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Abstract. Owing to their high accuracy and ease of formulation, there has been great interest
in applying convex optimization techniques, particularly that of semidefinite programming (SDP)
relaxation, to tackle the sensor network localization problem in recent years. However, a drawback
of such techniques is that the resulting convex program is often expensive to solve. In order to speed
up computation, various edge sparsification heuristics have been proposed, whose aim is to reduce
the number of edges in the input graph. Although these heuristics do reduce the size of the convex
program and hence making it faster to solve, they are often ad hoc in nature and do not preserve
the localization properties of the input. As such, one often has to face a tradeoff between solution
accuracy and computational effort. In this paper, we propose a novel edge sparsification heuristic that
can provably preserve the localization properties of the original input. At the heart of our heuristic is
a graph decomposition procedure, which allows us to identify certain sparse generically universally
rigid subgraphs of the input graph. Our computational results show that the proposed approach
can significantly reduce the computational and memory complexities of SDP–based algorithms for
solving the sensor network localization problem. Moreover, it compares favorably with existing
speedup approaches, both in terms of accuracy and solution time.
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1. Introduction. In recent years, the graph realization problem has attracted
a lot of attention in many communities. Such an interest can be attributed to the
fundamental nature and practical significance of the problem. Indeed, the graph
realization problem arises in many different contexts, such as distance geometry [6],
wireless sensor network localization [13], and molecular conformation [17]. In the
context of wireless sensor network localization—which is the one we shall focus on in
this paper—the problem can be formulated as follows. Let d ≥ 1 be an integer (in
practice, we usually have d = 2 or 3), and let G = (V,E) be a graph. The vertices
of G are partitioned into two sets: the set Vs = {1, . . . , n} of sensors, and the set
Va = {n+1, . . . , n+m} of anchors. Together, they induce two subsets Ess, Esa ⊂ E,
which are defined as follows:

Ess = {(i, j) ∈ E : i, j ∈ Vs} and Esa = {(i, j) ∈ E : i ∈ Vs, j ∈ Va}.

Now, each anchor i ∈ Va is given a position ai ∈ Rd. Moreover, each edge (i, j) ∈ Ess

(resp. (i, j) ∈ Esa) is given a positive weight dij (resp. d̄ij), which can be viewed as the
distance between sensor i and sensor j (resp. sensor i and anchor j). In particular,
the existence of an edge between i, j ∈ V means that the distance between i and
j is known. This allows us to assume without loss that Eaa = {(i, j) : n + 1 ≤
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i < j ≤ n + m} ⊂ E, as the distance between any two anchors is trivially known.
To summarize, an instance of the sensor network localization problem is given by
a 4–tuple (G, (d, d̄),a, d), where G = ((Vs, Va), (Ess, Esa, Eaa)) is the input graph,

d = (dij)(i,j)∈Ess
∈ R|Ess|

+ and d̄ = (d̄ij)(i,j)∈Esa
∈ R|Esa|

+ are the vectors of edge

weights, a = (ai)i∈Va
∈ Rdm is the vector containing the positions of the anchors,

and d ≥ 1 is the given dimension. For the sake of simplicity, suppose that the given
distance data are exact. Our goal then is to determine the positions of the sensors so
that they satisfy the given distance measurements. In other words, we are interested
in finding an assignment of coordinates x̃ = (x̃1; . . . ; x̃n) ∈ Rdn to the vertices in Vs

(which, together with a ∈ Rdm, is called a localization or realization of G) such that
x̃ satisfies the following system:

∥xi − xj∥22 = d2ij for (i, j) ∈ Ess,

∥ai − xj∥22 = d̄2ij for (i, j) ∈ Esa,

xi ∈ Rd for i = 1, . . . , n.

(1.1)

Here, we use (u; v) to denote the (p + q)–dimensional column vector obtained by
stacking the p–dimensional column vector u on top of the q–dimensional column
vector v. Problem (1.1) arises as an important sub–problem in many wireless sensor
network applications, such as target detection and tracking, geographic routing, and
collaborative signal processing [29]. In those applications, location–dependent data
are collected either over a vast geographical area or in an indoor environment. Thus,
it is typically infeasible or impractical to “solve” Problem (1.1) by installing GPS–like
systems in the sensors. Furthermore, from a computational point of view, it is NP–
hard to decide whether Problem (1.1) has a feasible solution or not [32], even when
the input graph is a so–called unit disk graph [4, 12]. As a result, many heuristics
for solving Problem (1.1) have been proposed. One family of heuristics that has
received much attention lately is the convex relaxation approach initiated by Doherty
et al. [19] and Biswas and Ye [9]. The idea behind that approach is to develop
efficiently solvable convex relaxations of Problem (1.1), so that approximate solutions
to the original problem can be easily derived. As a concrete example, consider the
following semidefinite programming (SDP) relaxation of Problem (1.1), which is first
proposed by Biswas and Ye [9] and refines the convex relaxations proposed in Doherty
et al. [19]:

(0; ei − ej)(0; ei − ej)
T • Z = d2ij for (i, j) ∈ Ess,

(ai;−ej)(ai;−ej)T • Z = d̄2ij for (i, j) ∈ Esa,

Z =

[
I X

XT Y

]
,

Z ∈ Sd+n
+ .

(1.2)

Here, ei ∈ Rn is the i–th standard basis vector (where i = 1, . . . , n), I is the d × d
identity matrix, Sd+n

+ is the set of (d + n) × (d + n) symmetric positive semidefinite
matrices, and A • B = tr(AB) is the trace inner product of two symmetric matri-
ces A,B of the same dimension. As is well known, the SDP (1.2) can be solved (to
any desired accuracy) efficiently using standard interior point algorithms [38]. More-
over, an approximate solution to Problem (1.1) can be extracted directly from the
X component of the matrix Z (see [9, 35] for details). One advantage of the SDP
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relaxation (1.2) (and in fact of most convex relaxations of Problem (1.1)) is that it
can be applied to any dimension d ≥ 1. This should be contrasted with some existing
localization algorithms (see, e.g., [30, 11]), which relies heavily on the geometry of
the two–dimensional Euclidean space and cannot be easily extended to higher dimen-
sions. Moreover, as demonstrated in [9, 35, 34, 33], the SDP relaxation (1.2) not only
can produce highly accurate results, but also possesses nice theoretical properties.
However, a major drawback of (1.2) is that it is computationally demanding. Indeed,
the SDP (1.2) contains (d+ n)(d+ n+ 1)/2 variables and d(d+ 1)/2 + |Ess|+ |Esa|
equality constraints. As such, an instance of (1.2) with only a few hundred sensors
is considered to be a challenge for standard SDP solvers [10]. Thus, there has been
a lot of interest recently in designing faster algorithms for solving the SDP (1.2), as
well as in developing other more computationally efficient convex relaxations of (1.1).
Some of the proposed approaches include:

1. Distributed Computation. One natural way to handle a large instance of
Problem (1.1) is to first divide the graph G into small subgraphs, then find a
localization of each subgraph using, say, the SDP (1.2), and finally stitch the
subgraphs back together to produce a localization of G. Such an approach
is explored in various recent work (see, e.g., [10, 14, 8]), where the difference
lies mainly in how the subgraphs are formed and how they are stitched back
together. However, we note that the distributed computation approaches
proposed so far tend to be ad hoc, and the error incurred in each subgraph
often propagates throughout the entire graph. Thus, the solution produced
by this approach can be quite inaccurate.

