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In this paper, we establish hardness and approximation results for various Lp–ball constrained homoge-
neous polynomial optimization problems, where p ∈ [2,∞]. Specifically, we prove that for any given d ≥
3 and p ∈ [2,∞], both the problem of optimizing a degree–d homogeneous polynomial over the Lp–ball
and the problem of optimizing a degree–d multilinear form (regardless of its super–symmetry) over Lp–
balls are NP–hard. On the other hand, we show that these problems can be approximated to within a

factor of Ω
(

(logn)(d−2)/p
/

nd/2−1
)

in deterministic polynomial time, where n is the number of variables.

We further show that with the help of randomization, the approximation guarantee can be improved to
Ω((logn/n)d/2−1), which is independent of p and is currently the best for the aforementioned problems. Our
results unify and generalize those in the literature, which focus either on the quadratic case or the case where
p ∈ {2,∞}. We believe that the wide array of tools used in this paper will have further applications in the
study of polynomial optimization problems.
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1. Introduction. Motivated by its diverse applications and profound connections to various
branches of mathematics, polynomial optimization has been the focus of much research effort dur-
ing the past decade or so. From an algorithmic perspective, polynomial optimization problems are
generally intractable. Thus, a fundamental research issue is to determine their approximability.
One important class of problems whose approximability has been extensively investigated in recent
years is that of homogeneous polynomial optimization with L2–norm constraints. The first results
in this direction were obtained by de Klerk et al. [9] and Barvinok [4], who showed that certain spe-
cially structured L2–sphere constrained polynomial optimization problems admit polynomial–time
approximation schemes (PTASes). These were then followed by the work of Luo and Zhang [21],
in which an approximation algorithm was developed for homogeneous quartic optimization prob-
lems with quadratic constraints (which includes the L2–ball as a special case). Around the same
time, Ling et al. [19] considered the problem of approximately optimizing a biquadratic function
over the Cartesian product of two L2–spheres; while Zhang et al. [33] studied the hardness and
approximability of certain L2–sphere constrained homogeneous cubic optimization problems. Since
then, there have been significant activities in this line of research. For instance, in [32, 20, 31],
various researchers derived approximation results for the problem of optimizing a biquadratic func-
tion over quadratic constraints, thereby extending the results in [19]. In [12], He et al. improved
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and substantially extended the results in [21] by providing approximation algorithms for optimiz-
ing a general homogeneous polynomial over quadratic constraints (see also [17] for some latest
developments). It is worth noting that most of the aforementioned results were obtained using
semidefinite relaxation techniques, and that most of the algorithms are randomized. Recently, in
a marked departure from the semidefinite relaxation paradigm, So [28] employed techniques from
algorithmic convex geometry to design deterministic approximation algorithms for various L2–
sphere constrained homogeneous polynomial optimization problems. The algorithms in [28] have a
worst–case approximation guarantee of Ω((logn/n)d/2−1), where n is the number of variables and
d is the degree of the polynomial. Roughly speaking, this means that given any problem instance,
the algorithms will produce a feasible solution whose objective value is at least Ω((logn/n)d/2−1)
times the optimum. This improves upon the Ω((1/n)d/2−1) bound established in [19, 12, 33] and is
currently the best for general L2–sphere constrained homogeneous polynomial and multiquadratic
optimization problems. Such development raises a natural question: Can the approach in [28] be
applied to other classes of polynomial optimization problems?
In this paper, we address the above question by extending the approach in [28] to study the

Lp–ball constrained homogeneous polynomial optimization problem; i.e., problem of the form

max{f(x) : ‖x‖p ≤ 1}, (1)

where p∈ [2,∞] and f :Rn →R is a homogeneous polynomial of (fixed) degree d≥ 3. Our motiva-
tion for studying Problem (1) is twofold. First, it is a natural extension of the matrix norm problem
in [5, 30] and the Lp–Grothendieck problem in [16]—both of which concern quadratic f ’s with
certain structure—as well as the L∞–ball constrained trilinear optimization problem in [14] and
the L2–ball constrained homogeneous polynomial optimization problem in [21, 12]. However, there
is no prior hardness or approximation result for Problem (1) in its full generality. Secondly, Prob-
lem (1) lies at the heart of many applications. For instance, Baratchart et al. [3] demonstrated that
many labeling problems in pattern recognition and image processing can be tackled by maximizing
a certain polynomial over an Lp–ball. In addition, the Lp–singular value and singular vector of a
tensor—which have been extensively studied in the spectral theory of tensors and play an important
role in signal processing, automatic control and data analysis—can be defined as the optimal value
of and optimal solution to an Lp–ball constrained homogeneous polynomial optimization problem,
respectively [18, 26]. As our main contribution, we obtain both hardness and approximation results
for Problem (1). Specifically, on the hardness side, we show that Problem (1) is NP–hard for any
given d≥ 3 and p∈ [2,∞]. To the best of our knowledge, this is the first hardness result for Prob-
lem (1) that holds for any given d ≥ 3 and p ∈ [2,∞]. By contrast, existing hardness results for
Problem (1), such as those in [22, 33, 1, 13], hold only for certain values of d and p. A key tool we
used to prove the hardness result is a tensor symmetrization procedure introduced by Ragnarsson
and Van Loan [27], which allows us to establish the equivalence between multilinear optimization
problems and certain homogeneous polynomial optimization problems. On the approximation side,
we show that Problem (1) can be approximated to within a factor of Ω

(
(logn)(d−2)/p

/
nd/2−1

)
by

a deterministic polynomial–time algorithm. Furthermore, if one allows randomization, then the
approximation bound can be improved to Ω((logn/n)d/2−1), independent of p. In the process of
deriving these results, we also establish the hardness of and develop approximation algorithms
for certain Lp–ball constrained multilinear optimization problems, which could be of independent
interest. We remark that the aforementioned results apply only to the case where p ∈ [2,∞]. The
case where p∈ [1,2), which is not covered in this paper, does not seem to be well understood, even
when f is quadratic. We refer the interested reader to [30, 9, 6] for some results in this direction.
Before describing in detail our approximation algorithms for Problem (1), let us give an overview

of our approach and highlight some of the key technical issues. To fix ideas, let us first consider
the case where d= 3; i.e., f(x) =

∑n

i,j,k=1 aijkxixjxk for some order–3 tensor A= (aijk) ∈Rn×n×n.
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Using by–now standard techniques (see, e.g., [12, 28]), one can show that the optimal value of
Problem (1) is within a constant factor of that of its multilinear relaxation, which in the case of
d= 3 is given by

max

{
n∑

i,j,k=1

aijkxiyjzk : ‖x‖p ≤ 1,‖y‖p ≤ 1,‖z‖p ≤ 1

}
. (2)

Thus, as far as approximating Problem (1) is concerned, it suffices to focus on Problem (2).
Although the latter generally remains NP–hard (see Proposition 1 and Theorem 3), intuitively
it should be easier to handle because of the decoupling of variables. Indeed, following the ideas
in [14, 28], one can show that the optimal value of Problem (2) is equal to half times the Lq–
diameter of a certain convex body Kp, where q = p/(p− 1) ∈ [1,2] is the conjugate of p. However,
the latter quantity is known to be efficiently approximable only when p = 2. To tackle the case
where p > 2, we do not work on Kp directly as in [28]. Instead, we construct another convex body
K′

p whose Lq–diameter is within a constant factor of the optimal value of Problem (2) but can
be approximated efficiently. The validity of our construction is established using Grothendieck’s
inequality—a tool that originates from functional analysis and has since found many applications
in optimization and theoretical computer science; see, e.g., [29, 15, 25]. Consequently, we are able
to approximate Problem (2) and hence also Problem (1) in polynomial time for the case where
d= 3.
To extend the above results to the case where d > 3, a natural idea is to apply recursion. We

will present two implementations of this idea, which will lead to two algorithms with different
characteristics. The first is based on the following crucial observation (see Proposition 8): Suppose
that we have a deterministic approximation algorithm Ad for optimizing a degree–d multilinear
form over Lp–balls, where d≥ 3. Consider a degree–(d+1) multilinear form F . For any x̄1 ∈Rn, let
Gd(x̄

1) be the value returned by Ad when applied to the degree–dmultilinear optimization problem

max
{
F (x̄1, x2, . . . , xd+1) : ‖xi‖p ≤ 1 for i= 2,3, . . . , d+1

}
.

Then, the functionGd essentially defines a norm on Rn. Such a property, which was first established
in [28] for the case where p=2, is extremely useful and can be of independent interest. In particular,
it allows us to utilize existing polytopal approximations of Lp–balls [8] to design a deterministic
Ω
(
(logn)(d−2)/p

/
nd/2−1

)
–approximation algorithm for Problem (1).

The second approach to implementing the recursion idea is by randomization. Specifically, con-
sider a degree–d multilinear form F , where d > 3. It is known that if x2, . . . , xd ∈Rn are arbitrary
and ξ ∈Rn is a random vector uniformly distributed on the Lq–sphere, then

F (ξ,x2, . . . , xd)≥Ω

(√
logn

n

)
·
[
max
‖x‖p≤1

F (x,x2, . . . , xd)

]

holds with a probability that is at least inversely proportional to a polynomial in n; cf. [14, Lemma
3.3]. Using this result, it is not hard to show that any βd−1–approximation algorithm for optimiz-
ing a degree–(d− 1) multilinear form over Lp–balls will yield an Ω(βd−1

√
logn/n)–approximation

algorithm for Problem (1). To complete the argument, we show by induction that βd−1 can be
taken as βd−1 = Ω((logn/n)(d−1)/2−1). This gives an Ω((logn/n)d/2−1)–approximation algorithm
for Problem (1). It should be noted that unlike the deterministic algorithm described above, the
algorithm obtained using this approach is randomized and thus will only attain the stated approx-
imation ratio with high probability. However, it is much easier to implement than its deterministic
counterpart.
The rest of the paper is organized as follows. Section 2 contains the preliminaries. In Section 3,

we show that the problem of optimizing a homogeneous polynomial of fixed degree over an Lp–ball
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is NP–hard. Then, in Section 4, we introduce a multilinear relaxation of the Lp–ball constrained
homogeneous polynomial optimization problem and show that it is equivalent to the latter from an
approximation perspective. We also discuss the hardness of the multilinear relaxation. In Section 5,
we develop both deterministic and randomized polynomial–time approximation algorithms for the
problem of optimizing a multilinear form over Lp–balls by relating it to the problem of determining
the diameters of certain convex bodies. Finally, we conclude with some closing remarks in Section 6.

2. Preliminaries. We begin by introducing the notation and definitions used in this paper.
A tensor is a multidimensional array, and the order of a tensor is the number of dimensions. Let
A = (ai1i2···id) ∈ Rn1×n2×···×nd be a tensor of order d. We denote its (i1, i2, . . . , id)–th element by
either ai1i2···id or [A]i1i2···id . We say that A is non–zero if at least one of its elements is non–zero,
and is cubical if n1 = n2 = · · ·= nd. A cubical tensor is said to be super–symmetric if every element
ai1i2···id is invariant under any permutation of the indices.
Let K and j1, j2, . . . , jK be integers such that 1≤K ≤ d and 1≤ j1 < j2 < · · ·< jK ≤ d. Further-

more, let xjk ∈R
njk , where k= 1, . . . ,K, be given vectors. We use A(xj1 , xj2 , . . . , xjK ) to denote the

order–(d−K) tensor obtained by “summing out” the indices j1, j2, . . . , jK from the order–d tensor
A= (ai1i2···id)∈Rn1×n2×···×nd using xj1 , xj2 , . . . , xjK . For instance, if K =2, j1 = 2 and j2 = 4, then

A(x2, x4)i1i3i5i6···id =

n2∑

i2=1

n4∑

i4=1

ai1i2···idx
2
i2
x4
i4
.

Given an order–d tensor A = (ai1i2···id) ∈ Rn1×n2×···×nd , we can associate it with a multilinear
form FA :Rn1 ×Rn2 × · · ·×Rnd →R via

FA(x
1, x2, . . . , xd) =

n1∑

i1=1

· · ·
nd∑

id=1

ai1i2···idx
1
i1
x2
i2
· · ·xd

id
.

If A is super–symmetric with n1 = n2 = · · · = nd = n, then we can further associate it with a
homogeneous degree–d polynomial fA :Rn →R via

fA(x) =FA(x,x, . . . , x) =
∑

1≤i1,...,id≤n

ai1i2···idxi1xi2 · · ·xid .

