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I. I NTRODUCTION

In recent years, the semidefinite relaxation (SDR) technique
has been at the center of some of the very exciting develop-
ments in the area of signal processing and communications,
and it has shown great significance and relevance on a va-
riety of applications. Roughly speaking, SDR is a powerful,
computationally efficient approximation technique for a host
of very difficult optimization problems. In particular, it can be
applied to many nonconvex quadratically constrained quadratic
programs (QCQPs) in an almost mechanical fashion. These
include the following problems:

min
x∈Rn

xTCx

s.t. xTFix ≥ gi, i = 1, . . . , p,
xTHix = li, i = 1, . . . , q,

(1)

where the given matricesC,F1, . . . ,Fp,H1, . . . ,Hq are as-
sumed to be general real symmetric matrices, possibly in-
definite. The class of nonconvex QCQPs (1) captures many
problems that are of interest to the signal processing and com-
munications community. For instance, consider the Boolean
quadratic program (BQP)

min
x∈Rn

xTCx

s.t. x2
i = 1, i = 1, . . . , n.

(2)

The BQP is long-known to be a computationally difficult
problem. In particular, it belongs to the class of NP-hard
problems. Nevertheless, being able to handle the BQP well
has an enormous impact on multiple-input-multiple-output
(MIMO) detection and multiuser detection. Another important
yet NP-hard problem in the nonconvex QCQP class (1) is

min
x∈Rn

xTCx

s.t. xTFix ≥ 1, i = 1, . . . ,m,
(3)

where C,F1, . . . ,Fm are all positive semidefinite. Prob-
lem (3) captures the multicast downlink transmit beamforming
problem; see [1] for details. An illustration of an instanceof
Problem (3) is provided in Fig. 1. As seen from the figure,
the feasible set of (3) is the intersection of the exteriors of
multiple ellipsoids, which makes the problem difficult.

As a matter of fact, SDR has been studied and applied in
the optimization community long before it made its impact
on signal processing and communications. The idea of SDR
can already be found in an early paper of Lovász in 1979
[2], but it was arguably the seminal work of Goemans and
Williamson in 1995 [3] that sparked the significant interest
in and rapid development of SDR techniques. In that work, it
was shown that SDR can be used to provide an approximation
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Fig. 1. A nonconvex QCQP inR2. Colored lines: contour of the objective
function; gray area: the feasible set; black lines: boundary of each constraint.

accuracy of no worse than0.8756 for the Maximum Cut
problem (the BQP with some conditions onC). In other
words, even though the Maximum Cut problem is NP-hard,
one could efficiently obtain a solution whose objective value
is at least0.8756 times the optimal value using SDR. Since
then, we have seen a number of dedicated theoretical analyses
that establish the SDR approximation accuracy under different
problem settings [3]–[11], and that have greatly improved our
understanding of the capabilities of SDR. Today, we are even
able to pin down a number of conditions under which SDR
provides an exact optimal solution to the original problem [7],
[12]–[16].

In the field of signal processing and communications, the in-
troduction of SDR since the early 2000’s has reshaped the way
we see many topics today. Many practical experiences have
already indicated that SDR is capable of providing accurate
(and sometimes near-optimal) approximations. For instance,
in MIMO detection, SDR is now known as an efficient high-
performance approach [17]–[23] (see also [24]–[26] for blind
MIMO detection). The promising empirical approximation
performance of SDR has motivated new endeavors, leading
to the creation of new research trends in some cases. One
such example is in the area of transmit beamforming, which
has attracted much recent interest; for a review of this exciting
topic, please see the article by Gershmanet al. in this special
issue [1], and [27]. The effectiveness of transmit beamforming
depends much on how well one can handle (often nonconvex)
QCQPs, and its technical progress could have been slower
if SDR had not been known to the signal processing com-
munity. Another example worth mentioning is sensor network
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localization, a practically important but technically challenging
problem. SDR has proven to be an effective technique for
tackling the sensor network localization problem, both in
theory and practice [28]–[31]. In addition to the three major
applications mentioned above, there are many other different
applications of SDR, such as waveform design in radar [32],
[33], phase unwrapping [34], robust blind beamforming [35],
large-margin parameter estimation in speech recognition (see
the article by Jiang and Li in this special issue [36] for further
details), transmitB1 shim in MRI [37], and many more [38]–
[41]. It is anticipated that SDR would find more applications
in the near future.

This paper aims to give an overview of SDR, with an
emphasis on showing the underlying intuitions and various
applications of this powerful tool. In fact, we will soon see
that the implementation of SDR can be very easy, and that
allows signal processing practitioners to quickly test thevia-
bility of SDR in their applications. Several highly successful
applications will be showcased as examples. We will also
endeavor to touch on some advanced, key theoretical results
by highlighting their practical impacts and implications.

This paper is organized as follows. Section II describes the
basic ideas of SDR and its operations. Section III showcases
an SDR application, namely, MIMO detection. In Section IV
we shed light into the randomization concept, which plays an
indispensable role in both theoretical and practical advances
of SDR. Section V considers extensions of SDR to more
general cases. This is immediately followed by Section VI,
where another application example,B1-shimming in MRI,
is demonstrated. Section VII presents a theoretical subject,
namely SDR rank reduction, which has important implications
for the tightness of SDR approximation. Section VIII describes
the application of SDR in sensor network localization. We
draw conclusions and discuss further issues in Section IX.

II. T HE CONCEPT OFSEMIDEFINITE RELAXATION

To make the notation more concise, let us write our problem
of interest—namely, the real-valued homogeneous QCQP in
(1)—as follows:

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(4)

Here, ‘Di’ can represent either ‘≥’, ‘ =’, or ‘≤’ for each i;
and C,A1, . . . ,Am ∈ Sn, whereSn denotes the set of all
real symmetricn×n matrices; andb1, . . . , bm ∈ R. A crucial
first step in deriving an SDR of Problem (4) is to observe that

xTCx = Tr(xTCx) = Tr(CxxT ),

xTAix = Tr(xTAix) = Tr(Aixx
T ).

In particular, both the objective function and constraintsin
(4) arelinear in the matrixxxT . Thus, by introducing a new
variableX = xxT and noting thatX = xxT is equivalent to
X being a rank one symmetric positive semidefinite (PSD)
matrix, we obtain the followingequivalent formulation of

Problem (4):

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0, rank(X) = 1.

