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Optimization
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Abstract

In this paper, we study a probabilistically robust transmitoptimization problem under imperfect
channel state information (CSI) at the transmitter and under the multiuser multiple-input single-output
(MISO) downlink scenario. The main issue is to keep the probability of each user’s achievable rate outage
as caused by CSI uncertainties below a given threshold. As iswell known, such rate outage constraints
present a significant analytical and computational challenge. Indeed, they do not admit simple closed-
form expressions and are unlikely to be efficiently computable in general. Assuming Gaussian CSI
uncertainties, we first review a traditional robust optimization-based method for approximating the rate
outage constraints, and then develop two novel approximation methods using probabilistic techniques.
Interestingly, these three methods can be viewed as implementing different tractable analytic upper bounds
on the tail probability of a complex Gaussian quadratic form, and they provide convex restrictions, or safe
tractable approximations, of the original rate outage constraints. In particular, a feasible solution from
any one of these methods will automatically satisfy the rateoutage constraints, and all three methods
involve convex conic programs that can be solved efficientlyusing off-the-shelf solvers. We then proceed
to study the performance-complexity tradeoffs of these methods through computational complexity and
comparative approximation performance analyses. Finally, simulation results are provided to benchmark
the three convex restriction methods against the state of the art in the literature. The results show that
all three methods offer significantly improved solution quality and much lower complexity.

Index terms− MIMO precoder designs, imperfect channel state information, robust optimization, outage
probability, multiuser MIMO
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I. INTRODUCTION

In multiuser multi-antenna downlink channels, linear precoding has been recognized as a practically

powerful technique that is capable of leveraging quality ofservice (QoS) and improving system through-

put [3], [4]. Fundamentally, linear precoding methods assume knowledge of the downlink channels at the

transmitter side, or simplychannel state information(CSI), and use it to perform interference management

and resource optimization among users. In particular, it iscommon to assume perfect CSI. However,

such an assumption is considered idealistic for several reasons [5]. Firstly, in the time division duplex

(TDD) setting, where there is a reciprocity between the uplink and downlink channels, CSI is acquired by

uplink channel estimation. As such, noise and limited training will introduce errors into the acquired CSI.

Secondly, in the frequency division duplex (FDD) setting, where users estimate the downlink channels

and inform the transmitter by rate-limited quantized CSI feedback, the acquired CSI is plagued by

quantization errors, in addition to the channel estimationerrors mentioned above. Thirdly, the acquired

CSI may become outdated if the user mobility speed is faster than the CSI update speed.

In general, imperfect CSI can lead to substantial performance degradation, such as QoS outages, if not

taken care of properly. It is therefore natural to consider the case of imperfect CSI and investigate how

CSI error effects may be mitigated through pertinent systemdesigns. In fact, the topic is important and

has received a great deal of attention lately. One branch of research focuses on achievable rate analyses,

wherein the aim is, roughly speaking, to study how performance depends on system parameters (such as

those of the CSI errors) and to obtain implications for the design of channel estimation and CSI feedback

schemes. There are several works in this direction, where optimal CSI feedback bit scaling and optimal

resource allocation for downlink/uplink training are studied; see, e.g., [6]–[9]. However, it is generally

very challenging to analyze the achievable rates of such schemes under imperfect CSI. In fact, in order

to obtain a more tractable problem, many of the existing works fix the linear precoder to be the relatively

simple zero-forcing (ZF) beamformer and analyze the subsequentergodic achievable rate performance.

This implicitly assumes that the system is able to perform coding across a large number of differently

faded frames [6]–[9]. In comparison, there are far fewer results on theoutage rate metric, which is

motivated by the scenario of one-frame coding over a slowly fading environment. Most results in this

direction apply only to the single-user multiple-input single-output (MISO) scenario; see, e.g., [10]–[12].

This is primarily due to the fact that the outage rate probability is difficult to evaluate and does not have

August 25, 2014 DRAFT



3

a closed-form expression in general.1

Another branch of research tackles the imperfect CSI problem by optimizing the precoder design

based on a prescribed model of the CSI errors, rather than focusing on a fixed precoder such as the ZF

beamformer. Currently, the CSI error models considered in the literature give rise to three different design

approaches. The first is theworst-case robust approach, in which the CSI errors are assumed to lie within

a bounded set, and the goal is to design the precoder so that itis robust against the worst-case QoS under

the prescribed CSI error model. Such an approach has attracted considerable attention in recent years;

some notable contributions include the robust second-order cone program (SOCP) methods [14], [15], the

robust minimum-mean-square-error (MMSE) methods [15], [16], and semidefinite relaxation [17]–[19].

The second approach assumes a probabilistic CSI error modelsuch as the Gaussian model and optimizes

the precoder design with respect to (w.r.t.) the average QoSunder that model. Such anaverage robust

approachaims at good on-average performance, as opposed to the good worst-case performance sought

by the worst-case robust approach. The average robust approach often amounts to solving stochastic

optimization problems. For example, the very recent works [20], [21] tackle the ergodic sum rate

maximization problem by stochastic gradient-type methods.

The third is theoutage-based approach, whose design focus is on constraining QoS outages under a

probabilistic CSI error model. In contrast to the average robust approach, this approach seeks to provide

“safe” performance, guaranteeing a certain chance (often high) of success of QoS deliveries. The outage-

based approach is essential in delay-sensitive or low-latency applications, but dealing with the outage

probability appears to be hard, especially in the multiusercontext. Hence, it is of great interest to find

approximate solutions that are efficiently computable and can give good approximation accuracies. For

instance, the works [22]–[24] employ techniques from [25] (see [26], [27] for the latest results) to

developconvex restrictions, or safe tractable approximations, of outage-based QoS constrained precoder

optimization problems. There are also endeavors that studyoutage-based power allocation methods under

a fixed precoder structure [28]–[30].

A. Contributions

This paper considers outage-based precoder optimization.Specifically, the scenario of interest is the

multiuser MISO downlink, and the Gaussian CSI error model isadopted. We focus on a rate outage

1The work [13] provides integral expressions of the rate outage probability under Gaussian CSI errors and ZF beamforming.

However, the results are too complicated for practical precoder optimization.

August 25, 2014 DRAFT



4

constrained problem, in which the goal is to optimize users’signal covariance matrices for total transmit

power minimization while satisfying achievable rate outage constraints. As in [22]–[24], our designs

follow the convex restriction philosophy. In other words, we formulate tractable convex optimization

problems whose solutions will automatically satisfy the rate outage specifications. It should be noted that

convex restriction methods do not require Monte-Carlo (MC)sampling, say, for rate outage verification

or optimization purposes, as in some other concurrent works[29]. In general, MC sampling will become

prohibitively costly under very low outage specifications,although it is also fair to say that MC sampling

allows one to consider non-restrictive approximations, which may bring advantages in approximation

accuracies. We now summarize our contributions as follows.

1. We develop two novel convex restriction methods for the aforementioned rate outage constrained

problem using probabilistic techniques. We show that thesemethods, together with a traditional robust

optimization-based convex restriction method, can be viewed as implementing different tractable

analytic upper bounds on the tail probability of a complex Gaussian quadratic form. Furthermore,

all three methods involve convex conic optimization problems that can be efficiently solved by an

interior-point method (IPM). We use simulations to demonstrate that the presented methods perform

better than the one developed in [22]–[24], in terms of both computational complexity and solution

quality.

2. We analyze the performance-complexity tradeoff of the three presented convex restriction methods.

The complexity orders of the three methods, when implemented by a generic IPM, are shown. We

then analyze the relative tightness of these methods. It should be emphasized that the tightness

analysis is particularly non-trivial from a theoretical viewpoint. The insights obtained from our

analyses are in agreement with the simulation results.

B. Organization and Notations

The rest of this paper is organized as follows. The system model and problem statement are given in

Section II. Our overall approach to developing convex restriction methods is then discussed in Section III.

In Section IV, the three convex restriction methods are presented. The complexity and comparative

approximation performance of these three methods are analyzed in Section V. Simulation results are then

provided in Section VI, and conclusions are drawn in SectionVII.

We use boldfaced lowercase letters (e.g.,a) to represent vectors and boldfaced uppercase letters (e.g.,

A) to represent matrices.Rn and Cn stand for the sets ofn-dimensional real and complex vectors,

respectively, whileSn andHn stand for the sets ofn×n real symmetric matrices and complex Hermitian
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matrices, respectively.R+ andR++ denote the sets of nonnegative and positive real numbers, respectively.

The superscripts ‘T ’ and ‘H ’ represent the transpose and (Hermitian) conjugate transpose, respectively.