In general, even if A is not super–symmetric or even cubical, it is still possible to relate the
multilinear form FA to a certain homogeneous degree–d polynomial via symmetrization [27]. To
introduce this procedure, we need some preliminary definitions. Let π = (π1, π2, . . . , πd) be a per-
mutation of the set {1,2, . . . , d}. The π–transpose of A= (ai1i2···id) ∈ Rn1×n2×···×nd is the order–d
tensor Aπ = (āiπ1 iπ2 ···iπd )∈Rnπ1×nπ2×···×nπd whose elements are given by

āiπ1 iπ2 ···iπd = ai1i2···id for ij = 1, . . . , nj; j =1, . . . , d.

Let N = n1 +n2 + · · ·+ nd and partition the index set {1, . . . ,N} into sets of consecutive integers
as follows:

{1, . . . ,N}=
d⋃

j=1

Bj, where Bj =

{
j−1∑

i=1

ni +1, . . . ,

j∑

i=1

ni

}
. (3)

Given an arbitrary cubical order–d tensor B ∈ RNd
and χi ∈ {1, . . . , d} for i = 1, . . . , d, the

(χ1, . . . , χd)–th block of B is defined as the sub–tensor

Bχ1χ2···χd
= (bi1i2···id)ij∈Bχj ; j=1,...,d ∈Rnχ1×nχ2×···×nχd .
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Armed with these definitions, we define the symmetrization of A= (ai1i2···id)∈Rn1×n2×···×nd as the

order–d cubical tensor sym(A)∈RNd
whose blocks are given by

[sym(A)]χ1χ2···χd
=

{
Aχ if χ= (χ1, χ2, . . . , χd) is a permutation of {1,2, . . . , d},
0 otherwise.

For instance, when d= 2, A is an n1×n2 matrix, and its symmetrization is given by the well–known
construction

sym(A) =

[
0 A
AT 0

]
.

More generally, it is known that the tensor sym(A) enjoys the following properties [27]:
1. sym(A) is super–symmetric. In particular, it can be associated with a homogeneous degree–d

polynomial fsym(A).

2. For every x= [ (x1)T (x2)T · · · (xd)T ]
T ∈RN , where xi ∈Rni and i= 1, . . . , d, we have

fsym(A)(x) = d! ·FA(x
1, x2, . . . , xd). (4)

Now, let d≥ 3 and p∈ [2,∞] be given. Let A= (ai1i2···id)∈Rnd
be an arbitrary non–zero super–

symmetric tensor of order d, and let fA :Rn →R be the corresponding homogeneous polynomial.
Our main objective in this paper is to study the algorithmic aspects of the following Lp–ball
constrained homogeneous polynomial optimization problem:

(HP)

v̄ = maximize fA(x)≡
∑

1≤i1,...,id≤n

ai1i2···idxi1xi2 · · ·xid

subject to ‖x‖p ≤ 1, x∈Rn.

3. Hardness of Lp–ball constrained homogeneous polynomial optimization. Our first
result is the following theorem, which concerns the complexity of Problem (HP):

Theorem 1. Problem (HP) is NP–hard for any given d≥ 3 and p∈ [2,∞].

The proof of Theorem 1 consists of two steps. First, we show that the problem of maximizing
a degree–d multilinear form over Lp–balls is NP–hard for any given d ≥ 3 and p ∈ [2,∞]. Then,
we give a polynomial–time reduction of this problem to Problem (HP) using the symmetrization
procedure introduced in Section 2, thereby proving the NP–hardness of the latter.
To begin, let us formally define the problem used in the first step.

Let A= (ai1i2···id)∈Rn1×n2×···×nd be an arbitrary non–zero order–d tensor, and

(ML)
let FA :Rn1 ×Rn2 × · · ·×Rnd →R be the corresponding multilinear form. Solve

vML(A, d) = maximize FA(x
1, x2, . . . , xd)

subject to ‖xi‖p ≤ 1, xi ∈Rni for i=1, . . . , d.

Proposition 1. Problem (ML) is NP–hard for any given d≥ 3 and p∈ [2,∞].

Proof. Let d≥ 3 and p∈ [2,∞] be fixed. Consider first the case where p∈ (2,∞]. Our plan is to
reduce the following problem—which is known to be NP–hard [30]—to Problem (ML):

(NORM)

Let B ∈Rm×n and p∈ (2,∞] be given. Let q= p/(p− 1) be the
conjugate of p. Compute ‖B‖p→q , the p→ q norm of B, where

‖B‖p→q = max{‖By‖q : ‖y‖p ≤ 1}.
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Towards that end, suppose that we are given an instance of Problem (NORM). By Hölder’s inequal-
ity, we have

max
‖y‖p≤1

‖By‖q = max
‖x‖p≤1,‖y‖p≤1

xTBy

= max
‖x‖p≤1,‖y‖p≤1

|z1|,...,|zd−2|≤1

(
d−2∏

i=1

zi

)
xTBy

= max
‖x‖p≤1,‖y‖p≤1

|z1|,...,|zd−2|≤1

FA (z1, z2, . . . , zd−2, x, y) ,

where A= (a1,...,1,i,j) ∈ R1×···×1×m×n is the order–d tensor with a1,...,1,i,j = bij for i= 1, . . . ,m and
j = 1, . . . , n; FA : R × · · · × R × Rm × Rn → R is the multilinear form associated with A. This
establishes the NP–hardness of Problem (ML) when d≥ 3 and p∈ (2,∞].
Next, consider the case where p=2. It has been shown in [12, Proposition 2] that Problem (ML)

is NP–hard when d= 3 and p=2. Now, let B= (bijk)∈Rn1×n2×n3 be an arbitrary non–zero order–3
tensor, and let FB : Rn1 × Rn2 × Rn3 → R be the corresponding multilinear form. Using similar
argument as above, for any given d≥ 4, we have

max
‖w‖2,‖x‖2,‖y‖2≤1

FB(w,x, y) = max
‖w‖2,‖x‖2,‖y‖2≤1
|z1|,...,|zd−3|≤1

(
d−3∏

i=1

zi

)
FB(w,x, y)

= max
‖w‖2,‖x‖2,‖y‖2≤1
|z1|,...,|zd−3|≤1

FA(z1, z2, . . . , zd−3,w,x, y),

where A = (a1,...,1,i,j,k) ∈ R1×···×1×n1×n2×n3 is the order–d tensor with a1,...,1,i,j,k = bijk for i =
1, . . . , n1, j = 1, . . . , n2 and k = 1, . . . , n3; FA :R× · · · ×R×Rn1 ×Rn2 ×Rn3 →R is the multilinear
form associated with A. Thus, we conclude that when p= 2, Problem (ML) remains NP–hard for
each fixed d≥ 3. �

Next, we have the following proposition, which links the optimization of the multilinear form
associated with a tensor A to that of the homogeneous polynomial associated with sym(A).

Proposition 2. Let d ≥ 2 and p ∈ [2,∞] be given, and let A ∈ Rn1×n2×···×nd be an arbitrary
non–zero order–d tensor. Set N = n1 +n2 + · · ·+nd. Consider the optimization problems

maximize d! ·FA(x
1, x2, . . . , xd)

subject to ‖xi‖p ≤ 1, xi ∈Rni for i= 1, . . . , d
(5)

and
maximize fsym(A)(z)

subject to ‖z‖p ≤ d1/p, z ∈RN ,
(6)

where FA is the multilinear form associated with A and fsym(A) is the homogeneous polynomial
associated with the symmetrization of A (see Section 2). Let (x̄1, x̄2, . . . , x̄d)∈Rn1 ×Rn2 ×· · ·×Rnd

and z̄ = [ (z̄1)T (z̄2)T · · · (z̄d)T ]
T
, where z̄i ∈Rni for i= 1, . . . , d, be optimal solutions to problems (5)

and (6), respectively. Then, the following hold:
(a) ‖z̄i‖p = 1 for i= 1, . . . , d.

(b) (z̄1, z̄2, . . . , z̄d) ∈ Rn1×n2×···×nd and x̄ = [ (x̄1)T (x̄2)T · · · (x̄d)T ]
T ∈ RN are optimal solutions

to problems (5) and (6), respectively.
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Proof. Let us first consider the case where p=∞. By (4), Problem (6) is equivalent to

maximize d! ·FA(z
1, z2, . . . , zd)

subject to ‖zi‖∞ ≤ 1, zi ∈Rni for i= 1, . . . , d,

which has exactly the same form as Problem (5). Thus, the desired results follow immediately.
Now, consider the case where p∈ [2,∞). To prove (a), we again appeal to (4), which implies the

equivalence of Problem (6) and the following problem:

maximize d! ·FA(z
1, z2, . . . , zd)

subject to
d∑

i=1

‖zi‖pp ≤ d,

zi ∈Rni for i= 1, . . . , d.

Since A is non–zero, we must have
∑d

i=1 ‖z̄i‖pp = d and ‖z̄i‖p > 0 for i= 1, . . . , d. Now, suppose that
‖z̄j‖pp = θ 6= 1 for some j ∈ {1, . . . , d}. Then, we have

∑
i6=j ‖z̄i‖pp = d− θ > 0. Upon setting

ẑi =





(
d− 1

d− θ

)1/p

z̄i if i 6= j,

θ−1/pz̄j otherwise,

we obtain

‖ẑj‖pp = 1,
d∑

i=1

‖ẑi‖pp =
d− 1

d− θ

∑

i6=j

‖z̄i‖pp + ‖ẑj‖pp = d

and
FA(ẑ

1, ẑ2, . . . , ẑd) = (d− 1)
d−1
p ·
(
(d− θ)d−1θ

)−1/p ·FA(z̄
1, z̄2, . . . , z̄d). (7)

In particular, we see that ẑ = [ (ẑ1)T (ẑ2)T · · · (ẑd)T ]
T ∈RN is feasible for (6). It is easy to verify that

the function t 7→ ((d− t)d−1t))−1/p is strictly convex on (0, d) and is minimized at t= 1. Since θ 6=1
and A is non–zero, it follows from (7) that FA(ẑ

1, ẑ2, . . . , ẑd)>FA(z̄
1, z̄2, . . . , z̄d), which contradicts

the optimality of z̄. Thus, we have ‖z̄i‖pp = 1 for i=1, . . . , d, as desired.

To prove (b), we first observe that since x̄= [ (x̄1)T (x̄2)T · · · (x̄d)T ]
T ∈ RN is feasible for Prob-

lem (6) and fsym(A)(x̄) = d! · FA(x̄
1, x̄2, . . . , x̄d) by (4), we have fsym(A)(z̄) ≥ d! · FA(x̄

1, x̄2, . . . , x̄d).
Now, the result in (a) implies that (z̄1, z̄2, . . . , z̄d) ∈ Rn1×n2×···×nd is feasible for Problem (5), and
hence using (4) we obtain fsym(A)(z̄) = d! ·FA(z̄

1, z̄2, . . . , z̄d)≤ d! ·FA(x̄
1, x̄2, . . . , x̄d). This completes

the proof. �

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. Proposition 2 implies that Problem (ML) is equivalent to

maximize fsym(A)(z)

subject to ‖z‖p ≤ 1, z ∈RN ,

where N = n1 + n2 + · · ·+ nd. The latter is clearly an instance of Problem (HP). Moreover, when
d ≥ 3 is fixed, the size of sym(A) is polynomial in n1, n2, . . . , nd. Thus, for any given d ≥ 3 and
p ∈ [2,∞], we can reduce Problem (ML) to Problem (HP) in polynomial time, which implies that
the latter is NP–hard, as desired. �
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4. Lp–ball constrained homogeneous polynomial optimization and its multilinear

relaxation. In view of Theorem 1, we now turn our attention to the task of designing polynomial–
time approximation algorithms for Problem (HP) with provable guarantees. Towards that end,
consider the following multilinear relaxation of Problem (HP):

(MR)

v∗ = maximize FA(x
1, x2, . . . , xd)≡

∑

1≤i1,...,id≤n

ai1i2···idx
1
i1
x2
i2
· · ·xd

id

subject to ‖xi‖p ≤ 1, xi ∈Rni for i= 1, . . . , d.

Since fA(x) =FA(x,x, . . . , x) for all x∈Rn and x= 0 is feasible for Problem (HP), we clearly have
v∗ ≥ v̄ ≥ 0. Our motivation for studying Problem (MR) comes from the following result, which
essentially states that v∗ and v̄ are within a constant factor of each other when d≥ 3 is fixed.

