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Abstract—Stochastic gradient descent (SGD) usually samples
training data based on the uniform distribution, which may not
be a good choice because of the high variance of its stochastic
gradient. Thus, importance sampling methods are considered in
the literature to improve the performance. Most previous work
on SGD-based methods with importance sampling requires the
knowledge of Lipschitz constants of all component gradients,
which are in general difficult to estimate. In this paper, we study
an adaptive importance sampling method for common SGD-
based methods by exploiting the local first-order information
without knowing any Lipschitz constants. In particular, we
periodically changes the sampling distribution by only utilizing
the gradient norms in the past few iterations. We prove that
our adaptive importance sampling non-asymptotically reduces
the variance of the stochastic gradients in SGD, and thus better
convergence bounds than that for vanilla SGD can be obtained.
We extend this sampling method to several other widely used
stochastic gradient algorithms including SGD with momentum
and ADAM. Experiments on common convex learning problems
and deep neural networks illustrate notably enhanced perfor-
mance using the adaptive sampling strategy.

I. INTRODUCTION

An extensively studied problem in machine learning and
pattern recognition is that of empirical risk minimization
(ERM), i.e.,

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

fi(w)

}
, (1)

where fi : Rd → R is the i-th component function. In general,
fi(w) = `(h(xi;w),yi), where (xi,yi) ∈ X × Y is the i-
th training example, h is the decision function parameterized
by w, and ` is the loss function. SGD, which dates back to
the original work by [30], is playing a central role in solving
optimization problem (1) [4]. In each iteration of vanilla SGD,
the full gradient ∇F (wk) is approximated by a randomly
sampled stochastic gradient ∇fi(wk), where i follows the
uniform distribution.

The common uniform sampling endows the stocahstic gra-
dients with high variance, which has negative influence on the
convergence rate. Therefore, importance sampling is brought
to stochastic optimization algorithms, where more delicate
sampling probabilities are assigned to different training ex-
amples. The existing work on importance sampling mostly
utilizes the Lipschitz constants of fi or ∇fi to assign each
training sample with a proper sampling probability. For exam-
ple, the reweighted sampling probability in [19] and [40] is

pi = Li/
∑n
j=1 Lj for all i ∈ [n] := {1, 2, . . . , n}, where Li

is the Lipschitz constant of ∇fi. In most cases, the Lipschitz
constant of a function is not easy to obtain or even estimate.
Moreover, if a stationary importance sampling distribution
is adopted throughout the learning process, only the global
property of the objective function can be employed.

In this paper, we introduce an efficient adaptive importance
sampling methodology that can be applied to different al-
gorithms based on stocahstic gradients. We first consider to
incorporate this adaptive importance sampling idea into vanilla
SGD, namely SGD-AIS. Unlike those importance sampling
schemes that rely on the information of Lipschitz constants,
SGD-AIS are only based on the component gradient norms
in the past few iterations. For SGD-AIS, little extra computa-
tion (i.e., extra O(log(n)) per-iteration computation), as well
as minor storage cost (i.e., O(n) extra space requirement)
are introduced. Furthermore, instead of fixing the sampling
distribution on top of the global function property during
the entire optimization, SGD-AIS adjusts the sampling dis-
tribution every iteration. This allows the importance sampling
to constantly capture the local information of the objective
function and can better approximate the optimal sampling
distribution mentioned in [41]. To avoid taking excessive time
in computing the adaptive sampling distributions, we employ
a binary tree structure to assist storing and updating the
varying probabilities. With moderate storage requirement, we
can achieve very effiecient update and sampling by visiting
the binary tree. Our theoretical analysis suggests that under
mild conditions, SGD-AIS notably reduces the variance of
the stochastic gradient in an non-asymptotic sense. Thereby,
compared with vanilla SGD, the convergence bounds can
be further improved in both convex and nonconvex setting.
We provide a novel proof of the main theoretical result by
constructing an auxiliary sampling distribution. Furthermore,
we extend this adaptive importance sampling to SGD with mo-
mentum and ADAM, which are also computationally efficient
and Lipschitz-independent. Experimental results on several
datasets exhibit much faster convergence for all our adaptive
sampling-based algorithms, when they are applied to logistic
regression, support vector machine and deep neural networks.

A. Related Works

The goal of solving roblem 1 is to obtain an ε-optimal
solution x̂. Full gradient descent requires O((1 +κ) log(1/ε))



iterations [21], [23]. If Nesterov’s momentum is further im-
ported, an improved O((1+

√
κ) log(1/ε)) iteration complexity

can be achieved [3], [38]. However, full gradient involves the
whole dataset every iteration, with excessively high O(nd)
computational cost. As a comparison, SGD has dominated
large-scale learning as well as deep learning [2], [39], [9], be-
cause of it being both well understood in theory and effective
in practice. SGD randomly selects only one data sample or a
mini batch of data samples at each iteration, which takes only
O(d) per-iteration cost, but higher O(κ/ε) overall iterations
[5]. For a general convex and L-smooth objective function,
SGD achieves a convergence rate of O(1/ε2) [32]. When F is
strongly convex and L-smooth, SGD converges to the global
minimum at a rate of O(1/ε) [20], [33]. For a nonconvex
L-smooth objective function, SGD converges to a first-order
stationary point at a rate of O(1/ε2) in general, but faster rate
of O(1/ε) can be obtained if the objective function further
satisfies the so-called Polyak-Łojasiewicz condition [12], [16].

To further reduce the variance of the stochastic gradient,
many different gradient aggregation techniques are proposed.
Some representatives include SAG [31], SVRG [15], SAGA
[8], and SARAH [24]. SAGA iteratively computes a stochastic
vector gk as the average of stochastic gradients evaluated at
previous iterates. SVRG keeps track of a ”snapshot” vector
wk that is updated once every a fixed number of iterations,
and computes full gradient only for the snapshot vector. In
general, these variance reduction methods can achieve linear
convergence given that the objective function is strongly
convex and has Lipschitz continuous gradient [35]. Spider
[11], which achieve comparable O((n+κ) log(1/ε)) iteration
complexity for strongly convex loss functions. An accelerated
variance-reduced optimization algorithm, named Katyusha, is
proposed in [1], which improves the iteration complexity to
O((n +

√
nκ) log(1/ε)). However, they either periodically

compute full gradient or store all n component gradients,
which makes them less used in large-scale scenarios including
training deep neural networks.