For a matrixA ∈ Sn (or A ∈ Hn), we writeA � 0 andA ≻ 0 to mean thatA is positive semidefinite

and positive definite, respectively.Tr(A), λmax(A), andλmin(A) denote the trace, maximum eigenvalue,

and minimium eigenvalue ofA, respectively. For convenience, we defineλ+(A) = max{λmax(−A), 0}.

vec(A) stands for the vector obtained by stacking the column vectors of A. [a]i and [A]ij (or simply

ai andAij) stand for theith entry ofa and (i, j)th entry ofA, respectively. For a complexA, we use

Re{A} and Im{A} to denote its real and imaginary parts, respectively.In denotes then × n identity

matrix. Given scalarsa1, . . . , an, we useDiag(a1, . . . , an) to denote then × n diagonal matrix whose

ith diagonal entry isai. ‖ · ‖, ‖ · ‖1, and ‖ · ‖F represent the vector Euclidean norm, vector1-norm,

and matrix Frobenius norm, respectively.E{·}, Prob{·}, and exp(·) denote the statistical expectation,

probability function and exponential function, respectively. We write x ∼ CN (µ,C) if x − µ is a

circularly symmetric complex Gaussian random vector with covariance matrixC � 0.

II. PROBLEM FORMULATION

We consider a multiuser MISO downlink scenario, wherein a multi-antenna base station sends inde-

pendent messages to a number of single-antenna users over a quasi-static channel. The system model

adopted is standard and is briefly described as follows. LetNt denote the number of antennae at the

base station, andK the number of users. The received signal of useri, i = 1, . . . ,K, is modeled as

yi(t) = hH
i x(t)+ νi(t), wherehi ∈ CNt is the channel of useri; x(t) ∈ CNt is the transmit signal from

the base station;νi(t) is noise with distributionCN (0, σ2
i ). We assume a general vector-Gaussian linear

precoding strategy, where the transmit signal is given byx(t) =
∑K

i=1 xi(t) with xi(t) ∈ CNt denoting

an information signal for useri. Each user’s information signal is independently vector-Gaussian encoded

and is characterized byxi(t) ∼ CN (0,Si), whereSi � 0 denotes the signal covariance matrix. On the

user side, each user decodes only its own information signaland treats other users’ information signals

as interference. Under the above system setup, the achievable rate of useri may be formulated as

Ri = log2

(

1 +
hH
i Sihi

∑

k 6=i h
H
i Skhi + σ2

i

)

, i = 1, . . . ,K. (1)

The problem of interest here is to design the signal covariance matrices{Si}Ki=1 via a rate constrained

formulation. To facilitate its description, let us assume for the time being thath1, . . . ,hK are known at
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the base station; i.e., perfect CSI. The rate constrained problem (under perfect CSI) is formulated as

min
S1,...,SK∈HNt

K∑

i=1

Tr(Si) (2a)

s.t. Ri ≥ ri, i = 1, . . . ,K, (2b)

S1, . . . ,SK � 0, (2c)

where eachri ≥ 0 is a pre-specified constant and describes the system’s requirement on useri’s

information rate. As can be seen above, the aim of the rate constrained problem is to find a set of

signal covariance matrices such that the system’s rate requirements are met using the smallest possible

total transmission power. The rate constrained problem is an important formulation to study, as it offers

insights into how other design formulations can be handled.For instance, optimization solutions derived

for the rate constrained problem have been used as a basic building block (in the form of a sub-solver)

for tackling sum rate maximization and max-min-fairness problems [31], [32].

To formulate the rate constrained problem under imperfect CSI, it is essential to first describe the CSI

error model. In the imperfect CSI case, the actual channel ofeach user can be represented by

hi = h̄i + ei, i = 1, . . . ,K,

whereh̄i ∈ CNt is the presumed channel at the base station, andei ∈ CNt is the channel error vector.

We adopt the commonly used Gaussian channel error model; see, e.g., [22], [33], [34]. Specifically, each

channel error vector is assumed to have a circularly symmetric complex Gaussian distribution, viz.

ei ∼ CN (0,Ci)

for some known error covariance matrixCi � 0. Now, consider the following probabilistically robust

design formulation:

Rate outage constrained problem: Given rate requirementsr1, . . . , rK > 0 and maximum tolerable

outage probabilitiesρ1, . . . , ρK ∈ (0, 1], solve

min
S1,...,SK∈HNt

K∑

i=1

Tr(Si) (3a)

s.t. Prob
hi∼CN (h̄i,Ci) {Ri ≥ ri} ≥ 1− ρi, i = 1, . . . ,K, (3b)

S1, . . . ,SK � 0. (3c)
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The above rate outage constrained problem emphasizes service fidelity—a feasible solution to prob-

lem (3) guarantees that under CSI errors, each user, say, user i, can still reliably decode its rate-ri message

at least(1−ρi)×100% of the time. This kind of design is desirable for, e.g., delay-sensitive applications,

where the system is requested to provide stable or low-outage performance.

The rate outage constrained problem (3) is not known to be computationally tractable, which is in sharp

contrast to the well-known fact that the perfect CSI-based rate constrained problem (2) is efficiently

solvable.2 The main challenge lies in the rate outage probability constraints in (3b), which do not

admit simple closed-form expressions. In the sequel, we will describe our approach for overcoming

the computational difficulties arising from problem (3).

III. PROPOSEDCONVEX RESTRICTION APPROACH: AN OVERVIEW

A. A Restriction Approach for Problem(3)

Our strategy for tackling the rate outage constrained problem (3) is to pursue aconvex restriction

approach, also known assafe tractable approximationin the chance constrained optimization literature;

see, e.g., [38]. The idea is to develop convex and efficientlycomputable upper bounds on the rate outage

probabilities in (3b). The key technical challenge can be abstracted as follows:

Challenge 1: Let e ∼ CN (0, In) be a standard circularly symmetric complex Gaussian randomvector

and (Q, r, s) ∈ Hn × Cn × R be an arbitrary 3-tuple of (deterministic) variables. Findan efficiently

computable convex functionf : Hn × Cn × R → R such that

Prob{eHQe+ 2Re{eHr}+ s < 0} ≤ f(Q, r, s). (4)

Clearly, once a functionf having the properties stipulated in Challenge 1 is found, wehave the

implication

f(Q, r, s) ≤ ρ (5)

=⇒ Prob{eHQe+ 2Re{eHr}+ s ≥ 0} ≥ 1− ρ. (6)

Hence, the constraint (5) gives a convex restriction or safeapproximation of the generally intractable

probabilistic constraint (6). Returning to the rate outageconstrained problem (3), we note that the rate

2Specifically, problem (2) can be reformulated as a semidefinite program (SDP), which is polynomial-time solvable [35], [36];

see also the classic contributions [31], [37] related to this topic.
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outage constraints in (3b) can be expressed as

Prob{eHQie+ 2Re{eHri}+ si ≥ 0} ≥ 1− ρi, i = 1, . . . ,K,

wheree ∼ CN (0, In) and

Qi = C
1/2
i




1

γi
Si −

∑

k 6=i

Sk



C
1/2
i , ri = C

1/2
i




1

γi
Si −

∑

k 6=i

Sk



 h̄i, (7a)

si = h̄H
i




1

γi
Si −

∑

k 6=i

Sk



 h̄i − σ2
i , γi = 2ri − 1. (7b)

Thus, we see the relevance of Challenge 1 in tackling the rateoutage constrained problem (3). Table I

summarizes all the convex restrictions of problem (3) to be developed in later sections. One noteworthy

feature of the formulations in Table I is that they are all conic programs with linear matrix inequality

(LMI) and second-order cone (SOC) constraints. As such, they can be easily solved by off-the-shelf

convex optimization softwares, e.g.,CVX [39] andSeDuMi [40].

B. Beamforming as Rank-one Solutions

In formulating the rate outage constrained problem (3), we follow an information theoretic (and arguably

standard) development, where the achievable rates to be optimized (cf. (1)) are based on the assumption

of vector-Gaussian encoded transmit signals. In practice,one would naturally be interested in finding

conveniently implementable physical-layer transceiver schemes that can approach such rates. When the

solution(S⋆
1 , . . . ,S

⋆
K) to problem (3) satisfies the rank conditionrank(S⋆

i ) ≤ 1 for all i, it is known that

the achievable rates can be attained using single-stream transmit beamforming (for each user). However,

if the solution does not satisfy the rank condition, more sophisticated transceiver schemes would be

required, e.g., beamformed space-time coding, and more recently, stochastic beamforming; see [44] and

the references therein. On the other hand, it is common in practice to fix the transceiver scheme as

single-stream beamforming for implementation simplicity. Let us consider the problem formulation in

such a scenario.