Theorem 2. Let d≥ 3 and p ∈ [2,∞] be given. Suppose there is a polynomial–time algorithm
AMR that, given any instance of Problem (MR), returns a feasible solution whose objective value is
at least αv∗ for some α ∈ (0,1]. Then, there is a polynomial–time algorithm AHP that, given any
instance of Problem (HP), returns a solution x̂∈Rn with ‖x̂‖p ≤ 1 and

fA(x̂) ≥ α · d! · d−d · v∗

≥ α · d! · d−d · v̄ for odd d≥ 3,

fA(x̂)− v ≥ 2α · d! · d−d · v∗

≥ α · d! · d−d · (v̄− v) for even d≥ 4,

where v = min‖x‖p≤1 fA(x). In other words, the algorithm AHP has an approximation guarantee
(resp. relative approximation guarantee) of α · d! · d−d when d is odd (resp. even).

For a proof of Theorem 2, see Appendix A. We remark that for the case where p= 2, an analogous
result has been established in [12]; cf. [28, Theorem 1]. However, if in addition d≥ 3 is odd, then
Problem (HP) and Problem (MR) are in fact equivalent, in the sense that one can extract a solution
x̂∈Rn with ‖x̂‖2 =1 and fA(x̂) = v∗ = v̄; see, e.g., [24].
Theorem 2 shows that any algorithm for solving Problem (MR) will translate into an algorithm

for approximating Problem (HP). Although it seems intuitive that Problem (MR) is NP–hard as
well, such a result does not follow directly from Proposition 1, as the tensor associated with the
objective function in Problem (ML) is not required to be super–symmetric or even cubical. The

following theorem fills this gap:

Theorem 3. Problem (MR) is NP–hard for any given d≥ 3 and p∈ [2,∞].

The proof of Theorem 3 is quite involved and can be found in Appendix B. We remark that
Theorem 3 is, to the best of our knowledge, the first hardness result for the problem of optimizing
a super–symmetric multilinear form that holds for any given d≥ 3 and p∈ [2,∞]; cf. [13].

5. Lp–ball constrained multilinear optimization and diameters of convex bodies.

Given that both Problem (MR) and Problem (ML) are NP–hard, we shall study the slightly more
general Problem (ML), where the focus will be on developing approximation algorithms with prov-
able guarantees. Since the case where p= 2 has already been investigated in [28], we shall assume
that p∈ (2,∞] in the sequel.
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5.1. Base case: Approximating Lp–ball constrained trilinear maximization. Let us
begin by considering the case where d= 3. Specifically, let A= (aijk) ∈Rn1×n2×n3 be an arbitrary
non–zero order–3 tensor. Without loss of generality, we assume that 1 ≤ n1 ≤ n2 ≤ n3. Then,
Problem (ML) becomes

vML(A,3) = maximize

n1∑

i=1

n2∑

j=1

n3∑

k=1

aijkx
1
ix

2
jx

3
k

subject to ‖xi‖p ≤ 1, xi ∈Rni for i= 1,2,3.

(8)

Using the definition of A(x1) and Hölder’s inequality, we can express vML(A,3) as

vML(A,3) = max
‖x1‖p≤1

max
‖x2‖p≤1,‖x3‖p≤1

(x2)TA(x1)x3

= max
‖x1‖p≤1

max
‖x3‖p≤1

‖A(x1)x3‖q

= max
‖x1‖p≤1

‖A(x1)‖p→q, (9)

where q= p/(p− 1) is the conjugate of p and ‖A(x1)‖p→q is the p→ q norm of the n2 ×n3 matrix
A(x1). From the above derivation, we see that Problem (8) encapsulates two difficult computational
tasks: (i) the computation of ‖A(x1)‖p→q for any given x1 ∈ Rn1, and (ii) the maximization of a
convex function x1 7→ ‖A(x1)‖p→q over a convex set Bn1

p = {x ∈ Rn1 : ‖x‖p ≤ 1}. To tackle these
difficulties, we proceed in two steps. First, we show that ‖A(x1)‖p→q can be approximated by
another efficiently computable norm. Then, we show that the maximization of this latter norm
over Bn1

p is equivalent to determining the Lq–diameter of a certain convex body, a problem for
which approximation algorithms are available. This would in turn yield approximation algorithms
for Problem (8).

Step 1: Approximating ‖B‖p→q when p ∈ (2,∞]. The task of computing ‖B‖p→q for any
given m × n matrix B and p ∈ (2,∞] is an instance of the matrix norm problem, which has
been extensively studied in the literature. In particular, Nesterov [23] showed that ‖B‖p→q can be
approximated to within a factor of 2

√
3

π
− 2

3
> 0.435 via a certain convex relaxation. Later, Ben–Tal

and Nemirovski [5] and Steinberg [30] established the NP–hardness of the problem and gave a more
refined analysis of Nesterov’s relaxation scheme. However, the approximation bound they obtained
is better than Nesterov’s only when the parameters m,n,p belong to a certain regime. As it turns
out, by considering a different convex relaxation, it is possible to obtain an approximation bound
that uniformly improves upon that of Nesterov. To demonstrate this, we first observe that

‖B‖p→q = maximize
1

2

[
0 B
BT 0

]
•
([

y
z

][
yT zT

])

subject to ‖y‖p ≤ 1, ‖z‖p ≤ 1,

(10)

where P •Q= tr(P TQ) denotes the Frobenius inner product of the matrices P and Q. Hence, by
introducing the (m+ n)× (m+ n) positive semidefinite (psd) matrix X to replace the rank–one
psd matrix (y, z)(y, z)T and denoting

B̃ =
1

2

[
0 B
BT 0

]
,
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we obtain the following relaxation of ‖B‖p→q :

vecp(B) =





max

{
B̃ •X :

m∑

i=1

|Xii|p/2 ≤ 1,
m+n∑

j=m+1

|Xjj |p/2 ≤ 1, X � 0

}
for p∈ (2,∞),

max

{
B̃ •X : max

1≤i≤m
|Xii| ≤ 1, max

m+1≤j≤m+n
|Xjj | ≤ 1, X � 0

}
for p=∞.

(11)

Note that for p > 2, Problem (11) is a convex program that can be solved to arbitrary accuracy
in polynomial time using, e.g., the ellipsoid method [10] (cf. [16]). Moreover, the following simple
observation of Khot and Naor [15] shows that the ratio between vecp(B) and ‖B‖p→q is bounded
above by the Grothendieck constantKG, which is known to be strictly less than π

2 ln(1+
√
2)
< 1.783 [7].

Proposition 3. The following inequalities hold:

‖B‖p→q ≤ vecp(B)≤KG · ‖B‖p→q .

For completeness, we include the proof of Proposition 3 here.
Proof. The first inequality follows readily from the fact that Problem (11) is a relaxation of

Problem (10). To prove the second inequality, consider an optimal solution X∗ to Problem (11)
with rank(X∗) = r≥ 1. Let X∗ = V TV , where V ∈Rr×(m+n), be the Cholesky factorization of X∗.
Furthermore, let ui ∈Rr (where i= 1, . . . ,m) and vj ∈Rr (where j = 1, . . . , n) be the i–th column
and (m+ j)–th column of V , respectively. Then, by the optimality of X∗, we have

vecp(B) = B̃ •X∗ =
m∑

i=1

n∑

j=1

Biju
T
i vj .

Moreover, since diag(B̃) = 0, we may assume that

‖ui‖2 = |X∗
ii|1/2 = 1 for 1≤ i≤m,

‖vj‖2 = |X∗
jj |1/2 = 1 for m+1≤ j ≤m+n

in the case where p=∞, or

m∑

i=1

‖ui‖p2 =
m∑

i=1

|X∗
ii|p/2 =1,

n∑

j=1

‖vj‖p2 =
m+n∑

j=m+1

|X∗
jj |p/2 = 1

in the case where p ∈ (2,∞). Now, define an m× n matrix Q by Qij = Bij · ‖ui‖2 · ‖vj‖2, where
i= 1, . . . ,m and j = 1, . . . , n. By the Grothendieck inequality (see, e.g., [2, 15]), there exist vectors
η ∈ {−1,1}m, γ ∈ {−1,1}n such that

vecp(B) =

m∑

i=1

n∑

j=1

Biju
T
i vj =

m∑

i=1

n∑

j=1

Qij

uT
i vj

‖ui‖2 · ‖vj‖2
≤KG

m∑

i=1

n∑

j=1

Qijηiγj. (12)

Upon letting ȳi = ηi · ‖ui‖2 for i= 1, . . . ,m and z̄j = γj · ‖vj‖2 for j = 1, . . . , n, we see that ‖ȳ‖p =
‖z̄‖p = 1 for p ∈ (2,∞]; i.e., (ȳ, z̄) ∈ Rm × Rn is feasible for Problem (10). Moreover, we obtain
from (12) that

vecp(B)≤KG

m∑

i=1

n∑

j=1

Bij ȳiz̄j ≤KG · ‖B‖p→q .

This completes the proof. �
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The proof of Proposition 3 reveals that known algorithmic implementations of the Grothendieck
inequality (see, e.g., [2, 7]) can be used to deliver vectors ȳ ∈Rm and z̄ ∈Rn that are feasible for
Problem (10) and whose associated objective value ȳTBz̄ is within a constant factor of ‖B‖p→q .
It should be noted, however, that the precise constant will depend on the particular implementa-
tion used. For our purposes, we shall consider two different implementations of the Grothendieck
inequality. The first is a deterministic procedure introduced in [2], which is based on the construc-
tion of small sample spaces with many four–wise independent random variables. It guarantees that
KG ≤ 27, and hence by Proposition 3 there is a deterministic (1/27)–approximation algorithm for
computing ‖B‖p→q . Although the above procedure does not yield the best approximation bound
for ‖B‖p→q (in fact, it is even worse than Nesterov’s bound), it will allow us to design a determin-
istic approximation algorithm for Problem (ML). The second one is based on the so–called Krivine
rounding scheme in [7]. The resulting procedure is randomized and guarantees that KG < π

2 ln(1+
√
2)
,

which is currently the best bound on KG. Consequently, we can approximate ‖B‖p→q to within a

factor that is strictly larger than 2 ln(1+
√
2)

π
> 0.561, which is better than Nesterov’s bound of 0.435.

Based on the above discussion, we summarize our procedure for approximating ‖B‖p→q as follows:

Algorithm 1 Procedure for approximating ‖B‖p→q when p∈ (2,∞] and q= p/(p− 1)

Input: An m×n matrix B, a rational number p∈ (2,∞].
Output: A feasible solution (ȳ, z̄)∈Rm ×Rn to Problem (10).
1: Solve the convex relaxation (11) and let X∗ = V TV be an optimal solution. Let u1, . . . , um and

v1, . . . , vn be the first m and last n columns of V , respectively.
2: Apply either the deterministic rounding procedure in [2] or the randomized rounding pro-

cedure in [7] to the vectors {ui/‖ui‖2}mi=1 and {vj/‖vj‖2}nj=1 to obtain vectors η ∈ {−1,1}m and
γ ∈ {−1,1}n that satisfy (12), where KG ≤ 27 if the deterministic procedure in [2] is used and
KG < π

2 ln(1+
√
2)

if the randomized procedure in [7] is used.

3: Set ȳi = ηi · ‖ui‖2 for i= 1, . . . ,m and z̄j = γj · ‖vj‖2 for j =1, . . . , n. Return (ȳ, z̄)∈Rm ×Rn.

Step 2: Norm maximization and diameters of convex bodies. In view of (9) and Proposi-
tion 3, we see that any α–approximation to

max
‖x1‖p≤1

vecp

(
A(x1)

)
(13)

will yield an (α/KG)–approximation to vML(A,3). Hence, it suffices to focus on Problem (13). The
following result shows that Problem (13) is in fact equivalent to maximizing a certain norm over
the Lp–ball.

Proposition 4. Let A= (aijk)∈Rn1×n2×n3 be an arbitrary non–zero order–3 tensor. Consider
the (n2×n3)×n1 matrix A given by

A(j,k),i = aijk for i=1, . . . , n1; j = 1, . . . , n2; k= 1, . . . , n3. (14)

Suppose that A has full column rank. Then, the function x1 7→ vecp (A(x1)) defines a norm on Rn1 .