(5)

Here, we useX � 0 to indicate thatX is PSD.
At this point, it may seem that we have not achieved much,

as Problem (5) is just as difficult to solve as Problem (4).
However, the formulation in (5) allows us to identify the
fundamental difficulty in solving Problem (4). Indeed, the only
difficult constraint in (5) is the rank constraintrank(X) = 1,
which is nonconvex (the objective function and all other
constraints are convex inX). Thus, we may as well drop
it to obtain the following relaxed version of Problem (4):

min
X∈Sn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0.

(6)

Problem (6) is known as an SDR of Problem (4), where the
name stems from the fact that (6) is an instance of semidefinite
programming (SDP). The upshot of the formulation in (6) is
that it can be solved, to any arbitrary accuracy, in a numerically
reliable and efficient fashion. In fact, SDRs can now be
handled very conveniently and effectively by readily available
(and free) software packages. Let us give an example: Suppose
that ‘Di’ equal ‘≥’ for i = 1, . . . , p, and ‘Di’ equal ‘=’
for i = p+ 1, . . . ,m. Using the convex optimization toolbox
CVX [42], we can solve (6) in MATLAB with the following
piece of code:

Box 1. A CVX code for SDR
cvx_begin

variable X(n,n) symmetric
minimize(trace(C * X));
subject to

for i=1:p
trace(A(:,:,i) * X) >= b(i);

end
for i=p+1:m

trace(A(:,:,i) * X) == b(i);
end

X == semidefinite(n);
cvx_end

While advances in convex optimization and software have
enabled us to solve SDPs easily and transparently, one might
question how effective is the process (how fast or slow it would
be?). In the backstage most convex optimization toolboxes
handle SDPs using an interior-point algorithm, a sophisticated
topic in its own right (see, e.g., [43]). Simply speaking, the
SDR problem (6) can be solved with a worst case complexity
of

O(max{m,n}4n1/2 log(1/ε))

given a solution accuracyε > 0 1. The complexity above does
not assume sparsity or any special structures in the data matri-
cesC,A1, . . . ,Am. Some algorithms, such asSeDuMi [46]

1Our reported complexity order is obtained by counting the arithmetic
operations of a specific interior-point method, namely the primal-dual path-
following method in [44]. See [45] for a more detailed description on the
operation count.
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(employed as one of the core solvers inCVX), can utilize
data matrix sparsity to speed up the solution process. We also
refer the readers to the article [47] in this special issue for
other fast real-time convex optimization solvers. For certain
specially structured SDR problems, one can even exploit
the problem structures to build fast customized interior-point
algorithms. For example, for BQP, a custom-built interior-
point algorithm [44] can solve SDR with a complexity of
O(n3.5 log(1/ε)) [instead ofO(n4.5 log(1/ε))]. Furthermore,
the SDR complexity scales slowly (logarithmically) withε and
most applications do not require a very high solution precision.
Hence, simply speaking, we can say that

SDR is a computationally efficient approximation approach
to QCQP, in the sense that its complexity is polynomial in
the problem sizen and the number of constraintsm.

Of course, there is no free lunch in turning the NP-hard
Problem (4) (which is equivalent to Problem (5)) into the
polynomial-time solvable Problem (6). Indeed, a fundamental
issue that one must address when using SDR is how to convert
a globally optimal solutionX? to Problem (6) into a feasible
solution x̃ to Problem (4). Now, ifX? is of rank one, then
there is nothing to do, for we can writeX? = x?x?T ,
and x? will be a feasible—and in fact optimal—solution
to Problem (4). On the other hand, if the rank ofX? is
larger than1, then we must somehow extract from it, in an
efficient manner, a vector̃x that is feasible for Problem (4).
There are many ways to do this, and they generally follow
some intuitively reasonable heuristics (true even in engineering
sense). However, we must emphasize that even though the
extracted solution is feasible for Problem (4), it is in general
not an optimal solution (for otherwise we would have solved
an NP-hard problem in polynomial time).

As an illustration, consider the intuitively appealing idea of
applying a rank-one approximation onX?. Specifically, let
r = rank(X?), and let

X? =
r

∑

i=1

λiqiq
T
i

denote the eigen-decomposition ofX?, whereλ1 ≥ λ2 ≥
. . . ≥ λr > 0 are the eigenvalues andq1, . . . , qr ∈ Rn are the
respective eigenvectors. Since the best rank-one approximation
X?

1 to X? (in the least 2-norm sense) is given byX?
1 =

λ1q1q
T
1 , we may definẽx =

√
λ1q1 as our candidate solution

to Problem (4), provided that it is feasible. Otherwise, we can
try to mapx̃ to a “nearby” feasible solution̂x of Problem (4).
In general, such a mapping is problem dependent, but it can be
quite simple. For example, for the BQP (2) wherex2

i = 1 for
all i, we can obtain a feasible solution from̃x via x̂ = sgn(x̃),
wheresgn(·) is the element-wise signum function.

Our basic description of SDR is now complete. Before we
proceed, some remarks are in order.

1) Now that we have seen one method of extracting a
feasible solutionx̂ to Problem (4) from a solution
X? to the SDP (6), it is natural to ask what is the

quality of the extracted solution̂x. It turns out that
there are several measures available to address this issue.
Although we will not discuss them at this point, it should
be emphasized that regardless of which measure we use,
the quality will certainly depend on the method by which
we extract the solution̂x.

2) Apart from the rank relaxation interpretation of SDR
as described above, there is another interpretation that
is based on Lagrangian duality. Specifically, it can be
shown that the SDR (6) is a Lagrangian bidual of the
original problem (4). We refer the reader to, e.g., [48]
for details.

III. A PPLICATION: MIMO D ETECTION

Let us show an example of SDR application before pro-
ceeding to further advanced concepts and applications.

The problem we consider is MIMO detection, a frequently
encountered problem in digital communications. To put it into
context, consider a genericN -input M -output model

yC = HCsC + vC . (7)

Here, yC ∈ CM is the received vector,HC ∈ CM×N is
the MIMO channel,sC ∈ C

N is the transmitted symbol
vector, andvC ∈ CM is an additive white Gaussian noise
vector. Eq. (7) is popularly used to model point-to-point
multiple-antenna systems such as the spatial multiplexing(or
V-BLAST) depicted in Fig. 2. In fact, it is known (see, e.g.,
[49]) that the same model as in (7) can be used to formulate
detection problems in many other communication scenarios,
such as multiuser systems, space-time coding systems, space-
frequency coding systems, and combinations such as multiuser
multi-antenna systems. The wide applicability of the MIMO
model (7) makes its respective detection problem attractive
and important to tackle.

