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1 Introduction

Recently, semidefinite programming (SDP) has received a lot of attention in many communities.
Such a popularity can partly be attributed to the wide applicability of SDP, as well as recent
advances in the design of provably efficient interior–point algorithms and fast heuristics. In
this article, we will survey some of the recent applications of SDP and provide further pointers
to the literature for the interested readers. Given the versatile modeling power of semidefinite
programs and the multitude of work that applies the SDP methodology, we should emphasize
that the applications discussed in this article are by no means exhaustive, and they necessarily
reflect a certain degree of personal bias.

Before we begin our discussion on SDP applications, let us fix some notation. Let Sn be the
set of n × n real, symmetric matrices, and let Sn+ ⊂ Sn be the set of n × n real, symmetric,
positive semidefinite matrices, i.e., if A ∈ Sn+, then for any x ∈ Rn, we have xTAx ≥ 0. We shall
also write A ≽ 0 to denote the fact that A ∈ Sn+. For any A,B ∈ Sn, we define the trace inner
product A •B via

A •B = tr(ATB) =

n∑
i,j=1

AijBij .

Let C,A1, . . . , Am ∈ Sn and b ∈ Rm. The optimization problem

(P) :

inf C •X
subject to Ai •X = bi for 1 ≤ i ≤ m,

X ≽ 0

is called a semidefinite program (SDP) in primal standard form. Its dual problem, which is given
by

(D) :

sup bT y

subject to

m∑
i=1

yiAi + Z = C,

y ∈ Rm, Z ≽ 0,

is also an SDP and is called a semidefinite program (SDP) in dual standard form. Theoretically,
it has been shown that both (P ) and (D) can be efficiently solved (up to any desired degree
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of accuracy) by the ellipsoid method or interior–point algorithms (see, e.g., [25, 10]). Many
techniques have also been recently developed to speed up the solution time of SDPs (see, e.g.,
[48, 19, 65]).

In the sequel, we shall see how (P ) and (D) can be used to model a wide range of problems
that arise in practice.

2 Semidefinite Relaxations of Hard Quadratic Optimization Prob-
lems

2.1 The Basic Technique

A frequently used and powerful idea for dealing with hard optimization problems is to develop
tractable convex relaxations of them. As it turns out, many difficult quadratic optimization
problems can be relaxed to SDPs. To illustrate some of the basic ideas, let us consider the
following class of homogeneous quadratically constrained quadratic programs (QCQPs):

(QCQP) :

minimize xTAx

subject to xTAix Di bi for i = 1, . . . ,m,

x ∈ Rn.

Here, we assume that A,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R, and ‘Di’ can represent either
‘≥’, ‘=’, or ‘≤’, where i = 1, . . . ,m. Problem (QCQP) is known to be NP–hard, as it captures
various NP–hard problems as special cases (see, e.g., [22, 47, 44]). To derive an SDP relaxation
of (QCQP), we first observe that

xTAx = A • xxT and xTAix = Ai • xxT for i = 1, . . . ,m.

In particular, both the objective function and constraints in (QCQP) are linear in the matrix
xxT . Thus, by introducing a new variable X = xxT that denotes a rank one symmetric positive
semidefinite matrix, we obtain the following equivalent formulation of (QCQP):

(QCQP–RC) :

minimize A •X
subject to Ai •X Di bi for i = 1, . . . ,m,

X ≽ 0, rank(X) = 1.

The upshot of the above equivalent formulation is that it allows us to identify the fundamental
difficulty in solving (QCQP). Indeed, in (QCQP–RC), the objective function and all constraints
except the rank(X) = 1 one are convex in X. Thus, we may consider dropping the trouble–
causing rank constraint to obtain the following so–called semidefinite relaxation of (QCQP):

(QCQP–SDR) :

minimize A •X
subject to Ai •X Di bi for i = 1, . . . ,m,

X ≽ 0.

It is not hard to see that (QCQP–SDR) is an instance of SDP, and hence can be solved efficiently.
However, a fundamental issue that one must address is how to convert a globally optimal solution
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X∗ to (QCQP–SDR) into a feasible solution x̃ to (QCQP). Note that if X∗ is of rank one, then
there is nothing to do, for we can write X∗ = x∗(x∗)T , and x∗ will be a feasible (and in fact
optimal) solution to (QCQP). On the other hand, if the rank of X∗ is larger than 1, then we
must somehow extract from it, in an efficient manner, a vector x̃ that is feasible for (QCQP).
There are many ways to do this. However, we must emphasize that even though the extracted
solution is feasible for (QCQP), it is in general not an optimal solution (for otherwise we would
have solved an NP–hard problem in polynomial time).

