

)‘?%s)") >0.9999 foralli=1,..., K.
Table 1V shows the result. In the entries that contain a imactthe denominator counts the number of
realizations for which the formulation is feasible, whilkeetnumerator counts the number of realizations
for which the formulation yields a rank-one solution. Ag&ifi0 channel realizations are used. Curiously,
almost all the entries in Table 1V indicate rank-one solutal the time. We encounter only three non-
rank-one instances out @B0 for the setting ofp = 0.01, v = 3dB, Method Il. We therefore conclude,

on the basis of numerical evidence, that occurrence of ragk-solutions is very rare for the unicast

rate outage constrained problem considered here.

B. Simulation Example 2

This example considers the following more challengingrsgttV; = 8 and K = 6; spatially correlated

CSl errors withCy = --- = Cg = C,, where

[Colomn = 02 x 0.9,
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TABLE V. Ratios of rank-one solutions.

p 0.1 0.01

~ (dB) 3 7 11 15 3 7 11 15
Method | 464/464| 448/448| 404/404| 292/292|| 450/450| 424/424| 343/343| 225/225
Method 11 489/489| 475/475| 441/441| 363/363|| 477/480| 463/463| 428/428| 322/322
Method 111 488/488| 449/449| 372/372| 251/251|| 473/473| 418/418| 301/301| 124/124
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Fig. 3. Performance under spatially correlated Gaussian CSlemior= 8; K = 6; p = 0.01; 02 = 0.01.

o2 = 0.01; p = 0.01 (or 99% rate satisfaction probability). We do not run the probatidi SOCP

method in [22], since, as seen in Fig. 2, it is computatignediry demanding for large problem sizes.
The same simulation method in Simulation Example 1 is usqutdduce the results here. Fig. 3 shows
the resulting feasible rates and average transmit powensirfr simulation aspect with the transmit
power performance plot in Fig. 3(b) is that we chogse 13dB as the pick-up point of feasible channel
realizations of all the methods. We can see that, once alyithod Il offers superior performance over

the others. Another observation is that Method Ill managesutperform Method | this time.

VIl. CONCLUSION

In this paper, we considered the multiuser MISO downlinknse® with Gaussian CSI errors and
studied a rate outage constrained optimization problerah $uproblem contains rate outage probability
constraints, which are difficult to process computatigndlb tackle these constraints, we presented three

methods—namely, sphere bounding, Bernstein-type ingguahd decomposition-based large deviation
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inequality—for obtaining efficiently computable convexstrictions of the probabilistic constraints at
hand. We then carried out performance analyses to studyaimplexity and relative tightness of these
methods. Our simulation results indicated that all thre¢hods provide good approximations to the
rate outage constrained problem, and they significantlyréng upon the existing state of the art in
terms of both computational complexity and solution qyalih closing, we remark that the rate outage
constrained formulation considered in this paper can bel tsetackle other problems, such as the
rate outage constrained max-min-fairness formulation astdevable rate region characterization. In the
companion technical report [52], we discuss some of theseuiations in detail and provide simulation

results on the performance of the three presented methoes ajbplied to those formulations.

APPENDIX
A. Proof of Lemma 1

The proof is based on the following result:
Fact 1 (cf. [49, Lemma 0.2]) Leé ~ N(0,I,) be a standard real Gaussian random vector, and let
Q e Y and7 € R! be given. Then, for any > 0, we have
Prob {éTQé +2&TF > T(n)} >1—e
whereT : R, — R is defined by
T(n) = Te(Q) — 2/m\/ Q% + 2|72 — 202" (Q).
To prove Lemma 1, observe that sinee- CA(0,1I,,), Q € H", andr € C", we have

Re{e} N0, Iy, Q:l Re{Q} -Im{Q} cE o s Re{r} -

e=12
Im{e} 2 lm{Q} Re{Q) V2 |Tm{r}

It is straightforward to verify thae” Qe + 2Re{e’r} = &7 Qé + 2¢”#, and that

Tr(Q) = Tr(Q), |1QIF =2(QI%, IIr]* =2]7|%, A*(Q) =22"(Q).

Thus, by invoking Fact 1, we obtain the desired result.

B. Proof of Lemma 2
The proof consists of four steps.

Step 1: Decomposition into Independent Parts
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Let Q = UAU"Y be the spectral decomposition &, where A = Diag(A1,...,\,) and Ay, ..., \,
are the eigenvalues @. Sincee ~ CN(0,1,,) andU* is unitary, we havee = U’e ~ CN(0,1,,).