Spatial
Multiplexer

. . . . . 
.

. . . . . 
.

MIMO
Detector

Symbols
s
C

Detected
Symbols

MIMO channel
H

C

Fig. 2. The spatial multiplexing system.

In this application example we assume that the transmitted
symbols follow a quaternary phase-shift-keying (QPSK) con-
stellation; i.e.,sC,i ∈ {±1 ± j} for all i. We are interested
in the maximum-likelihood (ML) MIMO detection, which is
optimal in yielding the minimum error probability of detecting
sC . It can be shown that the ML problem is equivalent to the
discrete least squares problem

min
sC∈{±1±j}N

‖yC −HCsC‖2, (8)

which is NP-hard [50]. Recent advances in MIMO detection
have provided a practically efficient way of finding a globally
optimal ML solution; viz., the sphere decoding methods [49].
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Sphere decoding has been found to be computationally fast
for small to moderate problem sizes; e.g.,N ≤ 20. However,
it has been proven that the complexity of sphere decoding is
exponential inN even in an average sense [51].

On the other hand, SDR can be used to produce an approxi-
mate solution to the ML MIMO detection problem inO(N3.5)
time, which is polynomial inN . The trick is to turn (8) into
a real-valued homogeneous QCQP. Indeed, by letting

y =

[

<{yC}
={yC}

]

, s =

[

<{sC}
={sC}

]

,H =

[

<{HC} −={HC}
={HC} <{HC}

]

,

we can rewrite (8) as the following real-valued problem:

min
s∈{±1}2N

‖y −Hs‖2. (9)

Problem (9) is not a homogeneous QCQP, but we can homog-
enize it as follows:

min
s∈R2N , t∈R

‖ty −Hs‖2

s.t. t2 = 1, s2i = 1, i = 1, . . . , 2N.
(10)

Problem (10) is equivalent to (9) in the following sense: if
(x?, t?) is an optimal solution to (10), thenx? (resp. −x?)
is an optimal solution to (9) whent? = 1 (resp.t? = −1).
With the introduction of the extra variablet, Problem (10) can
then be expressed as a homogeneous QCQP:

min
s∈R2N ,t∈R

[

sT t
]

[

HTH −HTy

−yTH ‖y‖2
] [

s

t

]

s.t. t2 = 1, s2i = 1, i = 1, . . . , 2N.
(11)

Subsequently, SDR can be applied.
We now show some simulation results to illustrate how

well SDR performs in practice. The simulation follows a
standard MIMO setting (see, e.g., [49]), with problem size
(M,N) = (40, 40). Note that for such a problem size, sphere
decoding is computationally too slow to run in practice. We
tested other benchmarked MIMO detectors, such as the linear
and decision-feedback detectors, and the lattice-reduction-
aided detectors. The results are plotted in Fig. 3. We can see
that SDR provides near-optimal bit error probability, and gives
notably better performance than other MIMO detectors under
test.

In Fig. 3 two performance curves are provided for SDR.
The one labeled ‘SDR with rank-1 approx.’ is the eigenvector
approximation method described in the last section. While this
method is already competitive in performance, the alternative
‘SDR with randomization’ is even more promising. The notion
of randomization will be discussed in Section IV.

Next, we evaluate the computational complexities of the
various MIMO detectors. The results are plotted in Fig. 4. Of
particular interest is the comparison between SDR and optimal
sphere decoding. We see that SDR maintains a polynomial-
time complexity with respect toN . For sphere decoding, the
complexity is attractive for small to moderateN , sayN ≤ 16,
but it increases very significantly (exponentially) otherwise.

We conclude this section by pointing out the current ad-
vances of this SDR application. In essence, the promising
performance of SDR MIMO detection in QPSK and binary
PSK (BPSK) has stimulated much interest. That has resulted
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in endeavors to extend SDR MIMO detection to other con-
stellations, such asM -ary PSK [20] andM -ary QAM [22],
[23], [52]–[55]. Moreover, treatments for coded MIMO sys-
tems [19], [56] and fast practical implementations [21], [45],
[57] have been considered. On another front, the theoretical
performance of SDR MIMO detection has been analyzed in
various settings. For instance, it has been shown that SDR
can achieve full receive diversity for BPSK [58]. Furthermore,
SDR approximation accuracies relative to the true ML have
been investigated in [59], [60].

IV. RANDOMIZATION AND PROVABLE APPROXIMATION

ACCURACIES

Besides the eigenvector approximation method mentioned
in Section II, randomization is another way to extract an
approximate QCQP solution from an SDR solutionX?. The
intuitive ideas behind randomization are not difficult to see, yet
the theoretical implications that follow are far from trivial—
many theoretical approximation accuracy results for SDRs are
proven using randomization. To illustrate the main ideas, let
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us consider again the real-valued homogeneous QCQP

min
x∈Rn

xTCx

s.t. xTAix Di bi, i = 1, . . . ,m.
(12)

Now, letX ∈ Sn be an arbitrary symmetric positive semidef-
inite matrix. Consider a random vectorξ ∈ Rn drawn
according to the Gaussian distribution with zero mean and
covarianceX; or ξ ∼ N (0,X) for short. The intuition
of randomization lies in considering the following stochastic
QCQP:

min
X∈Sn, X�0

Eξ∼N (0,X){ξTCξ}
s.t. Eξ∼N (0,X){ξTAiξ} Di bi, i = 1, . . . ,m,

(13)
where we manipulate the covariance matrix ofξ so that the
expected value of the quadratic objective is minimized and the
quadratic constraints are satisfiedin expectation. Interestingly,
through the simple relationX = Eξ∼N (0,X){ξξT}, one can
see that the stochastic QCQP in (13) is equivalent to the SDR

min
X∈Sn, X�0

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m.
(14)

Thus, the stochastic QCQP interpretation of SDR in (13)
provides us with an alternative way to generate approximate
solutions to the QCQP (12). Indeed, after obtaining an optimal
solution X? to the SDP (14), we can generate a random
vectorξ ∼ N (0,X?) and use it to construct an approximate
solution to the QCQP (12). Note that the specific design
of the randomization procedure is problem-dependent. As an
illustration, let us consider two representative examples.

