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Abstract—Motivated by the observation that energy harvesting
(EH) from radio-frequency (RF) signal is subject to fluctuations,
multiple EH-enabled relays are employed to collaboratively en-
hance data communications in a device-to-device (D2D) network
underlying a cellular system. Each relay is equipped with a
single antenna and unable to harvest energy and transmit data
simultaneously. Thus, the D2D user equipment (DUE) needs to
optimally schedule the channel time for the relays’ EH and
data transmissions, which depends on their EH capabilities and
channel conditions. Considering that the relays’ channel estima-
tions are usually unreliable, we formulate a robust throughput
maximization problem to optimize the relays’ EH time and
transmit power, subject to a probabilistic interference constraint
at the cellular user equipment (CUE). We show that the pro-
posed problem, though non-convex, can be tackled by exploiting
its monotonicity structure. Specifically, we design a successive
approximation algorithm that involves solving a sequence of semi-
definite programs (SDPs) and show numerically that it always
achieves the global optimum. This validates our analysis and
demonstrates the efficacy of the proposed algorithm.

I. INTRODUCTION

Device-to-device (D2D) communication has recently
emerged as a promising technology to support high data rates,
extend network coverage, and reduce energy consumptions
by enabling direct communications between densely deployed
D2D user equipment (DUE) [1]. With the explosive growth of
wireless devices, it becomes impractical and costly to recharge
or replace batteries for billions of DUEs, especially those
deployed in human-inaccessible environment. Wireless power
transfer provides a sustainable way to keep connectivity of
the D2D networks by allowing the wireless devices to harvest
energy from radio frequency (RF) signals [2]. Despite the low
cost, RF-based energy harvesting (EH) is still challenging to
be widely deployed. Compared to batteries, the energy supply
from EH is intermittent in nature and subject to fluctuations
due to the dynamics of wireless environment.

Though the amount of energy harvested by single DUE
is fluctuating and typically insufficient to sustain wireless
transmissions, the dense deployment of DUEs offers a new
paradigm for improving network performance. Motivated by
the observation that the EH rates (the energy harvested in unit
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time duration) are time varying and location dependent, we
intend to fully use the harvested energy at different DUEs and
improve the throughput performance of a DUE transceiver pair
through the DUEs’ cooperation. To this end, we are interested
in selecting multiple EH-enabled DUE relays to enhance the
reliability of information delivery. A single EH relay model
has been studied in [3] using either a time switching or
power splitting strategy. When multiple relays are available,
the authors in [4] proposed a relay selection scheme based on
the intuition that each EH relay should be selected with an
equal chance to efficiently use the harvested energy. Further
analysis in [5] reveals that the optimal selection of EH relays is
complicated by the coupling between the channel conditions
and the relays’ EH capabilities. Considering the limitations
of a single relay, some works have studied the collaborative
beamforming of multiple EH relays, e.g., [6].

The dense DUE also leads to a crowded usage of the
spectrum and may introduce interference to the cellular user
equipment (CUE). Hence, the DUE relays need to precisely
control their transmit power so that the interference to the CUE
is less than a pre-defined threshold. The relays’ joint power
control under perfect channel information has been studied in
[7]. However, in practice, it is very difficult for the DUE relays
to collect perfect channel information due to quantization
errors and the lack of coordinations between the CUEs and
DUEs. Hence, a growing effort has been devoted to modeling
the channel uncertainty. A stochastic model assumes that the
channel follows a specific Gaussian distribution and leads
to a chance-constrained beamforming problem [8], while the
worst-case robust model restricts the channel to be bounded in
a convex set and leads to a max-min beamforming problem [9].
A more practical way is to build the channel models based on
partial distribution information such as the moment statistics
that are relatively easy to estimate with high accuracy.

In this paper, by leveraging on the cooperation gain of
the densely deployed DUEs, we employ multiple EH-enabled
DUE relays operating in a half-duplex mode to enhance the
DUEs’ data transmissions. On one hand, the relays’ transmit
powers are subject to floating power budget constraints that
depend on their EH rates and the time duration for EH. On the
other hand, the relays’ power control task is complicated by
the imperfect channel information and aggregate interference
constraints at the CUEs. To the best of our knowledge, we
are the first to consider both aspects and jointly design the



relays’ EH scheduling and beamforming strategies that are
globally optimal in the throughput and resilient to the channel
uncertainty.