2. Alternative Convex Relaxations. Another way to obtain fast heuristics
for solving Problem (1.1) is to consider other, possibly weaker, convex relax-
ations. For instance, Tseng [37] proposed a second–order cone programming
(SOCP) relaxation of (1.1) and showed that it can be solved much faster than
the SDP relaxation (1.2). Later, motivated by ideas in Fukuda et al. [20] and
Nie [31], Wang et al. [40] proposed a further relaxation of (1.2), in which the
(d+ n)× (d+ n) positive semidefinite cone constraint in (1.2) is replaced by
a number of smaller positive semidefinite cone constraints that correspond
to the local connectivity of the input graph. We remark that although the
above relaxations can be solved much more efficiently than the SDP relax-
ation (1.2), they are not as tight as the SDP relaxation. Consequently, the
solutions produced by the above relaxations may not be as accurate as those
produced by the SDP relaxation (1.2).

3. Exploiting Sparsity in SDPs. In recent years, a lot of effort has been
spent on improving the computational efficiency in solving large–scale SDPs.
One particular approach is to exploit the sparsity in the data matrices to
decompose a large positive semidefinite cone constraint into an equivalent
system of smaller positive semidefinite cone constraints (see, e.g., [20, 39, 26]).
(This should not be confused with the decomposition proposed in [40], which
results in a relaxation of the original SDP.) In [27] the authors applied the
above approach to solve the SDP relaxation (1.2) and another, tighter, SDP
relaxation of Problem (1.1). The reported computational results are very
promising. We remark that the techniques proposed in [20, 26] are very
general and can be applied to any SDP. As such, they do not exploit the
geometric structure of the sensor network localization problem.
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In this paper, we present another novel approach for speeding up the solution time of
the SDP (1.2). Our approach exploits both the combinatorial and geometric aspects
of the sensor network localization problem and is motivated by various theoretical
properties of (1.2) established in [35, 33]. Specifically, we first propose an edge spar-
sification algorithm that, given any graph G = (V,E), returns an edge–sparsified
subgraph G′ = (V,E′) such that G and G′ have essentially the same localization
properties. In other words, under some mild assumptions, one can conclude that ev-
ery localization of the sparsified instance (G′, (d, d̄)|G′ ,a, d) is also a localization of
the original instance (G, (d, d̄),a, d) (the converse is trivial, as G′ is a subgraph of G).
Here, (d, d̄)|G′ denotes the restriction of (d, d̄) onto the edges of G′. At the heart of
our algorithm is a graph decomposition procedure, which allows us to identify certain
sparse generically universally rigid subgraphs of the input graph. Our algorithm has
polynomial complexity for any fixed d ≥ 1, and the number of edges in the subgraph it
produces can be bounded and is typically small. In the context of the SDP (1.2), our
result implies that we can reduce the number of equality constraints without changing
the set of feasible solutions. This should be contrasted with the edge sparsification
algorithms proposed in [10, 14, 8, 40, 27], which do not have such a guarantee. In
particular, the size–reduced SDPs produced by those algorithms are not necessarily
equivalent to the original one. Recently, Krislock and Wolkowicz [28] have developed
a speedup approach that has a similar flavor as ours. Their algorithm proceeds by
identifying cliques in the input graph, and in some sense it can be viewed as a combi-
natorial algorithm for solving the SDP (1.2). However, the runtime of their algorithm
is not clear. Moreover, as we shall see, our approach identifies a larger class of graphs
(i.e., beyond cliques) for which edge sparsification is possible.

Next, we combine our edge sparsification algorithm with existing speedup tech-
niques (see, e.g., [27]) to develop a fast SDP–based algorithm for the sensor network
localization problem. The proposed SDP–based algorithm not only guarantees to
find a solution to the original SDP (1.2) (i.e., with the full set of edge–distance data),
but also runs significantly faster and has a much lower memory requirement than
the original SDP (1.2). Moreover, it compares very favorably with existing convex
relaxation–based algorithms, both in terms of accuracy and solution time.

Although our work employs the notion of universal rigidity mainly as a tool to
speed up SDP and other convex relaxation–based algorithms for the sensor network
localization problem, it should be emphasized that the notion is interesting and im-
portant in its own right. For instance, the recent work of So and Ye [35, 34, 33],
Alfakih [2, 1], and Gortler and Thurston [22] show that many questions about univer-
sally rigid instances can be answered using semidefinite programming. In this regard,
our work can be viewed as a further demonstration of the close connection between
universal rigidity and semidefinite programming.

The rest of the paper is organized as follows. In Section 2, we give the motivation
of our approach and show how it can be formalized and studied under the framework
of rigidity theory. Then, we show that there exists a family of sparse graphs (i.e.,
graphs with only O(|V |) edges, where |V | is the number of vertices in the graph) for
which the SDP relaxation (1.2) is essentially exact. Such a family forms the basic
building block of our edge sparsification algorithm, which we introduce in Section 3.
Then, we analyze the properties of the proposed algorithm. In particular, we establish
the precise conditions under which the size–reduced SDP is equivalent to the original
SDP. In Section 4, we discuss some further techniques for improving both the accuracy
and solution speed of the size–reduced SDP. We then report our computational results
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and experiences in Section 5 and close with some concluding remarks in Section 6.

2. Preliminaries.

2.1. Motivation of Our Approach. Before we delve into the details of the
edge sparsification algorithm, let us motivate our approach and introduce some rele-
vant concepts. In recent years, there has been some interest in applying rigidity theory
to study the sensor network localization problem (see, e.g., [3, 41]). Roughly speaking,
the theory of rigidity is concerned with the problem of determining whether a given
realization of a graph is unique (up to congruence) in a given dimension (see [23]
for an introduction). In other words, given a realization p = (p1; . . . ; pl) ∈ Rdl of
an l–vertex graph G = (V,E) in Rd, where vertex i ∈ V is assigned the coordinates
pi ∈ Rd for i = 1, . . . , l, we would like to know whether there exists another realization
q = (q1; . . . ; ql) ∈ Rdl of G such that ∥pi − pj∥2 = ∥qi − qj∥2 for all (i, j) ∈ E, but
∥pi − pj∥2 ̸= ∥qi − qj∥2 for some (i, j) ̸∈ E. If such a q does not exist, then p is the
unique (up to congruence) realization of G in Rd, and the pair (G,p) is said to be
globally rigid in Rd. We should point out that in the setting of rigidity theory, all ver-
tices of G are considered as sensors, and hence one is interested only in non–congruent
realizations.