In beamforming, each user’s information signal takes the form xi(t) = wisi(t), wherewi ∈ CNt is the

beamforming vector andsi(t) ∈ C is useri’s data stream. We may modelxi(t) asxi(t) ∼ CN (0,wiw
H
i ),

and the beamforming achievable rates can be obtained by substituting S1 = w1w
H
1 , . . . ,SK = wKwH

K

into the achievable rate formula in (1). Using the fact thatSi = wiw
H
i ⇐⇒ Si � 0, rank(Si) ≤ 1, the
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TABLE I. Summary of the convex restrictions of the rate outage constrained problem (3).

Method Convex Restriction Formulation

Method I:

Sphere Bounding

(Folklore; cf. [41]–[43])

min
Si∈H

Nt ,ti∈R,
i=1,...,K

K
∑

i=1

Tr(Si)

s.t.





Qi + tiINt ri

rH
i si − tid

2
i



 � 0, i = 1, . . . ,K,

S1, . . . ,SK � 0, t1, . . . , tK ≥ 0,

(8)

whereQi, ri and si are defined in the same way as (7), anddi =
√

Φ−1

χ2

2Nt

(1− ρi)/2, i =

1, . . . ,K.

Method II:

Bernstein-Type

Inequality

(This paper)

min
Si∈H

Nt ,xi,yi∈R,
i=1,...,K

K
∑

i=1

Tr(Si)

s.t. Tr(Qi)−
√

2 ln(1/ρi) · xi + ln(ρi) · yi + si ≥ 0, i = 1, . . . ,K,
∥

∥

∥

∥

∥

∥





vec(Qi)
√
2ri





∥

∥

∥

∥

∥

∥

≤ xi, i = 1, . . . , K,

yiINt +Qi � 0, i = 1, . . . ,K,

y1, . . . , yK ≥ 0, S1, . . . ,SK � 0,

(9)

whereQi, ri andsi are defined in the same way as (7),i = 1, . . . ,K.

Method III:

Decomposition-Based

Large Deviation

Inequality

(This paper)

min
Si∈H

Nt ,xi,yi∈R,
i=1,...,K

K
∑

i=1

Tr(Si)

s.t. Tr(Qi) + si ≥ 2
√

ln(1/ρi) · (xi + yi), i = 1, . . . ,K,
1√
2
‖ri‖ ≤ xi, i = 1, . . . ,K,

vi ‖vec(Qi)‖ ≤ yi, i = 1, . . . ,K,

S1, . . . ,SK � 0,

(10)

whereQi, ri and si are defined in the same way as (7), andvi > 1/
√
2 is chosen so that

(1− 1/(2v2i ))vi =
√

ln(1/ρi), i = 1, . . . ,K.

rate outage constrained problem under beamforming can be formulated as

min
S1,...,SK∈HNt

K∑

i=1

Tr(Si) (11a)

s.t. Prob
hi∼CN (h̄i,Ci) {Ri ≥ ri} ≥ 1− ρi, i = 1, . . . ,K, (11b)

S1, . . . ,SK � 0, (11c)

rank(Si) ≤ 1, i = 1, . . . ,K. (11d)

Now, when we compare the beamforming problem (11) with the rate outage constrained problem (3),
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we see that the latter can be alternatively considered as a rank relaxation of the former—in fact,

this is exactly the idea of the well-known semidefinite relaxation (SDR) technique [45], [46]. This

connection allows us to apply results in SDR to handle the beamforming problem. Specifically, it is

immediate that a rank-one solution to the rank-relaxed problem (3), if exists, is also a solution to

the beamforming problem (11). Moreover, one can recover a rank-one approximate solution to the

beamforming problem (11) from a higher rank solution to the rank-relaxed problem (3) via a standard

Gaussian randomization procedure [45]. Note that the abovetwo results also apply to the convex restriction

counterparts of problems (3) and (11). Table II shows the Gaussian randomization procedure for the

beamforming problem, assuming that one of the convex restriction formulations in Table I is employed.

While obtaining a rank-one beamforming solution is not our main focus in this paper, quite surprisingly,

we find via simulations that the three convex restriction formulations in Table Iusually yield rank-

one solutions (higher than 99% of the tested cases). Thus, the obtained rank-one solutions can be used

directly as safe approximate solutions to the beamforming problem (11) without the need of the Gaussian

randomization procedure. This suggests that beamforming could be an optimal transceiver scheme for

the convex restriction formulations in Table I. We shall return to this point in Section VI. In the next

two sections, we will present the convex restriction methods for tackling Challenge 1.

TABLE II. Gaussian randomization procedure for problem (11).

Given a number of randomizationsL, an optimal solution(S⋆
1 , . . . ,S

⋆
K) to an employed convex restriction formulation in

Table I.

Step 1. For i = 1, . . . ,K, generate a set ofL random vectorsw(ℓ)
i , ℓ = 1, . . . , L, from CN (0,S⋆

i ).

Step 2. For ℓ = 1, . . . , L, let u(ℓ)
i = w

(ℓ)
i /‖w(ℓ)

i ‖ for i = 1, . . . ,K and solve a power control problem by substitutingSi =

piu
(ℓ)
i (u

(ℓ)
i )H , i = 1, . . . ,K, into the employed convex restriction formulation; i.e., we optimize onlyp1, . . . , pK ≥ 0

in the employed convex restriction formulation. For eachℓ, let (p(ℓ)1 , . . . , p
(ℓ)
K ) be an optimal solution andP (ℓ) be

the associated optimal value.

Step 3. Let

ℓ⋆ = arg min
ℓ=1,...,L

P (ℓ),

and outputŵ⋆
i =

√

p
(ℓ⋆)
i u

(ℓ⋆)
i , i = 1, . . . ,K, as an approximate solution to problem (11).

IV. D ERIVATION OF CONVEX RESTRICTION METHODS

Since the convex restriction approach proposed in the previous section entails finding convex upper

bounds on the violation probabilityProb{eHQe+2Re{eHr}+s < 0}, it is natural to aim at finding the
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tightest one. However, even if such a bound can be found, it may not be efficiently computable; cf. [47].

Hence, it is worthwhile to find bounds that are not necessarily the tightest but are more amenable to

computation. In the sequel, we will derive three different convex upper bounds on the violation probability.

The resulting convex restriction methods differ in terms ofboth computational complexity and tightness.

In Sections V and VI, we will compare these methods in more detail via theoretical analysis and numerical

simulations.

A. Method I: Sphere Bounding

It has long been known that the probabilistic constraint (6)can be approximated in a conservative

fashion using robust optimization techniques—see, e.g., [41]–[43]—although its application to the mul-

tiuser MISO downlink scenario has not been explicitly considered. Let us concisely review the idea here.

Consider an arbitrary setB ⊂ Cn satisfyingProb{e ∈ B} ≥ 1 − ρ. One can easily show that the

following implication holds:

δHQδ + 2Re{δHr}+ s ≥ 0

for all δ ∈ B
=⇒ Prob{eHQe+ 2Re{eHr}+ s ≥ 0} ≥ 1− ρ. (12)

In particular, the worst-case robust constraint on the left-hand side (LHS) of (12) is a safe approximation

of the probabilistic constraint (6). Note that in this approach, we have the freedom to choose the setB
in principle. However, in order to have a more tractable problem, it is desirable to chooseB so that the

conditionProb{e ∈ B} ≥ 1 − ρ can be easily verified and the resulting worst-case robust constraint is

efficiently computable. Given these considerations, a common choice ofB is the ball

B = {δ ∈ C
n : ‖δ‖ ≤ d},

where

d =

√

Φ−1
χ2

2n

(1− ρ)

2
(13)

is the ball radius andΦ−1
χ2

m
(·) is the inverse cumulative distribution function of the (central) Chi-square

random variable withm degrees of freedom. It is routine to verify thatProb{e ∈ B} = 1− ρ and hence

the implication (12) holds. Moreover, using theS-lemma [48], it can be shown that the semi-infinite

constraint on the LHS of (12) is equivalent to the following system of LMIs:



Q+ tIn r

rH s− td2



 � 0, t ≥ 0,
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which is efficiently computable. This yields the following convex restriction method for tackling the

probabilistic constraint (6):

Method I (Sphere Bounding): The following feasibility problem is a convex restriction of (6):

Find Q, r, s, t

s.t.




Q+ tIn r

rH s− td2



 � 0,

t ≥ 0,

whered =
√

Φ−1
χ2

2n

(1− ρ)/2.