Example: Randomization in BQP or MIMO detection
For the BQP in (2) or the MIMO detection problem in (11),

a typical randomization procedure is as follows.

Box 2. Gaussian Randomization Procedure for BQP
given an SDR solutionX?, and a number of randomizationsL.
for ` = 1, . . . , L

generateξ` ∼ N (0,X?), and construct a QCQP-feasible point

x̃` = sgn(ξ`). (15)

end
determine`? = argmin`=1,...,L x̃T

` Cx̃`.
output x̂ = x̃`? as the approximate QCQP solution.

In Box 2, the problem dependent part lies in (15), where
we use rounding to generate feasible points from the random
samplesξ`. Moreover, we repeat the random samplingL times
and choose the one that yields the best objective.

In the MIMO detection example in Section III, we have seen
that the Gaussian randomization procedure provides quasi-
optimal bit-error-rate performance; see Fig. 3. Here we give
an additional result, plotted in Fig. 5, that shows how the
performance improves with the number of randomizations
L. We see a significant performance gain fromL = 1 to
L = 50. The gain becomes smaller forL > 50, approaching
a limit. This shows that randomization provides an effective
approximation for SDR, for sufficient (but not excessive)
number of randomizations.
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Example: Randomization in Problem(3)
This example aims to geometrically illustrate how random-

ization behaves. Consider Problem (3), restated here as

min
x∈Rn

xTCx

s.t. xTAix ≥ 1, i = 1, . . . ,m,
(16)

whereC,A1, . . . ,Am � 0. Recall that Problem (16) arises
in the context of multicast downlink transmit beamforming.

We set up a numerical example wheren = 2, m = 6,
and then generate many random pointsξ ∼ N (0,X?) to see
how they distribute in space. An instance of this is shown in
Fig. 6. From the distribution ofξ (marked as black ‘·’), one
can see that the covariance matrixX? is not of rank one, but
the density is higher over the direction of the globally optimal
QCQP solutions2 (marked as green ‘∗’). Also, note that the
random samplesξ are not always feasible for (16), but we can
apply a rescaling

x(ξ) =
ξ

√

mini=1,...,m ξTAiξ
(17)

to turn them into feasible solutions. We apply the same
rescaling to feasibleξ, too. The rescaled samplesx(ξ) are
shown as red ‘o’ in Fig. 6(a). Remarkably, one can see that
there is a significant amount ofx(ξ) that lie close to the
optimal QCQP solutions.

A practical randomization procedure for Problem (16)
is essentially identical to that presented in Box 2, except
that (15) is replaced by (17). Such a procedure has been
empirically found to provide promising approximations for
the multicast downlink transmit beamforming application and
its variations, like the MIMO detection application. Readers
are referred to [27], [61] for the results.

2In this example, the globally optimal QCQP solutions were obtained by
a fine grid search onR2. Such an exhaustive search would be prohibitive
computationally for generalRn.
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Although we have been using intuitions and illustrations
to introduce the randomization approach, the approach is far
from being just a heuristic and can in fact yield significant
insights into the performance of SDR. Indeed, it was the
idea of randomization that opened the gateway to a host of
theoretically provable worst-case approximation bounds for
SDR. These results have profound implications in applications.
For instance, it allows one to get some idea on how well SDR
could do if it is to be applied to a new signal processing
problem. To give some flavor of these approximation accuracy
results, let us first consider Problem (16). Letv(x) = xTCx

denote the objective function, and let

vQP = min
x∈Rn

xTCx

s.t. xTAix ≥ 1, i = 1, . . . ,m

denote the optimal objective. In [10] (see also [62]), it is
shown that with high probability, the objective valuev(x̂) of
a randomized solution̂x will satisfy

vQP ≤ v(x̂) ≤ γvQP, (18)

where γ = 27m2/π is the so-calledapproximation ra-
tio. Notice that this ratio accommodates the worst possible
problem instance{C,A1, . . . ,Am}, and that the practical
approximation accuracies can be much better. Fig. 7 gives a
numerical evidence, where we show a realization of the actual
approximation ratio,v(x̂)/vQP, for the problem instance in
Fig. 6. As can be seen from the figure, near optimality is
attained forL ≥ 15. In the same vein, such approximation
analysis enables us to know how far the optimal SDR objective
value, denoted byvSDR = Tr(CX?), is from the optimal
QCQP value. Indeed, for Problem (16) and its SDR, we can
have

vSDR ≤ vQP ≤ γvSDR, (19)

whereγ = 27m2/π is as above.

5 10 15 20 25 30
10

0

10
1

10
2

no. of randomizationsL

a
p

p
ro

x.
ra

tio
v
(x̂

)/
v Q

P

Fig. 7. A realization of the actual approximation accuracy of SDR for the
problem instance in Fig. 6.

Now, let us turn to the following class of Boolean quadratic
maximization problems (BQP):

vQP = max
x∈Rn

xTCx

s.t. x2
i = 1, i = 1, . . . , n,

with C � 0. In the seminal work of Goemans and
Williamson [3], it is shown that whenCij ≤ 0 for all i 6= j,
one has

γvSDR ≤ vQP ≤ vSDR, (20)

whereγ = 0.87856. In addition, if we adopt the randomization
procedure in Box 2, then the expected objective value of the
randomized solution̂x will satisfy

γvQP ≤ E{v(x̂)} ≤ vQP (21)

with the same constantγ. Although the bounds in (21)
apply only to the expected objective value, in practice the
randomized solution̂x can often achieve a performance that
is well within those bounds.

The analysis of approximation accuracy bounds is a sophis-
ticated subject. Although it is beyond the scope of this paper
to elaborate upon the mathematics behind those analyses, we
give a summary of some of the major approximation accuracy
results in Tables I and II. We refer the interested readers to,
e.g., [27], for more technical insights of these results from a
signal processing viewpoint.

V. EXTENSION TO MORE GENERAL CASES

For ease of exposition of the SDR idea, we have only con-
centrated on the real-valued homogeneous QCQPs in previous
sections. Here we illustrate the wide applicability of SDR by
showing how the same idea can be used in a number of related
problems.