Another important line of research is to incorporate SGD
with the first and second moment estimates which computes
individual adaptive stepsizes for different coordinates. SGD
with momentum computes the stochastic gradient based on
the exponential moving averge of the historical gradients. Ada-
Grad [10] uses the second moment estimates to help find the
very predictive but rarely seen features. The second moment in
AdaGrad accumulates and is monotonically increasing, which
may lead to the tranning stopping too early. RMSProp [37]
overcomes this by using the expomential moveing average
of the second moments. ADAM [17], [28] combines the
advantages of the first and second moment estimates, and has
been rather popular in deep learning.

Importance sampling is often involved in picking the
stochastic gradients and random coordiantes [19], [40], [41],
[27], [13], [14], where an appropriately chosen non-uniform
stationary sampling distribution is used. Such stationary
sampling usually requires some sorts of prior knowledge
like component-wise or coordianate-wise Lipschitz constants.

Adaptive importance sampling methods [7], [25], [34], [26],
[36] are further considered to explore more local function
information, but a higher computational cost is usually needed
because of the frequent change of sampling distributions. For
instance, AdaSDCA [7] adapts the coordinate sampling prob-
abilities based on the dual formulation of ERM. However, this
method requires to evaluate all the component dual residuals
every iteration, which makes it less computationally practical.
In comparison, our work takes advantage of adaptive impor-
tance sampling while introducing little extra computational
cost.

II. ADAPTIVE IMPORTANCE SAMPLING

Applying vanilla SGD to solve optimization problem (1),
the following update rule of the model parameter w in the
k-th step is performed

wk+1 = wk − ηk∇fik(wk), (2)

where ηk is the stepsize and ik is uniformly chosen in [n].
Obviously we have E[∇fik(wk)] = ∇F (wk), meaning that
the stochastic gradient is unbiased. However, the variance of
the stochastic gradient has not been controlled, which may
negatively affect the convergence performance. To obtain a
stochastic gradient with smaller variance, we employ certain
importance sampling distribution pk := (pk1 , p

k
2 , . . . , p

k
n)> in

the k-th iteration, where pki stands for the probability that the i-
th training example is picked. Thereupon, the stochastic gradi-
ent in the k-th iteration with importance sampling distribution
pk should be

gk =
1

npkik
∇fik(wk), (3)

where the multiplied factor 1/npkik is to make sure that gk is
an unbiased estimator of the gradient. The model parameter
is further moved along the direction of negative stochastic
gradient:

wk+1 = wk − ηkgk. (4)

A natural idea of choosing distribution pk is to find the one
that minimizes the variance of gk, or equivalently, solves the
following optimization problem:

min
pk

Var

[
1

npki
∇fi(wk)

]
s. t. 0 ≤ pki ≤ 1, ∀i ∈ {1, . . . , n}

n∑
j=1

pkj = 1.

(5)

Problem (5) has a closed-form optimal solution [41], which is

(pki )∗ =
‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

, ∀i ∈ {1, . . . , n}. (6)

This optimal sampling method minimizes the varaince by fully
exploiting the local information in every iterate wk. However,
it is impractical because it requires calculation of all n compo-
nent gradient norms every iteration, so that it reaches the same
computational complexity as the full gradient method. Thus,



[41] adopts a more computationally feasible distribution in
their algorithm by replacing each gradient norm with its global
upper bound. However, such relaxed distribution involves
the Lipschitz constants of fi or ∇fi, just like many other
importance sampling-based algorithms. Instead, we will show
that the gradient norms in (6) that are evaluated at some iterate
wk can be approximated by other local information, i.e., the
most recently evaluated gradient norms. This will significantly
mitigate the per-iteration computational cost of (6), at the
expense of some sort of inexactness.

A. SGD-AIS

Motivated by the above discussion, an importance sampling
approach for SGD, named SGD-AIS, is introduced for solving
problem (1), whose algorithmic details are shown in Algorithm
1. In the k-th iteration of SGD-AIS, the sampling distribution
p is fixed to be a mixture of a reweighted sampling distribu-
tion Gk and the uniform distribution U . The probability for
sampling the i-th training example is

pki = αkp
Gk
i + (1− αk)pUi , ∀i ∈ [n], (7)

where pGki = πi/
∑n
j=1 πj and pUi = 1/n for i ∈ [n]. The

parameter αk ∈ (0, 1) is for controlling the proportions of
these two distributions. We let αk be both lower and upper
bounded, and increase with k. Hence, at the initial stage of the
algorithm, αk is small, thus uniform sampling U contributes
more to the overall sampling distribution. As the learning
process goes on, the overall sampling distribution will more
and more approach the reweighted sampling pGk .

Algorithm 1 SGD-AIS

1: Input: step sizes {ηk}, weights αk ∈ [α, α] ⊆ (0, 1) for
all k ∈ N.

2: Initialize: w1, πi = 1 for all i ∈ {1, . . . , n}
3: for k = 1, , 2 . . . do
4: Update the sampling probabilities for all i ∈ {1, . . . , n}

pi = αk
πi∑n
j=1 πj

+ (1− αk)
1

n
(8)

5: Randomly pick ik ∈ [n] based on distribution p
6: Compute stochastic gradient

gk =
1

npik
∇fik(wk) (9)

7: Set πik = ‖∇fik(wk)‖2
8: Set wk+1 = wk − ηkgk
9: end for

The distribution G is given in the form of pGi =
‖∇f(wτi)‖2/

∑n
j=1 ‖∇f(wτj )‖2 for all i ∈ [n], which has

a similar form as the optimal distribution given in (6). Its
main difference from (6) is that the gradient norms in pGi are
evaluated at different iterates. In other words, G uses “inexact”
gradient information evaluated at n different past iterates
to approximate the “exact” gradient information that are all
evaluated at the current iterate. Despite the sub-optimality of

our sampling distribution, we can show that it reduces the
variance of the stochastic gradient as compared to the uniform
distribution, whose details are given in the next subsection.

The adaptivity of the importance sampling scheme guar-
antees that the gradient information that are collected is
close to the current iteration. As such, without using any
generally unknown Lipschitz constants, SGD-AIS engages the
approximate local structure of the objective function into its
importance sampling, yet has the same order of per-iteration
computational cost with vanilla SGD.