By applying Method I to the rate outage constrained problem (3), we obtain the convex restriction

formulation (8) in Table I. Such a formulation has several interesting connections. Firstly, the sphere

bounding formulation (8) takes exactly the same form as thatin another design context, namely, SDR for

the worst-case robust beamforming problem [17], which deals with worst-case robust constraints rather

than the outage constraints. The notable difference between the two formulations is that the worst-case

robust SDR formulation pre-specifies the ball radiidi’s, while the sphere bounding formulation (8) controls

the di’s according to the requirements of the maximum tolerable outage probabilitiesρi’s. Secondly, it

is worthwhile to mention that two independent studies [18],[19] have shown that the worst-case robust

SDR formulation, or equivalently, the sphere bounding formulation (8), is guaranteed to have rank-one

solutions under some mild conditions. Thirdly, although Method I is widely known, we should point out

a perhaps less known interpretation that puts Method I underthe framework of Challenge 1. Specifically,

let f : Hn ×Cn ×R → R+ ∪ {+∞} be the indicator of the set

F = {(Q, r, s) ∈ H
n × C

n × R : δHQδ + 2Re{δHr}+ s ≥ 0 ∀δ ∈ B},

which is defined as

f(Q, r, s) =







1− Prob{e ∈ B} if δHQδ + 2Re{δHr}+ s ≥ 0 ∀δ ∈ B,
+∞ otherwise.

Then,f is convex (as a function) if and only ifB is convex (as a set), and

Prob{eHQe+ 2Re{eHr}+ s < 0} ≤ f(Q, r, s);

i.e., f is an upper bound on the violation probability (see (4)). Moreover, if Prob{e ∈ B} ≥ 1 − ρ,

then the worst-case robust constraint on the LHS of (12) is equivalent to the constraintf(Q, r, s) ≤ ρ

August 25, 2014 DRAFT



13

(see (5)). This shows that whenB is a ball, the functionf defined above satisfies the requirements of

Challenge 1, and Method I is simply an implementation of the convex restriction approach proposed in

Section III-A.

B. Method II: Bernstein-Type Inequality

An alternative way of implementing the convex restriction approach in Section III-A is to use large

deviation techniques. In this subsection, we propose the Bernstein-type inequality method, which is based

on the following large deviation inequality for complex Gaussian quadratic forms:

Lemma 1 Let e ∼ CN (0, In), and letQ ∈ Hn and r ∈ Cn be given. Then, for anyη > 0, we have

Prob
{
eHQe+ 2Re{eHr} ≥ Υ(η)

}
≥ 1− e−η, (14)

whereΥ : R++ → R is defined by

Υ(η) = Tr(Q)−
√

2η
√

‖Q‖2F + 2‖r‖2 − ηλ+(Q).

Lemma 1 can be established by extending the corresponding result in [49] for real Gaussian quadratic

forms; see Appendix A for the derivation. The inequality (14) is a so-called Bernstein-type inequality,3

which bounds the probability that the quadratic formeHQe+ 2Re{eHr} of complex Gaussian random

variables deviates from its meanTr(Q). This explains the name of the method.

SinceΥ is monotonically decreasing, its inverse mappingΥ−1 : R → R++ is well defined. In particular,

the Bernstein-type inequality (14) can be expressed as

Prob{eHQe+ 2Re{eHr}+ s ≥ 0} ≥ 1− e−Υ−1(−s),

which suggests us to takef(Q, r, s) = e−Υ−1(−s) in Challenge 1. The resulting safe approximation

f(Q, r, s) ≤ ρ (see (5)) is then equivalent to

Tr(Q)−
√

2 ln(1/ρ)
√

‖Q‖2F + 2‖r‖2 + ln(ρ) · λ+(Q) + s ≥ 0. (15)

By introducing suitable slack variables, one can easily show that the above constraint is equivalent to

the following system of LMI and SOC constraints:

3Roughly speaking, a Bernstein-type inequality bounds the probability that a sum of random variables deviates from its mean.

The famous Markov, Chebyshev, and Chernoff inequalities can all be viewed as Bernstein-type inequalities.
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Method II (Bernstein-Type Inequality): The following feasibility problem is a convex restriction of (6):

Find Q, r, s, x, y

s.t. Tr (Q)−
√

2 ln(1/ρ) · x+ ln(ρ) · y + s ≥ 0,
√

‖Q‖2F + 2‖r‖2 ≤ x,

yIn +Q � 0,

y ≥ 0.

Upon applying Method II to the rate outage constrained problem (3), we obtain the convex restriction

formulation (9) in Table I. From a computational perspective, one would expect that Method II is more

costly to implement than Method I, as the former involves a more complicated set of constraints. This

is indeed the case, as we shall see in Section V. On the other hand, from an approximation quality

perspective, our analysis in Section V shows that Method II exhibits better performance than Method I.

C. Method III: Decomposition-Based Large Deviation Inequality

Although the convex restrictions derived using Methods I and II can be formulated as semidefinite

programs (SDPs) and hence are polynomial-time solvable, they can still be expensive to solve in practice

if the size of the LMI constraint is large. Thus, it is of interest to develop convex restrictions of (6) that

involve simpler convex conic constraints, such as SOC constraints. In this subsection, we propose yet

another convex restriction method that has such a property.The method is based on the following large

deviation inequality for complex Gaussian quadratic forms, which, to the best of our knowledge, has not

appeared in the literature before:

Lemma 2 Let e ∼ CN (0, In), and letQ ∈ Hn and r ∈ Cn be given. Then, for anyv > 1/
√
2 and

η > 0, we have

Prob
{
eHQe+ 2Re{eHr} ≤ Tr(Q)− η

}
≤







exp

(

− η2

4T 2

)

for 0 < η ≤ 2θ̄vT,

exp

(

− θ̄vη

T
+ (θ̄v)2

)

for η > 2θ̄vT,

(16)

where

θ̄ = 1− 1

2v2
, T = v‖Q‖F +

1√
2
‖r‖.

Since the proof of Lemma 2 is quite technical, let us relegateit to Appendix B and simply describe the

ideas here. A key step in the proof is to show that the quantityeHQe + 2Re{eHr}, which is a sum
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of dependent random variables, can be decomposed into two parts, each of which is a sum of certain

independent random variables. This allows us to bound the moment generating function of each part

separately using standard arguments. By stitching the resulting bounds together in a judicious manner,

we obtain the desired inequality (16). We remark that the idea of decomposing a sum of dependent

random variables into sums of independent random variableshas been used extensively in probability

theory; see, e.g., [27], [50]. Nevertheless, as mentioned above, the inequality (16) appears to be new.

To derive a convex restriction of (6) using Lemma 2, we setη = Tr(Q) + s and choosev to be the

solution to the quadratic equation(1− 1/(2v2))v =
√

ln(1/ρ) that satisfiesv > 1/
√
2. Note that such a

v must exist, as(1−1/(2v2))v = 0 whenv = 1/
√
2 andv 7→ (1−1/(2v2))v is monotonically increasing

on [1/
√
2,∞). Moreover, the choice ofv and the definition of̄θ imply that θ̄v =

√

ln(1/ρ). Now, by

Lemma 2, the probabilistic constraint (6) will be satisfied if 2
√

ln(1/ρ) ·T ≤ η ≤ 2θ̄vT , or equivalently,

η = 2
√

ln(1/ρ) · T . On the other hand, ifη > 2θ̄vT = 2
√

ln(1/ρ) · T , then Lemma 2 yields

Prob
{
eHQe+ 2Re{eHr}+ s ≤ 0

}
≤ exp

(

− θ̄vη

T
+ (θ̄v)2

)

< exp
(
−(θ̄v)2

)
= ρ,

which implies that the probabilistic constraint (6) will still be satisfied. Thus, we have

Prob
{
eHQe+ 2Re{eHr}+ s < 0

}
≤ exp

(

−(Tr(Q) + s)2

4T 2

)

,

which suggests that we can takef(Q, r, s) = exp
(
−(Tr(Q) + s)2/4T 2

)
in Challenge 1 (see (4)). The

resulting safe approximationf(Q, r, s) ≤ ρ (see (5)) can then be expressed as

Tr(Q) + s ≥ 2
√

ln(1/ρ) · T. (17)

Using the definition ofT , it is not hard to show that (17) can be expressed as a system ofSOC constraints.

In particular, we obtain the following convex restriction method for tackling Challenge 1:

Method III (Decomposition-Based Large Deviation Inequality): Let v > 1/
√
2 be such that̄θv =

√

ln(1/ρ), whereθ̄ = 1− 1/(2v2). Then, the following feasibility problem is a convex restriction of (6):

Find Q, r, s, x, y

s.t. Tr (Q) + s ≥ 2
√

ln(1/ρ) · (x+ y),

1√
2
‖r‖ ≤ x,

v‖Q‖F ≤ y.
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Since the above convex restriction contains only SOC constraints, it can be solved more efficiently

than the convex restrictions obtained using Methods I and II; see Section V for details. By applying

Method III to the rate outage constrained problem (3), we obtain the convex restriction formulation (10)

in Table I.

