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ABSTRACT

This paper considers the problem of low complexity imple-
mentation of high-performance semidefinite relaxation (SDR)
MIMO detection methods. Currently, most SDR MIMO de-
tectors are implemented using interior-point methods. Al-
though such implementations have worst-case polynomial
complexity (approximately cubic in the problem size), they
can be quite computationally costly in practice. Here we
depart from the interior-point method framework and investi-
gate the use of other low per-iteration-complexity techniques
for SDR MIMO detection. Specifically, we employ the row-
by-row (RBR) method, which is a particular version of block
coordinate descent, to solve the semidefinite programs that
arise in the SDR MIMO context with an emphasis on the
QPSK scenario. In each iteration of the RBR method, only
matrix-vector multiplications are needed, and hence it can
be implemented in a very efficient manner. Our simulation
results show that the RBR method can indeed offer a sig-
nificant speedup in runtime, while providing bit error rate
performance on par with the interior-point methods.

Index Terms— semidefinite relaxation, MIMO detection,
block coordinate descent

1. INTRODUCTION

In MIMO detection, semidefinite relaxation (SDR) [1] has
been recognized as an efficient, high-performance approach.
SDR is an approximate maximum-likelihood (ML) approach
based on semidefinite programs (SDPs), which can be solved
in time polynomial in the problem size. Numerical evidence
has suggested that SDR can yield very competitive symbol er-
ror rate performance, especially in the BPSK and QPSK sce-
narios. A general coverage of the SDR technique, including
applications other than MIMO detection, can be found in [2];
another overview focusing on MIMO detection is provided in
the introduction of [3]. Readers are also referred to the ref-
erences therein regarding the current theoretical and practical
advances of SDR MIMO detection.
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In SDR MIMO detection, an aspect that has caught recent
interest is fast implementation. A standard way of implement-
ing the SDR detector is to use an interior-point method (IPM)
to solve the SDP. Indeed, IPMs are efficient and reliable SDP
solvers in the sense that they can produce numerically accu-
rate solutions in polynomial time; e.g., O(n3.5) in the BPSK
and QPSK scenarios, where n is the problem size. However,
we should note at this point that high solution precision is ar-
guably not a critical factor in practice, since the SDP solution
will typically have to go through some kind of symbol round-
ing process (see [2] for details). Moreover, the sophistication
of the interior-point technique, which is the reason for good
solution fidelity, means that IPMs are generally not low com-
plexity options for implementing the SDR detector. In view
of this, some attempts have been made to reduce the com-
plexity required to solve the SDR problem, such as the early
termination methods in [4, 5] and the custom-built IPM in [6].

In this paper, we depart from the IPM framework and
investigate the use of other low per-iteration complexity tech-
niques for SDR MIMO detection. Specifically, we consider
the row-by-row (RBR) method [7], which is recently devel-
oped in the optimization community for solving SDPs. Our
contribution lies in bringing this new tool to SDR MIMO
detection in the QPSK scenario (also applicable to BPSK),
with an emphasis on demonstrating its potential in prac-
tice. A distinguishing feature of the RBR method in the
context of SDR MIMO detection is that the arithmetic op-
erations in each iteration are inexpensive, requiring only
simple matrix-vector multiplications whose total complex-
ity is O(n3). Our simulations show that the SDR detector
implemented by the RBR method can yield a bit error rate
(BER) performance very close to that implemented by an
IPM, yet the former provides a complexity saving of about
10 times relative to the latter. To encourage the readers to
try out the RBR method and get a sense of its performance,
we provide the source codes of the SDR-RBR detector at
http://www.ee.cuhk.edu.hk/˜wkma/mimo.

Most of the notations in this paper are standard. We use
Sn to denote the set of n × n symmetric matrices, ∥ · ∥ to
denote the 2-norm of a vector and X ≽ 0 to indicate that X
is symmetric positive semidefinite (PSD).



2. PROBLEM STATEMENT

2.1. Problem Formulation
This work follows a standard, but widely encountered MIMO
system formulation. We consider an MIMO signal model

yC = HCsC + vC . (1)

Here, yC ∈ CM is the receive vector, sC ∈ SN is the trans-
mitted symbol vector, HC ∈ CM×N is the MIMO channel,
vC is a noise vector assumed to be white circular complex
Gaussian, M is the receive dimension, N is the number of
transmitted symbols and S is a symbol constellation set. It has
been known in the literature [8] that model (1) covers a wide
variety of detection problems in multiuser and multi-antenna
communications. We are interested in the ML detection for
the QPSK scenario; i.e., S = {±1± j}. Let

y =

[
ℜ{yC}
ℑ{yC}

]
, s =

[
ℜ{sC}
ℑ{sC}

]
, H =

[
ℜ{HC} −ℑ{HC}
ℑ{HC} ℜ{HC}

]
.

The ML detector for model (1) is given by

min
s∈{±1}2N

∥y −Hs∥2. (2)

The ML problem (2) is computationally difficult, although it
is optimal in yielding the minimum error probability of de-
tecting s. There are many different approaches to handling the
ML problem, such as the sphere decoding approach [8], the
lattice reduction aided approach [9] and the SDR approach.

