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ABSTRACT

In this paper, we consider an outage-based robust beamform-

ing problem in two-way relay networks under the imperfect

channel state information (CSI) scenario. Specficially, our

goal is to minimize the relay transmit power while keeping

the probability of each user’s signal-to-interference-plus-

noise ratio (SINR) outage as caused by the imperfect CSI

below a given threshold. Assuming that the CSI errors fol-

low a complex Gaussian distribution, the probabilistic SINR

constraints involve quartic polynomials of complex Gaussian

random variables, which, to the best of our knowledge, have

not been treated from a computational perspective before.

Using moment inequalities for Gaussian polynomials and the

semidefinite relaxation technique, we propose a new tractable

approximation approach for tackling such constraints. Simu-

lation results show that the proposed method outperforms the

existing robust approaches when the CSI errors are large.

Index Terms— Two-way relaying, robust beamforming,

chance constrained optimization, semidefinite relaxation

1. INTRODUCTION

In recent years, two-way relaying—i.e., the use of relay nodes

to establish a communication link between two users—has

attracted significant interest, as it can greatly improve the

spectral efficiency and extend the coverage of wireless net-

works [1–4]. To facilitate information exchange, the most

commonly adopted transmit strategy is beamforming, which

requires channel state information (CSI). However, in prac-

tice, the available CSI is typically inaccurate due to errors in

channel estimation and limited feedback. Such imperfect CSI

will lead to residual self-interference and degrade the perfor-

mance of two-way relaying systems. This motivates the study

of relay beamforming schemes that are robust against CSI

errors.
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Currently, there are two main approaches to modelling

CSI errors, which, in the context of relay beamforming, lead

to two different classes of robust design problems. The first is

to assume that the CSI errors lie within a given bounded set,

and the beamformer is designed so that it is robust against

the worst-case quality-of-service (QoS) under the given CSI

error model [5, 6]. The second is to assume that the CSI er-

rors follow a probabilistic model (typically Gaussian), and the

design goal is to provide a certain level of QoS with high

probability; cf. [7]. In this paper, we consider the latter ap-

proach and assume that the CSI errors arising in the two-

way relay system follow a Gaussian distribution. Our goal

is to minimize the average transmit power at the relay nodes

while satisfying signal-to-interference-and-noise (SINR) con-

straints of the users with high probability. The main techni-

cal challenge of such a formulation lies in the probabilistic

SINR constraints, which involve quartic polynomials of com-

plex Gaussian random variables and are intractable in gen-

eral. Prior works (see, e.g., [5–7]) tackle those constraints

simply by ignoring the higher-order (i.e., quadratic or above)

error terms and applying standard techniques from robust op-

timization [8] or chance-constrained optimization [9] to the

simplified constraints. However, such an approach is not sat-

isfactory, as it is not clear whether the higher-order error terms

really have a negligible effect on system performance.

In this paper, we develop a new approach for handling

chance constraints that involve a general quartic Gaussian

polynomial. By combining this approach with the semidef-

inite relaxation (SDR) technique [10], we show that the

aforementioned probabilistic SINR constraints can be ap-

proximated by a set of linear matrix inequalities, which are

efficiently computable. Lastly, we demonstrate the efficacy

of our approach via simulations.

Notations: We use (·)∗, (·)T , (·)H , Tr (·), ‖·‖, ⊙, and

CN to denote conjugate, transpose, conjugate transpose,

trace, Frobenius norm, Hadamard product, and the set of

N -dimensional complex vectors, respectively. We write

x ∼ CN (m,V ) to mean that x−m is a circularly symmet-

ric complex Gaussian random vector with covariance V .



2. PROBLEM FORMULATION

2.1. System Model
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Fig. 1. A two-way relay network

Consider a two-way relay network, in which a pair of

users communicate with each other through K relay nodes;

see Fig. 1. Each node in the network is equipped with a sin-

gle antenna and is half-duplex. The communication is per-

formed in two phases. In the first, or the multiple access

(MAC) phase, both users transmit their data simultaneously to

the relay nodes. In the second, or the broadcast (BC) phase,

the relay nodes broadcast the weighted versions of their re-

ceived signals to the two users over the same channels. We

assume that all channels are flat fading and constant during

the two phases. Moreover, we assume that the channels in the

MAC phase are reciprocal to those in the BC phase. Now, let

fi ∈ CK denote the channel vector from the ith user to the

relay nodes, where i = 1, 2. Then, in the MAC phase, the

received signal vector at the relay nodes can be modelled as

yR = f1s1 + f2s2 + nR,

where si is the signal from the ith user with E
[
|si|2

]
=

Pi, and nR ∼ CN
(
0, σ2

RI
)