V. PERFORMANCEANALYSES OF THEPROPOSEDCONVEX RESTRICTION METHODS

In the previous section, we present three tractable convex restriction formulations of the rate outage

constrained problem (3). This naturally leads to the question about the relative performance of these

formulations. In the following subsections, we address this question by comparing their computational

complexities, as well as their tightness in approximating the original rate outage constrained problem (3).

As will be seen from our analyses, the three formulations exhibit a tradeoff between computational

efficiency and approximation quality.

A. Complexity Analysis

Recall that the three convex restriction formulations (8),(9), and (10) involve only LMI and SOC

constraints. As such, they can all be solved by a standard IPM; see, e.g., [48, Lecture 6]. This suggests

that the worst-case runtime of such a method can be used to compare the computational complexities

of the different formulations. To set the stage for comparison, let us review the basic elements in the

complexity analysis of IPMs; see [48, Lecture 6] for details. Consider the following conic program:

min
z∈Rn

cTz (18a)

s.t.

n∑

i=1

ziA
j
i −Bj ∈ S

kj

+ for j = 1, . . . , p, (18b)

T jz − bj ∈ L
kj for j = p+ 1, . . . ,m. (18c)

Here,Aj
i ,B

j ∈ Skj for i = 1, . . . , n andj = 1, . . . , p; T j ∈ Rkj×n andbj ∈ Rkj for j = p+ 1, . . . ,m;

c ∈ Rn; Sk+ is the set ofk×k real positive semidefinite matrices;Lk is the second-order cone of dimension

k ≥ 1; i.e., Lk =
{

v ∈ Rk : vk ≥
√

v21 + · · ·+ v2k−1

}

. Note that the linear constraintaTz − b ≥ 0 is

equivalent to the LMI constraintaTz−b ∈ S1+ and hence can be put into the form (18b). The complexity

of a generic IPM for solving (18) consists of two parts:

1) Iteration Complexity: Given anǫ > 0, the number of iterations required to reach anǫ-optimal solution

to (18) is on the order of
√

β(K) · ln(1/ǫ), whereβ(K) =
∑p

j=1 kj + 2(m − p) is the so-called

August 25, 2014 DRAFT



17

barrier parameter associated with the coneK =
∏p

j=1 S
kj

+ ×∏m
j=p+1L

kj . Roughly speaking, the

barrier parameterβ(K) measures the geometric complexity of the conic constraintsin (18).

2) Per-Iteration Computation Cost: In each iteration, a search direction is found by solving a system

of n linear equations inn unknowns. The computation cost is dominated by (i) the formation of

the n × n coefficient matrixH of the linear system, and (ii) the factorization ofH. The cost of

forming H is on the order of

Cform = n

p
∑

j=1

k3j + n2
p
∑

j=1

k2j

︸ ︷︷ ︸

due to (18b)

+n

m∑

j=p+1

k2j

︸ ︷︷ ︸

due to (18c)

,

while the cost of factorizingH is on the order ofCfact = n3. Hence, the total computation cost per

iteration is on the order ofCform + Cfact.

By combining the above two parts, it follows that the complexity of a generic IPM for solving (18) is

on the order of
√

β(K) · (Cform + Cfact) · ln(1/ǫ).
Armed with the above results, we are now ready to analyze the complexities of the three convex

restriction formulations (8), (9), and (10). First, note that through the transformation

H
n ∋ S 7→




Re(S) −Im(S)

Im(S) Re(S)



 ∈ S
2n,

we can convert the complex-valued conic programs (8), (9), and (10) into equivalent real-valued conic

programs of the form (18); see, e.g., [51]. For the sake of simplicity, let us assume that the decision

variables in (8), (9), and (10) are real-valued. Now, consider formulation (8), which hasK LMI constraints

of sizeNt + 1, K LMI constraints of sizeNt, andK LMI constraints of size1. Moreover, for all three

formulations (8), (9), and (10), the number of decision variablesn is on the order ofKN2
t . Hence,

the complexity of a generic IPM for solving (8) is on the orderof the quantity shown on the first row

of Table III. In a similar fashion, we can determine the complexities of the formulations (9) and (10),

and the results are shown on the second and third row of Table III, respectively. From Table III, it is

straightforward to show that Method III has the lowest worst-case complexity, followed by Method I and

then Method II4. This is also consistent with our simulation results, as we shall see in Section VI.

4As an illustration, consider the simple case whereK = Nt andn = KN2
t = N3

t . For largeNt, the dominating terms in

the complexities of Methods I to III are3
√
2N9

t

√

Nt(Nt + 1), 3
√
2N9

t

√

Nt(Nt + 2), and2N9
t

√

Nt(Nt + 5), respectively.
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TABLE III. Complexity analysis of the convex restriction formulations in Table I.

Method Complexity Order (suppressing theln(1/ǫ) term;n = O(KN2
t ))

Method I:

Sphere Bounding

√

2K(Nt + 1) · n ·
[

K
(

(Nt + 1)3 +N3
t + 1

)

+Kn
(

(Nt + 1)2 +N2
t + 1

)

+ n2
]

Method II:

Bernstein-Type Inequality

√

2K(Nt + 2) · n ·
[

2K
(

N3
t + 1

)

+ 2Kn
(

N2
t + 1

)

+K
(

N2
t +Nt + 1

)2
+ n2

]

Method III:

Decomposition-Based

Large Deviation Inequality

√

K(Nt + 5) · n ·
[

K
(

N3
t + 1

)

+Kn
(

N2
t + 1

)

+K
(

(Nt + 1)2 +
(

N2
t + 1

)2
)

+ n2
]

B. Relative Tightness Analysis

Given the conservative nature of the formulations in Table I, an immediate question is how well they

approximate the original rate outage constrained problem (3). While this remains a formidable challenge

even in the field of chance constrained optimization, in thissubsection we tackle the more manageable

task of analyzing the relative tightness of the different formulations. As we shall see, Method II generally

yields the tightest approximation of problem (3) among the three presented methods.

1) Method II vs. Method III:Let us first compare the convex restriction formulations (9)and (10)

derived using Methods II and III, respectively. The following result shows that as long as the outage

probabilitiesρ1, . . . , ρK are sufficiently small, every feasible solution to (10) is feasible for (9). Thus,

from a power minimization perspective, the performance of the convex restriction formulation (9) will

be no worse than that of (10).

Theorem 1 Consider the convex restriction formulations(9) and (10). Suppose that

ρi ≤ exp

(

−2
(

(
√
2− 1)‖gi‖+ 1

)2
)

, (19)

wheregi = C
−1/2
i h̄i, for i = 1, . . . ,K. Then, every feasible solution to(10) is feasible for(9).

The proof of Theorem 1 can be found in Appendix C. We remark that besides condition (19), there

could be other conditions under which the conclusion of Theorem 1 holds. Indeed, as will be shown in

Section VI, the performance of the convex restriction formulation (9) can be considerably better than

that of (10), even though condition (19) is not satisfied.

2) Method I vs. Method II:Let us now turn our attention to the convex restriction formulations (8)

and (9) derived using Methods I and II, respectively. The comparative analysis of these two formulations

is much more involved than that of the formulations (9) and (10) presented above, in part because the
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structure of the constraints in (8) is quite different from that in (9). In particular, we are only able to

guarantee that the performance of (9) is no worse than that of(8) under a stronger set of conditions:

Theorem 2 Consider the convex restriction formulations(8) and (9). Let {(S̄i, t̄i)}Ki=1 be a feasible

solution to(8), with {(Q̄i, r̄i, s̄i)}Ki=1 given by(7). Suppose that

λ+(Q̄i) ≥ λ+(−Q̄i) (20)

and

ρi ≤ min
{

exp
(
−2N2

t

)
, 1− Φχ2

2Nt

(
2max

{
Nt, (2/Nt) +Nt‖gi‖2

})}

, (21)

wheregi = C
−1/2
i h̄i, for i = 1, . . . ,K. Then, there exist{(x̄i, ȳi)}Ki=1 such that{(S̄i, x̄i, ȳi)}Ki=1 is a

feasible solution to(9).