The rest of this paper is organized as follows. We describe
the system model in Section II and present the relays’ joint
EH scheduling and beamforming in Section III. Evaluations
and conclusions are given in Sections IV and V, respectively.

II. SYSTEM MODEL

We consider a D2D network underlying a downlink cellular
system, wherein each DUE transmitter (DTx), DUE relay,
and DUE receiver (DRx) have single antenna. The CUE’s
information reception is not interrupted if the interference due
to D2D communications is less than a pre-defined threshold.
To fully utilize the harvested energy and improve the DUE’s
data rate, the DTx is assisted by a group of nearby DUE
relays, denoted as N = {1, 2, . . . , N}. A direct link between
the DTx and DRx is not available due to a long distance or
limited transmit power at the DTx. We assume that there is
a coordinator in the system that schedules D2D transmissions
to avoid conflicts between different DUEs [10].

A. Channel Uncertainty

Let hn and gn denote the channels from the DTx to DUE
relay n and from the relay n to the DRx, respectively, and zn
denote the channel from the relay n to the CUE. All channels
exhibit frequency non-selective block fading. We assume that
the channel h , [h1, h2, . . . , hN ]T in the first hop is perfectly
known through the relays’ channel estimation—e.g., the DTx
can broadcast a known pilot signal to facilitate the channel
estimation. However, due to limited or untimely responses
from the DRx and the CUE, the DUE relays are unable to
accurately estimate the channels g , [g1, g2, . . . , gN ]T and
z , [z1, z2, . . . , zN ]T in the second hop.

To model the uncertainties of g and z, we assume that g
and z are random variables following distributions Pg and Pz,
respectively. However, the exact probability density functions
are not known for sure and are drawn from a set of distribution
functions, also known as a distributional uncertainty set [11].
Since it is relatively easy to estimate the moment statistics,
we assume that

Pg ∈P(ug,Sg) ⊂ P∞, (1a)
Pz ∈P(uz, Sz) ⊂ P∞, (1b)

where P(ug,Sg) and P(uz,Sz) denote the sets of distribu-
tions with known first- and second-order moments given by
(ug,Sg) and (uz,Sz), respectively, and P∞ is the set of all
probability distributions.

Fig. 1: Time slotted structure.

B. EH Scheduling

We assume that each DUE relay is capable of harvesting
energy from the RF signals. To avoid conflicts between EH
and information transmissions, we consider the time splitting
scheme shown in Fig. 1. Each time slot is of unit length and
allocated to relay-assisted transmission of data packets. The
first part of a time slot w ∈ [0, 1] is used for the DUE relays
to harvest RF energy and store it in a super-capacitor [2]. The
remaining part 1 − w, without loss of generality, is equally
allocated for signal reception and forwarding; i.e., the channel
time for signal forwarding is given by t = (1−w)/2 ∈ [0, 1/2].
To gain optimal throughput, the DUE transmitter can adjust
the time length for EH and data transmissions according to its
channel conditions and energy status. Let c , [c1, c2, . . . , cN ]
denote the vector of EH rates at the DUE relays. We assume
that it is known at the beginning of each time slot, as the
strength of RF signals changes in a much larger time scale
than the time slot for data transmissions [6].

C. Relay Beamforming

We consider the amplify-and-forward (AF) relay strategy
due to its short processing delay and simplicity in system
deployment. Given the EH time w, the peak transmit power
of the relay n is given by pn = cnw/t = cn (1/t− 2).
However, relays do not necessarily transmit at their peak power
to suppress the noise received by DRx. Let xn ∈ [0, 1] denote
a power scaling factor such that the actual transmit power
is x2

npn, and we view x = [x1, x2, . . . , xN ]T as the relays’
beamformer. Then, the interference at the CUE is given by

φ(t,x) =

N∑
n=1

z2
nx

2
npn =

N∑
n=1

z2
nx

2
ncn (1/t− 2) . (2)