B. SGDm-AIS

According to the framework of SGD-AIS, we can also apply
this adaptive importance sampling method to other methods
based on stochastic gradients. Incorporated with momentum-
based SGD results in the algorithm that we call SGDm-AIS.
Different from the stochastic gradient (9) of SGD-AIS, the
stochastic gradient of SGDm-AIS is defined is recursively, that
is

gk = θgk−1 + (1− θ) 1

npkik
∇fik(wk), (10)

where θ and 1 − θ weight the historical gradient and current
gradient. Different from standard SGD with momentum, in
SGDm-AIS we involve the newly evaluated gradient by mul-
tiplying a factor of 1/(npkik) to make it unbiased.

C. ADAM-AIS

As for ADAM-AIS, the stochastic gradient is defined as

gk =
m̂k√
ĥk + ε

, (11)

where

m̂k =

(
θ1mk−1 + (1− θ1)

1

npkik
gk

)/
(1− θk1 ), (12)

and

ĥk =

(
θ2hk−1 + (1− θ2)

1

npkik
g2
k

)/
(1− θk2 ). (13)

It is noted that, to make them unbiased, the newly evaluated
gradient and squared gradient are both multiplied by an
1/(npkik) factor.

Regarding the the adaptive importance sampling as a type
of methodology, we can also apply it to many other stochastic
optimization algorithms, like SVRG, SAGA, AdaGrad, RM-
SProp, etc.

D. Mini-Batch Variants

SGD-AIS (as well as SGDm-AIS and ADAM-AIS) can be
naturally extended to mini-batch cases. The mini-batch SGD-
AIS selects more than one component function to compute
the gradient. Let m be the mini-batch size. A simple way
is to partition the set of indices into n/m disjoint subsets
{I1, . . . , In/m}, so that the cardinality of each subset is equal
to m (assume n is a multiple of m). Then, during each



iteration, randomly select one subset based on the distribution
pk, where the corresponding optimal distribution is given by

(pki )∗ =
‖
∑
l∈Ii ∇fl(wk)‖2∑n/m

j=1 ‖
∑
l∈Ij ∇fl(wk)‖2

, ∀i ∈ {1, . . . , n/m}.

(14)
However, it is not a flexible way because the elements

of each mini-batch are fixed. We implement the mini-batch
variants in another way [29]. Firstly, we partition the set
of indices into m disjoint subsets {J1, . . . , Jm}, so that the
cardinality of each subset is equal to n/m. Then, during each
iteration, randomly select a single index from each subset and
add it to the mini-batch. We perform the adaptive importance
sampling on each individual subset. So the optimal distribution
for each subset Js (s = 1, . . . ,m) is given by

(pki )∗ =
‖∇fi(wk)‖2∑
j∈Js ‖∇fj(wk)‖2

, ∀i ∈ Js. (15)

E. Efficient Implementation of Sampling

In SGD-AIS, SGDm-AIS or ADAM-AIS, we need to pick
an index that follows non-uniform distribution pk at every
iteration. A natural way to implement this is to first generate
a uniformly distributed random number, then perform binary
search based on the sorted array [pk1 , p

k
1 + pk2 , . . . ,

∑n
j=1 p

k
j ].

This results in only O(log n) sampling time [22]. However,
some πi will be changed every iteration, thus updating the
array costs O(n) time, in addtional to the O(d) per-iteration
cost of computing a stochastic gradient. To mitigate the fre-
quent update of probability distribution, we resort to a binary
tree data structure T . Although binary tree has slightly higher
storage demand, it can achieve much cheaper probability
update, as well as efficient adaptive sampling.

Suppose that there are n data examples. Let πi be the i-th
leaf of Tn. By properly adding ”zero” nodes, we can group the
nodes at each level in pairs. Figure 1 illustrates an example
of such a binary tree with n = 7. Note that we need to
add one more leaf at the bottom level, for grouping it with
π7. According to Algorithm 1, some πi is changed in each
iteration. Hence, all the ancestor nodes of πi in Tn should be
updated. The update of Tn can be done in a botton-up way. It
is known that the height of Tn is dlog ne. Thus, by updating
the tree in a bottom-up approach, the computational cost is
O(log n).
Tn can contribute to generating a random integer following

a given distribution. If we first generate a uniformly distributed
random number r ∈ [0, 1], we are supposed to find the index
i such that

∑i−1
j=1 p

k
j < r <

∑i
j=1 p

k
j . By (8) we have

i∑
j=1

pkj =
(1− αk)i

n
+ αk

∑i
j=1 πj∑n
l=1 πl

, ∀i ∈ [n],

where all the partial sums in the right-hand side of the equation
are stored in Tn. Thus, we can quickly find the desired i
by visiting Tn in a top-down fashion. Obviously, searching
for i also takes O(log n) time. The specific implementation
procedures are provided in the supplementary materials.

Fig. 1: Example of Binary Tree T7

To conclude, additional O(log n) per-iteration cost is needed
to implement the adaptive sampling. Since updating the vari-
ables already requires O(d) per-iteration cost, our adaptive
coordinate sampling method does not increase the order of
computational complexity.

III. CONVERGENCE ANALYSIS

In this section, we provide the theoretical result that the
variance of the stochastic gradient in SGD-AIS is strictly
smaller than that in SGD with uniform sampling. To do so,
we should first make the following assumptions.

Assumption 1. Sequence {wk} ⊆ Ω, where Ω ⊆ Rd is a
compact set.

In general, Assumption 1 holds when the objective function
is level-bounded. Although stochastic gradient methods are not
guaranteed to be descent algorithms, Assumption 1 still holds
for all convergent optimization processes which result from
bounded sequences. Then, we define an the upper bound of
the gradient norm:

G := max
w∈Ω

{
max
i∈[n]
{‖∇fi(w)‖2}

}
. (16)

Since Ω is compact, we know that G is well-defined, i.e.,
G < +∞.

Assumption 2. There exist some constants δ > 0 and ρ > 0
such that

min
w∈Ω

{
1

n

n∑
i=1

‖∇fi(w)‖2

}
≥ δG (17)

and

min
w∈Ω

 1

2n2

n∑
i=1

n∑
j=1

(‖∇fi(w)‖2 − ‖∇fj(w)‖2)
2

 ≥ ρG2.