A. Inhomogeneous Problems:Consider a general inhomoge-
neous QCQP

min
x∈Rn

xTCx+ 2cTx

s.t. xTAix+ 2aT
i x Di bi, i = 1, . . . ,m

(22)

for some appropriateC, c, Ai,ai, bi. We have already seen
in Section III how an inhomogeneous least squares problem
can be homogenized. Following the same spirit, we can
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TABLE I
KNOWN APPROXIMATION ACCURACIES OFSDRFOR QUADRATIC MINIMIZATIONS PROBLEMS.

problem approx. accuracyγ; see (18)-(19) for def. references

min
x∈Cn

xHCx

s.t. xHAix ≥ 1, i = 1, . . . ,m

whereA1, . . . ,Am � 0.

γ = 8m.

If the problem is reduced to the real-valued case, then

γ =
27m2

π
.

Luo-Sidiropoulos-Tseng-Zhang [10];
see also So-Ye-Zhang [62].
Relevant applications: [61]

MIMO Detection

min
x∈Rn

‖y −Hx‖2
2

s.t. x2

i = 1, i = 1, . . . , n

wherey = Hs+v; H ∈ Cn×n has i.i.d. standard
complex Gaussian entries;s2i = 1 for i = 1, . . . , n;
andv ∈ Cn has i.i.d. complex mean zero Gaussian
entries with varianceσ2.

For σ2 ≥ 60n (which corresponds to the low signal-to-noise
ratio (SNR) region), with probability at least1−3 exp(−n/6),

γ ≤
11

2
.

For σ2 = O(1) (which corresponds to the high SNR region),
with probability at least1− exp(−O(n)),

γ = 1,

i.e. the SDR is tight.

Kisialiou-Luo [59], So-Ye [60].
Extensions: So-Ye [60].
Related: Jaldén-Ottersten [58].
Relevant applications: [17]–[20], [22],
[23]

homogenize Problem (22) as

min
x∈Rn,t∈R

[

xT t
]

[

C c

cT 0

] [

x

t

]

s.t. t2 = 1,
[

xT t
]

[

Ai ai

aT
i 0

] [

x

t

]

Di bi, i = 1, . . . ,m,

where both the problem size and the number of constraints
increase by one. Hence, SDR can be applied to inhomogeneous
QCQPs by operating on their homogenized forms.

Readers are referred to [48], [64] for another interpretation
of SDR in the inhomogeneous case.

B. Complex-Valued Problems:Consider a general complex-
valued homogeneous QCQP

min
x∈Cn

xHCx

s.t. xHAix Di bi, i = 1, . . . ,m,
(23)

whereC,A1, . . . ,Am ∈ Hn, with Hn being the set of all
complexn×n Hermitian matrices. Using the same SDR idea
as in the real case, we can derive the following SDR for (23):

min
X∈Hn

Tr(CX)

s.t. Tr(AiX) Di bi, i = 1, . . . ,m,
X � 0,

(24)

where the only difference is that the problem domain now
becomesHn (in our CVXcode insert in Box 1, all you need
to do is to change ‘symmetric ’ to ‘ hermitian ’!)

While the SDRs in the real and complex cases are developed
using essentially the same technique, it should be noted that
the two can be quite different in their approximation accura-
cies; see, for example, Tables I and II and the literature [27].

The current applications of complex-valued SDR lie in
various kinds of beamforming problems [1], [15], [16], [27],
[35], [37], [61]. Complex-valued SDR can also be used to
handle ak-ary quadratic program:

min
x∈Cn

xHCx

s.t. xi ∈ {1, ej2π/k, . . . , ej2π(k−1)/k}, i = 1, . . . , n,
(25)

where k ≥ 2 is a given integer. Applications of thek-ary
quadratic program includeM -ary PSK MIMO detection [20]
and coded waveform designs in radar [33]. Problem (25) can
be approximated by the following SDR:

min
X∈Hn

Tr(CX)

s.t. X � 0, Xii = 1, i = 1, . . . , n.
(26)

Curiously, while the SDR in (26) does not utilize the con-
stellation sizek, it can yield satisfactory approximations, both
practically [20], [33] and theoretically [8], [9].

C. Separable QCQPs: Consider a QCQP of the form

min
x1,...,xk∈Cn

∑k
i=1 x

H
i Cixi

s.t.
∑k

l=1 x
H
l Ai,lxl Di bi, i = 1, . . . ,m.

(27)
Problem (27) is called a separable QCQP. A relevant appli-
cation for separable QCQPs is the unicast downlink transmit
beamforming problem [65]; see [1] in this special issue for
the problem description.

Let Xi = xix
T
i for i = 1, . . . , k. By relaxing the rank

constraint on eachXi, we obtain the following SDR of (27):

min
X1,...,Xk∈Hn

∑k
i=1 Tr(CiXi)

s.t.
∑k

l=1 Tr(Ai,lXl) Di bi, i = 1, . . . ,m,
X1 � 0, . . . ,Xk � 0.

(28)

VI. A PPLICATION: TRANSMIT B1 SHIM IN MRI

At this point readers may have the following concern:
since SDR is an approximation method, as an alternative
we may also choose to approximate a nonconvex QCQP
by an available nonlinear programming method (NPM) (e.g.,
sequential quadratic programming, available in the MATLAB
Optimization Toolbox). Hence, it is natural to ask which
method is better. The interesting argument is that they com-
plement each other, instead of competing. Indeed, the quality
of NPMs depends on the starting point, and the missing piece
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TABLE II
KNOWN APPROXIMATION ACCURACIES OFSDRFOR QUADRATIC MAXIMIZATION PROBLEMS.

problem approx. accuracyγ; see (20)-(21) for def. references
Boolean QP

max
x∈Rn

xTCx

s.t. x2

i = 1, i = 1, . . . , n γ =







0.87856, C � 0, Cij ≤ 0 ∀i 6= j
2/π ' 0.63661, C � 0

1 (opt.), Cij ≥ 0, ∀i 6= j

Goemans-Williamson [3],
Nesterov [4], Zhang [7].
Relevant applications: [24]–[26]

Complexk-ary QP

max
x∈Cn

xHCx

s.t. xi ∈ {1, ω, . . . , ωk−1},
i = 1, . . . , n

whereω = ej2π/k, andk > 1 is an integer.

For C � 0,

γ =
(k sin(π/k))2

4π
.

e.g.,γ = 0.7458 for k = 8, γ = 0.7754 for k = 16.

Zhang-Huang [8],
So-Zhang-Ye [9].
Relevant applications: [33]

Complex constant-modulus QP

max
x∈Cn

xHCx

s.t. |xi|2 = 1, i = 1, . . . , n

For C � 0,
γ = π/4 = 0.7854.