Let s denote the signal transmitted from DTx to the relays,
and thus the received signal at relay n is given by mn =√
p0hns+σn, where σn ∼ N(0, 1) is the Gaussian noise with

zero mean and unit variance. The downlink transmissions from
the cellular base station to CUEs also introduce interference to
the DRx. Here, we assume that such interference is constant
and thus omitted in the problem formulation. Assuming unit
transmit power at the DTx, the signal strength of mn is given
by 1+p0h

2
n; i.e., the DUE relay n amplifies the received signal

mn by the coefficient x̄n , xn

(
pn

1+p0h2
n

)1/2

. Therefore, the
received signal at the DRx is given by

y =

N∑
n=1

√
p0x̄nhngns+

N∑
n=1

x̄ngnσn + vd, (3)

where vd ∼ N(0, 1) is the noise in reception. The first term in
(3) contains the information from the DTx, while the second
term is the amplified noise. The signal-to-noise ratio (SNR) at
the DRx is thus represented as follows:

γ(t,x) = p0

(
N∑
n=1

x̄ngnhn

)2/(
1 +

N∑
n=1

x̄2
ng

2
n

)
. (4)



Without loss of generality, we can set p0 = 1 for simplicity.
Our target is to maximize the DUE’s effective throughput in
a time slot r(t,x) = t log (1 + γ(t,x)) by choosing the DUE
relays’ EH time w = 1 − 2t and the beamformer x, subject
to the CUE’s interference constraint φ(t,x) ≤ φ̄, where φ̄
represents the CUE’s tolerance to interference.

III. ROBUST EH SCHEDULING AND BEAMFORMING

Both the throughput r(t,x) and the aggregate interference
φ(t,x) are functions of the channel conditions. Thus, they
become stochastic when the channels g and z are subject to
uncertainties. In the case, we consider maximizing an averaged
performance and define the CUE’s interference constraint in
a probabilistic manner. To facilitate our discussion, we define
two constant matrices as follows:

H = D

h ◦

[ √
c1√

1 + h2
1

,

√
c2√

1 + h2
2

, . . . ,

√
cN√

1 + h2
N

]T ,

T = D

(
c ◦
[

1

1 + h2
1

,
1

1 + h2
2

, . . . ,
1

1 + h2
N

]T)
,

where “◦” represents the Hadamard product and D(·) denotes
a diagonal matrix with the given diagonal elements.

Considering the uncertainty of channel g, we rewrite the
average SNR at the DRx as follows:

γ(t,x) =
EPg [xTHggTHx]

f(t) + EPg [xTTD(g ◦ g)x]
=

xTHSgHx

f(t) + xTTD(usg)x
,

where f(t) = t/(1 − 2t) = t/w and usg = EPg [g ◦ g] is
known by the DUE relays. To account for the uncertainty of
the channel z, we define a probabilistic interference constraint
for the CUE and thus reformulate the robust EH scheduling
and beamforming problem as follows:

max
t,x

t log

(
1 +

xTHSgHx

f(t) + xTTD(usg)x

)
(5a)

s.t. max
Pz∈P(uz,Sz)

Pz

(
φ(t,x) ≥ φ̄

)
≤ η, (5b)

t ∈ [0, 1/2] and x ∈ [0,1]. (5c)

Here, we jointly optimize (t,x) to achieve the optimal
throughput for the DUE transceiver pair while limiting the
CUE’s worst-case (with respect to all distributions with the
given moment information) interference violation probability
below a prescribed probability limit η. Note that we only
consider one CUE in problem (5). However, it can be extended
to the case with multiple CUEs, which allows us to protect
the most vulnerable CUE. The probabilistic constraint (5b) is
generally non-convex and its tractability largely depends on
its convex approximation. Besides, the objective (5a) defines
a complicated non-concave function of (t,x). Nevertheless,
by a change of variable, we can view γ as the variable to be
optimized instead of x. Hence, we can represent r(t,x) in a
simpler form; i.e., r(t, γ) = t log(1 + γ). In the sequel, we
use r(t, γ) and r(t,x) interchangeably to denote the objective
function in (5a). Note that r(t, γ) is increasing in t and γ,

which implies that the global optimum is achieved on the
boundary of the feasible region of (t, γ). This observation mo-
tivates us to design an iterative search algorithm by exploiting
the monotonicity of the objective function and the structure of
the feasible region of (t, γ).