At first sight, it seems natural to apply rigidity–theoretic techniques to tackle the
sensor network localization problem. Afterall, there exist efficient algorithms that,
given an integer d ≥ 1 and an l–vertex graph G, decide whether (G,p) is globally
rigid in Rd for all generic1 realizations p ∈ Rdl [24, 16, 25, 21]. Now, if G is generically
globally rigid in Rd (i.e., if (G,p) is globally rigid in Rd for all generic realizations
p of G in Rd), then every instance (G, (d, d̄),a, d) will admit a unique localization
in Rd (equivalently, there is a unique solution to the system in (1.1)), provided that
there are at least d + 1 anchors, and (d, d̄) and a induce a generic realization of G
in Rd. Moreover, it is clear that for any generically globally rigid graph G = (V,E)
in Rd, there exists a minimal subset E′ ⊂ E of edges such that G′ = (V,E′) is also
generically globally rigid in Rd. Thus, in order to reduce the size of a given instance
(G, (d, d̄),a, d) of the sensor network localization problem, one could try to identify
generically globally rigid subgraphs of G and sparsify them as much as possible while
preserving their generic global rigidity. Unfortunately, there is a serious obstacle in
the above approach, namely, we may not be able to find the actual realizations of
those generically globally rigid subgraphs in an efficient manner! Indeed, Aspnes et
al. [4] showed that unless RP = NP, there does not exist an efficient randomized
algorithm that, given an instance of the sensor network localization problem with a
unique localization in R2, finds that localization. In other words, the knowledge that
an instance has a unique localization in Rd does not make the task of finding that
localization any easier. Consequently, the applicability of rigidity theory to the sensor
network localization problem is somewhat limited.

In order to circumvent the above difficulty, one could try instead to identify so–
called uniquely d–localizable sub–instances of a given instance of the sensor network
localization problem. The notion of unique d–localizability was introduced by So and
Ye [35] and can be viewed as a computationally efficient alternative to global rigidity.
Specifically, an instance (G, (d, d̄),a, d) of the sensor network localization problem
is said to be uniquely d–localizable if (i) the system in (1.1) has a unique solution
x̃ = (x̃1; . . . ; x̃n) ∈ Rdn, and (ii) for any l > d, ((x̃1;0); (x̃2;0); . . . ; (x̃n;0)) ∈ Rln is

1We say that the point p = (p1, . . . , pl) ∈ Rdl is generic if there does not exist a non–zero
polynomial h : Rdl → R with integer coefficients such that h(p1, . . . , pl) = 0.



6 Z. ZHU, A. M.–C. SO, AND Y. YE

the unique solution to the following system:

∥xi − xj∥22 = d2ij for (i, j) ∈ Ess,

∥(ai;0)− xj∥22 = d̄2ij for (i, j) ∈ Esa,

xi ∈ Rl for i = 1, . . . , n.

Geometrically, the above conditions state that the given instance has a unique localiza-
tion in Rl for all l ≥ d, and that localization is given by (x̃,a) ∈ Rdn×Rdm. We should
emphasize that the notion of unique d–localizability depends both on the combinato-

rial structure of G and the geometric information embedded in (d, d̄) ∈ R|Ess|
+ ×R|Esa|

+

and a ∈ Rdm. Moreover, unlike in the setting of rigidity theory, as long as the given
instance of the sensor network localization problem has more than one distinct lo-
calization, that instance is not considered as uniquely d–localizable, even if all those
distinct localizations are congruent to each other.

As shown in [35], an instance of the sensor network localization problem is
uniquely d–localizable if and only if the maximum rank solution to the SDP (1.2)
is d. In this case, the SDP (1.2) is an exact relaxation of (1.1), i.e., Problem (1.1)
and Problem (1.2) are equivalent. Thus, the SDP (1.2) provides an efficient means
to check whether an instance of the sensor network localization problem is uniquely
d–localizable, and if so, find that unique localization. Now, in view of our earlier dis-
cussion and to further take advantage of the above results, we are led to the following
questions:

1. Given a uniquely d–localizable instance (G, (d, d̄),a, d) of the sensor network
localization problem, can we identify a set of edges in G such that the instance
obtained by removing those edges is still uniquely d–localizable?

2. More generally, given an arbitrary instance of the sensor network localization
problem, can we decompose it into a number of uniquely d–localizable sub–
instances and sparsify them, while at the same time preserving the localization
properties of the original instance?

In other words, we are interested in sparsifying a given instance (G, (d, d̄),a, d) of the
sensor network localization problem, so that the total number of edges in Ess and
Esa is small, and yet the localization properties of the original instance are preserved.
This will then allow us to speed up the solution time of the SDP (1.2). As we shall
see, both of the above questions can be answered in the affirmative to some extent.
Our approach is to first identify a family H of sparse graphs (i.e., with only O(|V |)
edges) such that if H ∈ H, then the instance (H, (d, d̄),a, d) is uniquely d–localizable

whenever there are at least d + 1 anchors, and (d, d̄) ∈ R|Ess|
+ × R|Esa|

+ and a ∈ Rdm

induce a generic realization of G in Rd. Now, if G′ = (V,E′) ∈ H and if G = (V,E)
is such that E′ ⊂ E, then we can remove the edges in E\E′ from G without affecting
its localization properties. Thus, given an arbitrary instance (G, (d, d̄),a, d) of the
sensor network localization problem, we can first search for those subgraphs of G that
contain a graph from H as a spanning subgraph, and then remove any redundant
edges in each of those subgraphs. By proceeding in such a manner, we can reduce
the size of the given instance, whence its associated SDP (1.2) can be more efficiently
solved.

To carry out the above program, we need some theoretical preparations. These
will be detailed in the next section.

2.2. d–lateration Graphs and Their Properties. To begin, let us introduce
the family of d–lateration graphs, which will be the main object of interest in our
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study.

Definition 2.1. Let d, l ≥ 1 be integers with l ≥ d + 1. An l–vertex graph
G = (V,E) is called a d–lateration graph if there exists an ordering {1, 2, . . . , l} of
the vertices in V (called a d–lateration ordering) such that (i) the first d+ 1 vertices
1, 2, . . . , d+ 1 form a complete graph, and (ii) every vertex j ≥ d+ 2 is connected to
at least d+ 1 of the vertices 1, 2, . . . , j − 1.

The family of d–lateration graphs was studied in [3], where it was shown that
a d–lateration graph is generically globally rigid in Rd. This implies that if G is an
(n +m)–vertex d–lateration graph with n ≥ 1 sensors and m ≥ d + 1 anchors, then
the instance (G, (d, d̄),a, d) has a unique localization in Rd (i.e., there is a unique
solution to the system in (1.1)) whenever (d, d̄) and a induce a generic realization of
G in Rd. We now sharpen this result by showing that the instance (G, (d, d̄),a, d) is
in fact uniquely d–localizable, i.e., it has a unique localization in Rl for all l ≥ d.

Theorem 2.2. Let G be an (n+m)–vertex d–lateration graph with n ≥ 1 sensors
and m ≥ d + 1 anchors. Given an instance (G, (d, d̄),a, d) of the sensor network
localization problem, let x̃ ∈ Rdn be a feasible realization of the sensors. Suppose that
the realization (x̃,a) ∈ Rdn×Rdm of G is generic. Then, the instance (G, (d, d̄),a, d)
is uniquely d–localizable, and (x̃,a) is its unique localization.