We note that the above procedure has been used extensively, e.g., in the signal processing
community to tackle various communications problems. We refer the interested readers to [50, 40]
for further details and references.

2.2 Quality of Semidefinite Relaxations

Given the SDP relaxations of various QCQP problems, it is natural to ask how good those
relaxations are. In their seminal work [22], Goemans and Williamson analyzed an SDP relaxation
for the Maximum Cut problem and provided the first provable result concerning the quality of
SDP relaxations. Furthermore, it sparked off a great deal of very fruitful research on the quality
of various SDP relaxations. Now, let us give an overview of Goemans and Williamson’s approach.
Such an approach has also been used to establish some of the latter results on the quality of
SDP relaxations.

One of the motivations for Goemans and Williamson’s work is the Maximum Cut Problem,
which is a well–known, NP–hard combinatorial optimization problem and is defined as follows.
Suppose that we are given a simple undirected graph G = (V,E) with V = {1, . . . , n}, and a
function w : E → R+ that assigns to each edge e ∈ E a non–negative weight we. The Maximum
Cut Problem (Max–Cut) is that of finding a set S ⊂ V of vertices such that the total weight of
the edges in the cut (S, V \S), i.e., sum of the weights of the edges with one endpoint in S and
the other in V \S, is maximized. By setting wij = 0 if (i, j) ̸∈ E, we may denote the weight of a
cut (S, V \S) by

w(S, V \S) =
∑

i∈S,j∈V \S

wij , (1)

and our goal is to choose a set S ⊂ V such that the quantity in (1) is maximized. The Max–Cut
problem can be formulated as the following QCQP:

v∗ = maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to xi ∈ {−1, 1} for i = 1, . . . , n,

(2)

where the variable xi indicates which side of the cut vertex i belongs to. Specifically, the cut
(S, V \S) is given by S = {i ∈ {1, . . . , n} : xi = 1}. Note that if vertices i and j belong
to the same side of a cut, then xi = xj , whence its contribution to the objective function in
(2) is zero. Otherwise, we have xi ̸= xj , whence its contribution to the objective function is
wij(1 − (−1))/2 = wij . Upon applying the techniques described in Section 2.1, we obtain the
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following SDP relaxation of (2):

v∗sdp = maximize
1

2

∑
(i,j)∈E

wij(1−Xij)

subject to Xii = 1 for i = 1, . . . , n,

X ≽ 0.

(3)

Note that since (3) is a relaxation of (2), we have v∗sdp ≥ v∗.
Now, let X∗ be an optimal solution to (3). In general, the matrix X∗ need not be of the form

xxT , and hence it does not immediately yield a feasible solution to (2). However, we can extract
from X∗ a solution x′ ∈ {−1, 1}n to (2) via the following randomized rounding procedure:

1. Compute the Cholesky factorization X∗ = UTU of X∗, where U ∈ Rn×n. Let ui ∈ Rn be
the i–th column of U . Note that ∥ui∥22 = 1 for i = 1, . . . , n.

2. Let r ∈ Rn be a vector uniformly distributed on the unit sphere Sn−1 = {x ∈ Rn : ∥x∥2 =
1}.

3. Set x′i = sgn
(
uTi r

)
for i = 1, . . . , n, where

sgn(z) =

{
1 if z ≥ 0,

−1 otherwise.

In other words, we choose a random hyperplane through the origin (with r as its normal) and
partition the vertices according to whether their corresponding vectors lie “above” or “below”
the hyperplane.

It is clear that x′ = (x′1, . . . , x
′
n) is a feasible solution to (2), and hence we must have

v′ ≡ 1

2

∑
(i,j)∈E

wij(1− x′ix
′
j) ≤ v∗.