(18)

Assumption 2 lower bounds the average gradient norm and
the sum of differences of gradient norms. It is straightforward
to verify that Assumption 2 implies that δ ≤ 1 and ρ ≤ 1

2 .
The two inequalities in Assumption 2 can be shown to hold
with high probability if we assume fi(w) = g(xTi w)+ λ

2 ‖w‖
2
2

where the data xi follows the Gaussian or the uniform distribu-
tion, and g(·) is a continuous loss function. Both the objective



Fig. 2: SGD for Logistic Regression and SVM

functions of logistic regression and support vector machine
considered in this paper follows this form.

Assumption 3. Suppose N ≥ n, then for all j ∈ [n] and
iteration k ≥ N , j has been picked in the last N iterations,
i.e., j ∈ {ik−1, ik−2, . . . , ik−N}.

Assumption 3 makes sure that all entries in π are updated
for at least once within any N consecutive iterations. We show
in the supplementary materials that Assumption 3 can hold
with high probability for large enough N .

A. Upper Bound on the Variance

We provide the main theorems for our adaptive importance
sampling method, whose complete proofs are given in the
suplementary materials. We first state the following theorem
that plays an key role in establishing the convergence results
of SGD-AIS.

Theorem 1. Suppose that w is an iterate after N iterations
run by Algorithm 1, and p is the most recently updated
probability distribution. Under Assumptions 1-3, suppose that
the maximum stepsize η in Algorithm 1 satisfies

0 < η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
. (19)

Then, we have

Vari∼p

[
1

npi
∇fi(w)

]
≤ Vari∼U [∇fi(w)]− γG2, (20)

where γ = αρ− αLηN
(1−α)3δ−(1−α)2LηN ∈ (0, 1).

Theorem 1 provides an upper bound on the variance of the
stochastic gradient in SGD-AIS. It shows that under proper
choice of the stepsize, SGD-AIS achieves a strictly smaller
variance than the variance based on uniform sampling, by
an amount of at least γG2. It is important to note that
Theorem 1 demonstrates a non-asymptotic result since w
can be an arbitrary iterate. We provide a novel proof to the

above theorem by introducing an ”auxiliary” variance in the
suplementary materials.

B. Convergence Bounds

Equipped with Theorem 1, similar with Theorem 4.7 of
[4], we can establish the corresponding convergence bound of
SGD-AIS with constant stepsizes for strongly convex prob-
lems.

Theorem 2. Under the Assumption 1-3, suppose that the
objective function F (w) is both L-smooth and σ-strongly
convex function, and SGD-AIS is run with a fixed stepsize
ηk = η for all k ∈ N, satisfying

0 < η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
. (21)

Then we have

E[F (wk)− F ∗]

≤ηL(1− γ)G2

4σ
+ (1− 2ησ)k−1 (F (w1)− F ∗)

k→∞−−−−→ηL(1− γ)G2

4σ
.

(22)

Theorem 2 shows that the expected function value converge
to a neighborhood of the global minimum with linear rate.
For vanilla SGD under the same setting, (1− γ)G2 in (22) of
Theorem 2 is replaced with G2 [4]. Therefore, the convergence
bounds of SGD-AIS are improved by a factor of 1− γ < 1.

Furthermore, if we choose diminishing stepsize, SGD-AIS
is guaranteed to converge to the global optimal at the following
sublinear rate.

Theorem 3. Under the same Assumptions 1-3, suppose that
SGD-AIS is run with a sequence of diminishing stepsizes such
that, for all k ∈ N, ηk = β/(ξ + k), where β > 1/(2σ), γ > 0
and

η1 <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
. (23)



Fig. 3: SGDm and ADAM with Momentum for SVM

Then we have E[F (wk)− F ∗] ≤ ν/(ξ + k), where

ν := max

{
β2L(1− γ)G2

2(2βσ − 1)
, (ξ + 1)(F (w1)− F ∗)

}
.

Theorem 3 shows that the function value converges to
the global minimum with rate O(1/ε). Similarly, comparing
with vanilla SGD under the same setting where(1 − γ)G2 in
Theorem 3 is replaced with G2 [4], the convergence bounds
of SGD-AIS are improved by a factor of 1 − γ < 1. We
also provide more convergence analysis under the nonconvex
settings, which are stated and proved in the suplementary
materials.

IV. EXPERIMENTS

In this section, we provide our experimental results to verify
the effectiveness of SGD-AIS, SGDm-AIS and ADAM-AIS by
applying them to several common learning tasks.

A. Evaluating SGD-AIS

We implement three algorithms, which are SGD-AIS, SGD
with uniform sampling (SGD-US), SGD with Lipschitz-based
importance sampling (SGD-LIS) [19], [41] using Matlab
2019a. Specifically, for SGD-LIS, we let the fixed probability
of sampling the i-th training example be Li/

∑n
j=1 Lj , where

Li is the Lipschitz constant of ∇fi. For SGD-AIS, we set
α = 0.3, α = 0.8, and αk = α + (α − α)k/K, where K
is the maximum number of periods we run. For all the three
algorithms, we adopt a sequence of best-tuned stepsizes that
diminishes with rate O(1/k). See the suplementary materials
for more specific values of parameters.

We present the empirical evaluation for two convex learn-
ing problems, which are respectively `2-regularized logistic
regression

min
w∈Rd

{
1

n

n∑
i=1

log
(
1 + exp

(
−yix>i w

))
+
λ

2
‖w‖22

}
(24)

and support vector machine (SVM) based on squared hinge
loss

min
w∈Rd

{
1

n

n∑
i=1

([
1− yix>i w

]
+

)2

+
λ

2
‖w‖22

}
. (25)

Both of these two objective functions are strongly convex
and have Lipschitz continuous gradients. The experiments are
performed on the datasets a2a, ijcnn1, w8a, and gisette [6],
whose sizes are given in the supplementary materials.

Figure 2 illustrates the performance of the three algorithms
applied to convex learning problems, i.e., logistic regression
and support vector machine. We consider log10(F − F ∗) for
the first 100 epochs (i.e., 100n iterations), where F ∗ denotes
the optimal function value. We take the average function
values by running each algorithm 30 times with the same
initial point. As it can be seen, SGD-US and SGD-LIS have
roughly the same sublinear rate of convergence, since the used
global Lipschitz constants in Lipschitz-based sampling cannot
capture much local information, and even the Li’s do not
differ from each other a lot. At the initial stage, SGD-AIS
adopts the sampling distribution that is close to the uniform
distribution, thus it has similar convergence rates with the other
two algorithms. SGD-AIS soon achieves distinctively higher
convergence accuracy after several epochs, since the sampling
distribution p gets closer to the sub-optimal distribution G.
In general, SGD-AIS has apparently better performance for
all the chosen datasets, whose n and d vary from n � d
to n ≈ d. One possible reason is that, under these cases,
Assumption 2 will hold with larger δ and ρ, which leads to
larger γ in Theorem 1 and hence better convergence.