A. Elements of Monotonic Optimization

The theory of monotonic optimization is developed by Tuy
[12] and has been applied to wireless communications [13].
Here, we review some of the basic concepts.

Definition 1 (Boxes): Let a � 1b. Then, the box [a,b] is the
set of all z ∈ Rn satisfying a � z � b.

Definition 2 (Polyblocks): A polyblock P is a union of finite
number of boxes; i.e., P =

⋃
v∈V [0,v], where V is the vertex

set of the polyblock and |V | < +∞.

Definition 3 (Normal sets): A set Ω is normal if for any
z ∈ Ω, all other points z′ such that 0 � z′ � z are also in Ω.
A point z ∈ Ω is an upper boundary point if z′ /∈ Ω for any
z′ � z and z′ 6= z. The set of upper boundary points of Ω is
denoted by ∂+Ω.

Proposition 1 (Monotonic optimization): The optimum of an
increasing function over a compact normal set Ω is attained
on the upper boundary ∂+Ω.

Proposition 1 is rather intuitive and a formal proof easily
follows from the results in [12]. To reformulate (5) into a
monotonic optimization problem, we need to check whether
the feasible set of (t, γ) is normal. To this end, we rewrite the
feasible set of (t, γ) as follows:

Ω =

(t, γ)

∣∣∣∣∣∣∣
maxPz Pz

(
φ(t,x) ≥ φ̄

)
≤ η,

0 ≤ γ ≤ γ̄ , xTAx
f(t)+xTBx

,

(t,x) ∈ Θ , [0, 1
2 ]× [0,1]

 , (6)

where A = HSgH and B = TD(usg) are two known matrices
relating to the DUE relays’ EH rates and channel conditions.
Now, we can simply reformulate problem (5) as follows:

max
t,γ
{r(t, γ) : (t, γ) ∈ Ω}. (7)

Proposition 2: The feasible set Ω is normal.

The proof of Proposition 2 is given in Appendix A.
The basic idea of monotonic optimization is to successively
approximate the feasible set Ω by polyblocks. The initial
polyblock P0 can be large enough to cover the whole feasible
set Ω, and thus we can set the vertex of P0 to be (1/2, γmax),
where γmax denotes the largest possible γ for t ∈ [0, 1/2] and
x ∈ [0,1]. Note that γ < xTAx

xTBx
and the maximum of xTAx

xTBx
is confined by the largest eigenvalue of B−1A [14], which
relates to the relays’ EH rates and channel conditions.

In the k-th iteration, the algorithm first determines an upper
bound rUk of the global optimum—i.e., rUk = maxz∈Pk

r(z)—
which will be achieved by one of the vertices of Pk due to

1a � b (or a � b) means that b− a (or a−b) has non-negative entries.



the monotonicity of the objective. Then, it updates a lower
bound rLk by evaluating the objective at one feasible point ok
on the upper boundary. Moreover, the point ok allows us to
trim Pk and generate a “smaller” ployblock, which results in
Pk+1 ⊂ Pk. The algorithm continues until the gap between
the upper and lower bounds is within an error distance limit
ε.

B. Lower Throughput Bounds via Projection

Given the polyblock Pk, the upper throughput bound can
be easily obtained from one of the vertices of Pk. Let
zk = arg maxv∈Vk

r(v), where Vk denotes the vertex set of
Pk. Then, rUk = r(zk) can serve as an upper bound on the
optimum r∗ = maxz∈Ω r(z) due to the monotonicity of the
objective function. To find a lower bound on r∗, we project
the vertex zk onto ∂+Ω by scaling it down, as illustrated in
Fig. 2a. Define ok(s) = szk as the scaled vertex zk.