is the additive noise at the re-

lay nodes. In the BC phase, the relay nodes broadcast the

weighted signal

xR = w⊙yR = (w ⊙ f1) s1+(w ⊙ f2) s2+w⊙nR, (1)

where w ∈ CK denotes the relay beamformer. The received

signal at the ith user is then modelled as

yi = fT
i xR + ni

= fT
i [(w ⊙ fi) si + (w ⊙ fj) sj + (w ⊙ nR)] + ni,

(2)

where i, j ∈ {1, 2} and i 6= j, and ni ∼ CN
(
0, σ2

i

)
is the

additive noise at the ith user.

2.2. Imperfect Channel State Information

To capture the effect of CSI errors, we model the actual chan-

nels between the users and the relay nodes as

fi = f̂i + ei, i = 1, 2, (3)

where f̂i ∈ CK is the estimated channel between the ith user

and the relay nodes, and ei ∈ CK is the corresponding chan-

nel error vector. Note that in the process of acquiring the CSI,

there are two main sources of error, namely, estimation error

and quantization error. We consider the scenario where the

estimation is not very accurate, but the amount of bits avail-

able for feeding back the CSI—which determines the size of

the quantization codebook—is sufficient. In this case, the es-

timation error will be the dominant error in the acquired CSI.

It is known that when estimating channels using the mini-

mum mean square error method, the CSI errors tend to fol-

low a Gaussian distribution [11]. Hence, we adopt a Gaussian

channel error model; i.e., ei ∼ CN (0,Ei) with Ei � 0. For

simplicity, we shall assume that Ei = η2i I for some ηi > 0
in the sequel.

2.3. Outage-Based Robust Beamforming at Relay Nodes

Using (2) and (3), we can express the received signal at the

ith user (where i = 1, 2) as

yi =(f̂i + ei)
T
(
w ⊙ (f̂j + ej)

)
sj

︸ ︷︷ ︸
desired signal

+ f̂T
i (w ⊙ f̂i)si︸ ︷︷ ︸

self-interference #1

+
{
eTi

(
w ⊙ (f̂i + ei)

)
+ f̂T

i (w ⊙ ei)
}
si

︸ ︷︷ ︸
self-interference #2

+ (f̂i + ei)
T
(w ⊙ nR) + ni︸ ︷︷ ︸
noise

.

Note that the part labeled “self-interference #1” can be can-

celled using known channel estimates and beamformer coef-

ficients. Hence, the SINR of the ith user can be written as

SINRi (w, e) =
Pj

∥∥∥(f̂i + ei)
T
(
w ⊙ (f̂j + ej)

)∥∥∥
2

Φi + σ2

i

, (4)

where Φi = Pi

∥∥∥eTi
(
w ⊙ (f̂i + ei)

)
+ f̂T

i (w ⊙ ei)
∥∥∥
2

+

σ2

R · Tr
((

wwH
)
⊙
(
(f̂i + ei)

∗(f̂i + ei)
T
))

, and e =

(e1, e2). Furthermore, using (1), we can express the average

transmit power of the relay nodes as

PR = E

[
2∑

i=1

∥∥∥w ⊙ (f̂i + ei)si

∥∥∥
2

+ ‖w ⊙ nR‖2
]

= Tr

[
(
wwH

)
⊙
(

2∑

i=1

Pi(f̂if̂
H
i +Ei) + σ2

RI

)]
.

Now, we are interested in designing the beamformerw so that

the average transmit power PR is minimized while the users’

SINR outage constraints are satisfied. Specifically, consider

the following problem:

min
w

PR (5a)

s.t. Pr {SINRi (w, e) ≤ γi} ≤ pi, i = 1, 2, (5b)



where γi is the SINR threshold for the i-th user, and pi ∈
(0, 1] is its maximum SINR outage probability.

It is easy to verify that the chance constraint (5b) involves

a quartic polynomial of complex Gaussian random variables.