Proof. Let Vs = {1, . . . , n} be the set of sensors and Va = {n + 1, . . . , n + m}
be the set of anchors. Since G is a d–lateration graph, there exists an ordering π of
the vertices that satisfies the conditions in Definition 2.1. Let us first consider the
case where the first d+ 1 vertices under π are all anchors and show that the desired
conclusion holds. Towards that end, consider the vertex π(d+2), which is the (d+2)–
nd vertex under π. If it is an anchor, then there is nothing to argue. Hence, suppose
that it is a sensor. Since it is connected to vertices π(1), . . . , π(d + 1), we have the
following constraints in the SDP (1.2):

∥aπ(i)∥22 − 2aTπ(i)xπ(d+2) + Yπ(d+2),π(d+2) = d̄2π(i),π(d+2) for i = 1, . . . , d+ 1,

where xπ(d+2) is the π(d + 2)–nd column of the matrix X ∈ Rd×n in (1.2), and
Yπ(d+2),π(d+2) is the (π(d + 2), π(d + 2))–nd entry of the matrix Y ∈ Rn×n in (1.2).
Upon eliminating Yπ(d+2),π(d+2), we obtain the following system of linear equations:

(aπ(i) − aπ(d+1))
Txπ(d+2) =

1

2

(
∥aπ(i)∥22 − ∥aπ(d+1)∥22 + d̄2π(d+1),π(d+2) − d̄2π(i),π(d+2)

)
for i = 1, . . . , d.

Since (x̃,a) is generic, the vectors {aπ(1) − aπ(d+1), . . . , aπ(d) − aπ(d+1)} are linearly
independent. Thus, there is a unique solution to the above system, namely, xπ(d+2) =
x̃π(d+2). This in turn implies that Yπ(d+2),π(d+2) = ∥x̃π(d+2)∥22. Moreover, since
Y − XTX ≽ 0 by the Schur complement and (Y − XTX)π(d+2),π(d+2) = 0, we
conclude that

Yπ(d+2),l = Yl,π(d+2) = x̃T
π(d+2)xl for l = 1, . . . , n.

Now, suppose that for i = d+2, . . . , j with π(i) ∈ Vs, we have xπ(i) = x̃π(i), Yπ(i),π(i) =
∥x̃π(i)∥22, and Yπ(i),l = Yl,π(i) = x̃T

π(i)xl for l = 1, . . . , n. Consider vertex π(j + 1).
Without loss of generality, we may assume that it is a sensor. Then, we have the
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following constraints in the SDP (1.2):

∥x̃π(l)∥22 − 2x̃T
π(l)xπ(j+1) + Yπ(j+1),π(j+1) = d2π(l),π(j+1)

for (π(l), π(j + 1)) ∈ Ess, l = 1, . . . , j,

∥aπ(l)∥22 − 2aTπ(l)xπ(j+1) + Yπ(j+1),π(j+1) = d̄2π(j+1),π(l)

for (π(j + 1), π(l)) ∈ Esa, l = 1, . . . , j.

Since vertex π(j+1) is connected to at least d+1 of the vertices π(1), . . . , π(j), there
are at least d+1 linear equations in the above system. Since (x̃,a) is generic, we can
extract d+1 independent linear equations from it. Then, by using the same argument
as before, we see that xπ(j+1) = x̃π(j+1), Yπ(j+1),π(j+1) = ∥x̃π(j+1)∥22, and

Yπ(j+1),l = Yl,π(j+1) = x̃T
π(j+1)xl for l = 1, . . . , n.

Hence, the inductive step is completed. In particular, we conclude that Y = X̃T X̃,
where X̃ = [ x̃1 · · · x̃n ], is the unique solution to (1.2). It then follows from [35,
Theorem 2] that (G, (d, d̄),a, d) is uniquely d–localizable.

In summary, we have shown that if p ∈ Rdl is a generic realization of an l–vertex
d–lateration graph G = (V,E) (where l ≥ d + 1), and if the positions of the first
d + 1 vertices under the d–lateration ordering of V are given, then p can be found
by solving systems of linear equations whenever the distances dij = ∥pi − pj∥2 (for
(i, j) ∈ E) are given. Moreover, it will be the unique realization of G (with respect
to the positions of the first d+ 1 vertices) in Rh for all h ≥ d.

Now, let us consider the case where the first d + 1 vertices under π are not all
anchors. Suppose that there are two generic realizations (x̃,a) and (ỹ,a) of G. Note
that by our remark in the preceding paragraph, both realizations must lie in Rd and
are unique with respect to the positions of the first d+1 vertices under π. This implies
that there exists an isometry T : Rd → Rd that maps (x̃,a) to (ỹ,a). However, since
the m ≥ d + 1 generically positioned anchors are fixed by T , it follows that T must
be the identity. In particular, we have (x̃,a) = (ỹ,a), and the desired conclusion in
the theorem statement follows.

One of the important consequences of Theorem 2.2 is that it establishes the
existence of sparse uniquely d–localizable instances of the sensor network localization
problem (i.e., those whose graphs have only O(|V |) edges). Recall that for such
instances, the SDP relaxation (1.2) is exact, i.e., the SDP (1.2) will produce the
unique localization of such instances. Thus, our result refutes a common belief in the
literature (see, e.g., [4, 3, 5, 29, 11]) that every uniquely d–localizable instance must
have Ω(|V |2) edges.

Another consequence of Theorem 2.2 is that it suggests a way to simultaneously
reduce the size of a given instance (G, (d, d̄),a, d) of the sensor network localization
problem and preserve its localization properties. Specifically, we can first try to
identify subgraphs of G that contain a d–lateration graph as a spanning subgraph, and
then remove any redundant edges in each of those subgraphs. Before we investigate
this approach in more detail, however, let us provide further theoretical justification
for it and discuss how the notion of unique d–localizability fits in the framework of
rigidity theory.

2.3. Unique d–Localizability and Its Rigidity–Theoretic Counterpart.
As mentioned in Section 2.1, when we consider the rigidity–theoretic aspects of a
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graph, we do not make any distinction among its vertices. By contrast, in the def-
inition of unique d–localizability, the distinction between sensor and anchor vertices
is crucial. Thus, in order to discuss unique d–localizability in the context of rigidity
theory, we need to somehow do away with the anchors. One possible way to achieve
that is as follows:

Definition 2.3. Let d, l ≥ 1 be integers. Let G = (V,E) be an l–vertex graph,
and let p = (p1; . . . ; pl) ∈ Rdl be its realization in Rd. We say that (G,p) is universally
rigid in Rd if for any realization q = (q1; . . . ; ql) ∈ Rhl of G in Rh (where h ≥ 1 is
arbitrary), we have[
∥pi−pj∥2 = ∥qi−qj∥2 for (i, j) ∈ E

]
=⇒

[
∥pi−pj∥2 = ∥qi−qj∥2 for 1 ≤ i < j ≤ l

]
.

In other words, p is the unique (up to congruence) realization of G in any Euclidean
space. If (G,p) is universally rigid in Rd for all generic realizations p ∈ Rdl, then we
say that G is generically universally rigid in Rd.

Although the notion of universal rigidity was introduced long ago under the name
super stability [15] (see also [2, 1, 22] and the references therein), there are still as-
pects of it that are not well understood. For instance, it is not entirely clear what
the relationship is between unique d–localizability and universal rigidity in Rd. The
following theorem addresses this issue and makes the relationship explicit:

Theorem 2.4. Let G = ((Vs, Va), (Ess, Esa, Eaa)) be a graph. Suppose that
(G, (d, d̄),a, d) is a uniquely d–localizable instance of the sensor network localization
problem, with p = (x̃;a) ∈ Rd(|Vs|+|Va|) being its unique localization in Rl for all l ≥ d.
Then, (G,p) is universally rigid in Rd.

Conversely, let (G, (d, d̄),a, d) be an instance of the sensor network localization
problem, and let p = (x̃;a) ∈ Rd(|Vs|+|Va|) be a feasible realization of G in Rd. Suppose
that there exist d + 1 affinely independent vectors in the family {ai}i∈Va , and that
(G,p) is universally rigid in Rd. Then, the instance (G, (d, d̄),a, d) is uniquely d–
localizable.