Theorem 2 is proven in Appendix D. Compared with Theorem 1, Theorem 2 requires not only the

violation probabilitiesρ1, . . . , ρK to be small but also the eigenvalue condition (20) on the solution

{Q̄i}Ki=1. Nevertheless, such a condition has a nice interpretation in the context of the rate outage

constrained problem (3). Indeed, the following result implies that the condition (20) can be ensured

if the total transmission power associated with an optimal solution to (8) is not concentrated on a few

users:

Proposition 1 Let {S̄i}Ki=1 be given transmit signal covariance matrices, and define{Q̄i}Ki=1 via (7).

Furthermore, letPi = Tr(S̄i) be the transmission power of useri, for i = 1, . . . ,K. Consider now a

fixed useri ∈ {1, . . . ,K}, and letCi be its channel error covariance matrix. Suppose thatCi ≻ 0 and

Pi
∑K

j=1 Pj

≤
(

1 +
(Nt + 1)(λmax(Ci)/λmin(Ci))

γi

)−1

. (22)

Then, we haveλ+(Q̄i) ≥ λ+(−Q̄i).

We relegate the proof to Appendix E.

We emphasize that the conditions (20) and (21) in Theorem 2 are by no means necessary for the

convex restriction formulation (9) to outperform the formulation (8). In fact, our simulation results in

Section VI suggest that the former formulation performs much better than the latter in fairly general

settings.
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VI. SIMULATION RESULTS

This section presents simulation results to illustrate theperformance of the three convex restriction

methods for handling the rate outage constrained problem (3). Let us first describe the general simulation

setting. We assume that the users’ noise powers are identical and given byσ2
1 = · · · = σ2

K , σ2. We

fix σ2 = 0.1, unless specified. The outage specifications for all users are also set the same; i.e.,ρ1 =

· · · = ρK , ρ. In each simulation trial, the presumed channels{h̄i}Ki=1 are randomly and independently

generated according to the standard circularly symmetric complex Gaussian distribution. The convex

restriction formulations listed in Table I are solved by theconic optimization solverSeDuMi [40],

implemented through the parser softwareCVX [39].

A. Simulation Example 1

We start with the simple case ofNt = K = 3; i.e., three antennae at the base station, and three users.

The CSI errors are spatially i.i.d. and have standard circularly symmetric complex Gaussian distributions;

i.e.,C1 = · · · = CK = σ2
eINt

, whereσ2
e > 0 denotes the error variance. We setσ2

e = 0.002. The outage

probability requirement is set toρ = 0.1, which is equivalent to having a90% or higher chance of

satisfying the rate requirements. Recall from (7b) thatγi = 2ri − 1, which is the signal-to-interference-

and-noise ratio (SINR) requirement of useri for i = 1, . . . ,K; cf. the termhH
i Sihi/(

∑

k 6=i h
H
i Skhi+σ2

i )

in (1). We setγ1 = · · · = γK , γ. In addition to the presented methods, we evaluate the performance of

the probabilistic SOCP method in [22], which considers transmit beamforming structures and applies a

different chance constrained optimization technique. Also, for reference purposes, we run a conventional

perfect-CSI-based SINR constrained design (e.g., [31]), where the presumed channels{h̄i}Ki=1 are used

as if they were perfect CSI. The aforementioned method will be called the “non-robust method” for

convenience. Both methods are implemented bySeDuMi throughCVX.

We first investigate the conservatism of the various methodsby evaluating their feasibility rates; i.e.,

the chance of getting a feasible solution to the rate outage constrained problem (3) under500 realizations

of the presumed channels{h̄i}Ki=1. The obtained result is shown in Fig. 1(a), where the feasibility rates

of the various methods are plotted against the SINR requirementsγ. Remarkably, the three presented

methods yield feasibility rates much higher than that of theprobabilistic SOCP method. In particular,

Method II has the best feasibility rate performance, while the feasibility rates of Methods I and III are a

close match: Forγ > 7dB, Method I slightly outperforms Method III; forγ ≤ 7dB, we see the converse.

In addition to the feasibility rate, it is important to examine the transmit power consumptions of

the design solutions offered by the various methods. Fig. 1(b) shows the result. It is based on channel
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Fig. 1. Feasibility and transmit power performance of the various methods.Nt = K = 3; ρ = 0.1; spatially i.i.d.

Gaussian CSI errors withσ2

e
= 0.002.

realizations for which all methods yield feasible solutions atγ = 11dB; 181 such realizations were found

out of 500 realizations (the same realizations used in the last resultin Fig. 1(a)). As can be seen from

Fig. 1(b), Method II yields the best average transmit power performance, followed by Methods I and III

(with Method I exhibiting noticeably better performance for γ > 15dB), and then the probabilistic SOCP

method in [22]. As a reference, we also plot the transmit powers of the non-robust method in the figure,

so as to get an idea of how much additional transmit power would be needed for the robust methods to

accommodate the outage specification. We see that forγ ≤ 11dB, the transmit power difference between

a proposed method and the non-robust method is about1.5dB, which is reasonable especially when

compared to the probabilistic SOCP method. The gaps gradually widen otherwise. This seems to indicate

that imperfect CSI effects are more difficult to cope with when we demand higher SINRs (or rates).

Now, let us consider the computation times of the various methods. The result is illustrated in Fig. 2.

To obtain this result, we use a desktop PC with2.13GHz CPU and3GB RAM. Moreover, instead of

calling the convenient parserCVX, we use directSeDuMi implementations of all the methods, done by

careful manual problem transformation and programming. The reason of doing so is to bypass parsing

overheads, which may result in unfair runtime comparisons.From the figure, we see that the runtime

ranking, from fast to slow, is: Method III, Method I, Method II, and the probabilistic SOCP method.

Interestingly and coincidentally, the runtime ranking of the proposed methods is exactly the opposite

of their performance ranking obtained from previous simulation results. The performance and runtime

rankings are also consistent with our analysis results presented in Section V.
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Fig. 2. Average runtimes of the various methods.

As the last result in this example, we numerically inspect the rank-one beamforming solution issue

as discussed in Section III-B. Recall that for instances that have rank-one solutions, beamforming

solution generation is simple (simple rank-one decomposition, no Gaussian randomization). We examine

how frequent the formulations in Table I can yield rank-one solutions. Numerically, we declare that

(S1, . . . ,SK) is of rank one if the following conditions hold:

λmax(Si)

Tr(Si)
≥ 0.9999 for all i = 1, . . . ,K.

Table IV shows the result. In the entries that contain a fraction, the denominator counts the number of

realizations for which the formulation is feasible, while the numerator counts the number of realizations

for which the formulation yields a rank-one solution. Again, 500 channel realizations are used. Curiously,

almost all the entries in Table IV indicate rank-one solution all the time. We encounter only three non-

rank-one instances out of480 for the setting ofρ = 0.01, γ = 3dB, Method II. We therefore conclude,

on the basis of numerical evidence, that occurrence of high-rank solutions is very rare for the unicast

rate outage constrained problem considered here.

B. Simulation Example 2

This example considers the following more challenging setting: Nt = 8 andK = 6; spatially correlated

CSI errors withC1 = · · · = CK = Ce, where

[Ce]m,n = σ2
e × 0.9|m−n|;
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TABLE IV. Ratios of rank-one solutions.

ρ 0.1 0.01

γ (dB) 3 7 11 15 3 7 11 15

Method I 464/464 448/448 404/404 292/292 450/450 424/424 343/343 225/225

Method II 489/489 475/475 441/441 363/363 477/480 463/463 428/428 322/322

Method III 488/488 449/449 372/372 251/251 473/473 418/418 301/301 124/124
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Fig. 3. Performance under spatially correlated Gaussian CSI errors.Nt = 8; K = 6; ρ = 0.01; σ2

e
= 0.01.

σ2
e = 0.01; ρ = 0.01 (or 99% rate satisfaction probability). We do not run the probabilistic SOCP

method in [22], since, as seen in Fig. 2, it is computationally very demanding for large problem sizes.

The same simulation method in Simulation Example 1 is used toproduce the results here. Fig. 3 shows

the resulting feasible rates and average transmit powers. Aminor simulation aspect with the transmit

power performance plot in Fig. 3(b) is that we chooseγ = 13dB as the pick-up point of feasible channel

realizations of all the methods. We can see that, once again,Method II offers superior performance over

the others. Another observation is that Method III manages to outperform Method I this time.

VII. C ONCLUSION

In this paper, we considered the multiuser MISO downlink scenario with Gaussian CSI errors and

studied a rate outage constrained optimization problem. Such a problem contains rate outage probability

constraints, which are difficult to process computationally. To tackle these constraints, we presented three

methods—namely, sphere bounding, Bernstein-type inequality, and decomposition-based large deviation
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inequality—for obtaining efficiently computable convex restrictions of the probabilistic constraints at

hand. We then carried out performance analyses to study the complexity and relative tightness of these

methods. Our simulation results indicated that all three methods provide good approximations to the

rate outage constrained problem, and they significantly improve upon the existing state of the art in

terms of both computational complexity and solution quality. In closing, we remark that the rate outage

constrained formulation considered in this paper can be used to tackle other problems, such as the

rate outage constrained max-min-fairness formulation andachievable rate region characterization. In the

companion technical report [52], we discuss some of these formulations in detail and provide simulation

results on the performance of the three presented methods when applied to those formulations.