Proof. Using the definition of A(x1) and the derivation in the proof of Proposition 3, we have

vecp (A(x1)) = maximize

n1∑

i=1

(
n2∑

j=1

n3∑

k=1

aijku
T
j vk

)
x1
i

subject to ‖u‖p ≤ 1, ‖v‖p ≤ 1,

u= (‖u1‖2, . . . ,‖un2
‖2) ∈Rn2 ,

v= (‖v1‖2, . . . ,‖vn3
‖2)∈Rn3
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for any p ∈ (2,∞]. In particular, vecp(A(·)) is the pointwise supremum of a collection of linear
functions, which implies that vecp(A(·)) is convex. Moreover, it is clear that vecp (A(kx1)) = |k| ·
vecp (A(x1)) for any k ∈ R and x1 ∈ Rn1, which together with the convexity of vecp(A(·)) implies
that vecp(A(·)) satisfies the triangle inequality. Finally, let x1 ∈Rn1\{0} be arbitrary. Note that A
has full column rank if and only if

∑n1

i=1 aijkxi 6= 0 for some j = 1, . . . , n2 and k = 1, . . . , n3 if and
only if

vecp

(
A(x1)

)
≥ max

1≤j≤n2,1≤k≤n3

∣∣∣∣∣

n1∑

i=1

aijkxi

∣∣∣∣∣> 0.

This shows that x1 = 0 whenever vecp (A(x1)) = 0, and the proof is completed. �

Using the argument in [28, Section 3.1], we may assume without loss that A has full column rank;
i.e., vecp(A(·)) defines a norm on Rn1 . We shall denote this norm by ‖ · ‖A in the sequel.
To proceed, consider the unit ball of the norm ‖ · ‖A and its polar, which are given by

BA = {x∈Rn1 : ‖x‖A ≤ 1}

and
B◦

A =
{
y ∈Rn1 : xTy ≤ 1 for all x∈BA

}
,

respectively. Note that both BA and B◦
A are centrally symmetric and convex. Now, using the dual

characterization of norms and Hölder’s inequality, we can write Problem (13) as

max
‖x‖p≤1

‖x‖A = max
‖x‖p≤1

max
y∈B◦

A

xT y= max
y∈B◦

A

‖y‖q =
1

2
diamq(B

◦
A), (15)

where q = p/(p− 1) is the conjugate of p and diamq(B
◦
A) is the Lq–diameter of B◦

A. In particular,
our original problem of approximating vML(A,3) (see (8)) is reduced to that of approximating
diamq(B

◦
A), which is well studied in the literature. In the following, we shall present two algorithms

for approximating diamq(B
◦
A). The first is deterministic and implements an idea of Brieden et

al. [8]. The second is based on a probabilistic argument of Khot and Naor [14]. Although the latter
is randomized, it is much simpler to implement and achieves a better approximation ratio than the
former.

5.1.1. Approximating the Lq–diameter of B◦
A when q ∈ [1,2).

Deterministic approximation of diamq(B
◦
A). The key observation underlying the determin-

istic approximation algorithm is that the diameter of a convex body with respect to a polytopal
norm can be computed to arbitrary accuracy in deterministic polynomial time under certain con-
ditions [8]. Thus, in order to approximate the Lq–diameter of B◦

A, it suffices to first construct a
centrally symmetric polytope P that approximates the unit Lq–ball, and then compute the diam-
eter of B◦

A with respect to the polytopal norm induced by P. Before we describe the algorithm in
more detail, let us recall some definitions from the algorithmic theory of convex bodies (see [10]
for further details). For p > 2, let Bn

p (r) = {x ∈ Rn : ‖x‖p ≤ r} denote the n–dimensional Lp–ball
centered at the origin with radius r > 0. Let K be a centrally symmetric convex body in Rn. For
any ǫ≥ 0, the outer parallel body and inner parallel body of K are given by

K(ǫ) =K+Bn
2 (ǫ) and K(−ǫ) = {x∈Rn : x+Bn

2 (ǫ)⊂K},

respectively. We say that K is well–bounded if there exist rational numbers 0 < r ≤ R <∞ such
that Bn

2 (r)⊂K⊂Bn
2 (R). The weak membership problem associated with K is defined as follows:

Weak Membership Problem. Given a vector y ∈ Qn and a rational number ǫ > 0, either (i)
assert that y ∈K(ǫ), or (ii) assert that y 6∈ K(−ǫ).
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A weak membership oracle for K is a black box that solves the weak membership problem associated
with K.
The starting point of our algorithm for approximating diamq(B

◦
A) is the following result of

Brieden et al. [8]:

Theorem 4. Given an integer n ≥ 1 and a rational number q ∈ (1,2], one can construct in
deterministic polynomial time a centrally symmetric polytope P in Rn such that (i) Bn

q (1)⊂ P ⊂
Bn

q

(
O
(
n1/2/(logn)1/p

))
, where p= q/(q− 1) is the conjugate of q, and (ii) for any well–bounded

centrally symmetric convex body K in Rn, one has

Ω

(
(logn)1/p

n1/2

)
· diamq(K)≤ diamP(K)≤ diamq(K),

where diamP(K) is the diameter of K with respect to the polytopal norm ‖ · ‖P induced by P (i.e.,
for any x∈Rn, one has ‖x‖P =min{λ≥ 0 : x ∈ λP}, and P is the unit ball of the induced norm).
Moreover, if K is equipped with a weak membership oracle, then for any given rational number ǫ > 0,
the quantity diamP(K) can be computed to an accuracy of ǫ in deterministic oracle–polynomial
time,1 and a vector x∈K(ǫ) is delivered with ‖x‖P ≥ (1/2) · diamP(K)− ǫ.

Armed with Theorem 4, we see that in order to design a deterministic polynomial–time algorithm
for approximating diamq(B

◦
A), it remains to show that B◦

A is well–bounded, and that there is a
deterministic polynomial–time algorithm for solving the weak membership problem associated with
B◦

A. This is done in the following proposition:

Proposition 5. Let A= (aijk) ∈Qn1×n2×n3 be an arbitrary non–zero order–3 tensor, and let
A be the (n2 × n3) × n1 matrix given by (14). Suppose that A has full column rank. Then, the
following hold for the centrally symmetric convex body B◦

A:
(a) B◦

A is well–bounded. Specifically, there exist rational numbers 0< r≤R<∞, whose encod-
ing lengths are polynomially bounded by the input size of Problem (8), such that Bn1

2 (r) ⊂ B◦
A ⊂

Bn1
2 (R).
(b) The weak membership problem associated with B◦

A can be solved in deterministic polynomial
time.

Proof. (a) By polarity, we have Bn1
2 (r) ⊂ B◦

A ⊂ Bn1
2 (R) if and only if Bn1

2 (1/R) ⊂ BA ⊂
Bn1

2 (1/r). Thus, it suffices to show that BA is well–bounded. Now, using the argument in [28,
Proposition 2] and the assumption that A has full column rank, one can show that Bn1

2 (r′)⊂BA ⊂
Bn1

2 (R′), where

r′ =
1

⌈√n1⌉ ·m
, m= max

1≤i≤n1

n2∑

j=1

n3∑

k=1

|aijk|

and

R′ =

⌈√
n2n3

λmin(ATA)

⌉

are rational numbers and satisfy 0< r′ ≤R′ <∞. Moreover, the encoding lengths of r′ and R′ can
be polynomially bounded by the input size of Problem (8); see [10]. This establishes (a).
(b) By the well–boundedness of BA and the results in [10, Chapter 4], it suffices to show that

the weak membership problem associated with BA can be solved in deterministic polynomial time.
However, this follows directly from the argument in [28, Proposition 3] and the observation that
‖x‖A can be computed to arbitrary accuracy in deterministic polynomial time (see (11) and the
remarks following it). �

1 An algorithm has oracle–polynomial time complexity if its runtime is polynomial in both the input size and the
number of calls to the oracle [10].
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Using (15), Proposition 5 and Theorem 4, we conclude that the optimal value of Problem (13) can

be approximated to within a factor of Ω
(
(logn1)

1/p
/
n
1/2
1

)
in deterministic polynomial time. Thus,

by (9) and Proposition 3, the optimal value of Problem (8) can also be approximated to within

a factor of Ω
(
(logn1)

1/p
/
n
1/2
1

)
in deterministic polynomial time. To extract a feasible solution

to Problem (8) with the stated approximation guarantee, we just need to unwind our sequence
of reductions. For simplicity, let us assume that all computations can be done exactly. Then, by
Proposition 5 and Theorem 4, we can find a centrally symmetric polytope P and a vector ȳ ∈B◦

A
such that

‖ȳ‖q ≥ ‖ȳ‖P =
1

2
diamP(B

◦
A)≥Ω

(
(logn1)

1/p

n1/2
1

)
·diamq(B

◦
A). (16)

Now, define the vector x̄1 ∈Rn1 by

x̄1
i =

sgn(ȳi) · |ȳi|q−1

‖ȳ‖q−1
q

for i= 1, . . . , n1.

It is easy to verify that ‖x̄1‖p =1 and

vecp

(
A(x̄1)

)
= ‖x̄1‖A = (x̄1)T ȳ= ‖ȳ‖q . (17)

In particular, by applying the deterministic version of Algorithm 1 to the n2 × n3 matrix A(x̄1),
we can extract two vectors x̄2 ∈Rn2 and x̄3 ∈Rn3 such that ‖x̄2‖p = ‖x̄3‖p = 1 and

n1∑

i=1

n2∑

j=1

n3∑

k=1

aijkx̄
1
i x̄

2
j x̄

3
k ≥

1

27
vecp

(
A(x̄1)

)
. (18)

Finally, since (9), (15) and Proposition 3 together imply

1

2
diamq(B

◦
A) = max

‖x‖p≤1
‖x‖A ≥ max

‖x1‖p≤1
‖A(x1)‖p→q = vML(A,3),

we conclude from (16)–(18) that (x̄1, x̄2, x̄3) ∈ Rn1 × Rn2 × Rn3 is an Ω
(
(logn1)

1/p
/
n1/2
1

)
–

approximate solution to Problem (8).
Recall that the above conclusion is obtained under the assumption that all computations are

exact. However, it can be shown via a similar but more tedious calculation that the same conclusion
holds when the computations are inexact; cf. [28]. Thus, we have proven the following theorem:

Theorem 5. For any given p∈ (2,∞], there is a deterministic polynomial–time approximation

algorithm for Problem (8) with approximation ratio Ω
(
(logn1)

1/p
/
n
1/2
1

)
.

The following corollary is a direct consequence of Theorems 2 and 5:

Corollary 1. For d = 3 and any given p ∈ (2,∞], there is a deterministic polynomial–time
approximation algorithm for Problem (HP) with approximation ratio Ω

(
(logn)1/p/n1/2

)
.

Randomized approximation of diamq(B
◦
A). In this section, we consider an alternative

approach to approximating diamq(B
◦
A), namely, via randomization. The theoretical underpinning

of this approach is the following probabilistic results due to Khot and Naor [14]:

Proposition 6. The following hold:
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(a) Let ζ1, . . . , ζn be i.i.d. Bernoulli random variables and set ζ = (ζ1, . . . , ζn) ∈Rn. Then, there
exist universal constants δ0, c0 > 0 such that for every w ∈Rn,

Pr

(
wT ζ ≥

√
δ0 logn

n
· ‖w‖1

)
≥ c0

nδ0
.

(b) Suppose that q ∈ (1,2), and let p= q/(q− 1). Let ξ1, . . . , ξn be i.i.d. random variables with
density p ·exp(−|t|p)/(2Γ(1/p)) and set ξ = (ξ1, . . . , ξn) ∈Rn.2 Then, there exist universal constants
δ1, c1, c2, n̄ > 0 such that for all n≥ n̄, we have

Pr

(
wT ξ

‖ξ‖p
≥
√

δ1 logn

n
· ‖w‖q

)
≥ c1

nc2

for every w ∈Rn.

Remark 1. An inspection of the proofs in [14] reveals that one can take

δ0 =
1

48
, c0 =

1

72
, (19)

δ1 =
E [ξ21 ]

160× 22/q
>

3

6400
, c1 =

1

144
, c2 =

1

40
, n̄= 41. (20)

Using Proposition 6, we can prove the following result:

Proposition 7. For any given q ∈ [1,2), there is a randomized polynomial–time algorithm that
returns a vector v ∈Rn1 with the following property:

Pr

[
Ω

(√
logn1

n1

)
· diamq(B

◦
A)≤ 2‖v‖A ≤ diamq(B

◦
A)

]
≥ 1

2
.