For fair comparisons of the empirical results, we also
provide the runtime of the experiments. All our experiments
are conducted based on an Intel i5 processor with 3.1GHz
main frequency. Table I and II shows the specific runtime
(in seconds) per epoch. As expected, SGD-LIS and SGD-
AIS takes slightly more computational time than SGD-US,
while in general they are very close to each other. Thus, the



Fig. 4: SGDm and ADAM for Neural Networks (Column 1-3: MLP (MNIST), LeNet-5 (MNIST), CNN (Cifar-10);
Row 1: SGD-US v.s. SGD-AIS; Row 2: ADAM-US v.s. ADAM-AIS)

sharper convergence performance of adaptive sampling will
not be apparently counteracted.

B. Evaluating SGDm-AIS and ADAM-AIS

For SGDm-AIS and ADAM-AIS, we evaluate their perfor-
mance on both convex and nonconvex learning problems.

1) Experiments on Convex Learning: We conduct experi-
ments on SVM with squared hinge loss (25) using Matlab.
We adopt constant stepsizes, and set α, α, αk to be the same
values as those in the section 6.1, and the weight θ in (10)
is set as 0.9. Figure 3 presents the convergence performance
of SGDm, ADAM, and their importance sampling derivatives.
We can observe that for both SGDm and ADAM, our adaptive
sampling strategy still exhibits significantly sharper rates of
convergence than the algorithms with uniform sampling or
non-uniform stationary sampling.

2) Experiments on Neural Networks: In order to evaluate
the performance of SGDm-AIS and ADAM-AIS in more com-
plex nonconvex problem, we further conduct simulation on
several classical neural networks, including MLP (multilayer
perceptron), CNN (convolutional neural network), and LeNet-
5 [18]. We use two common benchmark datasets, namely
MNIST and CIFAR-10 for our experiments.

We implement SGDm-AIS, SGDm-US (uniform sampling),
ADAM-AIS and ADAM-US (uniform sampling) in PyTorch.
MNIST is applied to a three-layer MLP, which is a fully
connected neural network with ReLU activition (i.e., the
number of hidden neurons is 784-500-256-10), and the LeNet-
5. Besides, CIFAR-10 is applied to a CNN, whose structural
details are given the suplementary materials. The batch sizes
we choose are 8 for MNIST and 16 for CIFAR-10. Moreover,

TABLE I: Runtime (s) for Logistic Regression

a2a ijcnn1 w8a gisette

SGD-US 0.0031 0.049 0.212 0.357

SGD-LIS 0.0033 0.062 0.225 0.360

SGD-AIS 0.0035 0.064 0.231 0.369

TABLE II: Runtime (s) for SVM

a2a ijcnn1 w8a gisette

SGD-US 0.0027 0.0454 0.184 0.311

SGD-LIS 0.0030 0.0575 0.195 0.314

SGD-AIS 0.0032 0.0609 0.204 0.328

we adjust the learning rate during training by reducing the
learning rate according to a pre-defined schedule. Here, we
choose the step decay schedule, which drops the learning rate
by a factor ρ < 1 every few epochs. More specific choices of
parameters are also provided in the suplementary materials.

It is observed from Figure 4 that SGDm-AIS and ADAM-
AIS achieves evidently lower training error and higher training
accuracy compared with SGDm-US and ADAM-US respec-
tively, for all the three neural nwtworks. In terms of test error
and test accuracy, SGDm-AIS and ADAM-AIS exhibits a more
stable pattern than SGDm-US ans ADAM-US.

V. CONCLUSION

In this paper, we have investigated an importance sam-
pling strategy with three notable attributes, i.e., Lipschitz-
independent, computationally efficient, and adaptive to the



local function property. We provide a non-asymptotic upper
bound for the variance of the stochastic gradients, and verify
that the reduced variance leads to faster convergence rates
both in theory and practice. We also extend the adaptive
importance sampling method to SGD with momentum and
ADAM. We perform extensive experiments on SGD-AIS,
SGDm-AIS and ADAM-AIS under convex and nonconvex
settings. The empirical results exhibit obviously superior con-
vergence performance than traditional algorithms based on
uniform and non-uniform stationary sampling. We think our
adaptive sampling strategy has much potential to accelerate
training process of learning tasks with larger scale.
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sampling for incremental optimization using stochastic gradient descent.
In International Conference on Algorithmic Learning Theory, pages
317–331. Springer, 2015.

[26] Dmytro Perekrestenko, Volkan Cevher, and Martin Jaggi. Faster coordi-
nate descent via adaptive importance sampling. In Artificial Intelligence
and Statistics, pages 869–877, 2017.

[27] Xun Qian, Zheng Qu, and Peter Richtárik. SAGA with arbitrary
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Supplementary Materials

A. Efficient Implementation Procedures of Adaptive Sampling

Algorithm 2 Updating Tree T
1: Input: old tree T , new value for i-th leaf π′i
2: Compute ∆ = π′i − πi
3: node = leaf(i)
4: while node.parent 6= NULL do
5: node = node+ ∆
6: node = node.parent
7: end while
8: node = node+ ∆
9: Output: new tree T ′

Algorithm 3 Sampling Based on Tree T

1: Input: T , R ∈
[
0, 1

αk

∑n
j=1 πj

]
, C = 1−αk

nαk

∑n
j=1 πj

2: node = root(T )
3: while node is not a leaf do
4: if R > node.sumL + node.left.num× C then
5: R = R− node.sumL − node.left.num× C
6: node = node.right
7: else
8: node = node.left
9: end if

10: end while
11: Output: node.ind

B. Discussion on the Assumptions

The following proposition shows that Assumption 3 holds with high probability for large enough N .

Proposition 1. Suppose that N ≥ 4n log n/(1 − α) and there are K iterations in total, then Assumption 3 holds for all K
iterations with probability at least 1− d2K/Nen .