2.2. Semidefinite Relaxation
This work concentrates on the SDR approach, which has been
empirically proven to have near-optimal ML performance in
the QPSK scenario [1, 2]. In that approach, the ML problem
(2) is first rewritten as a homogeneous quadratic program:

min
x∈{±1}n

xTCx, (3)

where n = 2N + 1,

x =

[
s
t

]
, C =

[
HTH −HTy
−yTH ∥y∥2

]
and t is an augmented variable for homogenizing (2). Notice
that (2) and (3) are equivalent under the correspondence s =
xnx1:n−1. Then, we consider the following SDR of (3):

min
X∈Sn

Tr(CX)

s.t. X ≽ 0, Xii = 1, i = 1, . . . , n.
(4)

Problem (4) is a relaxation of Problem (3) because

X = xxT ,x ∈ {±1}n =⇒ X ≽ 0, Xii = 1, i = 1, . . . , n,

but the converse is not necessarily true. The SDR problem
(4) is convex and tractable; specifically, it is an SDP. After the

SDR problem is solved, we can extract from the SDR solution
an approximate solution to (3) using, e.g., the Gaussian ran-
domization method. For the approximation procedure, read-
ers are referred to the literature [1, 2] for details.

In SDR MIMO detection, the bulk of the computational
cost lies in solving the SDP (4). At present, interior-point
methods (IPMs) constitute a predominant class of solvers for
SDP. The interior-point approach is efficient and reliable in
the sense that i) given a solution accuracy ϵ > 0, an IPM is
guaranteed to terminate in O(n1/2 log(1/ϵ)) iterations; and
ii) the computational complexity per iteration is O(n3)1. De-
spite these appealing characteristics, IPMs are not considered
low complexity methods. Indeed, a close inspection of an
IPM—such as the primal-dual IPM in [10]—reveals that each
iteration requires computing an explicit n× n matrix inverse,
solving an n × n linear system of equations and performing
some line searches.

In the next section we will consider an alternative SDR
solver that has low complexity per iteration.

3. THE ROW-BY-ROW METHOD
The row-by-row (RBR) method [7] is a recently proposed
technique for solving SDPs. It is in principle a block coor-
dinate descent method, and it can exploit the special diago-
nal constraint structures of the SDR problem (4) to reduce
the complexity of its iterate updates. To describe the method,
consider the following barrier SDR problem:

min
X∈Sn

Tr(CX)− σ log det(X)

s.t. Xii = 1, i = 1, . . . , n,
(5)

where σ > 0 is called the barrier parameter. As is common in
IPMs, the log determinant function in (5) is to ensure that X
remains in the interior of the set of PSD matrices. The param-
eter σ controls the approximation accuracy of the barrier SDR
problem (5) relative to the original SDR problem (4). Specif-
ically, let f⋆ and fσ denote the optimal objective values of
Problems (4) and (5), respectively. It is known that [11]

|f⋆ − fσ| ≤ nσ. (6)

The RBR method solves the barrier SDR problem (5) by
applying cyclic optimization over the rows (or columns) of
X—at each step, we optimize (5) with respect to (w.r.t.) only
one row of X, while holding other variables of X fixed. For
ease of exposition of the RBR update, let us first consider the
partial optimization of (5) w.r.t. the first row. By symmetry,
the matrices X and C can be partitioned as

X =

[
X11 ξT1
ξ1 X̄11

]
, C =

[
C11 cT1
c1 C̄11

]
.

The partial optimization of (5) w.r.t. the first row of X can be
written as

min
ξ1∈Rn−1

2cT1 ξ1 − σ log(1− ξT1 X̄
†
11ξ1), (7)

1To obtain such a complexity per iteration, one needs to exploit the SDR
problem structures; see, e.g., the primal-dual IPM in [10].



where the Schur complement det(X) = det(X̄11) det(X11−
ξT1 X̄

†
11ξ1) and X11 = 1 have been used to obtain (7). Prob-

lem (7) is an unconstrained convex problem, and its optimal
solution can be found using the first order optimality condi-
tion. Let f1(ξ1) denote the objective function of (7). The
gradient of f1(ξ1) is

∇f1(ξ1) = 2c1 −
2σ

1− ξT1 X̄
†
11ξ1

X̄†
11ξ1.

By solving ∇f1(ξ1) = 0 for ξ1, we see that Problem (7) has
a closed form solution. Specifically, let γ = cT1 X̄11c1. The
optimal solution to Problem (7) is

ξ⋆1 =

{
− 1

2γ

(√
σ2 + 4γ − σ

)
X̄11c1 if γ > 0,

0 if γ = 0.
(8)

The partial minimization of the barrier SDR (5) w.r.t. the
other rows yields exactly the same result as above (with dif-
ferences only in notations). We summarize the RBR method
in Algorithm 1. We use X̄ii ∈ Sn−1 to denote the submatrix
of X with the ith column and ith row removed. The vec-
tor ξi ∈ Rn−1 (resp. ci ∈ Rn−1) is obtained by taking the
ith column of X (resp. C) and then removing the ith row.
From Algorithm 1, one can see that each row update requires
one matrix-vector multiplication and one vector-vector multi-
plication, which costs O(n2) in computations. Since the row
updates are performed n times for each iteration, we conclude
that the total complexity per iteration is O(n3). In fact, the
per-iteration complexity is low and comparable to that of a
linear detector.