As such, it is generally non-convex and does not admit a

closed-form expression. Currently, a popular approach for

tackling chance constraints is to replace them with tractable

safe approximations.1 However, existing safe approximations

(see, e.g., [9, 12, 13]) apply only to chance constraints that

are linear or quadratic in the random variables. In the se-

quel, we develop a new approach for constructing tractable

safe approximations of chance constraints that involve a gen-

eral quartic Gaussian polynomial. Then, we show how this

approach can be combined with the SDR technique [10] to

obtain a tractable approximation of the outage-constrained

power minimization problem (5).

3. PROPOSED METHOD

To begin, observe that by (4), the chance constraint (5b) is

equivalent to

Pr(Qi(w, e) ≥ 0) ≤ pi, i = 1, 2, (6)

where

Qi (w, e) , Φi + σ2

i −
Pj

γi

∥∥∥(f̂i + ei)
T
(
w ⊙ (f̂j + ej)

)∥∥∥
2

and j 6= i. A straightforward but tedious calculation yields

Qi (w, e) = vec(W )
H
vec

(
σ2

RFi + PiFii −
Pj

γi
Fij

)
+σ2

i ,

where W = wwH , Fi =
(
(f̂i + ei)

∗(f̂i + ei)
T
)
⊙ I,

Fii = 4(f̂i ⊙ ei)
∗(f̂i ⊙ ei)

T + (ei ⊙ ei)
∗

(ei ⊙ ei)
T

+ 2 (ei ⊙ ei)
∗

(ei ⊙ f̂i)
T + 2(ei ⊙ f̂i)

∗(ei ⊙ ei)
T ,

Fij =
(
(f̂i + ei)

∗ ⊙ (f̂j + ej)
∗

)(
(f̂i + ei)

T ⊙ (f̂j + ej)
T
)
.

The following theorem shows that a certain set of second-

order cone constraints can serve as a tractable safe approxi-

mation of the chance constraints (6). Its proof can be found

in the Appendix.

Theorem 1 Let ξ1, . . . , ξm be independent standard (i.e.,

zero mean and unit variance) real Gaussian random vari-

ables. Consider the function Q: Rn × R
m → R defined via

Q (x, ξ) = −a0 (x) +

m∑

i=1

ξiai (x) +

m∑

i,j=1

ξiξjai,j (x)

+

m∑

i,j,k=1

ξiξjξkai,j,k (x) +

m∑

i,j,k,l=1

ξiξjξkξlai,j,k,l (x) ,

1That is, a set of efficiently computable constraints whose feasible solu-

tions are also feasible for the original chance constraint.

where a0(·) is affine and ai(·), ai,j(·), ai,j,k(·), ai,j,k,l(·) are

linear in its argument. Consider the chance constraint

Pr (Q (x, ξ) ≥ 0) ≤ ǫ, (7)

where ǫ > 0 is given. Set

q̄(ǫ) ,





− ln ǫ +

√
(ln ǫ)

2 − 8 ln ǫ

4
if ǫ ∈ (0, exp(−8)],

2 otherwise

and Q̄(x, ξ) , Q(x, ξ) + a0(x). Then, the following hold:

(a) For each x ∈ Rn and ξ ∈ Rm, we have Q̄(x, ξ)2 =
xTU(ξ)x for some U(ξ) � 0.

(b) Let U , E[U(ξ)] � 0 and

c(ǫ) ,





(q̄(ǫ)− 1)2 exp

(
2q̄(ǫ)

q̄(ǫ)− 1

)
if q̄(ǫ) > 2,

1/
√
ǫ if q̄(ǫ) = 2.

(8)

The second-order cone constraint

a0(x) ≥ c(ǫ)‖U1/2x‖ (9)

serves as a tractable safe approximation of the chance

constraint (7).

Remark. Theorem 1 also applies to the case where ξ1, . . . , ξm
are independent mean-zero Gaussian random variables, as

their variances can be absorbed into the functions ai(·),
ai,j(·), ai,j,k(·), ai,j,k,l(·).