Proof. Let q ∈ Rh(|Vs|+|Va|) be a realization of G in Rh for some h ≥ 1. Since G
contains the complete subgraph Ga = (Va, Eaa), we can apply an isometry T to q so
that T (qi) = ai for all i ∈ Va. However, since (G, (d, d̄),a, d) is uniquely d–localizable
with p = (x̃;a) ∈ Rd(|Vs|+|Va|) being its unique localization in Rl for all l ≥ d, we
must have T (q) = p. Since T is an isometry, it follows that ∥pi − pj∥2 = ∥qi − qj∥2
for 1 ≤ i < j ≤ |Vs|+ |Va|, whence (G,p) is universally rigid in Rd.

Conversely, suppose that (G,p) is universally rigid in Rd, and that (G, (d, d̄),a, d)
is not uniquely d–localizable. Then, there exists another realization p′ ∈ Rh|V | of G
in Rh for some h ≥ d, such that p′i = (ai;0) ∈ Rh for all i ∈ Va. Since (G,p) is
universally rigid in Rd, there exists an isometry T such that T (p′) = p. On the other
hand, since T fixes a and there are d+ 1 affinely independent vectors in {ai}i∈Va , we
conclude that T must be the identity. In particular, this implies that p′ = p, which
is a contradiction. Hence, the instance (G, (d, d̄),a, d) is uniquely d–localizable, as
desired.

We remark that the affine independence assumption in the statement of Theorem
2.4 cannot be dropped. Indeed, consider the instance shown in Figure 2.1. Suppose
that the anchors a2, a3, a4 are collinear, and that there is an edge between the sensor
x1 and every anchor. Then, it is clear that the given instance is universally rigid
in R2 for any placement of the anchors and sensor. However, it is not uniquely 2–
localizable, as one can obtain another (congruent) realization by reflecting x1 along
the axis defined by the anchors a2, a3, a4.
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x1

a4a2 a3

Fig. 2.1. Importance of the affine independence assumption in Theorem 2.4.

Theorem 2.4 has some interesting consequences. For instance, let G = (V,E) be
an l–vertex graph and p ∈ Rdl be a realization of G in Rd. Suppose that the family
{pi}i∈V contains d + 1 affinely independent vectors. Then, by Theorem 2.4 and the
result in [35], we see that it is possible to check whether (G,p) is universally rigid in
Rd efficiently using SDP. Moreover, if (G,p) is indeed universally rigid in Rd, then the
unique realization p can also be found efficiently using SDP. By contrast, Saxe [32]
showed that it is NP–hard to check whether (G,p) is globally rigid in Rd, and Aspnes
et al. [4] showed that unless RP = NP, there does not exist an efficient algorithm
for finding the unique realization p of a globally rigid instance (G,p). Thus, it seems
that the notion of universal rigidity is more amenable to algorithmic treatment than
that of global rigidity. Furthermore, upon combining Theorems 2.2 and 2.4, we have
the following corollary:

Corollary 2.5. d–lateration graphs are generically universally rigid in Rd for
all d ≥ 1.

In particular, if G = (V,E) contains a spanning d–lateration subgraph G′ =
(V,E′), then the instances (G, (d, d̄),a, d) and (G′, (d, d̄),a, d) have the same local-
ization properties for almost all (d, d̄) and a. Such an observation forms the basis of
our edge sparsification algorithm, which we will detail in the next section.

(a) An instance that is universally
rigid in R2.

(b) An instance that is not univer-
sally rigid in R2.

Fig. 2.2. Universal rigidity is not a generic property.

We remark that universal rigidity is not a generic property [35, 33, 22]. In other
words, given two realizations p,q ∈ Rdl of an l–vertex graph G in Rd, it is possible
that (G,p) is universally rigid in Rd while (G,q) is not (see Figure 2.2 for an exam-
ple). This should be contrasted with the notion of global rigidity, which is a generic
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property [21]. Moreover, there is an efficiently computable characterization of gener-
ically globally rigid graphs, while no such characterization is known for generically
universally rigid graphs. Naturally, it would be interesting to obtain an efficiently
computable characterization of generically universally rigid graphs, and we leave this
as an open question to the reader.

Before we leave this section, let us show how generically universally rigid graphs
can be constructed in an incremental manner. We begin with a definition.

Definition 2.6. Let d ≥ 1 be an integer. We say that a graph G′ = (V ′, E′) is a
d–lateration extension of another graph G = (V,E), where |V | ≥ d+1, if V ′ = V ∪{w}
with w ̸∈ V , E ⊂ E′, and |{(w, v) ∈ E′ : v ∈ V }| ≥ d + 1. In other words, G′ is
obtained from G by adding a new vertex to G and connecting it to at least d+1 vertices
of G.

Theorem 2.7. Let G = (V,E) be generically universally rigid in Rd with |V | ≥
d+ 1, and let G′ = (V ′, E′) be a d–lateration extension of G. Then, G′ is generically
universally rigid in Rd.

Proof. Let V = {1, . . . , l} and V ′ = {1, . . . , l, l + 1}. Define G̃′ = (V ′, Ẽ′), where
Ẽ′ = E′ ∪ {(i, j) : 1 ≤ i < j ≤ l}. Note that since G is generically universally rigid
in Rd, any two generic realizations p = (pi)i∈V ′ and q = (qi)i∈V ′ of G′ that satisfy
∥pi − pj∥2 = ∥qi − qj∥2 for all (i, j) ∈ E′ will also satisfy ∥pi − pj∥2 = ∥qi − qj∥2 for

all (i, j) ∈ Ẽ′. Thus, in order to show that G′ is generically universally rigid in Rd,
it suffices to show that G̃′ is generically universally rigid in Rd. Towards that end,
let p = (p1; . . . ; pl+1) ∈ Rd(l+1) be a generic realization of G̃′ in Rd, and consider the
instance (G̃′, (∅, d̄),a, d) of the sensor network localization problem, where

d̄ = (∥pl+1 − pi∥2)i∈V , a = (pi)i∈V .

In other words, we treat the vertices 1, 2, . . . , l as anchors and the vertex l+ 1 as the
only sensor in the instance. Upon following the argument in the proof of Theorem
2.2, we see that (G̃′, (∅, d̄),a, d) is uniquely d–localizable, with p being its unique
localization in Rl for all l ≥ d. Thus, by Theorem 2.4, we conclude that (G̃′,p) is
universally rigid in Rd. Since p is an arbitrary generic realization of G̃′ in Rd, it
follows that G̃′, and hence G′, is generically universally rigid in Rd.

Another construction is based on taking the union of generically universally rigid
graphs. Specifically, we prove the following theorem:

Theorem 2.8. Let G1 = (V1, E1) and G2 = (V2, E2) be two generically univer-
sally rigid graphs in Rd with |V1∩V2| ≥ d+1. Then, the graph G = (V1∪V2, E1∪E2)
is also generically universally rigid in Rd.