Proof. Since B◦
A is compact and x 7→ ‖x‖q is continuous, there exists a ȳ ∈B◦

A such that ‖ȳ‖q =
diamq(B

◦
A)/2. We consider two cases:

Case 1: q = 1. Let δ0, c0 be as in (19) and set M = (ln2)nδ0
1 /c0. Consider a collection {ζ ij : i =

1, . . . ,M ; j = 1, . . . , n1} of i.i.d. Bernoulli random variables. Define

ζ i = (ζ i1, . . . , ζ
i
n1
)∈Rn1 for i=1, . . . ,M,

i∗ = arg max
1≤i≤M

‖ζ i‖A, v= ζ i
∗

, τ =2‖v‖A.

We claim that v has the desired property. Indeed, it is clear from (15) that τ ≤ diam1(B
◦
A). More-

over, upon recalling that ‖ζ i‖A =maxy∈B◦
A
yT ζ i and using Proposition 6(a), we have

Pr

(
τ ≥

√
δ0 logn1

n1

·diam1(B
◦
A)

)
≥ 1−Pr

(
M⋂

i=1

{
ȳT ζ i <

√
δ0 logn1

n1

· ‖ȳ‖1
})

≥ 1−
(
1− c0

nδ0
1

)M

≥ 1

2
,

2 Recall that Γ :R++ →R is the gamma function defined by Γ(x) =
∫∞

0
tx−1e−t dt.



Hou and So: Lp–Ball Constrained Homogeneous Polynomial Optimization

16 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

which establishes the claim.

Case 2: q ∈ (1,2). Let δ1, c1, c2 be as in (20) and set M = (ln2)nc2
1 /c1. Consider a collection

{ξij : i = 1, . . . ,M ; j = 1, . . . , n1} of i.i.d. random variables with density p · exp(−|t|p)/(2Γ(1/p)),
where p= q/(q− 1). Define

ξi = (ξi1, . . . , ξ
i
n1
)∈Rn1 , ξ̄i =

ξi

‖ξi‖p
for i=1, . . . ,M,

i∗ = arg max
1≤i≤M

‖ξ̄i‖A, v= ξ̄i
∗

, τ = 2‖v‖A.

Using Proposition 6(b) and our previous argument, we have τ ≤ diamq(B
◦
A) and

Pr

(
τ ≥

√
δ1 logn1

n1

·diamq(B
◦
A)

)
≥ 1−Pr

(
M⋂

i=1

{
ȳT ξ̄i <

√
δ1 logn1

n1

· ‖ȳ‖q
})

≥ 1−
(
1− c1

nc2
1

)M

≥ 1

2
.

This completes the proof of Proposition 7. �

By combining Proposition 7 with the procedure outlined in the paragraph above Theorem 5, we
can extract an Ω(

√
logn1/n1)–approximate solution to Problem (8). Thus, we have proven the

following theorem:

Theorem 6. For any given p ∈ (2,∞], there is a randomized polynomial–time approximation
algorithm for Problem (8) with approximation ratio Ω(

√
logn1/n1). In particular, for d= 3 and any

given p∈ (2,∞], there is a randomized polynomial–time approximation algorithm for Problem (HP)
with approximation ratio Ω(

√
logn/n).

5.2. General case: Approximating Lp–ball constrained multilinear maximization via

recursion. Now, let us consider the problem of maximizing a degree–d multilinear form over
Lp–balls, where d ≥ 4 and p ∈ (2,∞] are fixed. Our approach is based on the following simple
observation: Let A∈Rn1×n2×···×nd be an arbitrary non–zero order–d tensor. Then,

vML(A, d) = max
‖x1‖p≤1

vML(A(x1), d− 1).

This suggests that it may be possible to approximate the degree–d problem vML(A, d) if we have
an algorithm for approximating the degree–(d− 1) problem vML(B, d− 1), where B is an arbitrary
non–zero order–(d−1) tensor. To implement this idea, we proceed as follows. Let H be an arbitrary
Hilbert space. Given an arbitrary non–zero order–d tensor A= (ai1i2···id)∈Rn1×n2×···×nd , let FA be
the associated multilinear form, and define a function F̃A :Rn1 ×· · ·×Rnd−2 ×Hnd−1 ×Hnd →R by

F̃A
(
x1, . . . , xd−2,{uj}nd−1

j=1 ,{vk}nd
k=1

)
=

n1∑

i1=1

· · ·
nd−2∑

id−2=1

nd−1∑

j=1

nd∑

k=1

ai1···id−2jk ·x1
i1
· · ·xd−2

id−2
·uT

j vk.

By Proposition 3, for any given x̄i ∈Rni , where i= 1, . . . , d− 2, we have

1

KG

· vecp
(
A(x̄1, . . . , x̄d−2)

)
≤
∥∥A(x̄1, . . . , x̄d−2)

∥∥
p→q

≤ vecp

(
A(x̄1, . . . , x̄d−2)

)
.
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Since
∥∥A(x̄1, . . . , x̄d−2)

∥∥
p→q

=max
{
FA(x̄

1, . . . , x̄d−2, xd−1, xd) : ‖xd−1‖p ≤ 1, ‖xd‖p ≤ 1
}
,

it follows that

1

KG

· rML(A, d)≤ max
‖xi‖p≤1, i=1,...,d

FA(x
1, . . . , xd) = vML(A, d)≤ rML(A, d),

where
rML(A, d) = maximize F̃A

(
x1, . . . , xd−2,{uj}nd−1

j=1 ,{vk}nd
k=1

)

subject to ‖xi‖p ≤ 1 for i=1, . . . , d− 2,

‖u‖p ≤ 1, ‖v‖p ≤ 1,

u= (‖u1‖2, . . . ,‖und−1
‖2)∈Rnd−1 ,

v= (‖v1‖2, . . . ,‖vnd
‖2)∈Rnd .

(21)

In particular, vML(A, d) and rML(A, d) are equivalent from the approximation perspective. In the
sequel, we shall focus on designing approximation algorithms for the latter using both deterministic
and randomized approaches.

5.2.1. Deterministic approximation of rML(A, d). Our deterministic approach is moti-
vated by the results developed in [28]. Before delving into the details, let us give an overview
of the approach. Suppose there is a deterministic algorithm that can approximate the problem
rML(B, d−1) for any non–zero order–(d−1) tensor B, where d≥ 4 is fixed. Then, given an arbitrary
x1 ∈Rn1 , since A(x1) is an order–(d− 1) tensor, we can apply the algorithm to the problem

rML(A(x1), d− 1) = maximize F̃A
(
x1, . . . , xd−2,{uj}nd−1

j=1 ,{vk}nd
k=1

)

subject to ‖xi‖p ≤ 1 for i= 2, . . . , d− 2,

‖u‖p ≤ 1, ‖v‖p ≤ 1,

u= (‖u1‖2, . . . ,‖und−1
‖2)∈Rnd−1,

v= (‖v1‖2, . . . ,‖vnd
‖2)∈Rnd

and obtain a value Gd−1(x
1) that satisfies βd−1 · rML(A(x1), d− 1)≤Gd−1(x

1)≤ rML(A(x1), d− 1),
where βd−1 ∈ (0,1) is the approximation ratio of the algorithm. Since this holds for any x1 ∈Rn1 ,
it follows that

βd−1 · rML(A, d)≤ max
‖x1‖p≤1

Gd−1(x
1)≤ rML(A, d).

Now, if we can show that the function Gd−1 defines a norm on Rn1 , then max‖x1‖p≤1Gd−1(x
1)

is a norm maximization problem, which can be approximated using the techniques outlined in
Section 5.1. This would then yield an approximation algorithm for the problem rML(A, d).
To carry out this plan, we need the following result:

Proposition 8. Let d ≥ 3 and p ∈ (2,∞] be given. For i = 1, . . . , d− 3, let Pi be a centrally
symmetric polytope in Rni+1 satisfying the properties stated in Theorem 4. Furthermore, let A =
(ai1i2···id)∈Rn1×n2×···×nd be an arbitrary non–zero order–d tensor. Define the functions ΛA,d

i :Rn1 ×
Rn2 × · · ·×Rni →R+ for i= 1, . . . , d− 2 inductively as follows:

ΛA,d
d−2(x

1, x2, . . . , xd−2) = vecp

(
A(x1, x2, . . . , xd−2)

)
,

ΛA,d
i (x1, x2, . . . , xi) = diamPi

[{
y ∈Rni+1 : ΛA,d

i+1(x
1, x2, . . . , xi, y)≤ 1

}◦] (22)

for i= d− 3, d− 4, . . . ,1. Then, the following hold:
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(a) For j = 1, . . . , d−2 and for any x̄1, . . . , x̄k−1, x̄k+1, . . . , x̄j, where x̄i ∈Rni , the function Λ̄A,d
j,k :

Rnk →R+ given by
Λ̄A,d

j,k (x) =ΛA,d
j (x̄1, . . . , x̄k−1, x, x̄k+1, . . . , x̄j)

is a semi–norm on Rnk for any k ∈ {1, . . . , j}.
(b) Let A be the (n2 × · · ·×nd)×n1 matrix given by

A(i2,...,id),i1 = ai1i2···id for ij =1, . . . , nj; j = 1, . . . , d. (23)

Suppose that A has full column rank. Then, the function ΛA,d
1 defines a norm on Rn1 .

(c) We have

Λ
A(x1),d−1
i−1 (x2, x3, . . . , xi) = ΛA,d

i (x1, x2, . . . , xi) for i= 2,3, . . . , d− 2.

Proof. Both (a) and (b) are essentially adaptations of the corresponding claims in [28, Proposi-
tion 4]. To prove (c), we proceed by backward induction on i. For i= d− 2, we have, by definition,

Λ
A(x1),d−1
d−3 (x2, x3, . . . , xd−2) = vecp

(
[A(x1)](x2, x3, . . . , xd−2)

)

= vecp

(
A(x1, x2, . . . , xd−2)

)

= ΛA,d
d−2(x

1, x2, . . . , xd−2).

For the inductive step, we use both the definition in (22) and the inductive hypothesis to obtain

Λ
A(x1),d−1
i−1 (x2, x3, . . . , xi) = diamPi

[{
y ∈Rni+1 : Λ

A(x1),d−1
i (x2, x3, . . . , xi, y)≤ 1

}◦]

= diamPi

[{
y ∈Rni+1 : ΛA,d

i+1(x
1, x2, . . . , xi, y)≤ 1

}◦]

= ΛA,d
i (x1, x2, . . . , xi).

This completes the proof. �

We are now ready to prove the main result of this section:

Theorem 7. Let d≥ 3 and p ∈ (2,∞] be given. Let A= (ai1i2···id) ∈ Rn1×n2×···×nd be an arbi-
trary non–zero order–d tensor. Consider the functions {ΛA,d

i }d−2
i=1 defined in (22) and the (n2×· · ·×

nd)×n1 matrix A defined in (23). Suppose that A has full column rank. Then, the following hold:
(a) For any given x∈Rn1, the norm ΛA,d

1 (x) is efficiently computable; i.e., it can be computed
to any desired accuracy by a deterministic algorithm whose runtime is polynomial in the input size
of Problem (21) and the level of accuracy.

(b) There exist rational numbers 0 < r ≤ R < ∞, whose encoding lengths are polynomially
bounded by the input size of Problem (21), such that

Bn1
2 (r)⊂

{
x∈Rn1 : ΛA,d

1 (x)≤ 1
}
⊂Bn1

2 (R).

Consequently, the quantity diamP0

({
x∈Rn1 : ΛA,d

1 (x)≤ 1
}◦)

can be efficiently computed, where

P0 is a centrally symmetric polytope in Rn1 satisfying the properties stated in Theorem 4.
(c) We have

Ω

(
d−2∏

i=1

(logni)
1/p

n
1/2
i

)
· rML(A, d)≤ 1

2
diamP0

({
x∈Rn1 : ΛA,d

1 (x)≤ 1
}◦)≤ rML(A, d).
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In particular, there is a deterministic polynomial–time algorithm for Problem (ML) with approxi-

mation ratio Ω
(∏d−2

i=1 (logni)
1/p
/
n
1/2
i

)
.

Proof. We proceed by induction on d ≥ 3. The base case follows from (15), Proposition 5
and Theorem 4. Now, suppose that d > 3. Let x1 ∈ Rn1\{0} be arbitrary, and consider the
order–(d− 1) tensor A(x1) ∈ Rn2×n3×···×nd . Without loss of generality, we may assume that the
(n3 × · · · × nd)× n2 matrix A(x1), where [A(x1)](i3,...,id),i2 = [A(x1)]i2i3···id , has full column rank.