Proof. Firstly, in the first N/2 iterations, for any 1 ≤ j ≤ n, j has been picked with probability at least

1−
(

1− min
1≤k≤N/2

{pkj }
)N/2

≥ 1−
(

1− 1− α
n

)2n logn/(1−α)

≥ 1− 1

n2
.

Thus, in the first N/2 iterates, all indices have been picked at least once with probability at least 1− 1
n . Furthermore, we know

that, for iterations between (k − 1)N/2 + 1 and kN/2 for each 1 ≤ d2K/Ne, all indices have been picked at least once with
probability at least 1− d2K/Nen . Once this holds, since every N iterations must contain at least one interval [(k−1)N/2+1, kN/2]
for some 1 ≤ d2K/Ne, each index has been picked at least once, i.e., Assumption 3 holds.

C. Useful Lemmas

The stochastic gradient at certain iterate w in SGD-AIS is 1
npi
∇fi(w), where i follows the most recently updated distribution

p. As discussed for (6) and (7), p is a mixture of the sub-optimal distribution and the uniform distribution. To prove our desired
result, we introduce an auxiliary distribution pw, which is a mixture of the optimal distribution and the uniform distribution.
More specifically,

pwi = α
‖∇fi(w)‖2∑m
j=1 ‖∇fj(w)‖2

+ (1− α)
1

n
, ∀i ∈ [n]. (26)



Accordingly, an intermediate stochastic gradient is defined as 1
npwi
∇fi(w), where i ∼ pw. We first prove that the variance

of this intermediate stochastic gradient Vari∼pw

[
1

npwi
∇fi(w)

]
is strictly smaller than the variance of uniform distribution

Vari∼U [∇fi(w)], which is formally stated as Lemma 1.

Lemma 1. Denote U as the uniform distribution on [n], and pw is the distribution defined as (26). If Assumption 2 holds,
then for all α ∈ [α, α], we have

Vari∼U [∇fi(w)]−Vari∼pw

[
1

npwi
∇fi(w)

]
≥ αρG2. (27)

Proof. Since both ∇fi(w) and 1
npwi
∇fi(w) are unbiased estimator of ∇F (w), we have

Vari∼U [∇fi(w)] = E[‖∇fi(w)‖22]− ‖E[∇fi(w)]‖22 =
1

n

n∑
i=1

‖∇fi(w)‖22 − ‖∇F (w)‖22,

and

Vari∼pw

[
1

npwi
∇fi(w)

]
= E

[∥∥∥∥ 1

npwi
∇fi(w)

∥∥∥∥2

2

]
−
∥∥∥∥E [ 1

npwi
∇fi(w)

] ∥∥∥∥2

2

=
1

n2

n∑
i=1

1

pwi
‖∇fi(w)‖22 − ‖∇F (w)‖22.

By definition of pwi and the fact that (ax+ by)(a/x+ b/y) ≥ (a+ b)2 for all x, y, a, b > 0, we have

1

pwi
=

1

α ‖∇fi(w)‖2∑m
j=1 ‖∇fj(w)‖2 + (1− α) 1

n

≤ α
∑n
j=1 ‖∇fj(w)‖2
‖∇fi(w)‖2

+ (1− α)n,

holds for any α ∈ [α, α]. Therefore,

Vari∼U [∇fi(w)]−Vari∼pw

[
1

npwi
∇fi(w)

]
=

1

n

n∑
i=1

‖∇fi(w)‖22 −
1

n2

n∑
i=1

1

pwi
‖∇fi(w)‖22

≥ 1

n

n∑
i=1

‖∇fi(w)‖22 −
1

n2

n∑
i=1

(
α

∑n
j=1 ‖∇fj(w)‖2
‖∇fi(w)‖2

+ (1− α)n

)
‖∇fi(w)‖22

=
α

n

n∑
i=1

‖∇fi(w)‖22 −
α

n2

n∑
i=1

n∑
j=1

‖∇fi(w)‖2‖∇fj(w)‖2

=
α

2n2

 n∑
i=1

2n‖∇fi(w)‖22 −
n∑
i=1

n∑
j=1

2‖∇fi(w)‖2‖∇fj(w)‖2


=

α

2n2

n∑
i=1

n∑
j=1

(‖∇fi(w)‖2 − ‖∇fj(w)‖2)2

≥αρG2,

(28)

where the last inequality follows from Assumption 2.

Next, we would like to bound the difference between Vari∼p

[
1
npi
∇fi(w)

]
and the intermediate variance

Vari∼pw

[
1

npwi
∇fi(w)

]
. Lemma 2 plays a key role to achieve this.

Lemma 2. Consider the k-th iteration. Denote τj = max{k′ : k′ ≤ k, ik′ = j} for all j ∈ [n]. Let αk ∈ (α, α) be in Algorithm
1. p is the most recently updated probability distribution in Algorithm 1, i.e.,

pi = αk

(
‖∇fi(wτi)‖2∑n
j=1 ‖∇fj(wτj )‖2

)
+ (1− αk)

1

n
. (29)

pwki is defined as the right hand side of equation (26), i.e.,

pwki = αk

(
‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

)
+ (1− αk)

1

n
. (30)



By (16) and Assumption 3, as well as η := max{ηk : k ∈ N} ≤ (1− α)δ/NL, we have

n∑
i=1

|pi − pwki | ≤
2αLηm

(1− α)δ − Lηm
. (31)

Proof. For j ∈ [n], we first consider the difference of the following gradient norms,

|‖∇fj(wτj )‖2 − ‖∇fj(wk)‖2| ≤ ‖∇fj(wτj )−∇fj(wk)‖2
≤ L‖wτj −wk‖2

= L

∥∥∥∥∥
k∑

κ=τj

ηκ
1

npiκ
∇fiκ(wκ)

∥∥∥∥∥
2

≤ Lη
k∑

κ=τj

∥∥∥∥ 1

npiκ
fiκ(wκ)

∥∥∥∥
2

≤ Lη
k∑

κ=τj

G

1− α

=
GLη

1− α
(k − τj + 1)

≤ GLηN

1− α
.