The question now is whether there exists an α ∈ (0, 1) such that v′ ≥ α · v∗. The factor α is
commonly known as the approximation ratio. More precisely, since the solution x′ ∈ {−1, 1}n is
produced via a randomized procedure, we are interested in its expected objective value, i.e.,

E
[
v′
]

=
1

2
E

 ∑
(i,j)∈E

wij

(
1− x′ix

′
j

)
=

1

2

∑
(i,j)∈E

wijE
[
1− x′ix

′
j

]
=

∑
(i,j)∈E

wij Pr
[
sgn

(
uTi r

)
̸= sgn

(
uTj r

)]
(4)

The following theorem provides a lower bound on E [v′] and allows us to compare it with v∗sdp:
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Table 1: Quality Analyses of Various SDP Relaxations

Type of Problems References

Combinatorial Optimization [22, 29, 26, 16, 23, 1, 5, 4, 17, 18, 6, 30, 53, 7]

Quadratic Optimization [47, 12, 44, 67, 49, 68, 8, 41, 43, 63, 27, 62, 3, 57, 2]

Communications [31, 15, 58, 59, 69]

Geometry [60, 64, 61, 70]

Theorem 1 Let u, v ∈ Sn−1, and let r be a vector uniformly distributed on Sn−1. Then, we
have

Pr
[
sgn

(
uT r

)
̸= sgn

(
vT r

)]
=

1

π
arccos

(
uT v

)
.

Furthermore, for any z ∈ [−1, 1], we have

1

π
arccos(z) ≥ α · 1

2
(1− z) > 0.878 · 1

2
(1− z),

where

α = min
0≤θ≤π

2θ

π(1− cos θ)
.

As a corollary to Theorem 1, we have the following

Corollary 1 Given an instance (G,w) of the Max–Cut problem and an optimal solution to (3),
the randomized rounding procedure above will produce a cut (S′, V \S′) whose expected objective
value satisfies w(S′, V \S′) ≥ 0.878v∗.

Proof Let x′ be the solution obtained from the randomized rounding procedure, and let S′ be
the corresponding cut. By (4) and Theorem 1, we have

E
[
w(S′, V \S′)

]
=

1

π

∑
(i,j)∈E

wij · arccos
(
uTi uj

)
≥ 0.878 · 1

2

∑
(i,j)∈E

wij

(
1− uTi uj

)
= 0.878v∗sdp

≥ 0.878v∗,

as desired. ⊔⊓

Note that a crucial step in the above analysis is to study a certain probability question related to
the projections of a collection of vectors onto a random vector. This turns out to be a recurring
theme in many of the quality analyses of SDP relaxations. Table 1 provides pointers to further
theoretical results on the quality of SDP relaxations that arise in various applications.
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3 Semidefinite Relaxations of Polynomial Optimization Prob-
lems

A fundamental problem in optimization is that of finding the global minimum of a real–valued
polynomial p : Rn → R subject to polynomial inequality constraints. Indeed, the class of
polynomial functions provides a very powerful modeling tool, and many optimization problems
can be formulated as polynomial optimization problems. One example is the Max–Cut problem
in Section 2.2, where the constraint xi ∈ {−1, 1} can be equivalently formulated as x2i = 1.
Given its importance, polynomial optimization has been studied intensely in recent years. One
approach, which is proposed by Lasserre [34] (see also the excellent survey by Laurent [36]), is to
construct a sequence of successively tighter SDP relaxations of the given polynomial optimization
problem, in such a way that the corresponding optimal values are monotone and converge to the
optimal value of the original problem. To fix ideas and simplify notation, let us again focus on
the case of quadratic optimization problems [33]. To begin, consider the problem

(PO) :
v∗ = minimize g0(x)

subject to gi(x) ≥ 0 for i = 1, . . . ,m,

where g0, g1, . . . , gm : Rn → R are quadratic polynomials. Note that we may write the polyno-
mials g0, g1, . . . , gm in multi–index notation, namely,

gi(x) =
∑
α

(gi)αx
α for i = 0, 1, . . . ,m, (5)

where α = (α1, . . . , αn) ≥ 0, xα = xα1
1 · · ·xαn

n , and
∑n

i=1 αi ≤ 2. Hence, we may identify the
polynomial gi with its coefficient vector ((gi)α) ∈ R(n+1)(n+2)/2, where i = 0, 1, . . . ,m.