To apply Theorem 1 to the chance constraint (6), define

ai
0
(W ) , vec(W )

H
vec

(
Pj

γi
F̂ij − σ2

RF̂i

)
− σ2

i , i = 1, 2,

where F̂ij = (f̂∗

i ⊙ f̂∗

j )(f̂i ⊙ f̂j)
T , F̂i = (f̂∗

i f̂
T
i ) ⊙ I, and

j 6= i. Since Qi(·, ·) depends on w only through the term

W = wwH , by a slight abuse of notation, we shall write

Qi(W , e) for Qi(w, e). Then, we have

Q̄i (W , e) , Qi (W , e) + ai
0
(W ) = vec(W )

H
vec
(
F̄i

)

and

E

[∣∣Q̄i (W , e)
∣∣2
]
= vec(W )HUivec (W ) ,

where

F̄i = σ2

R(Fi − F̂i) + PiFii −
Pj

γi
(Fij − F̂ij),

Ui = E

[
vec
(
F̄i

)
vec
(
F̄i

)H]
.

By Theorem 1, the following set of second-order cone con-

straints serves as a safe approximation of the chance con-

straint (6):

ai
0
(W ) ≥ c(pi)‖U1/2

i vec(W )‖, i = 1, 2,



where c(·) is given by (8). Hence, we obtain the following

safe approximation of problem (5):

min
w

PR

s.t. ai
0
(W ) ≥ c(pi)‖U1/2

i vec(W )‖, i = 1, 2,

W = wwH .

(10)

Note that problem (10) is still intractable due to the non-

convex rank-one constraint W = wwH . To obtain a

tractable approximation, we employ the SDR technique [10]

and relax the rank-one constraint to the positive semidefi-

nite constraint W � 0. The resulting problem is then a

semidefinite program (SDP), which can be readily solved by

off-the-shelf solvers [14]. In the case where the SDP solution

W ∗ has rank greater than one, a Gaussian randomization

procedure [10] can be applied to extract a rank-one solution

from W ∗.

4. NUMERICAL SIMULATION AND DISCUSSION

To demonstrate the performance of the proposed method, nu-

merical simulations are performed. The simulation settings

are as follows. There are K = 6 relay nodes. All the relay

channels are assumed to be Rayleigh flat fading; i.e., f̂i ∼
CN (0, I) for i = 1, 2. The transmit power of the two users

is set to the same value, with P1 = P2 = 10dB. The power

of the noise at all the nodes is assumed to take same value,

with σ1 = σ2 = σR = 1. The covariance matrices of the CSI

errors are assumed to take the form E1 = E2 = η2I, where

η > 0 is a power parameter. The SINR outage threshold of the

two users are assumed to be the same; i.e., γ = γ1 = γ2. The

SINR outage probabilities of the two users are also assumed

to be the same, with p1 = p2 = 10%. For comparison, we

consider the non-robust method [2] and the Bernstein-type in-

equality method [9] under the same settings. We remark that

since the latter method is designed only for chance constraints

involving a quadratic Gaussian polynomial, we drop the cu-

bic and quartic CSI error terms in Qi(W , e) (where i = 1, 2)

when applying this method.

Fig. 2 compares the empirical cumulative distribution

functions (CDFs) of the SINR experienced by the two users.

Each curve represents the SINR values achieved over 2000
random channel realizations with γ set to 3dB or 7dB,

and η = 0.1732. From Fig. 2, we see that the non-robust

method [2] cannot always guarantee an SINR outage prob-

ability of 10%: About 60% and 70% of the achieved SINR

values are lower than the SINR threshold of γ = 3dB and

γ = 7dB, respectively. On the other hand, the SINR outage

probabilities of the Bernstein-type inequality method [9] and

the proposed method are both lower than 10%, which satisfy

the requirements. In addition, we see from Table 1 that the

relay transmit power PR required by the proposed method is

much lower than that by the method in [9], except when the

SINR threshold is very small. This suggests that the proposed

method is less conservative than that of [9].
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Table 1. Transmit power PR (dB)

γ(dB) 1 3 5 7 9

Method in [9] 4.4 11.1 18.9 48.1 87.6

Proposed Method 4.9 7.0 11.5 18.2 31.2

5. APPENDIX: PROOF OF THEOREM 1

By assumption, for each ξ ∈ Rm, the function x 7→ Q̄(x, ξ)
is linear in x ∈ Rn. This implies that x 7→ Q̄(x, ξ)2 is a

non-negative homogeneous quadratic polynomial in x ∈ Rn.

This establishes (a).

To prove (b), we invoke [15, Theorem 5.10], which states that

for any q ≥ 2,

E
[∣∣Q̄ (x, ξ)

∣∣q]1/q ≤ (q − 1)2E
[∣∣Q̄ (x, ξ)

∣∣2
]1/2

.