APPENDIX

A. Proof of Lemma 1

The proof is based on the following result:

Fact 1 (cf. [49, Lemma 0.2]) Let̃e ∼ N (0, Iℓ) be a standard real Gaussian random vector, and let

Q̃ ∈ Sℓ and r̃ ∈ Rℓ be given. Then, for anyη > 0, we have

Prob
{

ẽT Q̃ẽ+ 2ẽT r̃ ≥ Υ̃(η)
}

≥ 1− e−η,

whereΥ̃ : R++ → R is defined by

Υ̃(η) = Tr(Q̃)− 2
√
η

√

‖Q̃‖2F + 2‖r̃‖2 − 2ηλ+(Q̃).

To prove Lemma 1, observe that sincee ∼ CN (0, In), Q ∈ Hn, andr ∈ Cn, we have

ẽ =
√
2




Re{e}
Im{e}



 ∼ N (0, I2n), Q̃ =
1

2




Re{Q} −Im{Q}
Im{Q} Re{Q}



 ∈ S
2n, r̃ =

1√
2




Re{r}
Im{r}



 ∈ R
2n.

It is straightforward to verify thateHQe+ 2Re{eHr} = ẽT Q̃ẽ+ 2ẽT r̃, and that

Tr(Q) = Tr(Q̃), ‖Q‖2F = 2‖Q̃‖2F , ‖r‖2 = 2‖r̃‖2, λ+(Q) = 2λ+(Q̃).

Thus, by invoking Fact 1, we obtain the desired result.

B. Proof of Lemma 2

The proof consists of four steps.

Step 1: Decomposition into Independent Parts
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Let Q = UΛUH be the spectral decomposition ofQ, whereΛ = Diag(λ1, . . . , λn) andλ1, . . . , λn

are the eigenvalues ofQ. Sincee ∼ CN (0, In) andUH is unitary, we havẽe = UHe ∼ CN (0, In).

Thus, we can write

Ψ = eHQe+ 2Re{eHr} = ẽHΛẽ+ 2Re{eHr} = Ψq +Ψl.

Now, observe that both

Ψq = ẽHΛẽ =

n∑

j=1

λj|ẽj |2 and Ψl = 2Re{eHr} = 2

n∑

j=1

(Re{rj}Re{ej}+ Im{rj}Im{ej})

are sums of independent random variables. Moreover, for each j = 1, . . . , n, Re{ej} and Im{ej} are

i.i.d. real Gaussian random variables with mean zero and variance1/2. This implies that

E
{
exp

(
θ(|ẽj|2 − 1)

)}
=

exp(−θ)

1− θ
= exp (−(θ + ln(1− θ))) for θ < 1, (23)

E {exp (θ · 2Re{ej})} = E {exp (θ · 2Im{ej})} = exp

(
1

2
θ2
)

for θ ∈ R. (24)

Step 2: Establishing a Preliminary Inequality

Let v > 1/
√
2 be arbitrary. We claim that

−(θ + ln(1− θ)) ≤ v2θ2 for θ ≤ θ̄ ≡ 1− 1

2v2
. (25)

To prove (25), letf(θ) = −(θ + ln(1− θ)) andg(θ) = v2θ2. Consider the following cases:

Case I:θ ≤ 0.

It is easy to verify thatf(0) = g(0) = 0. Furthermore, we have

g′(θ)− f ′(θ) = 2v2θ + 1− 1

1− θ
< θ + 1− 1

1− θ
= − θ2

1− θ
≤ 0

for all θ < 0. It follows that f(θ) ≤ g(θ) for all θ ≤ 0.

Case II:θ ∈ (0, 1).

Observe thatg′(θ) − f ′(θ) ≥ 0 if and only if θ ≤ θ̄ = 1 − 1/(2v2). This, together with the fact that

f(0) = g(0) = 0, implies thatf(θ) ≤ g(θ) for all 0 ≤ θ ≤ θ̄.

By combining Cases I and II above, we obtain the inequality (25).

Step 3: Bounding the Moment Generating Function ofE{Ψ} −Ψ
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Let p1, p2 > 0 be such thatp1 + p2 = 1, and letv > 1/
√
2 be arbitrary. Suppose thatu > 0 satisfies

uλj/p1 ≤ θ̄ = 1− 1/(2v2) for j = 1, . . . , n. Using the fact thatE{Ψ} = Tr(Λ), we compute

E {exp(u(E{Ψ} −Ψ))} = E

{

exp

(

p1 ·
(−u)

p1
(Ψq − Tr(Λ)) + p2 ·

(−u)

p2
Ψl

)}

≤ p1 · E
{

exp

(

− u

p1
(Ψq − Tr(Λ))

)}

+ p2 · E
{

exp

(

− u

p2
Ψl

)}

(26)

= p1

n∏

j=1

E

{

exp

(

− u

p1
λj(|ẽj |2 − 1)

)}

(27)

+ p2

n∏

j=1

E

{

exp

(

− u

p2
2Re{rj}Re{ej}

)}

E

{

exp

(

− u

p2
2Im{rj}Im{ej}

)}

≤ p1 exp





n∑

j=1

v2
u2λ2

j

p21



+ p2 exp





n∑

j=1

1

2

(
u2Re{rj}2

p22
+

u2Im{rj}2
p22

)


 ,

(28)

where (26) follows from the convexity ofx 7→ exp(x), (27) follows from the independence of the random

variables inΨq andΨl, and (28) is due to (23)–(25). By setting

c1 = v2
n∑

j=1

λ2
j , c2 =

1

2
‖r‖2, T =

√
c1 +

√
c2, p1 =

√
c1
T

, p2 =

√
c2
T

,

we conclude from (28) that

E {exp(u(Tr(Λ) −Ψ))} ≤ p1 exp
(
u2T 2

)
+ p2 exp

(
u2T 2

)
= exp

(
u2T 2

)
for 0 < u ≤ θ̄v

T
. (29)

Step 4: Deriving the Large Deviation Inequality

Using Markov’s inequality and (29), we have, for anyη > 0,

Prob{Tr(Λ) −Ψ ≥ η} ≤ inf
0<u≤θ̄v/T

{

exp(−uη) · E {exp(u(Tr(Λ)−Ψ))}
}

≤ inf
0<u≤θ̄v/T

{

exp
(
u2T 2 − uη

)}

.

Upon optimizing the right-hand side of the above inequalityand noting thatc1 = v2‖Q‖2F andTr(Λ) =

Tr(Q), we obtain (16). This completes the proof of Lemma 2.

C. Proof of Theorem 1

Let {(S̄i, x̄i, ȳi)}Ki=1 be a feasible solution to (10), with{(Q̄i, r̄i, s̄i)}Ki=1 given by (7). Without loss of

generality, we may assume thatx̄i = ‖r̄i‖/
√
2 and ȳi = vi‖vec(Q̄i)‖ for i = 1, . . . ,K. Then, we have

Tr(Q̄i)−
√

2 ln(1/ρi)
(√

2vi‖Q̄i‖F + ‖r̄i‖
)

+ s̄i ≥ 0 for i = 1, . . . ,K.
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Comparing the above inequality with (15), we see that{S̄i}Ki=1 can be extended to a feasible solution

to (9) if

−
√

2 ln(1/ρi)
√

‖Q̄i‖2F + 2‖r̄i‖2 + ln(ρi) · λ+(Q̄i) ≥ −
√

2 ln(1/ρi)
(√

2vi‖Q̄i‖F + ‖r̄i‖
)

,

or equivalently,

√
2
√

‖Q̄i‖2F + 2‖r̄i‖2 +
√

ln(1/ρi) · λ+(Q̄i) ≤
√
2
(√

2vi‖Q̄i‖F + ‖r̄i‖
)

for i = 1, . . . ,K. (30)

Using the fact thatvi >
√

ln(1/ρi) andλ+(Q̄i) ≤ ‖Q̄i‖F , as well as the inequality
√

|α|2 + |β|2 ≤
|α|+ |β|, which is valid for anyα, β ∈ R, we obtain the following chain of implications:

(30) ⇐=
√
2
(

‖Q̄i‖F +
√
2‖r̄i‖

)

+
√

ln(1/ρi)‖Q̄i‖F ≤
√
2
(√

2 ln(1/ρi)‖Q̄i‖F + ‖r̄i‖
)

⇐⇒
(

‖Q̄i‖F +
√
2‖r̄i‖

)

+

√

ln(1/ρi)

2
‖Q̄i‖F ≤

√

2 ln(1/ρi)‖Q̄i‖F + ‖r̄i‖

⇐⇒ ‖r̄i‖ ≤ 1√
2− 1

(√

ln(1/ρi)

2
− 1

)

‖Q̄i‖F . (31)

Using (7), we can writēri = Q̄igi, wheregi = C
−1/2
i h̄i. By substituting this into (31) and using the

fact that‖Q̄igi‖2 ≤ ‖Q̄i‖2F ‖gi‖2, we see that a sufficient condition for (31) to hold is

‖gi‖ ≤ 1√
2− 1

(√

ln(1/ρi)

2
− 1

)

.