Thus, we can write
U = e Qe + 2Re{ef'r} = e Aé + 2Re{er} = U, + V.
Now, observe that both

U, =é"Aé =) )¢ and U =2Re{efr} =2 (Re{r;}Refe;} + Im{r;}Im{e;})
j=1 j=1

are sums of independent random variables. Moreover, fon gae 1,...,n, Re{e;} andIm{e;} are

i.i.d. real Gaussian random variables with mean zero anidrnveg1/2. This implies that
exp(—0)

E {exp (0(|&;]* — 1))} = g =P (=(0+1In(1—0))) foro <1, (23)
1
E {exp (0 - 2Re{e;})} = E{exp (6 - 2Im{e;})} = exp <§92> for 6 € R. (24)
Step 2: Establishing a Preliminary Inequality
Letv > 1/\/5 be arbitrary. We claim that
1

—(0+1n(1 —0) <v*0? foro<h=1 (25)

S22
To prove (25), letf(8) = —(6 +In(1 — )) and g(f) = v?62. Consider the following cases:
Case ;16 <0.
It is easy to verify thatf(0) = ¢(0) = 0. Furthermore, we have
1 1 62
/ / 2
— = _—_— — = — <
g 0)— f(0)=2v"0+1 1_9<9—|-1 T3 1_(9_0
for all # < 0. It follows that f(0) < ¢(#) for all 6 < 0.

Case II:6 € (0,1).
Observe thay'(8) — f/(#) > 0 if and only if § < § = 1 — 1/(2v?). This, together with the fact that
f(0) = g(0) = 0, implies thatf(#) < g(0) for all 0 <6 < 4.

By combining Cases | and Il above, we obtain the inequalig).(2

Step 3: Bounding the Moment Generating Functior£gf } — &
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Let p1,p2 > 0 be such thap; + ps = 1, and letv > 1/4/2 be arbitrary. Suppose that> 0 satisfies
uXj/p1 <0 =1-1/(2v%) for j =1,...,n. Using the fact thaE{¥} = Tr(A), we compute

E {exp(u(E{V} - ¥))} = E {exp (m L, - 1x(a) e <;—“)wl>}

<p-E {exp (—pﬂl(\yq . Tr(A))> } +po-E {exp <—p%\1/l> } (26)

= plj]i[lE {eXp (-p%)\j(\éjﬁ - 1)> } (27)

+ o f[ E {exp (-p%me{rj}Re{ej}) } E {eXp <— ]%QIm{rj}Im{ej}> }

j=1

n u2)\2 "1 (u2Relr )2 w2Im{ri 12
<o (3] ey 31 (MRS I )
= N 1

2
i=1 Py

(—u)

(28)
where (26) follows from the convexity of — exp(z), (27) follows from the independence of the random
variables in¥, and ¥;, and (28) is due to (23)—(25). By setting

n
1 v/ C1 1/ C2
€1 = 022)‘?7 C2 = 5“7’”27 T'=ya+ye, pr= o 2=
j=1

we conclude from (28) that

E {exp(u(Tr(A) — )} < p1exp (u*T?) + poexp (u*T?) = exp (u*T?) for 0 <u < 0% (29)

Step 4: Deriving the Large Deviation Inequality
Using Markov's inequality and (29), we have, for any> 0,

Prob{Tr(A) - ¥ >n} < inf {exp(—un) -E {exp(u(Tr(A) — ¥))} }
0<u<bv/T

< inf { exp (u2T2 — un) }
0<u<bv/T

Upon optimizing the right-hand side of the above inequadityl noting that; = v?||Q||% and Tr(A) =
Tr(Q), we obtain (16). This completes the proof of Lemma 2.

C. Proof of Theorem 1

Let {(S;, 7, 9:)}X | be a feasible solution to (10), wit{Q;, 7, 5,)} £, given by (7). Without loss of

generality, we may assume thgt= ||7;||/v2 andg; = v;||vec(Q;)|| for i = 1,..., K. Then, we have
Tr(Qs) — v/2I(1/p0) (V2uillQillr + 17:]l) +5 20 fori=1,....K.
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Comparing the above inequality with (15), we see tht}X, can be extended to a feasible solution
to (9) if

—V2I(1 /o)1l + 201712 + (o) - X (Q1) = —v/2Wn(1/p) (V2uillQillr + 174 )

or equivalently,

VE1QilE + 2l + Vin(L/p) - X (@) < V2 (VEuilQillr + 7)) fori=1....K. (30)
Using the fact that; > /In(1/p;) and A" (Q;) < ||Q;||r, as well as the inequality/|a[? + |3]? <

|| + | 8|, which is valid for anya, 8 € R, we obtain the following chain of implications:

30) = V2 (IQillr + V2Imil)) + V(o) Qullr < V2 (V2I(1/p)1Qillr + 7]

_ In(1/p;) . = = _
= (1@l +vaIml) + 202 1,10 < VAR QU + I

= |l < \/;_1< 1“(12/”)—1) Qi 31)
~1/2%

Using (7), we can writer; = Q;g;, Whereg; = C. /“h;. By substituting this into (31) and using the

)

fact that||Q.g:|1* < ||Q:l|%g:||*>, we see that a sufficient condition for (31) to hold is

, 1 ln(l/m)_
||gzugﬁ_1< ; 1>.

Upon rearranging the above inequality, we obtain the seflitccondition (19).