By the inductive hypothesis, Λ
A(x1),d−1
1 is an efficiently computable norm on Rn2 and the set{

x∈Rn2 : ΛA(x1),d−1
1 (x)≤ 1

}
is well–bounded. Moreover, using (22) and Proposition 8(c), we have

ΛA,d
1 (x1) = diamP1

[{
x∈Rn2 : ΛA,d

2 (x1, x)≤ 1
}◦]

=diamP1

[{
x∈Rn2 : Λ

A(x1),d−1
1 (x)≤ 1

}◦]
.

Hence, by arguing as in the proof of Proposition 5 and applying Theorem 4, we conclude that ΛA,d
1

is an efficiently computable norm on Rn1 .
Let B

Λ
A,d
1

=
{
x∈Rn1 : ΛA,d

1 (x)≤ 1
}
be the unit ball of ΛA,d

1 . Using the argument in the proof

of [28, Theorem 4], one can show that B
ΛA,d
1

is well–bounded. As a corollary, we see that B◦
ΛA,d
1

is

also well–bounded, and that the weak membership problem associated with B◦
Λ
A,d
1

can be solved

in deterministic polynomial time. This implies that diamP0

({
x∈Rn1 : ΛA,d

1 (x)≤ 1
}◦)

can be effi-

ciently computed.
Now, the inductive hypothesis, the definition of ΛA,d

1 in (22) and Proposition 8(c) yield

Ω

(
d−2∏

i=2

(logni)
1/p

n
1/2
i

)
· rML(A(x1), d− 1) ≤ 1

2
diamP1

({
x∈Rn2 : Λ

A(x1),d−1
1 (x)≤ 1

}◦)

=
1

2
ΛA,d

1 (x1)

≤ rML(A(x1), d− 1).

Since rML(A, d) =max‖x1‖p≤1 rML(A(x1), d), it follows that

Ω

(
d−2∏

i=2

(logni)
1/p

n1/2
i

)
· rML(A, d)≤ 1

2
max

‖x1‖p≤1
ΛA,d

1 (x1)≤ rML(A, d). (24)

By mimicking the derivation of (15), one can show that

max
‖x1‖p≤1

ΛA,d
1 (x1) =

1

2
diamq

(
B◦

ΛA,d
1

)
. (25)

Moreover, since B◦
ΛA,d
1

is well–bounded, Theorem 4 and the definition of P0 imply that

Ω

(
(logn1)

1/p

n
1/2
1

)
·diamq

(
B◦

Λ
A,d
1

)
≤ diamP0

(
B◦

Λ
A,d
1

)
≤ diamq

(
B◦

Λ
A,d
1

)
. (26)

It then follows from (24)–(26) that

Ω

(
d−2∏

i=1

(logni)
1/p

n
1/2
i

)
· rML(A, d)≤ 1

2
diamP0

({
x∈Rn1 : ΛA,d

1 (x)≤ 1
}◦)≤ rML(A, d).

This completes the proof of Theorem 7. �
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The following is an immediate corollary of Theorems 2 and 7:

Corollary 2. For any given d ≥ 3 and p ∈ (2,∞], there is a deterministic polynomial–
time algorithm for (HP) with approximation ratio (resp. relative approximation ratio)
Ω
(
(logn)(d−2)/p

/
nd/2−1

)
when d≥ 3 is odd (resp. even).

5.2.2. Randomized approximation of rML(A, d). As in the case where d = 3, we can
approximate rML(A, d) using a randomized approach. Such an approach is based on the follow-
ing result, which states that every optimal solution to Problem (21) satisfies certain probability
inequality:

Proposition 9. Let (
x̄1, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)

be an optimal solution to Problem (21).
(a) Let ζ ∈Rn1 be a vector of i.i.d. Bernoulli random variables. Then,

Pr

(
F̃A
(
ζ, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)
≥
√

δ0 logn1

n1

· rML(A, d)

)
≥ c0

nδ0
1

,

where the constants δ0, c0 are given by (19).
(b) Suppose that p ∈ (2,∞). Let ξ ∈ Rn1 be a vector of i.i.d. random variables with density

p · exp(−|t|p)/(2Γ(1/p)), and set ξ̄ = ξ/‖ξ‖p. Then,

Pr

(
F̃A
(
ξ̄, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)
≥
√

δ1 logn1

n1

· rML(A, d)

)
≥ c1

nc2
1

for all n≥ n̄, where the constants δ1, c1, c2, n̄ are given by (20).

Proof. Let w ∈Rn1 be the vector defined by

wi1 =

n2∑

i2=1

· · ·
nd−2∑

id−2=1

nd−1∑

j=1

nd∑

k=1

ai1i2···id−2jk · x̄2
i2
· · · x̄d−2

id−2
· ūT

j v̄k for i1 = 1, . . . , n1.

Then, for any x∈Rn1 , we have

wTx= F̃A
(
x, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)
.

Moreover, by the definition of rML(A, d) and Hölder’s inequality, we have

rML(A, d) = F̃A
(
x̄1, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)

= max
‖x1‖p≤1

F̃A
(
x1, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)

= ‖w‖q .

Thus, the desired result follows from Proposition 6. �

Theorem 8. For any given d≥ 3 and p∈ (2,∞], there is a randomized polynomial–time algo-
rithm for Problem (21) that returns vectors x̂1, . . . , x̂d−2,{ûj}nd−1

j=1 ,{v̂k}nd
k=1 with the following prop-

erty:

Pr

[
κd/2−1

d−2∏

i=1

√
logni

ni

· rML(A, d)≤G(A, d)≤ rML(A, d)

]
≥ 1

2
.
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Here, G(A, d) = F̃A
(
x̂1, . . . , x̂d−2,{ûj}nd−1

j=1 ,{v̂k}nd
k=1

)
and

κ=

{
δ0 if p∈ (2,∞),

δ1 if p=∞,

where the constants δ0, δ1 are given by (19) and (20), respectively. In particular, there is a random-

ized polynomial–time algorithm for Problem (ML) with approximation ratio Ω
(∏d−2

i=1

√
logni/ni

)
.

Remark 2. In the recent work [11], He et al. established a result similar to Theorem 8, but
only for the case where p∈ {2,∞}. We note that the proof of Theorem 8 can be easily extended to
cover the case where p=2. However, we shall not pursue such extension here, as there already exists

a deterministic Ω
(∏d−2

i=1

√
logni/ni

)
–approximation algorithm for Problem (ML) when p= 2 [28].

Proof. We shall prove the theorem only for the case where p ∈ (2,∞); the case where p = ∞
will be similar. The proof proceeds by induction on d≥ 3. The base case follows from Proposition
7. Now, set M = (2 ln2)nc2

1 /c1, where the constants c1, c2 are given by (20). Consider a collection
{ξij : i = 1, . . . ,M ; j = 1, . . . , n1} of i.i.d. random variables with density p · exp(−|t|p)/(2Γ(1/p)).
Define

ξi = (ξi1, . . . , ξ
i
n1
)∈Rn1 , ξ̄i =

ξi

‖ξi‖p
for i=1, . . . ,M.

By the inductive hypothesis, there is a randomized polynomial–time algorithm that can compute,
for each i= 1, . . . ,M , a number G(A(ξ̄i), d− 1) satisfying

Pr

[
δ
(d−3)/2
1

d−2∏

i=2

√
logni

ni

· rML(A(ξ̄i), d− 1)≤G(A(ξ̄i), d− 1)≤ rML(A(ξ̄i), d− 1)

]
≥ 1

2
.

Now, consider the events

Ei =

{
G(A(ξ̄i), d− 1)≥ δ

(d−3)/2
1

d−2∏

i=2

√
logni

ni

· rML(A(ξ̄i), d− 1)

}
for i= 1, . . . ,M

and let (
x̄1, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)

be an optimal solution to Problem (21). Note that Pr(Ei)≥ 1/2 for i= 1, . . . ,M . We compute

Pr

(
G(A(ξ̄i), d− 1)≥ δd/2−1

1

d−2∏

i=1

√
logni

ni

· rML(A, d)

)

≥ Pr

(
G(A(ξ̄i), d− 1)≥ δ

d/2−1
1

d−2∏

i=1

√
logni

ni

· rML(A, d)

∣∣∣∣∣Ei

)
×Pr(Ei)

≥ 1

2
Pr

(
rML(A(ξ̄i), d− 1)≥

√
δ1 logn1

n1

· rML(A, d)

)
(27)

≥ 1

2
Pr

(
F̃A
(
ξ̄i, x̄2, . . . , x̄d−2,{ūj}nd−1

j=1 ,{v̄k}nd
k=1

)
≥
√

δ1 logn1

n1

· rML(A, d)

)

≥ c1
2nc2

1

, (28)
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where (27) follows from the fact that ξ̄i is independent of the randomizations used to compute
G(A(ξ̄i), d− 1), and (28) follows from Proposition 9(b). Upon setting

G(A, d) = max
1≤i≤M

G(A(ξ̄i), d− 1),

we conclude that

Pr

(
G(A, d)≥ δ

d/2−1
1

d−2∏

i=1

√
logni

ni

· rML(A, d)

)

≥ 1−
M∏

i=1

Pr

(
G(A(ξ̄i), d− 1)< δd/2−1

1

d−2∏

i=1

√
logni

ni

· rML(A, d)

)

≥ 1−
(
1− c1

2nc2
1

)M

≥ 1

2
.

This completes the proof. �

Corollary 3. For any given d ≥ 3 and p ∈ (2,∞], there is a randomized polynomial–
time algorithm for Problem (HP) with approximation ratio (resp. relative approximation ratio)
Ω
(
(logn/n)d/2−1

)
when d is odd (resp. even).

6. Conclusion. In this paper, we studied the hardness and approximability of homogeneous
polynomial optimization and related multilinear optimization problems with Lp–ball constraints.
A crucial first step in our proofs is to relate the polynomial optimization problem at hand to a
suitable multilinear optimization problem. To obtain approximation results, we further showed
that the Lp–ball constrained multilinear optimization problem is equivalent, from an approxima-
tion perspective, to that of determining the diameters of certain convex bodies. Such equivalence
was established using the Grothendieck inequality (see, e.g., [15, 25]) and an argument of Khot
and Naor [14] (cf. [28]). Consequently, by extending the approaches in [14, 28] and applying results
from algorithmic convex geometry, we were able to develop both deterministic and randomized
polynomial–time approximation algorithms for various Lp–ball constrained polynomial optimiza-
tion problems, whose approximation guarantees are currently the best known in the literature. We
believe that the wide array of tools used in this paper will have further applications in the study
of polynomial optimization problems. As an immediate illustration, consider the following variant
of Problem (ML):

(M̂L)

maximize FA(x
1, x2, . . . , xd)≡

∑

1≤i1,...,id≤n

ai1i2···idx
1
i1
x2
i2
· · ·xd

id

subject to ‖xi‖pi ≤ 1, xi ∈Rni for i=1, . . . , d,

where 2≤ p1 ≤ p2 ≤ · · · ≤ pd ≤∞. By a straightforward modification of the arguments in Section 5,
it can be shown that Problem (M̂L) admits a deterministic polynomial–time approximation algo-

rithm with approximation ratio Ω
(∏d−2

i=1 (logni)
1/pi
/
n
1/2
i

)
, as well as a randomized polynomial–

time approximation algorithm with approximation ratio Ω
(∏d−2

i=1

√
logni/ni

)
. Finally, it would be

interesting to find more applications of the optimization models studied in this paper.



Hou and So: Lp–Ball Constrained Homogeneous Polynomial Optimization

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 23

Appendix A: Proof of Theorem 2. The proof of Theorem 2 relies on the following polar-
ization formula, whose proof can be found, e.g., in [12, Lemma 3.5]:

Proposition 10. Let x1, x2, . . . , xd ∈ Rn be arbitrary, and let ξ1, ξ2, . . . , ξd be i.i.d. Bernoulli
random variables (i.e., Pr(ξi =1)=Pr(ξi =−1) = 1/2 for i= 1, . . . , d). Then, we have

E

[(
d∏

i=1

ξi

)
fA

(
d∑

j=1

ξjx
j

)]
= d! ·FA(x

1, x2, . . . , xd). (29)

Armed with Proposition 10, we proceed as follows. Let (x1, x2, . . . , xd) be the feasible solution
to Problem (MR) returned by AMR. By assumption, we have ‖xi‖p ≤ 1 for i = 1, . . . , d and
FA (x1, x2, . . . , xd)≥ αv∗. When d≥ 3 is odd, we can rewrite (29) as

d! ·FA(x
1, x2, . . . , xd) =E

[(
d∏

i=1

ξi

)
fA

(
d∑

j=1

ξjx
j

)]
=E

[
fA

(
d∑

j=1

(∏

i6=j

ξi

)
xj

)]
.