Upon rearranging the above inequality, we obtain the sufficient condition (19).

D. Proof of Theorem 2

Consider a fixedi ∈ {1, . . . ,K}. For notational simplicity, let us drop the subscripts and write Q̄ ≡ Q̄i,

r̄ ≡ r̄i, s̄ ≡ s̄i, t̄ ≡ t̄i, g ≡ gi, ρ ≡ ρi andd ≡ di. Since{(S̄i, t̄i)}Ki=1 is feasible for (8), we have



Q̄+ t̄INt

r̄

r̄H s̄− t̄d2



 � 0, t̄ ≥ 0. (32)

Let Q̄ =
∑Nt

j=1 λjuju
H
j be the spectral decomposition of̄Q, where u1, . . . ,uNt

∈ CNt are the

orthonormal eigenvectors of̄Q andλ1, . . . , λNt
are the associated eigenvalues. Define

δj = −ξ
|uH

j r̄|
r̄Huj

uj for j = 1, . . . , Nt; ξ =
1

√

Nt ln(1/ρ)
.

Then, (32) implies that

[

δHj 1/
√
Nt

]




Q̄+ t̄INt

r̄

r̄H s̄− t̄d2








δj

1/
√
Nt



 ≥ 0 for j = 1, . . . , Nt,
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or equivalently,

(λj + t̄)ξ2 − 2ξ√
Nt

|uH
j r̄|+ 1

Nt
(s̄− t̄d2) ≥ 0 for j = 1, . . . , Nt. (33)

Upon summing the inequalities in (33), we obtain the following chain of implications:

(Tr(Q̄) +Ntt̄)ξ
2 − 2ξ√

Nt

Nt∑

j=1

|uH
j r̄|+ s̄− t̄d2 ≥ 0

=⇒ Tr(Q̄) +Ntt̄−
2

ξ
√
Nt

‖r̄‖+ s̄− t̄d2

ξ2
≥ 0 (34)

=⇒ Tr(Q̄) + s̄+

(
1

ξ2
+

Nt

d2
− 1

)

s̄− t̄d2

ξ2
− 2

ξ
√
Nt

‖r̄‖ ≥ 0, (35)

where (34) follows from
∑Nt

j=1 |uH
j r̄| ≥

√
∑Nt

j=1 |uH
j r̄|2 = ‖r̄‖, and (35) follows froms̄ − t̄d2 ≥ 0,

which is a consequence of (32).

To proceed, we assume thatρ ∈ (0, 1) is sufficiently small, so that

Nt

d2
− 1 ≤ 0 (36)

(recall from (13) thatd increases asρ decreases, as thatd → ∞ asρ → 0). Then, (35) implies that

Tr(Q̄) + s̄+
s̄− t̄d2

ξ2
− 2

ξ
√
Nt

‖r̄‖ ≥ 0. (37)

By comparing (37) with (15), we see that(Q̄, r̄, s̄) is feasible for (9) if

√

2 ln(1/ρ)
√

‖Q̄‖2F + 2‖r̄‖2 + ln(1/ρ) · λ+(Q̄) ≤ − s̄− t̄d2

ξ2
+

2

ξ
√
Nt

‖r̄‖

⇐=
√

2 ln(1/ρ)
(

‖Q̄‖F +
√
2‖r̄‖

)

+ ln(1/ρ) · λ+(Q̄) ≤ − s̄− t̄d2

ξ2
+

2

ξ
√
Nt

‖r̄‖ (38)

⇐⇒ 2

(
√

ln(1/ρ) − 1

ξ
√
Nt

)

‖r̄‖ ≤ − s̄− t̄d2

ξ2
−
√

2 ln(1/ρ) · ‖Q̄‖F − ln(1/ρ) · λ+(Q̄)

⇐⇒ 0 ≤ −s̄Nt ln(1/ρ) −
√

2 ln(1/ρ) · ‖Q̄‖F +
(
Ntt̄d

2 − λ+(Q̄)
)
ln(1/ρ), (39)

where (38) follows from the inequality
√

|α|2 + |β|2 ≤ |α| + |β|, which is valid for anyα, β ∈ R,

and (39) follows from the definition ofξ. Now, by recalling (7) and the definition ofg, we have

s̄ ≤ gHQ̄g ≤ ‖g‖2‖Q̄‖F . (40)

On the other hand, by (32), we know thatQ̄+ t̄INt
� 0 and t̄ ≥ 0. This yields

t̄ ≥ λ+(Q̄) = max{λmax(−Q̄), 0}. (41)
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It then follows from (40) and (41) that

(39) ⇐= 0 ≤ −
√

ln(1/ρ)
(

Nt

√

ln(1/ρ)‖g‖2 +
√
2
)

‖Q̄‖F + (Ntd
2 − 1) · λ+(Q̄) · ln(1/ρ). (42)

Using condition (20), we bound

‖Q̄‖F = ‖λ‖ ≤ ‖λ‖1 ≤ Nt ·max{λ+(−Q̄), λ+(Q̄)} ≤ Nt · λ+(Q̄),

whereλ = (λ1, . . . , λNt
). In particular, we have

(42) ⇐= 0 ≤
(
Ntd

2 − 1−N2
t ‖g‖2

)√

ln(1/ρ) −
√
2Nt

⇐=







√

ln(1/ρ) ≥
√
2Nt,

Ntd
2 − 1−N2

t ‖g‖2 ≥ 1.
(43)

Hence, as long asρ satisfies condition (21) (which is equivalent toρ satisfying both conditions (36)

and (43)), the triplet(Q̄, r̄, s̄) is feasible for (9). This completes the proof.

E. Proof of Proposition 1

We proceed in three steps.

Step 1: Boundingλ+(Q̄i)

We first compute

λmax(−Q̄i) ≥ 1

Nt
Tr



C
1/2
i




∑

k 6=i

S̄k −
1

γi
S̄i



C
1/2
i



 (44)

≥ 1

Nt



λmin(Ci)
∑

k 6=i

Tr(S̄k)−
1

γi
· λmax(Ci) · Tr(S̄i)



 (45)

≥ 0, (46)

where (44) follows from the inequalityTr(X) ≤ n · λmax(X), which is valid for anyX ∈ Hn; (45)

follows from the inequalityλmin(X) · Tr(Y ) ≤ Tr(XY ) ≤ λmax(X) · Tr(Y ), which is valid for any

X ∈ Hn andY ∈ Hn
+; (46) is implied by (22). Hence, by definition ofλ+(Q̄i), we have

λ+(Q̄i) = λmax(−Q̄i) ≥
1

Nt



λmin(Ci)
∑

k 6=i

Tr(S̄k)−
1

γi
· λmax(Ci) · Tr(S̄i)



 . (47)

Step 2: Boundingλ+(−Q̄i)
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Next, we bound

λmax(Q̄i) = max
‖u‖=1






uHC

1/2
i




1

γi
S̄i −

∑

k 6=i

S̄k



C
1/2
i u







≤ 1

γi
max
‖u‖=1

{

uHC
1/2
i S̄iC

1/2
i u

}

(48)

≤ 1

γi
· λmax(Ci) · Tr(S̄i), (49)

where (48) follows from the fact that̄Si � 0 for i = 1, . . . ,K; (49) follows from the inequality

λmax

(

C
1/2
i S̄iC

1/2
i

)

≤ λmax(Ci) · λmax(S̄i) ≤ λmax(Ci) · Tr(S̄i). SinceCi � 0, this yields

λ+(−Q̄i) = max
{
λmax(Q̄i), 0

}
≤ 1

γi
· λmax(Ci) · Tr(S̄i). (50)

Step 3: Completing the Proof

Our assumption (22), together with the inequalities (47) and (50), implies thatλ+(Q̄i) ≥ λ+(−Q̄i).

This completes the proof.
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