The projection requires finding the maximum scaling factor
sk to ensure ok(sk) ∈ Ω. Noting that Ω is normal, we have
ok(s) /∈ Ω for s ∈ (sk, 1] and ok(s) ∈ Ω for s ∈ [0, sk],
which suggests a bisection method to pinpoint sk. Given a
fixed scaling factor s in the k-th iteration, checking whether
ok(s) ∈ Ω is equivalent to finding some x ∈ [0,1] such that

xTAx

f(stk) + xTBx
≥ sγk, (8a)

max
Pz∈P(uz,Sz)

Pz

(
φ(stk,x) ≥ φ̄

)
≤ η. (8b)

Note that (8a) implies sγkf(stk) ≤ xT (A− sγkB)x. Hence,
the feasibility check can be performed in two steps. First, we
maximize xT (A− sγkB)x subject to (8b); i.e.,

p(s, zk) , max
x∈[0,1]

xT (A− sγkB)x (9a)

s.t. max
Pz∈P(uz,Sz)

Pz

(
φ(stk,x) ≥ φ̄

)
≤ η. (9b)

Then, we compare the maximum p(s, zk) to sγkf(stk). If
p(s, zk) ≥ sγkf(stk), then ok(s) ∈ Ω and we can increase
the scaling factor s in the next iteration. The availability of
p(s, zk) is essential to finding the accurate scaling factor sk
and ensuring the convergence of the polyblock approximation
algorithm. However, it is not straightforward to find a solution
to problem (9) due to the possibly indefinite matrix coefficient
(A− sγkB) in (9a) and the probabilistic constraint in (9b).

In the sequel, we first derive a convex equivalence for (9b)
and then propose a semi-definite relaxation (SDR) to transform
the quadratic objective (9a) into a linear trace form. Note that

φ(stk,x) =

N∑
n=1

z2
nx

2
ncn

(
1

stk
− 2

)
= zTD(x ◦ x)D(cs)z,

where cs =
(

1
stk
− 2
)

c denotes the scaled EH rates at the
DUE relays. Let e(z) = 1(zTD(x ◦ x)D(cs)z ≥ φ̄), where
1(·) is the indicator function. For a fixed (stk,x), we define

B(stk,x|Σz) = max
Pz∈P(uz,Sz)

EPz

[
e(z)

]

1
k

2
k

kz 

3
k

1
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1
2
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4
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Fig. 2: Successive polyblock approximations.

as the worst-case interference violation probability on the LHS

of (9b), where Σz =
[ Sz uz

uTz 1

]
denotes the second order

moment matrix of the channel z. We can easily find that
B(stk,x|Σz) admits an equivalent form as follows [15]:

min
M�0,ν≥0

Tr(ΣzM) (10a)

s.t. M �
[
νD(x ◦ x)D(cs) 0

0 1− νφ̄

]
, (10b)

where M, ν are the dual variables. To this point, the objective
(10a) is linear and the constraint (10b) is a linear matrix
inequality. Hence, problem (10) provides a convex equivalence
for B(stk,x|Σz). Substituting (10) into (9b), the beamformer
x can be optimally obtained as follows:

p(s, zk) , max
x,M,ν

xT (A− sγkB)x (11a)

s.t. Tr(ΣzM) ≤ νη, (11b)

M �
[

D(x ◦ x)D(cs) 0
0 ν − φ̄

]
,

(11c)
M � 0, ν ≥ 0, 0 � x � 1. (11d)

However, problem (11) is still non-convex with respect to
x due to the quadratic terms of x in (11a) and (11c). To
circumvent this difficulty, we introduce a rank-one matrix
X = xxT . Thus, we have xT (A − sγkB)x = Tr(X(A −
sγkB)) and D(x ◦ x) = ∆(X), where ∆(X) is the diagonal
matrix by setting all off-diagonal elements to zeros. As an
approximation, we drop the non-convex rank-one constraint
on X and obtain the SDR representation of problem (11):

p(s, zk) , max
X,M,ν

Tr(X(A− sγkB)) (12a)

s.t. Tr(ΣzM) ≤ νη, (12b)

M �
[

∆(X)D(cs) 0
0 ν − φ̄

]
, (12c)

M � 0, ν ≥ 0, 0 � X � I. (12d)

Note that (12a) and (12b) are linear and (12c) defines a
linear matrix inequality. Thus, problem (12) is an semi-definite
program (SDP) that can be efficiently solved by interior-
point algorithms. If the optimal X? happens to be rank one,
a feasible solution x? to (9) can be extracted by eigen-
decomposition. Otherwise, we extract from X? an approximate



rank-one solution by a Gaussian randomization method [16].
While it is still an open question to formally prove the
existence of a rank-one solution in (12), extensive numerical
experiments in this work show that X? is always rank-one and
a similar observation has been mentioned in [11].