Now, observe that each summand in (5) is either a constant or of the form xi or xixj , where
1 ≤ i ≤ j ≤ n. For terms of the form xixj , we may linearize them by introducing the variables
yij . As a result, we have the following linear programming (LP) relaxation of (PO):

minimize
∑

0≤i≤j≤n

(g0)ijyij

subject to
∑

0≤i≤j≤n

(gk)ijyij ≥ 0 for k = 1, . . . ,m,

with y00 = 1 and y0i = xi for i = 1, . . . , n. To tighten the relaxation, observe that ideally we
should have yij = y0iy0j for 1 ≤ i ≤ j ≤ n. Hence, we may impose the constraint

M1(y1) ≡



1 y01 y02 · · · y0i · · · y0n
y01 y11 y12 · · · y1i · · · y1n
...

...
...

...
...

. . .
...

y0j y1j y2j · · · yij · · · yjn
...

...
...

...
...

. . .
...

y0n y1n y2n · · · yin · · · ynn


≽ 0,
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where y1 = (1, y01, . . . , y0n, y11, . . . , ynn). The first SDP relaxation in the sequence can then be
given by

(PO–SDR1) :

v∗1 = inf
∑

0≤i≤j≤n

(g0)ijyij

subject to
∑

0≤i≤j≤n

(gk)ijyij ≥ 0 for k = 1, . . . ,m,

M1(y1) ≽ 0.

The reader may notice that (PO–SDR1) is simply the standard SDP relaxation of a quadratic
optimization problem (cf. Section 2.1).

To obtain the next SDP relaxation in the sequence, consider a particular constraint∑
0≤i≤j≤n

(gk)ijyij ≥ 0,

where k = 1, . . . ,m. If we multiply the left–hand side by ypq (where 0 ≤ p ≤ q ≤ n) and linearize,
we obtain

gkypq =
∑

0≤i≤j≤n

(gk)ijyijpq

(note that ypq is an entry of y1). Now, it can be shown [33, 34] that the linear matrix inequality
M1(gky1) = [gkypq]p,q ≽ 0 is a valid constraint for the original problem (PO). To further tighten
the relaxation, we impose constraints on the terms yijpq via

M2(y2) ≡



1 y01 · · · y0n y11 · · · ynn
y01 y11 · · · y1n y111 · · · y1nn
...

...
...

...
...

. . .
...

y0n y1n · · · ynn y11n · · · ynnn
y11 y111 · · · y11n y1111 · · · y11nn
...

...
...

...
...

. . .
...

ynn y1nn · · · ynnn y11nn · · · ynnnn


≽ 0,

where y2 = (1, y01, . . . , ynnnn). Then, the second SDP relaxation in the sequence is given by

(PO–SDR2) :

v∗2 = inf
∑

0≤i≤j≤n

(g0)ijyij

subject to M1(gky1) ≽ 0 for k = 1, . . . ,m,

M2(y2) ≽ 0.

In general, the l–th SDP relaxation in the sequence, which is given by

(PO–SDRl) :

v∗l = inf
∑

0≤i≤j≤n

(g0)ijyij

subject to Ml−1(gkyl−1) ≽ 0 for k = 1, . . . ,m,

Ml(yl) ≽ 0,
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can be obtained by repeating the above procedure.
The following proposition states that the sequence of optimal values {v∗l }l is monotone and

they all provide lower bounds on the optimal value v∗ of the original problem (PO).

Proposition 1 For l = 1, 2, . . ., we have v∗l ≤ v∗l+1 ≤ v∗.

To prove Proposition 1, it suffices to verify that for l = 1, 2, . . ., the feasible region of (PO)
is contained in that of (PO–SDR(l + 1)), which in turn is contained in the feasible region of
(PO–SDRl). We refer the reader to [33, 34] for details.

Although Proposition 1 implies that a better lower bound on v∗ can be obtained by solving
a higher order SDP relaxation (PO–SDRl) (where l = 1, 2, . . .), it is not clear from Proposition
1 whether the sequence of optimal values {v∗l }l converges to v∗. However, if the feasible region
of (PO) is compact, then it can be shown that v∗l ↗ v∗. The proof of such result relies on
representation theorems of polynomials that are positive on a compact set (see, e.g., [51] for a
detailed treatment). We remark that the compactness assumption is not as restrictive as it may
seem. It can be guaranteed, for instance, if we know a priori that there exists an optimal solution
x∗ to (PO) with ∥x∗∥2 ≤ r for some r > 0, since then we can add the redundant polynomial
inequality constraint gm+1(x) = r2 − ∥x∥22 ≥ 0 to (PO) and obtain a compact feasible region.
We summarize as follows:

Theorem 2 Suppose that the feasible region of (PO) is compact. Then, we have v∗l ↗ v∗.