Proof. Let p ∈ Rd|V1∪V2| be a generic realization of G in Rd, and let q ∈ Rh|V1∪V2|

be an arbitrary realization of G in Rh for some h ≥ 1. Since G1 is generically
universally rigid in Rd, there exists an isometry T1 such that T1(q)|G1

= p|G1
. Here,

T1(q)|G1 (resp. p|G1) denotes the restriction of T1(q) (resp. p) onto the coordinates
corresponding to the vertices of G1. By a similar argument, there exists an isometry
T2 such that T2(q)|G2 = p|G2 . Now, observe that there exists an isometry T such
that T (T1(q))|G2 = T2(q)|G2 = p|G2 . Since T fixes the generically positioned vertices
in V1 ∩ V2 and since |V1 ∩ V2| ≥ d + 1 by assumption, it follows that T must be the
identity. In particular, since T1(q)|G1 = p|G1 and T1(q)|G2 = p|G2 , we conclude that
T1(q) = p. This completes the proof.

3. Graph Sparsification and Reduction. Recall that given an instance of
the sensor network localization problem, our goal is to speed up the solution time of
its associated SDP relaxation (1.2). A natural way to achieve this is to reduce the
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number of constraints in (1.2), which corresponds to removing edges from the input
graph. Such an approach has indeed been pursued by several groups of researchers.
For instance, Wang et al. [40] proposed to impose an upper bound λ ≥ 1 on the
degree of each vertex (i.e., both sensors and anchors) of the graph G and use an edge
selection rule to determine which edge to keep, so that the degree at each vertex is
bounded above by λ. In their simulations, they set λ = 7 for the case where d = 2,
and the edges are chosen at random. Later, Kim et al. [27] adopted the same idea
for edge reduction, except that their upper bound on the degree of each vertex has
the form min{deg(u,Ess ∪ Esa), κ}, where deg(u,Ess ∪ Esa) is the number of edges
in Ess ∪ Esa that are incident to the vertex u, and κ ≥ d + 1 is some integer. Their
edge selection rule is also different, in that for each vertex u, the edges in Esa that
are incident to u are chosen before those in Ess. Simulation results in [27] showed
that such a heuristic does indeed perform better than the one proposed by Wang et
al. [40].

Although the aforementioned edge sparsification heuristics do in general reduce
the size of a given instance of the sensor network localization problem and hence speed
up the solution time of its associated SDP relaxation, they are quite ad hoc in nature
and may remove edges that are crucial to an accurate localization of the sensors. To
illustrate this, consider the graph Gn = (V,E), where V = {1, 2, . . . , n+ 3} and

E = {(i, j) : 1 ≤ i < j ≤ 3} ∪
n+3∪
j=4

{(i, j) : i = 1, 2, 3}

(see Figure 3.1 for an illustration of the case where n = 5). We designate the first 3
vertices as anchors, and the rest as sensors. Suppose that the distances d̄ = (d̄ij)(i,j)∈E

are given, and that the instance (G, (∅, d̄),a, 2) has a generic realization (x̃,a) ∈
R2n ×R2×3. Since Gn is a 2–lateration graph, it is uniquely 2–localizable, and hence
(x̃,a) is its unique localization in R2. However, if we remove any of the anchor–sensor
edges (i.e., edges of the form (i, j), where 1 ≤ i ≤ 3 and 4 ≤ j ≤ n + 3), then the
instance will no longer be uniquely 2–localizable. In particular, if we restrict the degree
of each vertex in Gn to be at most a constant that is less than the maximum degree
(as is done, e.g., in [40, 27]), then the SDP relaxation associated with the resulting
sparsified instance will no longer be exact, and we will not be able to recover (x̃,a)
from the SDP. In view of the above discussion, we are thus interested in developing
edge sparsification heuristics that can preserve the localization properties of the input.

2

3

4 8

5 7

6

1

Fig. 3.1. The graph G5.

3.1. The Equivalent Edge Sparsification Heuristic. Our edge sparsification
heuristic is motivated by the results developed in Section 2. The high–level idea is
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Algorithm 1 Equivalent Edge Sparsification (EES) Heuristic

Input: A graph G = (V,E).
Output: An edge–sparsified graph EES(G).
1: Set S ← ∅, T ← V , E′ ← ∅. The set E′ contains the edges in E that will be

included in the final output.
2: if there exists a 3–clique K3 = {i1, i2, i3} in G then
3: set S ← S ∪K3, T ← T\K3, E

′ ← {(ij1 , ij2) : 1 ≤ j1 < j2 ≤ 3}
4: else
5: return G and stop
6: end if
7: while |S| < |V | do
8: Let i ∈ T be such that |{(i, j) ∈ E : j ∈ S}| ≥ 3. Set

S ← S ∪ {i}, T ← T\{i}, E′ ← E′ ∪ {(i, jk) : jk ∈ S, k = 1, 2, 3}.

The vertices i ∈ T and j1, j2, j3 ∈ S are chosen according to some pre–specified
rule.

9: if |{(i, j) ∈ E : j ∈ S}| < 3 for all i ∈ T then
10: let GT = (T,ET ), where ET = {(i, j) ∈ E : i, j ∈ T}, and compute (T,E′

T ) =
EES(GT )

11: set E′ ← E′ ∪ {(i, j) ∈ E : i ∈ S, j ∈ T} ∪ E′
T , S ← S ∪ T , T ← ∅

12: end if
13: end while
14: return (V,E′)

straightforward—decompose the input graph into a number of d–lateration subgraphs
and remove any redundant edges in those subgraphs. For the sake of concreteness,
let us describe our edge sparsification heuristic—which we call the Equivalent Edge
Sparsification (EES) heuristic—for the case where d = 2 (which, of course, is a case
of practical interest); see Algorithm 1. The generalization to d ≥ 3 will be straight-
forward.

Note that in line 8 of the heuristic, there is some freedom in choosing which vertex
i is to enter S and which three edges that connect i to S are to be included in E′.
In Section 5, we shall discuss the specific selection rules used in our simulations. For
now, let us assume that they are chosen in an arbitrary fashion.

3.2. Analysis of the EES Heuristic. Naturally, we are interested in deter-
mining various theoretical properties of the EES heuristic. Towards that end, let us
first analyze the structure of the graph produced by the heuristic. We begin with a
definition:

Definition 3.1. Let G1 = (V1, E1) and G2 = (V2, E2) be vertex–disjoint sub-
graphs of a graph G = (V,E). The graph join of G1 and G2 under G is the graph
G1 +

G G2 defined by

G1 +
G G2 =

(
V1 ∪ V2, E1 ∪E2 ∪ {(u, v) ∈ E : u ∈ V1, v ∈ V2}

)
.

For an illustration of the definition, see Figure 3.2.

Theorem 3.2. Let EES(G) be the output of the EES heuristic when applied to
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(a) The graph G and its vertex–disjoint sub-
graphs G1 and G2.

(b) The graph join G1 +G G2.

Fig. 3.2. The graph join of G1 and G2 under G.

the input graph G = (V,E). Then, we have the following decomposition:

EES(G) = G0 +
G G1 +

G G2 +
G · · ·+G Gk. (3.1)

Here, k ≥ 0 is some integer, Gi = (Vi, Ei) is a minimal 2–lateration graph (i.e.,
G′

i = (Vi, E
′
i) is not a 2–lateration graph for any E′

i ( Ei) for i = 0, 1, . . . , k − 1,
Gk = (Vk, Ek) is either a minimal 2–lateration graph or a triangle–free graph, and
V0, . . . , Vk are mutually disjoint with V = ∪ki=0Vi. In particular, each Gi is a subgraph
of G, and the number of edges in EES(G) is bounded above by{

O(k|V |) if Gk is a minimal 2–lateration graph,

O(k|V |+ |Vk|2) if Gk is a triangle–free graph.