In particular, since d ≥ 3 is assumed to be fixed, we can find in constant time a vector β =
(β1, β2, . . . , βd)∈ {−1,1}d that satisfies

fA

(
d∑

j=1

(∏

i6=j

βi

)
xj

)
≥ d! ·FA(x

1, x2, . . . , xd).

Now, set x̂=
∑d

j=1

(∏
i6=j βi

)
xj
/∥∥∥
∑d

j=1

(∏
i6=j βi

)
xj
∥∥∥
p
. Then, we have ‖x̂‖p =1; i.e., it is feasible

for Problem (HP). Moreover, since

∥∥∥∥∥
d∑

j=1

(∏

i6=j

βi

)
xj

∥∥∥∥∥
p

≤
d∑

j=1

‖xj‖p ≤ d,

we conclude that

fA(x̂)≥
d!FA (x1, x2, . . . , xd)
∥∥∥
∑d

j=1

(∏
i6=j βi

)
xj

∥∥∥
d

p

≥α · d! · d−d · v∗ ≥ α · d! · d−d · v̄,

as required.
Next, consider the case when d≥ 4 is even. Observe that every realization of the random vector

ξ = (ξ1, ξ2, . . . , ξd)∈ {−1,1}d satisfies

∥∥∥∥∥
1

d

d∑

j=1

ξjx
j

∥∥∥∥∥
p

≤ 1

d

d∑

j=1

‖xj‖p ≤ 1;

i.e., 1
d

∑d

j=1 ξjx
j is feasible for Problem (HP). Now, using the identity (29), we compute

d! ·FA(x
1, x2, . . . , xd) = E

[(
d∏

i=1

ξi

)
fA

(
d∑

j=1

ξjx
j

)]

=
dd

2
E

[
fA

(
1

d

d∑

j=1

ξjx
j

)
− v

∣∣∣∣∣
d∏

i=1

ξi =1

]
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− dd

2
E

[
fA

(
1

d

d∑

j=1

ξjx
j

)
− v

∣∣∣∣∣
d∏

i=1

ξi =−1

]

≤ dd

2
E

[
fA

(
1

d

d∑

j=1

ξjx
j

)
− v

∣∣∣∣∣
d∏

i=1

ξi =1

]
,

where the last inequality follows from the fact that fA

(
1
d

∑d

j=1 ξjx
j
)
− v is always non–negative.

In particular, we can find in constant time a vector β = (β1, β2, . . . , βd) ∈ {−1,1}d that satisfies∏d

i=1 βi =1 and

fA

(
1

d

d∑

j=1

βjx
j

)
− v≥ 2d!

dd
·FA(x

1, x2, . . . , xd).

Upon setting x̂= 1
d

∑d

j=1 βjx
j and observing that v∗ ≥ v̄≥ v ≥−v∗, we obtain

fA(x̂)− v≥ 2α · d! · d−d · v∗ ≥α · d! · d−d · (v̄− v).

Moreover, we have ‖x̂‖p ≤ 1. This completes the proof of Theorem 2. �

Appendix B: Proof of Theorem 3. Let d≥ 3 and p∈ [2,∞] be fixed. We shall reduce Prob-
lem (ML) to Problem (MR), again by using the symmetrization procedure introduced in Section 2.
Towards that end, let us first establish some preparatory results.

Proposition 11. Let A∈ Rn1×n2×···×nd be an arbitrary order–d tensor and sym(A) ∈ RNd
be

its symmetrization, where N = n1 + n2 + · · ·+ nd. Moreover, let zi = [ (zi,1)T (zi,2)T · · · (zi,d)T ]
T ∈

RN be given, where zi,j ∈Rnj for i, j = 1, . . . , d. Then,

Fsym(A)(z
1, z2, . . . , zd) =

∑

(π1,π2,...,πd)∈Sd

FA(z
π1,1, zπ2,2, . . . , zπd,d),

where Sd is the set of permutations of {1,2, . . . , d}.
Proof. Using the sets B1, . . . ,Bd defined in (3) and the definition of sym(A), we have

Fsym(A)(z
1, . . . , zd) =

∑

π=(π1,...,πd)∈Sd

∑

ij∈Bπj
j=1,...,d

[sym(A)]i1···id z
1
i1
· · ·zdid

=
∑

π=(π1,...,πd)∈Sd

nπ1∑

i1=1

· · ·
nπd∑

id=1

[Aπ]i1···id z
1,π1
i1

· · ·zd,πd
id

=
∑

π=(π1,...,πd)∈Sd

n1∑

i1=1

· · ·
nd∑

id=1

[A]i1···id z
π−1
1 ,1

i1
· · ·zπ

−1
d

,d

id
,

where π−1 = (π−1
1 , . . . , π−1

d )∈ Sd is the inverse of π; i.e., ππ−1
j

= j for j = 1, . . . , d. Consequently, we

obtain

Fsym(A)(z
1, . . . , zd) =

∑

(π1,...,πd)∈Sd

FA(z
π−1
1 ,1, . . . , zπ

−1
d

,d) =
∑

(π1,...,πd)∈Sd

FA(z
π1,1, . . . , zπd,d),

as desired. �
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Proposition 12. Let p ∈ [2,∞) be fixed. Given an integer n ∈ [2, d], define the function fn :
[0, d]n →R by

fn(x1, . . . , xn) =
n∑

i=1

x
1/p
i

∏

j 6=i

(d−xj)
1/p.

Then, for any (x1, . . . , xn)∈ [0, d]n, we have

fn(x1, . . . , xn)≤ fn

(
d

n
, . . . ,

d

n

)
= dn/p ·n1−1/p ·

(
1− 1

n

)(n−1)/p

. (30)

Proof. We prove (30) by induction on n. For the base case (i.e., n= 2), consider the problem

(P2) max{f2(x1, x2) : 0≤ xi ≤ d for i= 1,2}.

Note that an optimal solution to (P2) must either lie on the boundary of [0, d]2, or lie in the interior
of [0, d]2 and be a solution to the following first–order necessary conditions:

x
(1/p)−1
1 (d−x2)

1/p = x
1/p
2 (d−x1)

(1/p)−1, (31)

x
(1/p)−1
2 (d−x1)

1/p = x
1/p
1 (d−x2)

(1/p)−1. (32)

Consider an arbitrary x̄= (x̄1, x̄2)∈ [0, d]2. If x̄ is a boundary point of [0, d]2, then the structure of
f2 implies that

f2(x̄1, x̄2)≤max{f2(0, d), f2(d,0)}= d2/p.

On the other hand, suppose that x̄∈ (0, d)2 satisfies (31) and (32). Then,

(
x̄1

d− x̄1

)(1/p)−1

=

(
x̄2

d− x̄2

)1/p

and

(
x̄2

d− x̄2

)(1/p)−1

=

(
x̄1

d− x̄1

)1/p

, (33)

which together yield x̄1x̄2 = (d− x̄1)(d− x̄2), or equivalently, x̄1+ x̄2 = d. If p= 2, then any (x1, x2)∈
[0, d]2 satisfying x1 +x2 = d will be an optimal solution to (P2). In particular, we have f2(x1, x2)≤
f2(d/2, d/2) = d for all (x1, x2) ∈ [0, d]2 in this case. If p > 2, then upon substituting x̄1 + x̄2 = d
into (33), we obtain a unique solution x̄1 = x̄2 = d/2. Since f2(x̄1, x̄2) = 2(d/2)2/p > d2/p for any
p > 2, we conclude that (d/2, d/2) is the optimal solution to (P2). This establishes the base case.
For the inductive step, consider the problem

(Pn) max{fn(x1, . . . , xn) : 0≤ xi ≤ d for i= 1, . . . , n},

where 2< n≤ d. Again, an optimal solution to (Pn) must either lie on the boundary of [0, d]n, or
lie in the interior of [0, d]n and be a solution to the following first–order necessary conditions:

(
xi

d−xi

)(1/p)−1

=
∑

j 6=i

(
xj

d−xj

)1/p

for i= 1, . . . , n. (34)

Consider an arbitrary x̄ = (x̄1, . . . , x̄n) ∈ [0, d]n. Suppose first that x̄ ∈ (0, d)n satisfies (34). Let
ui = x̄i/(d− x̄i) for i= 1, . . . , n. Then, we obtain from (34) that (ui)

(1/p)−1−(uj)
(1/p)−1 = u

1/p
j −u

1/p
i ,

or equivalently,
(ui)

(1/p)−1(1+ui) = (uj)
(1/p)−1(1+uj) for 1≤ i < j ≤ n. (35)

It is easy to verify that the function t 7→ t(1/p)−1(1+ t) is strictly decreasing on (0, p−1] and strictly
increasing on [p− 1,∞). Thus, if we let I1 = {i : ui < p− 1} and I2 = {i : ui ≥ p− 1}, then (35)
implies that ui = uj = u for all i, j ∈ I1 and ui = uj = v for all i, j ∈ I2; i.e., x̄i = x̄j whenever i, j ∈ I1
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or i, j ∈ I2. We claim that in fact I2 = ∅. To prove this, let us first show that |I2| ≤ 1. Suppose to
the contrary that |I2| ≥ 2. Let i, j ∈ I2 be such that i 6= j. Then, from (34) and the fact that ui > 0
for i= 1, . . . , n, we have

u
(1/p)−1
i −u

1/p
j =

∑

k 6=i,j

u
1/p
k > 0.

However, since ui, uj ≥ p− 1 ≥ 1, we have u
(1/p)−1
i − u

1/p
j ≤ 0, which is a contradiction. It follows

that |I2| ≤ 1.
Now, suppose that |I2|=1. Then, from (34), we have

v(1/p)−1 = (n− 1)u1/p. (36)

This, together with (35), implies that

u(1/p)−1(1+u) = (n− 1)u1/p
[
1+ (n− 1)p/(1−p)u1/(1−p)

]
,

or equivalently,
(n− 2)u+(n− 1)1/(1−p)u(p−2)/(p−1) =1. (37)

Since both summands in (37) are non–negative, we clearly have u≤ 1/(n− 2)< 1. We claim that

u≥ β ≡ 1− (n− 1)1/(1−p)

n− 2
. (38)

Indeed, suppose to the contrary that u< β. Then, using the fact that u< 1, we have

(n− 2)u+(n− 1)1/(1−p)u(p−2)/(p−1) < 1− (n− 1)1/(1−p)+(n− 1)1/(1−p)u(p−2)/(p−1)

= 1+ (n− 1)1/(1−p)
[
u(p−2)/(p−1) − 1

]

≤ 1,

which contradicts (37). This establishes (38).
We now show that (38) leads to v < 1, which would contradict the definition of v. Indeed,

using (38), we have

(n− 1)pu≥ (n− 1)p

n− 2

[
1− (n− 1)1/(1−p)

]
. (39)

Consider the function h : [2,∞)→R given by

h(p) = (n− 1)p
[
1− (n− 1)1/(1−p)

]
.

By a routine computation, we have

h′(p) = ln(n− 1) · (n− 1)p ·
[
1− (n− 1)1/(1−p)− 1

(1− p)2
(n− 1)1/(1−p)

]
.

Observe that

1− (n− 1)1/(1−p)− 1

(1− p)2
(n− 1)1/(1−p) ≥ 0

⇐⇒
(

1

n− 1

)1/(p−1) [
1+

1

(p− 1)2

]
≤ 1

⇐= 1+
1

(p− 1)2
≤ 21/(p−1). (40)
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It is straightforward to show that (40) holds for p∈ [2,3] by comparing the slopes of the functions
p 7→ 1+ (p− 1)−2 and p 7→ 21/(p−1). For p≥ 3, we have

[
1+

1

(p− 1)2

](p−1)2

≤ e < 22 ≤ 2p−1,

which implies that (40) holds. Thus, we see that h is increasing on p ∈ [2,∞), and from (39) we
obtain

(n− 1)pu≥ (n− 1)p

n− 2

[
1− (n− 1)1/(1−p)

]
≥ (n− 1)2

n− 2

(
1− 1

n− 1

)
= n− 1> 1.