There has been much research on the systematic generation of successively tighter SDP re-
laxations for various polynomial optimization problems. We refer the interested readers to
[39, 37, 36, 35, 42, 52, 28] and the references therein for further details.

4 Safe Tractable Approximations of Chance Constrained Linear
Matrix Inequalities

In many practical applications, the data defining an optimization problem may not be known
exactly. This can happen, e.g., when we are unable to make precise measurements. Currently,
there are several ways to model such data uncertainty. For instance, in the area of robust
optimization, the uncertain data are assumed to lie in some bounded set S, and the goal is to
find a solution that is feasible for all realizations of the uncertain data from the set S. On the
other hand, in the area of chance constrained optimization, the uncertain data are assumed to
follow certain probability distribution, and it is assumed that certain constraints can be violated
occasionally. Thus, the goal here is to find a solution whose constraint violation probability is
below a certain threshold. It should be noted that both approaches have their own advantages
and disadvantages. In this section, we will focus on the chance constrained optimization approach
and see how SDP can be used to tackle a large class of chance constrained optimization problems.

To begin, consider the problem

(CCP) :

minimize cTx

subject to Pr

(
A0(x)−

h∑
i=1

ξiAi(x) ≽ 0

)
≥ 1− ϵ, (†)

x ∈ Rn,
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where c ∈ Rn is a given objective vector; A0,A1, . . . ,Ah : Rn → S m are affine functions in
x with A0(x) ≻ 0 for all x ∈ Rn; ξ1, . . . , ξh are independent (but not necessarily identical)
mean zero random variables; and ϵ ∈ (0, 1) is the error tolerance parameter. Problem (CCP)
arises from many engineering applications, such as truss topology design and problems in control
theory and communications, and has received much attention lately (see, e.g., [45, 46, 43, 11,
56, 38]). Moreover, it captures chance constrained linear and conic quadratic programming as
special cases. In general, the constraint (†) in (CCP) is computationally intractable. In an
attempt to circumvent this problem, Ben–Tal and Nemirovski [43, 11] proposed a safe tractable
approximation of (†) — that is, a system of constraints H such that (i) x is feasible for (†)
whenever it is feasible for H, and (ii) the constraints in H are efficiently computable. Specifically,
their strategy is as follows. First, observe that

Pr

(
A0(x)−

h∑
i=1

ξiAi(x) ≽ 0

)
= Pr

(
h∑

i=1

ξiA′
i(x) ≼ I

)
,

where A′
i(x) = A−1/2

0 (x)Ai(x)A−1/2
0 (x). Now, suppose one can choose γ = γ(ϵ) > 0 so that

whenever
h∑

i=1

(
A′

i(x)
)2 ≼ γ2I (6)

holds, the constraint (†) is satisfied. Then, (6) will be a sufficient condition for (†) to hold. The
parameter γ can be viewed as the degree of conservatism of the approximation. In particular,
a smaller γ results in a larger “gap” between the safe tractable constraint (6) and the original
chance constraint (†). Now, the upshot of (6) is that it can be expressed as a linear matrix
inequality using the Schur complement:

γA0(x) A1(x) · · · Ah(x)

A1(x) γA0(x)

...
. . .

Ah(x) γA0(x)

 ≽ 0. (7)

Thus, by replacing (†) with (7), Problem (CCP) becomes tractable. Moreover, any solution
x ∈ Rn that satisfies (7) will be feasible for the original chance constrained problem (CCP).

Using some deep results from the functional analysis literature, it can be shown that when
the random variables ξ1, . . . , ξh are “nice”, there indeed exists a choice of γ > 0 such that (6) is
a sufficient condition for (†) to hold. Specifically, we have the following

Theorem 3 Let ξ1, . . . , ξh be independent mean zero random variables, each of which is either
(i) supported on [−1, 1], or (ii) normally distributed with unit variance. Consider the chance
constrained problem (CCP). Then, for any ϵ ∈ (0, 1/2], the positive semidefinite constraint (7)

with γ ≤ γ(ϵ) ≡
(√

8e ln(m/ϵ)
)−1

is a safe tractable approximation of (†).