This, together with Markov’s inequality and the result in (a),

implies that for any q ≥ 2,

Pr
(∣∣Q̄ (x, ξ)

∣∣ ≥ t
)
≤ t−q

E
[∣∣Q̄ (x, ξ)

∣∣q]

=
[
t−1(q − 1)2‖U1/2x‖

]q
.

By setting q = q̄(ǫ), we have q ≥ 2. Moreover, whenever t ≥
c(ǫ)‖U1/2x‖, we have Pr

(∣∣Q̄ (x, ξ)
∣∣ ≥ t

)
≤ ǫ. It follows

that

Pr (Q (x, ξ) ≥ 0) = Pr
(
Q̄ (x, ξ) ≥ a0(x)

)

≤ Pr
(∣∣Q̄ (x, ξ)

∣∣ ≥ a0(x)
)

≤ ǫ

whenever (9) holds. In particular, the second-order cone con-

straint (9) is a tractable safe approximation of (7), as desired.



6. REFERENCES

[1] R. Zhang, Y.-C. Liang, C. C. Chai, and S. Cui, “Optimal

beamforming for two–way multi–antenna relay chan-

nel with analogue network coding,” IEEE J. Sel. Areas

Commun., vol. 27, no. 5, pp. 699–712, 2009.

[2] V. Havary-Nassab, S. Shahbazpanahi, and A. Grami,

“Optimal distributed beamforming for two–way relay

networks,” IEEE Trans. Signal Process., vol. 58, no. 3,

pp. 1238–1250, 2010.

[3] M. Zeng, R. Zhang, and S. Cui, “On design of collabo-

rative beamforming for two–way relay neworks,” IEEE

Trans. Signal Process., vol. 59, no. 5, pp. 2284–2295,

2011.

[4] S. ShahbazPanahi and M. Dong, “Achievable rate region

under joint distributed beamforming and power alloca-

tion for two–way relay networks,” IEEE Trans. Wireless

Commun., vol. 11, no. 11, pp. 4026–4037, 2012.

[5] A. Aziz, M. Zeng, J. Zhou, C. N. Georghiades, and

S. Cui, “Robust beamforming with channel uncertainty

for two–way relay networks,” in Proc. IEEE ICC 2012,

2012, pp. 3632–3636.

[6] M. Tao and R. Wang, “Robust relay beamforming for

two–way relay networks,” IEEE Commun. Lett., vol. 16,

no. 7, pp. 1052–1055, 2012.

[7] D. Ponukumati, F. Gao, and C. Xing, “Robust peer–

to–peer relay beamforming: A probabilistic approach,”

IEEE Commun. Lett., vol. 17, no. 2, pp. 305–308, 2013.

[8] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust

Optimization, ser. Princeton Series in Applied Math-

ematics. Princeton, NJ: Princeton University Press,

2009.

[9] K.-Y. Wang, T.-H. Chang, W.-K. Ma, A. M.-C. So, and

C.-Y. Chi, “Probabilistic SINR constrained robust trans-

mit beamforming: A Bernstein–type inequality based

conservative approach,” in Proc. IEEE ICASSP 2011,

2011, pp. 3080–3083.

[10] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang,

“Semidefinite relaxation of quadratic optimization prob-

lems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp.

20–34, 2010.

[11] S. M. Kay, Fundamentals of Statistical Signal Process-

ing: Estimation Theory, ser. Prentice–Hall Signal Pro-

cessing Series. New Jersey: PTR Prentice–Hall, Inc.,

1993.

[12] S. A. Vorobyov, A. B. Gershman, and Y. Rong, “On the

relationship between the worst–case optimization–based

and probability–constrained approaches to robust adap-

tive beamforming,” in Proc. IEEE ICASSP 2007, 2007,

pp. II–977–II–980.

[13] S.-S. Cheung, A. M.-C. So, and K. Wang, “Linear ma-

trix inequalities with stochastically dependent perturba-

tions and applications to chance–constrained semidefi-

nite optimization,” SIAM J. Optim., vol. 22, no. 4, pp.

1394–1430, 2012.

[14] M. Grant and S. Boyd, “CVX: Matlab software for

disciplined convex programming,” http://cvxr.com/cvx,

2011.

[15] S. Janson, Gaussian Hilbert Spaces. Cambridge: Cam-

bridge University Press, 1997.