C. Generation of New Polyblock

If the vertex zk happens to be on the upper boundary, then
we have rUk = rLk and thus zk is the optimal solution, If
zk 6= ok, then rUk is unattainable and we need to shrink the
polyblock in the next iteration. Specifically, we construct a
separating cone P ck , {z | z � ok} such that P ck ∩ Ω = ∅. As
illustrated in Fig. 2a, we can generate a new polyblock Pk+1

by cutting off ∆k , P ck ∩ Pk = {z ∈ Pk | z � ok} from the
polyblock Pk and it is easy to verify that

Ω ⊂ Pk+1 , Pk \∆k ⊂ Pk.

Moreover, the removal of ∆k will remove some vertices
in Vk but also generate some new ones. Let V k(ok) = {v ∈
Vk | v � ok} denote the set of vertices that are removed from
Vk and define z̄k(i) = maxv∈V k(ok) v(i) for i ∈ {1, 2}, where
v(i) and z̄k(i) denote the i-th entries in v and z̄k, respectively.
Then, the newly generated vertices are given by

vk+1
i = ok + D(ei)(z̄k − ok),

where ei is a unit vector having “1” in the i-th entry. Finally,
the new vertex set Vk+1 can be updated as follows:

Vk+1 = (Vk \ V k) ∪ V k+1, (13)

where V k+1 denotes the set of newly generated vertices; e.g.,
V k+1 = {vk+1

1 ,vk+1
2 } as illustrated in Fig. 2a. Hence, the

new polyblock is constructed as Pk+1 =
⋃

v∈Vk+1
[0,v].

Algorithm 1 DUE Relays’ Robust EH Scheduling and Beam-
forming

1: Set ε = 10−5, initialize vertex set Vk and polyblock Pk
2: Set rUk = 1 and rLk = 0 for k = 0
3: while |rUk − rLk | ≥ ε
4: k ← k + 1
5: Update zk = arg maxv∈Vk−1

r(v) and rUk = r(zk)
6: if zk ∈ Ω then
7: rLk ← (zk)
8: z∗ ← zk
9: else

10: Find projection ok = skzk via bisection
11: if r(ok) ≥ rLk
12: rLk ← r(ok)
13: z∗ ← ok
14: end if
15: Update vertex set Vk according to (13)
16: Construct new polyblock Pk =

⋃
v∈Vk

[0,v]
17: end if
18: end while
19: Retrieve t∗ from z∗ and return x∗ by solving (12)

The detailed steps of the successive polyblock approxima-
tion procedure are shown in Algorithm 1, where ε > 0 is
the error tolerance that ensures the algorithm returns an ε-
optimal solution when it terminates. The algorithm can be
executed at the source node in a centralized manner. The
information required is the matrices A and B concerning the
relays’ channel conditions and energy status, which can be
acquired through information exchange at the beginning of
each time slot. For fixed time t, we numerically calculate the
maximum SNR γ∗(t), and all these points (t, γ∗(t)) constitute
the upper boundary ∂+Ω (denoted by the dashed line in
Fig. 2b). Apparently, the upper boundary shows a non-convex
feasible set of (t, γ). Then, we apply Algorithm 1 to search for
the global optimum. When the generated polyblocks become
closer to the global optimum (denoted by solid lines in Fig.
2b), the gap between the upper and lower throughput bounds
will approach the desired accuracy.

IV. NUMERICAL RESULTS

In this section, we assume that each DUE in the D2D
network has 3 one-hop neighbors as the relays to enhance the
data transmission. The noise at each DUE has zero mean and
unit variance. The EH rate c and the channel h in the first hop
are fixed and known to the DUE relays, while only moment
information about the channels g and z in the second hop
are available to the DUE relays. We first study how the DUE
relays’ EH rates and the CUE’s interference requirement affect
the throughput performance of the D2D relay network. For
simplicity, we assume that all DUE relays have the same EH
rate. By varying the CUE’s interference violation probability
η, we evaluate the throughput performance with different EH
rates. Without loss of generality, we set the channel mean to
be ug = uz = [1.0, 1.5, 2.0]T , and the covariance matrices
are symmetric with eigenvalues given by [2, 2, 2]T .