The proof of Theorem 3 can be found in [57]; see also [11].
We refer those readers who are interested in optimization under data uncertainty to the books

[55, 9] for further techniques and results.
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5 Applications in Data Analysis

Recently, SDP has been used to tackle various problems in data analysis and machine learning.
In this section, we will study one such problem, namely sparse principal component analysis,
and show how it can be tackled using SDP.

Principal Component Analysis (PCA) (see, e.g, [54]) is a very important tool in data analysis.
It provides a way to reduce the dimension of a given data set, thus revealing the sometimes hidden
underlying structure of and facilitating further analysis on the data set. To motivate the problem
of finding principal components, consider the following scenario. Suppose that we are interested
in some attributes X1, . . . , Xn of a population. In order to estimate the values of these attributes,
one may sample from the population. Specifically, let Xij be the value of the j–th attribute of
the i–th individual, where i = 1, . . . ,m and j = 1, . . . , n. For j, k = 1, . . . , n, define

X̄j =
1

m

m∑
i=1

Xij , σjk =
1

m

m∑
i=1

(Xij − X̄j)(Xik − X̄k)

to be the sample mean of Xj and the sample covariance between Xj and Xk, respectively. Define
Σ = [σjk]j,k to be the sample covariance matrix. The goal is then to find the principal components
u1, . . . , un such that the linear combination

∑n
j=1 ujXj has maximum sample variance. In other

words, we would like to solve the following problem:

max
∥u∥2≤1

uTΣu, (8)

where u = (u1, . . . , un). The model given by (8) is based on the belief that principal components
with a large associated variance indicate interesting features in the data. However, one of the
shortcomings of (8) is that the linear combination may use a large number of the original vari-
ables, i.e., most of the factors u1, . . . , un are non–zero, thus posing a difficulty in interpreting
which variables are the most influential. This motivates us to consider the problem of finding
sparse principal components, i.e., a set {u1, . . . , un} of principal components that maximizes
the variance while at the same time having only a few non–zero ui’s. There are many ways to
formulate such a problem. For instance, one can take the following penalty function approach
(see [20]):

v(ρ) = max
∥u∥2≤1

{
uTΣu− ρ∥u∥0

}
, (9)

where ∥u∥0 = |{i ∈ {1, . . . , n} : ui ̸= 0}| is the number of non–zero elements in the vector u ∈ Rn,
and ρ ∈ R is a parameter controlling the level of sparsity. Note that the objective function in
(9) is non–convex and the associated optimization problem is hard to solve in general. However,
as shown in [20], it can be relaxed to an SDP. Let us now sketch the main ideas in [20].

To begin, observe that Σ ≽ 0, and we may assume without loss that Σ11 ≥ Σ22 ≥ · · · ≥
Σnn ≥ 0. Let Σ1/2 ≽ 0 be such that Σ = Σ1/2Σ1/2. It is not hard to show that when ρ > Σ11,
the optimal solution to (9) is given by u = 0. Thus, we only need to consider the case where
ρ ≤ Σ11. Then, Problem (9) is equivalent to the problem

v(ρ) = max
∥u∥2=1

{
uTΣu− ρ∥u∥0

}
. (10)
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For a given vector u ∈ Rn, let w(u) ∈ {0, 1}n be the indicator vector of the sparsity pattern of u,
i.e., w(u)i = 1 iff ui ̸= 0 for i = 1, . . . , n. Observe that

uTΣu = ūT
(
diag(w(u))Σdiag(w(u))

)
ū

for any ū ∈ Rn such that ūi = ui whenever ui ̸= 0, where i = 1, . . . , n. On the other hand, by
the Courant–Fischer characterization, for a given sparsity pattern vector w ∈ {0, 1}n, we have

max
∥u∥2=1

uT
(
diag(w)Σ diag(w)

)
u = λmax

(
diag(w)Σ diag(w)

)
,

where λmax(M) is the largest eigenvalue of the matrix M . Thus, upon letting σi ∈ Rn to be the
i–th column of Σ1/2 (where i = 1, . . . , n), we may write (10) as

v(ρ) = max
w∈{0,1}n

{
λmax

(
diag(w) Σdiag(w)

)
− ρeTw

}
= max

w∈{0,1}n

{
λmax

(
diag(w) Σ1/2Σ1/2 diag(w)