(32)

The fourth inequality in (32) is bacause (29) implies piκ > (1−α)/n, and (16) implies ‖∇fiκ(wκ)‖2 ≤ G. The last inequality
in (32) is because Assumption 3 implies that k + 1− τj ≤ N . (32) further implies that, for all j ∈ [n]

‖∇fj(wk)‖2 −
GLηN

1− α
≤ ‖∇fj(wτj )‖2 ≤ ‖∇fj(wk)‖2 +

GLηmN

1− α
. (33)

Thus,

‖∇fi(wk)‖2 − GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 + GLηNn
1−α

≤ ‖∇fi(wτi)‖2∑n
j=1 ‖∇fj(wτj )‖2

≤
‖∇fi(wk)‖2 + GLηN

1−α∑n
j=1 ‖∇fj(wk)‖2 − GLηNn

1−α
, (34)

where the second inequality is ensured to be positive by (16) and η < (1 − α)δ/NL. (34) implies that at least one of the
following two inequalities hold, i.e.,

|pi − pwki | ≤ α

∣∣∣∣∣ ‖∇fi(wk)‖2 + GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

− ‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

∣∣∣∣∣
= α

GLηN
1−α

∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α ‖∇fi(wk)‖2(∑n
j=1 ‖∇fj(wk)‖2 − GLηNn

1−α

)∑n
j=1 ‖∇fj(wk)‖2

:= A,

(35)

or

|pi − pwki | ≤ α

∣∣∣∣∣ ‖∇fi(wk)‖2 − GLηN
1−α∑n

j=1 ‖∇fj(wk)‖2 + GLηN
1−α

− ‖∇fi(wk)‖2∑n
j=1 ‖∇fj(wk)‖2

∣∣∣∣∣
= α

GLηN
1−α

∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α ‖∇fi(wk)‖2(∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α

)∑n
j=1 ‖∇fj(wk)‖2

:= B.

(36)



It is obvious that A ≥ B, thus inequality (35) always holds. Taking i = 1, 2, . . . , n in (35) and summing the n inequalities,
this yields

n∑
i=1

|pi − pwki | ≤ α
GLηNn

1−α
∑n
j=1 ‖∇fj(wk)‖2 + GLηNn

1−α
∑n
i=1 ‖∇fi(wk)‖2(∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

)∑n
j=1 ‖∇fj(wk)‖2

= α

GLηNn
1−α∑n

j=1 ‖∇fj(wk)‖2 − GLηNn
1−α

=
αGLηNn

(1− α)
(∑n

j=1 ‖∇fj(wk)‖2
)
−GLηNn

≤ αGLηNn

(1− α)nδG−GLηNn

=
αLηN

(1− α)δ − LηN

(37)

where the second inequality comes from (16). Note that η < (1−α)δ
NL , thus the upper bound in (37) is positive.

D. Proof of Theorem 1

Proof. We first consider the following bound∣∣∣∣Vari∼p

[
1

npi
∇fi(w)

]
−Vari∼pw

[
1

npwi
∇fi(w)

]∣∣∣∣ =

∣∣∣∣∣ 1

n2

n∑
i=1

(
1

pi
− 1

pwi

)
‖∇fi(w)‖22

∣∣∣∣∣
≤ G2

n2

n∑
i=1

∣∣∣∣ 1

pi
− 1

pwi

∣∣∣∣
=
G2

n2

n∑
i=1

|pwi − pi|
pipwi

≤ G2

n2

(
n

1− α

)2 n∑
i=1

|pwi − pi|

≤ G2

(1− α)2

αLηN

(1− α)δ − LηN

=
αG2LηN

(1− α)3δ − (1− α)2LηN
,

(38)

where the last inequality follows from Lemma 2, and the final obtained bound in is positive since η < (1−α)3δρ
(1−α)2NLρ+NL < (1−α)δ

NL .
Therefore,

Vari∼p

[
1

npi
∇fi(w)

]
≤ Vari∼pw

[
1

npwi
∇fi(w)

]
+

αG2LηN

(1− α)3δ − (1− α)2LηN

≤ Vari∼U [∇fi(w)]− αρG2 +
αG2LηN

(1− α)3δ − (1− α)2LηN

= Vari∼U [∇fi(w)]−
(
αρ− αLηN

(1− α)3δ − (1− α)2LηN

)
G2

= Vari∼U [∇fi(w)]− γG2,

(39)

where the second inequality results from Lemma 1. In addition, γ = αρ− αLηN
(1−α)3δ−(1−α)2LηN > 0 since η < (1−α)3δρ

(1−α)2NLρ+NL ,
and γ < 1 since α, ρ < 1

E. Proofs of Theorems 2 & 3

Prepared with the above two lemmas, we can finally connect our desired variances Vari∼p

[
1
npi
∇fi(w)

]
and

Vari∼U [∇fi(w)] by bridging over the intermediate variance Vari∼pw

[
1

npwi
∇fi(w)

]
.



Proof of Theorem 2. For all k ∈ N, conditioning on wk, along with (41), we have

Ei∼p[F (wk+1)]− F (wk) ≤ −2ησ(F (wk)− F ∗) +
η2L

2
(1− γ)G2.

Subtracting F ∗ from both sides, taking total expectation, and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ησ)E[F (wk)− F ∗] +
η2L

2
(1− γ)G2.

Applying this inequality repeatedly through iteration k ∈ N to get

E[F (wk)− F ∗] ≤(1− 2ησ)k−1(F (w1)− F ∗) +
η2L

2
(1− γ)G2

k∑
l=1

(1− 2ησ)l−1

≤(1− 2ησ)k−1(F (w1)− F ∗) +
ηL

4σ
(1− γ)G2

k→∞−−−−→ηL(1− γ)G2

4σ
,

(40)

where the last limit comes from 1− 2ησ < 1, which is implied by

η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
<

1

2L
<

1

2σ
,

since δ, ρ ≤ 1.

Proof of Theorem 3. By (23) and the definition of ηk, the following inequality holds for all k ∈ N,

ηk <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
.

For all k ∈ N, conditioning on wk, we have

Ei∼p[F (wk+1)]− F (wk) ≤− ηkEi∼p
[〈

1

npi
∇fi(w),∇F (wk)

〉]
+
η2
kL

2
Ei∼p

[∥∥∥∥ 1

npi
∇fi(w)

∥∥∥∥2

2

]

≤− ηk‖∇F (wk)‖2F +
η2
kL

2

(
Ei∼U

[
‖∇fi(w)‖22

]
− γG2

)
≤− ηk‖∇F (wk)‖2F +

η2
kL

2
(1− γ)G2

≤− 2ηkσ(F (wk)− F ∗) +
η2
kL

2
(1− γ)G2,

(41)

where p denotes the most recently updated sampling distribution in SGD-AIS. In (41), the first inequality is implied by the
L-smoothness of F , the second inequality follows from Theorem 1, the third inequality is due to (16), and the last inequality
are come from strong convexity of F . Subtracting F ∗ from both sides, taking total expectation, and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ηkσ)E[F (wk)− F ∗] +
η2
kL

2
(1− γ)G2.