Remark: coincide with complexk-ary QP ask → ∞.

Zhang-Huang [8],
So-Zhang-Ye [9].

max
x∈Cn

xHCx

s.t. (|x1|2, . . . , |xn|2) ∈ F

whereF ⊂ Rn is a closed convex set.

The same approx. ratio as in complex constant-modulus QP;
i.e., γ = π/4 for C � 0.

If the problem is reduced to the real-valued case, then the
approx. ratio results are the same as that in Boolean QP.

Ye [5], Zhang [7].

max
x∈Rn

xTCx

s.t. xTAix ≤ 1, i = 1, . . . , m

whereA1, . . . ,Am � 0.

For anyC ∈ Sn,

γ =
1

2 ln(2mµ)

whereµ = min{m,maxi rank(Ai)}.

Nemirovski-Roos-Terlaky [6].
Extensions: Luo-Sidiropoulos-Tseng-
Zhang [10], So-Ye-Zhang [62], and
Zhang-So [63].

is generally in securing a reliable (or a ‘good enough’) starting
point. Thus, one can consider a two-stage approach, in which
SDR is used to provide a starting point for an NLM. In
particular, to SDR, nonlinear programming can provide local
refinement of the solution, while to NLMs SDR can be used to
provide a good starting point. This two-stage approach has not
only been proven to be viable in practice, but is also promising
in performance [28], [37].

In this example we demonstrate the effectiveness of the
two-stage approach. The application involved is transmitB1

shimming in magnetic resonance imaging (MRI) [37]. An
illustration is shown in Fig. 8 to help us explain the problem.
A magnetic field, specifically aB1 field is generated by
an array of transmit RF coils. The ideal situation would be
that theB1 field is spatially uniform across the load (like,
a human head). Unfortunately, this is usually not the case.
The complex interactions between the magnetic field and the
loaded tissues often result in strong inhomogeneity (or spatial
non-uniformity) across the load. The goal of transmitB1

shimming is to design the transmit amplitudes and phases of
the RF coils such that the resultantB1 map (or the MR image)
is as uniform as possible.

The transmitB1 shimming problem is mathematically for-
mulated as follows. Letx ∈ Cn be the transmit vector of the
RF coil array, wheren is the number of RF coils andxi is
a complex variable characterizing the transmit amplitude and
phase of theith RF coil. Denote byai ∈ Cn, i = 1, . . . ,m,

RF Coils

...........Load

Fig. 8. An MRI illustration.

the field response from the array to theith pixel; that is to
say, theith pixel receives aB1 field of magnitude|aT

i x|. Our
problem then is to minimize the worst-case field magnitude
difference

min
x∈Cn

max
i=1,...,m

∣

∣|aT
i x|2 − b2

∣

∣

s.t. xHGx ≤ ρ.
(29)

Here,m is the total number of pixels,b > 0 is the desired pixel
value (which is uniform over all pixels),xHGx represents
the average specific absorption rate (SAR), in whichG is
composed of the complex-valuedE field coefficients and of
the tissue conductivity and mass density, andρ is a pre-
specified SAR limit.

Let us consider an SDR of Problem (29), which, by fol-
lowing the SDR principles mentioned in previous sections, is
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given by

min
X∈Hn

max
i=1,...,m

∣

∣Tr(a∗aT
i X)− b2

∣

∣

s.t. X � 0, Tr(GX) ≤ ρ.
(30)

Note that the SDR problem in (30) can be reformulated as an
SDP:

min
t∈R, X∈Hn

t

s.t. −t ≤ Tr(a∗aT
i X)− b2 ≤ t, i = 1, . . . ,m,

X � 0, Tr(GX) ≤ ρ.
(31)

A randomization procedure reminiscent of that given in Box 2
can be used to generate an approximate solution to the original
problem in (29); see [37] for the algorithm description.

A simulation result for transmitB1 shimming is shown
in Fig. 9. We employ a16-element RF strip line coil array,
operating at7 Tesla and loaded with a human head model.
Fig. 9(a) shows aB1 map obtained by a simple, non-optimized
transmit weightx = [ 1, e2π/16, . . . , e30π/16 ]T . From that
figure and its respective objective value (provided below
the figure), we can see that the resultantB1 map is not
uniform enough. Figs. 9(d) and (e) show the results for SDR
randomized solutions, where the number of randomizations is
L = 200. Randomization would lead to variations in different
runs or realizations. Due to space limit, we only display two
realizations in Figs. 9(d) and (e). One can observe that there
are some differences with theB1 maps of the two realizations,
but their objective values are quite similar. The randomized
SDR solutions also show improvements in uniformity when
compared to the non-optimized transmit weight in Fig. 9(a).
Now, let us consider the two-stage approach mentioned in the
beginning of this section. The results are shown in Figs. 9(f)
and (g). We can see further improvements with the resultantB1

maps and objective values. This shows that SDR can provide
reliable initializations to NPMs.

One may also be interested in seeing how an NPM perform
without the aid of SDR. To do this comparison, we randomly
generate a starting point for the NPM by an i.i.d. Gaussian
distribution. However, for fairness of comparison to SDR, we
generateL i.i.d. Gaussian random points (the sameL as in
randomization in SDR) and set the starting point to be the
one that yields the best objective. TwoB1 map realizations
of such randomly initialized NPM are shown in Figs. 9(b)
and (c). We can see that the performance shows significant
variations from one realization to another (it could be good,
and it could be bad), making the final solution fidelity difficult
to say. In [37], some Monte Carlo simulations are provided to
further support our observations here.

VII. R ANK REDUCTION IN SDP

As the readers may have noticed by now, one of the
recurring themes in the SDR methodology is the following.
First, one formulates a given hard optimization problem as a
rank-constrained SDP. Then, one removes the rank constraint
to obtain an SDP. This is vividly illustrated as we pass from
the QCQP (4) to the equivalent rank-constrained SDP (5), and
finally to the SDR (6). Now, if the algorithm we use to solve
the SDP returns a solution whose rank satisfies the original

rank constraint, then that solution will also be optimal forthe
original problem. As the applications we consider typically
require that the solution matrix has low rank (e.g., the solution
matrix in Problem (5) must have rank one), it is natural to ask
whether standard interior-point algorithms for solving SDPs
will return a low rank solution or not. Unfortunately, the
answer is no in general. Specifically, it has been shown [66]
that standard interior-point algorithms for solving SDPs will
always return a solution whose rank is maximal among all
optimal solutions. Thus, either the problem at hand possesses
some very special structure, or we have to be somewhat lucky
in order to obtain a low rank SDP solution. On the other hand,
not all is lost. It turns out that if an SDP with ann×n matrix
variable andm linear constraints is feasible, then there always
exists a solution whose rank is bounded above byO(

√
m).