Proof. The desired decomposition follows directly from the construction of the
EES heuristic. To determine the number of edges in EES(G), we first note that the
number of edges in an l–vertex minimal 2–lateration graph is O(l). Thus, if Gk is
a minimal 2–lateration graph, then the number of edges in EES(G) can be bounded
above by

k∑
i=0

O(|Vi|) + 2
k∑

j=1

k∑
i=j

O(|Vi|) = O(k|V |),

because we have |V | =
∑k

i=0 |Vi|. On the other hand, if Gk is a triangle–free graph,
then by using the trivial bound |Ek| = O(|Vk|2), we conclude that the number of
edges in EES(G) is bounded above by

k−1∑
i=0

O(|Vi|) +O(|Vk|2) + 2
k−1∑
j=1

k−1∑
i=j

O(|Vi|) +O(|Vk|)

 = O(k|V |+ |Vk|2).

This completes the proof.
Theorem 3.2 shows that the graph returned by the EES heuristic does indeed

have a small number of edges in general. Another important property of the EES
heuristic is that it preserves the localization properties of the input graph. We first
prove the following theorem:



UNIVERSAL RIGIDITY AND EDGE SPARSIFICATION FOR SNL 15

Theorem 3.3. Let G = ((Vs, Va), (Ess, Esa, Eaa)) be a graph, and consider
an arbitrary feasible instance (G, (d, d̄),a, 2) of the sensor network localization prob-
lem. Suppose that p = (x̃;a) ∈ R2(|Vs|+|Va|) is a generic realization of the instance
(EES(G), (d, d̄)|EES(G),a, 2) in R2, where (d, d̄)|EES(G) is the restriction of (d, d̄)
onto the edges of EES(G). Then, p is also a generic realization of (G, (d, d̄),a, 2) in
R2.

Remark. Since EES(G) is a subgraph of G, any realization p ∈ R2(|Vs|+|Va|) of
(G, (d, d̄),a, 2) will also be a realization of (EES(G), (d, d̄)|EES(G),a, 2). Thus, the
converse to Theorem 3.3 holds even without the genericity assumption.

Proof. Let E ≡ Ess∪Esa∪Eaa, and consider the decomposition of EES(G) given
by (3.1). Recall that by Theorem 3.2, G0, . . . , Gk−1 are 2–lateration graphs. Thus,
by Corollary 2.5 and the genericity of p, we see that (Gj ,p|Gj ) is universally rigid in
R2 for j = 0, 1, . . . , k−1, where p|Gj is the restriction of p onto the vertices of Gj . In
particular, since p satisfies the distance constraints corresponding to the edges in Ej

and (G, (d, d̄),a, 2) is feasible, we see that p must also satisfy the distance constraints
corresponding to the edges in (Vj×Vj)∩E for j = 0, 1, . . . , k−1. This, together with
the construction of the EES heuristic, implies that p satisfies the distance constraints
corresponding to the edges in ((V \Vk)× V ) ∩ E.

Now, if Gk is a 2–lateration graph, then by the above argument, we see that p
also satisfies the distance constraints corresponding to the edges in (Vk × V ) ∩ E.
Otherwise, Gk is a triangle–free graph, and we have Ek = (Vk × Vk) ∩ E by the
construction of the EES heuristic. In particular, we see that p again satisfies the
distance constraints corresponding to the edges in (Vk ×V )∩E. Thus, in both cases,
we can conclude that p satisfies the distance constraints corresponding to the edges
in [

((V \Vk)× V ) ∩ E
]
∪
[
(Vk × V ) ∩ E

]
= (V × V ) ∩ E = E.

In other words, p is a generic realization of (G, (d, d̄),a, 2) in R2, as desired.
In a similar fashion, we can prove the following theorem, which can be viewed as

a partial converse to Theorem 3.3:
Theorem 3.4. Let G = ((Vs, Va), (Ess, Esa, Eaa)) be a graph. Suppose that

(G, (d, d̄),a, 2) is a uniquely 2–localizable instance of the sensor network localization
problem, with p = (x̃;a) ∈ R2(|Vs|+|Va|) being its unique localization in Rl for all
l ≥ 2. If p is generic, then the instance (EES(G), (d, d̄)|EES(G),a, 2) is also uniquely

2–localizable, and p is its unique localization in Rl for all l ≥ 2.
Proof. Let q ∈ Rh(|Vs|+|Va|) be an arbitrary localization in Rh of the instance

(EES(G), (d, d̄)|EES(G),a, 2), for some h ≥ 1. Our goal is to show that q is also
a feasible localization of (G, (d, d̄),a, 2), from which it would follow that p = q,
as p is the unique localization of (G, (d, d̄),a, 2) in Rl for all l ≥ 2. Towards that
end, we again use the decomposition of EES(G) given by (3.1) and the argument in
the proof of Theorem 3.3 to conclude that (Gj ,p|Gj ) is universally rigid in R2 for
j = 0, 1, . . . , k − 1. In particular, since ∥pu − pv∥2 = ∥qu − qv∥2 for all (u, v) ∈ Ej ,
we have ∥pu − pv∥2 = ∥qu − qv∥2 for all (u, v) ∈ Vj × Vj . This implies that for all
i ∈ V0 ∪ · · · ∪ Vk−1, we have

∥pi − pu∥2 = ∥qi − qu∥2 for all (i, u) ∈ E ≡ Ess ∪ Esa ∪Eaa. (3.2)

Now, if Gk is a 2–lateration graph, then by the above argument, we see that (3.2)
holds for all i ∈ Vk as well. Otherwise, Gk is a triangle–free graph, and we have
Ek = (Vk × Vk) ∩ E by the construction of the EES heuristic. In particular, we see
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that (3.2) also holds in this case. Thus, in both cases, we have ∥pu−pv∥2 = ∥qu−qv∥2
for all (u, v) ∈ E, which implies that q is a feasible localization of (G, (d, d̄),a, 2).
Since (G, (d, d̄),a, 2) is uniquely 2–localizable, we conclude that p = q, as desired.

We remark that although Theorems 3.2 to 3.4 are stated for the case where d = 2,
they can be generalized to other values of d in a straightforward manner.

Finally, let us discuss the implementation and analyze the computational com-
plexity of the EES heuristic. At the beginning, we construct a global list L of all
3–cliques in the input graph G and maintain, for each vertex i ∈ V , a list Li of 3–
cliques to which it belongs. All of these can be done in O(|V |3) time. Lines 1 and 8
can be implemented in O(|V |) and O(|S| · |V |) time, respectively. Given the list L,
line 2 can be implemented in O(1) time. Now, if the condition in line 9 is satisfied,
then before proceeding to line 10, we will first delete from L those 3–cliques that
have at least one vertex in S using the lists {Li}i∈S . Such a pruning step allows us to
conclude that throughout the course of the algorithm, each element in L is accessed at
most a constant number of times. As a result, the total runtime of the EES heuristic
can be bounded by O(|V |3). Note that the complexity of the EES heuristic is much
lower than that required for solving the SDP (1.2). This justifies the use of the EES
heuristic as a preprocessing procedure for speeding up the solution time of (1.2).