Subtracting F ∗ from both sides, taking the expectation and rearranging, this yields

E[F (wk+1)− F ∗] ≤ (1− 2ηkσ)E[F (wk)− F ∗] +
η2
kL

2
(1− γ)G2. (42)

Then we prove E[F (wk) − F ∗] ≤ ν/(ξ + k) by induction. Firstly, the definition of ν ensures that it holds for k = 1. Then,
assume it holds for some k > 1, it follows from (42) that

E[F (wk+1)− F ∗] ≤(1− 2σβ

ξ + k
)

ν

ξ + k
+
β2L(1− γ)G2

2(ξ + k)2

=
ξ + k − 1

(ξ + k)2
ν − 2(2σβ − 1)ν − β2L(1− γ)G2

2(ξ + k)2

≤ ν

ξ + k + 1
.

(43)

The last inequality holds because of (ξ + k − 1)(ξ + k + 1) < (ξ + k)2 and the definition of ν.



F. Supplementary Convergence Analysis

Theorem 1 holds without requiring the convexity of the objective function F (w), thus we can get the convergence results
of SGD-AIS for the nonconvex cases, which are formally stated as the following two theorems.

Theorem 4. Under Assumptions 1-3, suppose that the objective function F (w) is a L-smooth function, and the SGD-AIS is
run with a fixed stepsize, ηk = η for all k ∈ N, satisfying

0 < η <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
.

Then, the average-squared gradient of F corresponding to the iterates satisfy

E

[
1

K

K∑
k=1

‖∇F (wk)‖22

]
≤ηL

2
(1− γ)G2 +

F (wk)− Finf

Kη

K→∞−−−−→ηL

2
(1− γ)G2.

(44)

Proof. Taking the total expectation of (41) yields

E[F (wk+1)]− E[F (wk)] ≤ −ηE[‖∇F (wk)‖2F ] +
η2L

2
(1− γ)G2.

Summing both sides of this inequality for 1 ≤ k ≤ K and dividing by K gives

E[F (wK+1)]− F (w1)

K
≤ −η

K∑
k=1

E[‖∇F (wk)‖2F ] +
η2L

2
(1− γ)G2.

To get (44), we only need to use the inequality E[F (wK+1)] ≥ Finf .

Theorem 5. Under Assumptions 1-3, suppose that the objective function F (w) is L-smooth, and SGD-AIS is run with a
diminishing stepsize sequence that satisfies, for all k ∈ N,

0 < ηk <
(1− α)3αδρ

(1− α)2αNLρ+ αNL
, (45)

and

AK =

K∑
k=1

ηk =∞, and BK =

K∑
k=1

η2
k <∞. (46)

Then, the average-squared gradient of F corresponding to the SGD iterates satisfy

E

[
1

AK

K∑
k=1

ηk‖∇F (wk)‖22

]

≤L(1− γ)G2BK
AK

+
2 (F (wk)− Finf)

AK

K→∞−−−−→ 0.

(47)

Proof. Similarly, taking the total expectation of (41) yields

E[F (wk+1)]− E[F (wk)] ≤ −ηkE[‖∇F (wk)‖2F ] +
η2
kL

2
(1− γ)G2.

Summing both sides of this inequality for 1 ≤ k ≤ K and dividing by AK gives

E[F (wK+1)]− F (w1)

AK
≤ −E

[
1

AK

K∑
k=1

ηk‖∇F (wk)‖2F

]
+
η2L(1− γ)G2BK

2AK
.

Use the inequality E[F (wK+1)] ≥ Finf , we can easily get the first inequality of (47), while the limitation holds because of
(46).



G. CNN Architecture Used in the Experiments (printed in PyTorch format)
Net(
(conv1): Conv2d(3, 6, kernel-size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel-size=2, stride=2, padding=0, dilation=1, ceil-mode=False)
(conv2): Conv2d(6, 16, kernel-size=(5, 5), stride=(1, 1))
(fc1): Linear(in-features=400, out-features=120, bias=True)
(fc2): Linear(in-features=120, out-features=84, bias=True)
(fc3): Linear(in-features=84, out-features=10, bias=True)
)

H. Dataset Sizes and Algorithmic Parameters
In our experiments, we adopt diminishing stepsizes ηk = β

ξ+k for SGD-based algorithms and constant stepsize η for
SGDm/ADAM-based algorithms. The sizes of the real datasets and specific choices of the parameters are given in the following
tables.

TABLE III: Sizes of Datasets

a2a ijcnn1 w8a gisette

n 2265 49990 49749 6000

d 123 22 300 5000

TABLE IV: Parameters of SGD-based Algorithms for Logistic Regression

a2a w8a ijcnn1 gisette

Stepsize Parameter β 1100 200 100 100

Stepsize Parameter ξ 7000 100000 6000 20000

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE V: Parameters of SGD-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Stepsize Parameter β 300 100 1100 50

Stepsize Parameter ξ 7000 100000 6000 500000

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE VI: Parameters of SGDm-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Constant Stepsize η 0.001 0.0002 0.0001 0.0001

Regularization Parameter λ 0.01 0.01 0.01 0.01



TABLE VII: Parameters of ADAM-based Algorithms for SVM

a2a w8a ijcnn1 gisette

Constant Stepsize η 0.005 0.0005 0.0005 0.0008

Regularization Parameter λ 0.01 0.01 0.01 0.01

TABLE VIII: Parameters of SGDm-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16

Stepsize η 0.001 0.001 0.001

Learning Rate Decay (per 100 steps) ρ 0.999 0.995 0.99

Regularization Parameter λ 0.01 0.01 0.01

TABLE IX: Parameters of ADAM-based Algorithms for Neural Networks

MLP (MINIST) LeNet (MINIST) CNN (Cifar-10)

Mini-batch Size 8 16 16

Stepsize η 0.00003 0.001 0.001

Learning Rate Decay (per 100 steps) ρ 0.999 0.995 0.99

Regularization Parameter λ 0.01 0.01 0.01