Specifically, Shapiro [67], and later Barvinok [68] and Pataki
[69] independently showed that if the SDP (6) is feasible, then
there exists a solutionX? to (6) such that

rank(X?)(rank(X?) + 1)

2
≤ m, (32)

or equivalently,rank(X?) ≤ b(
√
8m+ 1− 1)/2c. Moreover,

such a solution can be found efficiently [69]. The Shapiro-
Barvinok-Pataki (SBP) result has many interesting conse-
quences. For instance, whenm ≤ 2, we haverank(X?) ≤ 1
whenever (6) is feasible. This implies that the SDP (6) is
equivalent to the rank-constrained SDP (5). In particular,
we can obtain an optimal solution to the seemingly difficult
Problem (4) simply by solving an SDP.

As it turns out, a similar SDR rank result holds for the
complex-valued homogeneous QCQP (23) and the separable
QCQP (27). Specifically, Huang and Palomar [16] showed that
if the SDR (24) of the complex-valued homogeneous QCQP
(23) is feasible, then there exists a solutionX? to (24) such
that rank(X?) ≤ √

m. On the other hand, consider the SDR
(28) of the complex-valued separable QCQP (27). Suppose
that it is feasible. Then, as shown in [16], there exists a solution
{X?

i }ki=1 to (28) whose ranks satisfy

k
∑

i=1

rank(X?
i )

2 ≤ m.

In the case of a real-valued separable QCQP, the rank condition
is given by

k
∑

i=1

rank(X?
i )(rank(X

?
i ) + 1)

2
≤ m.

To summarize:

For a real-valued (resp. complex-valued) homogeneous QCQP
with 2 (resp. 3) constraints or less, SDR is not just a
relaxation. It is tight, i.e., solving the SDR is equivalentto
solving the original QCQP.

For a homogeneous separable QCQP (27), suppose that none
of the solution{X?

i }ki=1 to the SDR (28) satisfiesX?
i = 0 for

somei. Then, the SDR is tight ifm ≤ k + 2 in the complex
case; and ifm ≤ k + 1 in the real case.
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nonlinear prog. 
with random 

starting point, 
realization 1
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with random 

starting point, 
realization 2

SDR with 
randomization, 

realization 1

SDR with
randomization, 

realization 2
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3.310

5

0

2.5

Fig. 9. B1 maps of various optimization methods.

An important application of the above result is in estab-
lishing the tightness of certain SDR for the unicast downlink
transmit beamforming problem; see [1], [16], [27] for further
discussions.

Before we proceed further, several remarks are in order.

1) The SBP result is concerned with the existence oflow
rank solutions to an SDP, and we derive the tightness
of various SDRs as corollaries (by specializing the SBP
result to the rank one case). However, there are other,
more direct, approaches for proving tightness of SDRs
of various QCQPs; see, e.g., [12]–[14], [70], [71]. Most
of these approaches rely on so-called rank-one decom-
position theorems, which allow one to extract anoptimal
QCQP solution from the SDR solution, provided that the
number of constraints in the QCQP is not too large—say,
at most3 for the complex-valued homogeneous QCQP.
Recently, Aiet al. [71] have proven another rank-one de-
composition theorem and used it to show that the SDRs
of a large class of complex-valued homogeneous QCQPs
with 4 constraints are in fact tight. The interested readers
may find the MATLAB implementations of the algo-
rithms described in [71] athttp://www.se.cuhk.
edu.hk/ ˜ ywhuang/dcmp/paper.html . We note
that the aforementioned tightness results have already
found many applications in signal processing and com-
munications; see, e.g., [32], [33], [40], [41], [71]–[75].

2) It is known [68] that the rank bound in (32) cannot
be improved in general. Specifically, there exist SDPs
with m constraints in whicheverymatrix that satisfies
all the constraints must have rank of order at least√
m. However, if one allows the linear constraints in

a given SDP to be satisfied onlyapproximately, then it
is possible to find a solution matrix whose rank is much
smaller thanO(

√
m). We refer the readers to [62] for

details.
3) The results mentioned in this section merely provide

sufficient conditions for SDR tightness. As such, there
are cases in which SDR tightness can be attained under
different conditions. For example, if eachAi follows the

structure

Ai = aia
H
i , ai = [ 1, ejφi , . . . , ej(n−1)φi ]T

for some angleφi ∈ [0, 2π), then a rank-one solution
exists for SDR for anym [15]. Another example is in
MIMO detection, where SDR tightness can be shown to
occur with high probability [57], [59], [60], [76].

VIII. A PPLICATION: SENSORNETWORK LOCALIZATION

Let us now consider another practical problem to which the
SDR technique can be applied, namely, the sensor network
localization (SNL) problem. Although the SNL problem is
computationally intractable, it can be relaxed to an SDP.
Moreover, simulation results showed that it can produce high
quality solutions. Before we delve into the details, let us first
briefly describe and motivate the SNL problem.

In recent years, the deployment of large-scale wireless
sensor networks has become increasingly common. These net-
works are often used to collect location-dependent data, such
as motion at various points of a monitored area, temperatureat
various locations of a habitat, etc. In most applications, how-
ever, the sensors are deployed in an ad-hoc fashion. Moreover,
it is often impractical or infeasible to equip every sensor with
a location device (such as GPS). Thus, the actual locations of
individual sensors may not be known, and we need to deduce
them from some other information. One common approach
is to use the so-called communication graph of the sensors.
Specifically, consider a graph in which the nodes represent
sensors, and an edge between two nodes indicates that the
corresponding sensors can communicate with each other. We
assume that the distance between two sensors can be measured
whenever they can communicate with each other3. To add
some flexibility to the model, we allow for the possibility that
the locations of some of the sensors are given. These sensors
will be referred to asanchorsin the sequel.