D. Proof of Theorem 2

Consider a fixed € {1,..., K}. For notational simplicity, let us drop the subscripts andenQ = Q;,

F=7,5=58,t=1,9=g,p=p andd = d;. Since{(S;,%;)} X, is feasible for (8), we have
)+l 7 _
@+ tly, | =0, >0 (32)
2 5 — td?
Let Q = Z;.V:‘I )\jujuf be the spectral decomposition @@, where uy,...,uy, € Ct are the
orthonormal eigenvectors @ and ), ..., \y, are the associated eigenvalues. Define
0; = |u]H’F|u» forj=1 Ny &€= !
J i J J y ey AVES Ntln(l/p)'
Then, (32) implies that
Q+tly, T 5
LT | R § N S R
7 5—td*| |1/ N
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J /N ] N

Upon summing the inequalities in (33), we obtain the follogvichain of implications:

(Tr(Q) + Nyt)E* — \/_Z|u 7l +5—1d> >0

= g2
— THQ) + NiF— giﬁﬂ’“”*% >0 (34)
1 N _ td? 2 _

where (34) follows fromy_ X, [ul/7| > MZ;V:H jull#|? = ||7||, and (35) follows froms — #d* > 0,
which is a consequence of (32).

To proceed, we assume that (0, 1) is sufficiently small, so that

%—1<0 (36)

(recall from (13) that/ increases ap decreases, as thdt— oo asp — 0). Then, (35) implies that

_ 55— 1{d? 2
By comparing (37) with (15), we see thé®, 7, 5) is feasible for (9) if
V2In(1/p)\/IQII% + 2|72 +In(1/p) - XT(Q) < —g_gfdz + 5\/%Ilrll
— V2m(1/p) (1Qllr + ﬂufn) Fin/p) M@ < -1 2 (38)
- £2 EVIN
= 2 (VR - e ) Il < VW) QI — In(1/p) - A (@)
= 0< —8NIn(1/p) — v2In(1/p) - |QllF + (NeFd* — AT(Q)) In(1/p), (39)

where (38) follows from the inequality/|«|? + |52 < |«| + |5], which is valid for anya, 8 € R,
and (39) follows from the definition of. Now, by recalling (7) and the definition @f, we have

5<9"Qg <|g|*1Qll¢. (40)
On the other hand, by (32), we know th@t+ Iy, = 0 and? > 0. This yields

t > AT(Q) = max{Amax(—Q), 0}. (41)
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It then follows from (40) and (41) that
(389) = 0< —v/(1/p) (NevI(L/p)lgll? + V2) 1Qllr + (Ned? = 1)- X*(Q) - In(1/p).  (42)
Using condition (20), we bound
1Qlr = X < M1 < Ne - max{A™(-Q), \"(Q)} < N¢ - AT(Q),
whereX = (A1,..., An,). In particular, we have

(42) <= 0< (Ntd2 -1- Nt2HgH2) VIn(1/p) — V2N,
{MWUM>ﬂM,

(43)
Nid? — 1 N|g|? > 1.

Hence, as long ap satisfies condition (21) (which is equivalent posatisfying both conditions (36)

and (43)), the tripletQ, r, 5) is feasible for (9). This completes the proof.

E. Proof of Proposition 1
We proceed in three steps.
Step 1: Bounding\" (Q;)

We first compute

)\max(_Q_i) > Nt ( 1/2 (Z Sk — S) 1/2> (44)

ki

> Nit ()\mln(Cz) ZTI‘(S’k) — i . Amax(Ci) . TI‘( z)) (45)
k#i t

z 0 (46)

where (44) follows from the inequalitfir(X) < n - Anax(X), which is valid for anyX € H"; (45)
follows from the inequality\yin(X) - Tr(Y) < Tr(XY) < Amax(X) - Tr(Y), which is valid for any
X e H" andY € H'; (46) is implied by (22). Hence, by definition of"(Q;), we have

N Q) = dmus(-@) = 3 (Aminw,)ZTr(sk)1-Amax<cz>.Tr<si>). (47)
ki '
Step 2: Bounding\" (—Q;)
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Next, we bound

9 1 2 _
)‘maX(Qi) = ma_xl ’u,H(j’Zl/2 _Sz _ Z Sk Cll/2u
fuli= TS
< o e {ucis.cl ) (48)
Vi lluf=1
1 _
< ; : )‘max(ci) . TI'(SZ), (49)

where (48) follows from the fact tha§; = 0 for i = 1,...,K; (49) follows from the inequality
Amasx (Cj/ 25.c)/ 2) < M (C3) - Amax(S3) < Amax (C3) - Tr(S5). SinceC; = 0, this yields

)‘+(_Qi) = max {)\max(Qi)ao} S i

" . )\max(Ci) . TI‘(S_'Z) (50)

Step 3: Completing the Proof

Our assumption (22), together with the inequalities (47 é0), implies that\™ (Q;) > AT (—Q;).

This completes the proof.
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