)
− ρeTw

}
= max

w∈{0,1}n

{
λmax

(
Σ1/2 diag(w)Σ1/2

)
− ρeTw

}
(11)

= max
∥u∥2=1

max
w∈{0,1}n

{
uT
(
Σ1/2 diag(w)Σ1/2

)
u− ρeTw

}
= max

∥u∥2=1
max

w∈{0,1}n

n∑
i=1

wi

[(
σT
i u
)2 − ρ

]
(12)

= max
∥u∥2=1

n∑
i=1

[(
σT
i u
)2 − ρ

]
+
, (13)

where (11) follows from the fact that λmax

(
MTM

)
= λmax

(
MMT

)
for any matrix M and

diag(w)2 = diag(w) for any w ∈ {0, 1}n, and (12) follows from the fact that

uT
(
Σ1/2 diag(w)Σ1/2

)
u =

∥∥∥diag(w)Σ1/2u
∥∥∥2
2
=

n∑
i=1

w2
i

(
σT
i u
)2

=

n∑
i=1

wi

(
σT
i u
)2

.

Note that the objective function in (13) is still non–convex. However, the upshot of (13) is that
the objective function is linear in uiuj , where i, j = 1, . . . , n. In particular, let U = uuT ∈ Rn×n.

Then, it is easy to verify that
(
σT
i u
)2

= σT
i Uσi for i = 1, . . . , n. Moreover, for a symmetric

matrix U , we have U = uuT and ∥u∥2 = 1 iff tr(U) = 1, rank(U) = 1 and U ≽ 0. Thus, we see
that (13) is equivalent to the following problem:

v(ρ) = maximize

n∑
i=1

(
σT
i Uσi − ρ

)
+

subject to tr(U) = 1,

U ≽ 0, rank(U) = 1.

(14)

11



It is not hard to see that the function U 7→
∑n

i=1

(
σT
i Uσi − ρ

)
+

is convex. Unfortunately,
Problem (14) is still hard to solve in general, since we are maximizing a convex function, and
the constraint rank(U) = 1 is not convex. However, not all is lost, as we may proceed as follows.
First, let us introduce a notation. Given an n × n symmetric matrix M , let λ1, . . . , λn be its
eigenvalues. Define

tr(M)+ =

n∑
i=1

max{λi, 0}.

Now, observe that if U = uuT and ∥u∥2 = 1, then U1/2 = U = uuT . Moreover, for any α ∈ R,
the matrix αuuT has one eigenvalue equal to α and n− 1 eigenvalues equal to 0, which implies
that tr

(
αuuT

)
+
= α+. It follows that(

σT
i Uσi − ρ

)
+

= tr
( (

σT
i uu

Tσi − ρ
)
uuT

)
+

= tr
(
u
(
uTσiσ

T
i u− ρ

)
uT
)
+

= tr
(
U1/2σiσ

T
i U

1/2 − ρU
)
+
.

The point of the above manipulation is that the function U 7→ tr
(
U1/2σiσ

T
i U

1/2 − ρU
)
+

is
concave. Specifically, one can prove the following

Theorem 4 Let M ∈ Sn and X ∈ Sn+. Then, we have

tr
(
X1/2MX1/2

)
+
= max

X≽P≽0
tr(PM) = min

Y≽M,Y≽0
tr(Y X) (15)

In particular, the function X 7→ tr
(
X1/2MX1/2

)
+

is concave on Sn+.
Upon applying Theorem 4 and dropping the problematic rank constraint rank(U) = 1 in (14),
we obtain the following convex relaxation:

v′(ρ) = maximize

n∑
i=1

tr
(
U1/2σiσ

T
i U

1/2 − ρU
)
+

subject to tr(U) = 1,

U ≽ 0.

(16)

Upon letting Mi(ρ) = σiσ
T
i − ρI for i = 1, . . . , n and using (15), we see that (16) is equivalent to

v′(ρ) = maximize

n∑
i=1

tr(PiMi(ρ))

subject to tr(U) = 1,

U ≽ Pi ≽ 0 for i = 1, . . . , n,

U ≽ 0,

which is an SDP.
It turns out that SDP is a very powerful tool for addressing a host of data analysis and

machine learning problems. We refer the interested readers to [32, 21, 14, 24, 13, 66] for further
details.
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