Under the above setting, our goal is to determine the coor-
dinates of the sensors in, sayR2, so that the distances induced

3This can be achieved using, e.g., the arrival time or difference in arrival
time of the signal, the received signal strength, or angle ofarrival measure-
ments (see, e.g., [77], [78] and references therein).
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by those coordinates match the measured distances. Formally,
let Vs = {1, . . . , n} andVa = {n+1, . . . , n+m} be the sets
of sensors and anchors, respectively. LetEss andEsa be the
sets of sensor-sensor and sensor-anchor edges, respectively.
To fix ideas and keep our exposition simple, suppose for
now that the measured distances{dik : (i, k) ∈ Ess} and
{d̄ik : (i, k) ∈ Esa} are noise-free. Then, the SNL problem
becomes that of findingx1, . . . ,xn ∈ R2 such that

‖xi − xk‖2 = d2ik, (i, k) ∈ Ess,
‖ai − xk‖2 = d̄2ik, (i, k) ∈ Esa.

(33)

In general, Problem (33) is difficult to solve, as the quadratic
constraints in it are nonconvex. Indeed, the problem of deter-
mining the feasibility of (33) is NP-hard [79]. However, one
can derive a computationally efficient SDR of Problem (33)
as follows. First, observe that

‖xi − xk‖2 = xT
i xi − 2xT

i xk + xT
k xk.

In particular, we see that‖xi − xk‖2 is linear in the inner
productsxT

i xi, xT
i xk andxT

k xk. Hence, we may write

‖xi − xk‖2 = (ei − ek)
TXTX(ei − ek) = Tr(EikX

TX),

whereei ∈ R
n is the i-th unit vector,Eik = (ei − ek)(ei −

ek)
T ∈ Sn, andX is a 2 × n matrix whosei-th column is

xi. In a similar fashion, we have

‖ai − xk‖2 = aT
i ai − 2aT

i xk + xT
k xk.

Although the termaT
i xk is linear only in xk, we may

homogenize it and write

‖ai − xk‖2 =
[

aT
i eTk

]

[

I2 X

XT XTX

] [

ai

ek

]

= Tr(M̄ikZ),

where

M̄ik =

[

ai

ek

]

[

aT
i eTk

]

and

Z =

[

I2 X

XT XTX

]

=

[

I2
XT

]

[

I2 X
]

. (34)

Now, observe thatZ ∈ S
n+2 as given in (34) is a rank2

positive semidefinite matrix whose upper left2 × 2 block
is constrained to be an identity matrix. The latter can be
expressed as three linear constraints (i.e., linear in the entries
of Z). Moreover, using the Schur complement, it is not hard to
show that any rank2 positive semidefinite matrixZ ∈ Sn+2

whose upper left2× 2 block is an identity matrix must have
the form given in (34) for someX ∈ R2×n. Thus, upon letting

Mik =

[

0 0

0 Eik

]

,

we see that Problem (33) is equivalent to the following rank
constrained SDP:

find Z

s.t. Tr(MikZ) = d2ik, (i, k) ∈ Ess,
Tr(M̄ikZ) = d̄2ik, (i, k) ∈ Esa,
Z1:2,1:2 = I2,
Z � 0, rank(Z) = 2.

(35)

In particular, by dropping the rank constraint from (35), we
obtain an SDR of Problem (33).

Now, if we solve the SDR of Problem (33) and obtain a rank
r solutionZ, then we can extract from it a set ofr-dimensional
coordinates for the sensors such that those coordinates satisfy
the distance constraints [30]. In fact, if the solutionZ is of
rank 2, then we can extract the two-dimensional coordinates
of the sensors directly from theX portion of the matrixZ
(see (34)). For other interesting theoretical properties of the
above SDR, we refer the readers to [28], [30], [80].

So far our discussion has focused on the case where the
measured distances are noise-free. However, in practice, the
measured distances are usually corrupted by noise (say, by
an additive Gaussian noise). In this case, we are interestedin
finding a maximum likelihood estimate (MLE) of the sensors’
coordinates. Although the MLE problem is difficult to solve in
general, one can derive an SDR of it using techniques similar
to those introduced in this section. We refer the readers to
[28], [31] for details.

To demonstrate the power of the SDR approach, we applied
it to a randomly generated network of45 sensors and5
anchors over the unit square[−0.5, 0.5]2. The connectivity of
the network is determined by the so-called unit disk graph
model. Specifically, we assume that a pair of devices can
communicate with each other if the distance between them is at
most0.3. Furthermore, we assume that the measured distances
are corrupted by a Gaussian noise with small variance, say
0.01.

In Fig. 10(a) we show the positions of the sensors as
computed by the SDP, as well as the trajectories of a gradient
search procedure after initializing it with the SDP solution.
We use circles ‘◦’ to denote the true positions of the sensors
and diamonds ‘♦’ to denote the positions of the anchors. The
initial positions of the sensors as computed by the SDP are
denoted by stars ‘∗’, and the tail end of a trajectory gives the
computed position of a sensor after50 iterations of the gradient
search procedure. As can be seen from the figure, the final
computed positions of the sensors are very close to the true
positions. For the purpose of comparison and to demonstrate
the high quality of the SDP solution, we show in Fig. 10(b)
the trajectories of the gradient search procedure when it is
initialized by a random starting point. As can be seen from
the figure, even after50 iterations, the computed positions of
the sensors are still nowhere close to the true positions.

Before we leave this section, we should mention that the
SDR technique can also be applied to the source localization
problem (see, e.g., [77], [78]), which is well-studied in the
signal processing community and may be considered as a
special case of the sensor network localization problem. In
that problem, one is given noisy distance measurements from
one sensor to a number of anchors, and the goal is to determine
the MLE of the sensor position. For various SDR-based
approaches to this problem, we refer the readers to [31], [38],
[39].

IX. CONCLUSION AND DISCUSSION

In this paper we have provided a general, comprehensive
coverage of the SDR technique, from its practical deployments
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Fig. 10. Refinement through a gradient search method for a 50 node network

and scope of applicability to key theoretical results. We have
also showcased several representative applications, namely
MIMO detection,B1 shimming in MRI and sensor network
localization. Another important application, namely downlink
transmit beamforming, is described in the article [1] in this
special issue. Due to space limit, we are unable to cover many
other beautiful applications of the SDR technique, although
we have done our best to illustrate the key intuitive ideas that
resulted in those applications. We hope that this introductory
paper will serve as a good starting point for readers who would
like to apply the SDR technique to their applications, and to
locate specific references either in applications or theory.
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