This, together with (36), implies that

v= ((n− 1)pu)
1/(1−p)

< 1,

which is the desired contradiction.
Thus, we have shown that |I2|= 0. Using (34), we then have u(1/p)−1 = (n−1)u1/p, or equivalently,

u= 1/(n− 1). It follows that x̄= (d/n, . . . , d/n) is the unique solution to (34).
Next, we show that if x̄ lies on the boundary of [0, d]n, then fn(x̄1, . . . , x̄n)≤ fn(d/n, . . . , d/n).

Towards that end, we first note that

fn

(
d

n
, . . . ,

d

n

)
= dn/p ·n1−1/p ·

(
1− 1

n

)(n−1)/p

= dn/p ·n ·
(

1

n− 1

)1/p

·
(
1− 1

n

)n/p

≥ dn/p ·n ·
(

1

n− 1

)1/p

· e−1/p ·
(
1− 1

n

)1/p

≥ dn/p ·
√

n/e, (41)

where the last inequality follows from the fact that p ≥ 2. Now, suppose that x̄i = d for some
i= 1, . . . , n. Since the function fn is symmetric in its arguments, we may assume without loss that
i= n. Then, using (41) and the fact that n≥ 3, we have

fn(x̄1, . . . , x̄n−1, d)≤ dn/p < fn

(
d

n
, . . . ,

d

n

)
.

On the other hand, suppose that x̄n = 0. Then, by the inductive hypothesis,

fn(x̄1, . . . , x̄n−1,0) = d1/p · fn−1(x̄1, . . . , x̄n−1)

≤ d1/p · d(n−1)/p · (n− 1)1−1/p ·
(
1− 1

n− 1

)(n−2)/p

= dn/p(n− 1)

(
1

n− 2

)1/p(
1− 1

n− 1

)(n−1)/p

. (42)

Since n≥ 3 and p≥ 2, we have

(n− 1)

(
1

n− 2

)1/p(
1− 1

n− 1

)(n−1)/p

<n

(
1

n− 1

)1/p(
1− 1

n

)n/p
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⇐⇒ n

n− 1

(
1− 1

n− 1

)2/p [
1+

1

n(n− 2)

]n/p
> 1

⇐=
n

n− 1

(
1− 1

n− 1

)2/p [
1+

1

n(n− 2)

]2/p
≥ 1

⇐⇒
(

n

n− 1

)1−2/p

≥ 1.

Hence, we obtain from (42) that

fn(x̄1, . . . , x̄n−1,0)<dn/p ·n ·
(

1

n− 1

)1/p

·
(
1− 1

n

)n/p

= fn

(
d

n
, . . . ,

d

n

)
.

This completes the proof of Proposition 12. �

Proposition 13. Let A∈ Rn1×n2×···×nd be an arbitrary order–d tensor and sym(A) ∈ RNd
be

its symmetrization, where N = n1 +n2 + · · ·+nd. Consider the optimization problems

τ(Ad) = maximize d! ·FA(x
1, x2, . . . , xd)

subject to ‖xi‖p ≤ 1, xi ∈Rni for i= 1, . . . , d
(Ad)

and
τ(Bd) = maximize Fsym(A)(z

1, z2, . . . , zd)

subject to ‖zi‖p ≤ d1/p, zi ∈RN for i= 1, . . . , d,
(Bd)

where FA (resp. Fsym(A)) is the multilinear form associated with A (resp. sym(A)). Then, the
following hold:

(a) τ(Ad) = τ(Bd).
(b) Let (x̄1, x̄2, . . . , x̄d)∈Rn1 ×Rn2 × · · ·×Rnd be an optimal solution to Problem (Ad). Set

ẑi =
[
(x̄1)T (x̄2)T · · · (x̄d)T

]T ∈RN for i= 1, . . . , d. (43)

Then, (ẑ1, ẑ2, . . . , ẑd) constitutes an optimal solution to Problem (Bd).
(c) Let (z̃1, z̃2, . . . , z̃d)∈RN ×RN × · · ·×RN be an optimal solution to Problem (Bd) with

z̃i =
[
(z̃i,1)T (z̃i,2)T · · · (z̃i,d)T

]T ∈RN , z̃i,j ∈Rnj for i, j =1, . . . , d. (44)

Then, ‖z̃i,j‖p =1 for i, j =1, . . . , d. Moreover, there exists a vector z̄ ∈RN with

z̄ =
[
(x̂1)T (x̂2)T · · · (x̂d)T

]T
, x̂i ∈Rni for i= 1, . . . , d,

such that (z̄, z̄, . . . , z̄) is an optimal solution to Problem (Bd) and (x̂1, x̂2, . . . , x̂d) is an optimal
solution to Problem (Ad).

Proof. By Proposition 11, Problem (Bd) is equivalent to

τ(Bd) = maximize
∑

π∈Sd

FA(z
π1,1, . . . , zπd,d)

subject to ‖zi‖p ≤ d1/p, zi ∈RN for i=1, . . . , d.

(B′
d)

If (x̄1, . . . , x̄d) ∈ Rn1 × · · · × Rnd is an optimal solution to Problem (Ad), then the solution
(ẑ1, . . . , ẑd) ∈RN × · · ·×RN as defined in (43) is feasible for Problem (Bd). Moreover, we have

τ(Bd)≥
∑

π∈Sd

FA(ẑ
π1,1, . . . , ẑπd,d) = d! ·FA(x̄

1, . . . , x̄d) = τ(Ad).
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Hence, (b) is implied by (a).
To prove (a) and (c), we consider two cases:

Case 1: p=∞. Consider an optimal solution (z̃1, . . . , z̃d) ∈ RN × · · · ×RN to Problem (Bd) with
z̃i given by (44). Then, (z̃1, . . . , z̃d) is also optimal for Problem (B′

d). Let τ ∈ Sd be a permutation
of {1, . . . , d} satisfying

FA(z̃
τ1,1, . . . , z̃τd,d)≥FA(z̃

π1,1, . . . , z̃πd,d) for all π ∈ Sd. (45)

By the optimality of (z̃1, . . . , z̃d) for Problem (B′
d) and the fact that ‖z̃i‖∞ = max1≤j≤d ‖z̃i,j‖∞,

we have ‖z̃i,j‖∞ = 1 for i, j = 1, . . . , d. Now, set x̂i = z̃τi,i for i = 1, . . . , d and form z̄ =

[ (x̂1)T · · · (x̂d)T ]
T ∈ RN . By construction, we have ‖z̄‖∞ = 1 and hence (z̄, . . . , z̄) is feasible for

Problem (B′
d). Using (45), we compute

∑

π∈Sd

FA(x̂
1, . . . , x̂d) =

∑

π∈Sd

FA(z̃
τ1,1, . . . , z̃τd,d)≥

∑

π∈Sd

FA(z̃
π1,1, . . . , z̃πd,d) = τ(Bd), (46)

which certifies the optimality of (z̄, . . . , z̄) for Problem (B′
d) and hence also for Problem (Bd).

Moreover, since ‖x̂i‖∞ ≤ ‖z̄‖∞ = 1 for i = 1, . . . , d, (x̂1, . . . , x̂d) is feasible for Problem (Ad). This
implies that ∑

π∈Sd

FA(x̂
1, . . . , x̂d) = d! ·FA(x̂

1, . . . , x̂d)≤ τ(Ad). (47)

Upon combining (46) and (47), we have τ(Ad)≥ τ(Bd), and that (x̂1, . . . , x̂d) is an optimal solution
to Problem (Ad). This establishes (a) and (c) for this case.

Case 2: p∈ [2,∞). We prove (a) and (c) by induction on d≥ 2. For the base case (i.e., d= 2), we
have A∈Rn1×n2. Hence, we can write

τ(A2) = 2max
{
xTAy : ‖x‖p ≤ 1, ‖y‖p ≤ 1

}
(A2)

and

τ(B2) =max
{
(v1)TAw2 +(w1)TAv2 : ‖v1‖pp + ‖v2‖pp ≤ 2, ‖w1‖pp + ‖w2‖pp ≤ 2

}
. (B2)

Let (z̃1, z̃2) ∈ Rn1+n2 × Rn1+n2 , where z̃1 = [ (ṽ1)T (ṽ2)T ] and z̃2 = [ (w̃1)T (w̃2)T ], be an optimal
solution to Problem (B2). Suppose that ‖ṽ1‖pp = k1 and ‖w̃1‖pp = k2. Then,

τ(B2) ≤ max
{
(v1)TAw2 : ‖v1‖pp ≤ k1, ‖w2‖pp ≤ 2− k2

}

+ max
{
(w1)TAv2 : ‖w1‖pp ≤ k2, ‖v2‖pp ≤ 2− k1

}

=
τ(A2)

2

[
k
1/p
1 (2− k2)

1/p + k
1/p
2 (2− k1)

1/p
]

≤ τ(A2),

where the last inequality follows from Proposition 12 and the fact that 0≤ k1, k2 ≤ 2. This estab-
lishes (a). Moreover, since all the above inequalities hold as equalities, from the proof of Proposi-
tion 12, both k1, k2 must equal to 1 when p > 2 and can be taken as 1 when p= 2. This, together
with the optimality of (z̃1, z̃2), implies that we can take ṽ1 = w̃1 and ṽ2 = w̃2. Upon setting x̂i = ṽi

for i= 1,2 and forming z̄ = [ (x̂1)T (x̂2)T ], it can be verified that (c) holds. Thus, the base case is
established.
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Next, consider an optimal solution (z̃1, . . . , z̃d) to Problem (Bd) with z̃i given by (44). Suppose
that ‖z̃i,d‖pp = ki for i= 1, . . . , d. Then,

τ(Bd) =
∑

π∈Sd

FA(z̃
π1,1, . . . , z̃πd,d)

=
d∑

i=1

∑

π∈Sd:πd=i

FA(z̃i,d)(z̃
π1,1, . . . , z̃πd−1,d−1)

≤
d∑

i=1

max
‖wj‖

p
p≤d−kj,w

j∈R
N−nd

j=1,...,i−1,i+1,...,d

∑

π∈Sd:πd=i

FA(z̃i,d)(w
π1,1, . . . ,wπd−1,d−1)

=
d∑

i=1

∏

j 6=i

(
d− kj

d− 1

)1/p

max
‖wj‖

p
p≤d−1,wj∈R

N−nd

j=1,...,d−1

∑

π∈Sd−1

FA(z̃i,d)(w
π1,1, . . . ,wπd−1,d−1)

= (d− 1)!
d∑

i=1

∏

j 6=i

(
d− kj

d− 1

)1/p

max
‖xj‖p≤1, xj∈R

nj

j=1,...,d−1

FA(z̃i,d)(x
1, . . . , xd−1) (48)

≤ (d− 1)!
d∑

i=1

∏

j 6=i

(
d− kj

d− 1

)1/p

max
‖xj‖p≤1, xj∈R

nj

j=1,...,d−1

max
‖xd‖pp≤ki, xd∈Rnd

FA(x
1, . . . , xd−1, xd)

=
τ(Ad)

d(d− 1)(n−1)/p

d∑

i=1

k
1/p
i

∏

j 6=i

(d− kj)
1/p

≤ τ(Ad), (49)

where (48) follows from Proposition 11 and the inductive hypothesis, and (49) follows from Propo-
sition 12 and the fact that 0≤ ki ≤ d for i= 1, . . . , d. This establishes (a). Moreover, since all the
above inequalities hold as equalities, the proof of Proposition 12 shows that we must have ki = 1
for i=1, . . . , d. This implies that ‖z̃i,d‖p = 1 for i= 1, . . . , d. By repeating the above argument using
the group {z̃i,j : i = 1, . . . , d} in place of {z̃i,d : i = 1, . . . , d} for each j = 1, . . . , d− 1, we conclude
that ‖z̃i,j‖p = 1 for i, j = 1, . . . , d. Now, as in Case 1, let τ ∈ Sd be a permutation of {1, . . . , d}
satisfying (45). Set x̂i = z̃τi,i for i= 1, . . . , d and form z̄ = [ (x̂1)T · · · (x̂d)T ]

T ∈RN . By construction,
we have

‖z̄‖pp =
d∑

i=1

‖x̂i‖pp =
d∑

i=1

‖z̃τi,i‖pp = d,

and hence (z̄, . . . , z̄) is feasible for Problem (Bd). It remains to argue as in Case 1 to complete the
inductive step and also the proof of Proposition 13. �

Proposition 13 implies that for any given d ≥ 3 and p ∈ [2,∞], any instance of Problem (ML)
can be converted into an instance of Problem (MR) in polynomial time. Since Problem (ML) is
NP–hard by Proposition 1, it follows that Problem (MR) is also NP–hard. This completes the proof
of Theorem 3. �
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