Fig. 3a shows the optimal throughput and EH time for
different η and EH rates. It is obvious that the effective
throughput increases when we relax the CUE’s probability
limit η. In Fig. 3b, we show the DUE relays’ power scaling
factors for different EH rates. When the EH rates are small,
we observe that all DUE relays transmit at their peak power
to fully use the harvested energy. When the EH rates increase,
the optimal EH time decreases and the throughput gradually
stabilizes at a fixed level as shown in Fig. 3a. This is because
the DUE relays have accumulated sufficient energy and the
throughput of the D2D network is dominated by the channel
conditions as well as the CUE’s interference requirement.
Hence, some relays decrease the power scaling factor to
suppress the noise at the DRx as shown in Fig. 3b.

In Fig. 4, we examine how the channels g and z affect
the relays’ power control strategy. In Case 1, we set h =
[1.0, 2.0, 3.0]T and ug = uz = [2, 2, 2]T . In Case 2, we
update ug = [3, 2, 2]T , meaning that the channel in the second
hop becomes better. In Case 3, we update uz = [2, 2, 3]T ,
meaning that the interference to the CUE becomes stronger.
As a result, we observe performance improvement in Case 2
and degradation in Case 3 as shown in Fig. 4a. The relays’
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Fig. 3: Performance with EH rates and interference requirements.
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Fig. 4: Performance with EH rates and channel conditions.

optimal power scaling factors in different cases are shown in
Fig. 4b. We observe that relay-3 has the best channel in the first
hop (i.e., h3 ≥ h2 ≥ h1) in Case 1 and thus it transmits at the
peak power (i.e., x3 = 1). In Case 2, the power scaling factor
of the DUE relay-1 has been increased due to the improvement
of channel g1 in the second hop. In Case 3, the channel from
the DUE relay-3 to the CUE has been improved. Hence, it has
to decrease the transmit power to suppress the interference to
the CUE.

V. CONCLUSIONS

In this paper, multiple DUE relays are employed to improve
the throughput of a D2D network by fully utilizing the har-
vested energy at different DUE relays. Considering imperfect
channel information, we propose a robust formulation for
the relays’ joint EH scheduling and beamforming problem.
Though the performance maximization problem is non-convex,
we attain the global optimum by successively approximating
its feasible region by regularly-shaped polyblocks.

APPENDIX A
PROOF OF PROPOSITION 2

By Definition 3, given z(1) , (t(1), γ(1)) ∈ Ω and z(2) ,
(t(2), γ(2)) � z(1), we need to find a solution x(2) ∈ [0,1]
such that the probabilistic constraint (5b) is satisfied and
γ(2) ≤ γ̄(2) , (x(2))TAx(2)

f(t(2))+(x(2))TBx(2) . Let x(2) = κx(1) where
κ is a scaling factor. Then, we have

γ(2) =
(x(2))TAx(2)

f(t(2)) + (x(2))TBx(2)
=

(x(1))TAx(1)

f(t(2))
κ2 + (x(1))TBx(1)

.

(14)

By setting κ2 = γ(2)f(t(2))
(x(1))T (A−γ(2)B)x(1) , we can ensure γ(2) ≤

γ̄(2). Moreover, from (14) we have

γ(2)f(t(2))/κ2 = (x(1))T (A− γ(2)B)x(1)

≥ (x(1))T (A− γ(1)B)x(1) = γ(1)f(t(1)),

which implies κ2
(

1
t(2)
− 2
)
≤ γ(2)

γ(1)

(
1
t(1)
− 2
)
≤
(

1
t(1)
− 2
)
.

Therefore, we have the following inequality:

φ(z(2)) =

N∑
n=1

|zn|2
(
x(1)
n

)2

cnκ
2
(

1/t(2) − 2
)
≤ φ(z(1)).

Hence, we can always find κ =
(

γ(2)f(t(2))
(x(1))T (A−γ(2)B)x(1)

)1/2

≤(
1/t(1)−2
1/t(2)−2

)1/2

≤ 1 such that x(2) = κx(1) and

Pz

(
φ(t(2),x(2)) ≥ φ̄

)
≤ Pz

(
φ(t(1),x(1)) ≥ φ̄

)
≤ η, which

implies that z(2) ∈ Ω and thus Ω is normal.
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