Algorithm 1: Row-by-row method for Problem (5)

Input: X(0) ≻ 0 – initialization,
σ > 0 – barrier parameter

set k = 1, f (0) = Tr(CX(0)) and X(1) = X(0)

repeat
for i = 1,2,...,n do

set z = X̄
(k)
ii ci and γ = zT ci

if γ > 0 then
set ξ(k)i = − 1

2γ

(√
σ2 + 4γ − σ

)
z

else
set ξ(k)i = 0

compute f (k) = Tr(CX(k)), set X(k+1) = X(k)

and k = k + 1
until some termination criterion is satisfied;
Output: X(k) – solution to (5)

The iterates produced by Algorithm 1 are known to con-
verge to the optimal solution to the barrier SDR (5). Specifi-
cally, we have

lim
k→∞

X(k) = Xσ,

where Xσ is the optimal solution to (5). Note that the re-
sult is concerned with asymptotic convergence, but not the
convergence rate. It has been known that in a general applica-
tion context, block coordinate descent can be slow in terms of
convergence speed. Curiously, we noticed by simulations that
for the MIMO detection application here, the number of iter-
ations required to obtain a good BER performance is rather
modest, say, within 10 iterations. This will be demonstrated
in detail in the next section.

4. SIMULATION RESULTS
In this section, we evaluate the BER and complexity perfor-
mance of the proposed RBR-based SDR detector by Monte
Carlo simulations. In particular, we compare its performance
with that of the IPM-based SDR detector.

The simulation settings are as follows. The channel HC

is randomly generated following an i.i.d. complex Gaussian
distribution with zero mean and unit variance. The barrier
parameter of the SDR-RBR detector is set to be

σ = 10−2/n.

With this setting, the target solution accuracy of the RBR
method is 10−2; cf. (6). The initialization is X(0) = I. We
choose a standard stopping criterion for the RBR method:∣∣∣∣f (k+1) − f (k)

f (k)

∣∣∣∣ ≤ δ, (9)

where δ > 0 is given. We fix δ = 10−2. Moreover, we im-
plement the SDR-IPM detector by employing the primal-dual
IPM in [10]. The IPM solution accuracy is also set at 10−2.
The solution rounding in SDR-RBR and SDR-IPM is done by
the Gaussian randomization method [1, 2], with max{10, 2n}
randomizations. To provide some benchmark, the sphere de-
coder, the lattice reduction aided (LRA) MMSE-DF detector,
and the zero-forcing (ZF) detector were also tested. The de-
tectors are written mainly in C, with minor operations relying
on MATLAB. The simulations were done on a 3.0GHz dual-
core desktop computer with 2GB of memory.

Fig. 1(a) shows the BERs of the various detectors under
an MIMO system size of (M,N) = (40, 40). Note that such
a problem size may happen in multiuser systems, and that
sphere decoding is computationally too slow to run in this
case. As can be seen, the BERs of the SDR-RBR and SDR-
IPM detectors are very close. We tested other problem size
settings and found the same result. Moreover, the two SDR
detectors outperforms the other detectors significantly.

Since the SDR-RBR detector provides almost the same
BERs as the SDR-IPM detector, we are interested in the com-
plexity of the former. To study this, we first change the RBR
stopping criterion to a fixed number of iterations, and then
evaluate how the BERs are affected by the number of itera-
tions. The results are shown in Fig. 1(b). We see that the
SDR-RBR detector attains outstanding performance when the
number of iterations is around 10.
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Fig. 1. BERs in a QPSK 40× 40 system. (a) Comparison of various detectors; (b) SDR-RBR for various number of iterations.

5 10 15 20 25 30

10
−4

10
−3

10
−2

No. of transmitted symbols (N)

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e 
(s

)

 

 

ZF Detector
Sphere decoder
LRA−MMSE−DFE
SDR−IPM
SDR−RBR (δ = 1e−2)
SDR−RBR (#Iterations =10)

Fig. 2. Computational complexities of the various detectors.

In the last simulation we examine the computational com-
plexities of the various detectors with respect to the problem
size. We fix SNR= 12dB and M = N . The results are shown
in Fig. 2. It can be seen that the SDR-RBR detector, either
with the stopping rule (9) or with a fixed number of iterations
of 10, is much faster than the SDR-IPM detector; the differ-
ence is about 10 times.

5. CONCLUSION

In this paper, we have demonstrated the potential of the RBR
method for low complexity implementations of the SDR
MIMO detector. In particular, we have shown by simulations
that the RBR method can lead to a tenfold runtime saving
when compared to the conventional IPM implementation.
Such empirically attractive results not only prove the fea-
sibility of the RBR approach, but also paves the way for
real-world implementations of the SDR detector.
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