4. Further Processing of the SDP Relaxation. In Section 3, we developed
a novel edge sparsification heuristic that can provably preserve the localization prop-
erties of the input. To the best of our knowledge, this is the first heuristic with
such a theoretical guarantee. The instance obtained after we apply the edge spar-
sification heuristic typically has fewer distance constraints, and hence its associated
SDP relaxation can already be solved faster than the SDP relaxation associated with
the original instance. However, using recently developed speedup techniques (see,
e.g., [20, 26, 27]), one can further improve the computational efficiency of solving
those SDP relaxations. To illustrate those techniques, consider the following general
(primal) standard form SDP:

(P )

inf A0 •X
subject to Ai •X = bi for i = 1, . . . , s,

X ≽ 0,

where A0, A1, . . . , As and X are symmetric n × n matrices. One of the main ideas
in [20, 26] is to formulate an equivalent SDP in which the n × n positive semidef-
inite cone constraint in (P ) is replaced by a number of potentially smaller positive
semidefinite cone constraints. The motivation for such a transformation is that the
smaller positive semidefinite cone constraints can be handled much more efficiently
by state–of–the–art interior–point algorithms. To formulate such an SDP, we first
let V = {1, . . . , n} be the set of row/column indices of the given data matrices
A0, A1, . . . , As, and define the so–called aggregated sparsity pattern E of A0, A1, . . . , As

by (see [20])

E =
{
(i, j) ∈ V : (Ak)ij ̸= 0 for some k ∈ {0, 1, . . . , s}

}
.

(The word “sparsity” here should not be confused with that used in the phrase “edge
sparsification”. The latter has the meaning of removing edges from a certain graph.)
Upon treating the pair (V, E) as a graph G, we consider one of its chordal extensions G′,
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i.e., G′ is a chordal graph2 obtained from G by adding edges to it. Let C1, . . . , Ct ⊂ V
be a family of maximal cliques in G′, i.e., each subset Cj ⊂ V of vertices induces a
clique in G′, and there does not exist a C ′

j ) Cj such that C ′
j induces a clique in G′

for j = 1, . . . , t. Then, it can be shown [20] that the SDP

(Pc)

inf A0 •X
subject to Ai •X = bi for i = 1, . . . , s,

XCj ,Cj ≽ 0 for j = 1, . . . , t,

is equivalent to (P ). Here, XCj ,Cj is the principal sub–matrix of X whose rows and
columns are those indexed by Cj . The upshot of (Pc) is that the positive semidefinite
cone constraints are typically smaller and hence (Pc) can be solved much faster than
(P ). Note, however, that the SDP (Pc) is not yet in standard form, as some variables
may appear in several of the positive semidefinite cone constraints. To transform (Pc)
into a standard form SDP, we may use either one of the following methods:

1. Treat eachXCj ,Cj as an independent matrix cone, and add linkage constraints
for those variables that appear in multiple XCj ,Cj ’s. We refer the reader to
[20, Section 4] for details.

2. View each Xij as a dual variable, and treat (Pc) as an SDP in dual standard
form. We refer the reader to [27, Section 4.4] for details.

The transformed SDP can then be solved by any standard SDP solver.

5. Simulation Results. In this section, we present some preliminary computa-
tional results to show the effectiveness of our edge sparsification approach to solving
the sensor network localization problem. All test problems are solved on a Windows
PC with 2.80GHz CPU and 2GB Memory using SeDuMi 1.2 [36].

5.1. Effectiveness of the EES Heuristic. To demonstrate the effectiveness
of the EES heuristic, we randomly place 500 nodes over the unit square [0, 1] ×
[0, 1]. Two vertices are connected by an edge if their distance is at most ρ, where
ρ = 0.05, 0.06, . . . , 0.15 (we shall refer to the parameter ρ as the radio range of the
sensors). Moreover, in line 8 of the EES heuristic, we choose the vertices i ∈ T
and j1, j2, j3 ∈ S according to the following strategy. First, we label the vertices
using the Reverse Cuthill–McKee Ordering [18] (this typically can speed up matrix
computations). Then, we pick the vertices i ∈ T and j1, j2, j3 ∈ S so that {j1, j2, j3}
forms a 3–clique. If this is not possible, then we just pick the vertex i ∈ T with the
smallest label, and among the neighbors of i that are in S, we choose three that have
the largest labels.

The percentage of edges kept by the EES heuristic is shown in Figure 5.1. For each
value of ρ, the percentage is averaged over 10 randomly generated instances. As the
plot demonstrates, the reduction in the number of edges becomes more substantial
as the radio range increases. One particular example is shown in Figure 5.2, with
ρ = 0.1. There are 3482 edges in the 500–node network before we apply the EES
heuristic. After we apply the heuristic, only 1494 edges are left.

5.2. Performance of EES–Preprocessed SDP–Based Localization Al-
gorithms. Next, we consider various SDP–based localization algorithms and study
their performance when the input instance is preprocessed by two different edge spar-
sification heuristics, namely, the EES heuristic described in Section 3.1 and the edge

2Recall that an undirected graph is chordal if every cycle of length greater than 3 has a chord,
i.e., an edge that connects two non–adjacent vertices on the cycle.
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Fig. 5.1. The ratios of the number of edges before and after applying the EES heuristic to
randomly generated 500–node sensor networks.
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Fig. 5.2. Effect of the EES heuristic on a randomly generated 500–node sensor network.

sparsification heuristic of Kim et al. [27] (which we refer to as ES). Specifically, for
n = 100, 200, 400, 800, 1600, we set ρ = 2/

√
n and generate 5 random n–node sensor

networks over the unit square with 90% sensors and 10% anchors (i.e., we generate 25
random sensor network localization instances in total). Then, we solve the resulting
sensor network localization problems using six different schemes:

• FSDP: the SDP formulation (1.2) of Biswas and Ye [9]
• SFSDP: the so–called sparse FSDP formulation of Kim et al. [27]
• EES–FSDP: FSDP after applying the EES heuristic



UNIVERSAL RIGIDITY AND EDGE SPARSIFICATION FOR SNL 19

• EES–SFSDP: SFSDP after applying the EES heuristic
• ES–FSDP: FSDP after applying the ES heuristic
• ES–SFSDP: SFSDP after applying the ES heuristic

5.2.1. Computation Time Comparison. We record the average computation
time of each of the schemes above, where the average is taken over 5 instances for
each n = 100, 200, 400, 800, 1600. The results are listed in Table 5.1. Note that the
runtime of the EES heuristic is not included in the runtime of EES–FSDP or EES–
SFSDP, and is listed separately in the last column of Table 5.1. As can be seen
from the table, the solution time of the SDP formulations in question is significantly
reduced after we preprocess the input with the EES heuristic. However, the schemes
that use the EES heuristic typically run slower than those that use the ES heuristic.
This is because the EES heuristic ensures that the removed edges will not affect the
localization properties of the input. By contrast, the ES heuristic do not have such a
guarantee.

n FSDP EES–FSDP ES–FSDP SFSDP EES–SFSDP ES–SFSDP EES

100 5.0 3.9 4.8 1.4 1.0 1.1 0.0
200 29.0 24.8 26.8 3.5 2.5 2.0 0.3
400 265.0 206.9 211.9 11.3 5.2 4.3 2.0
800 2577.4 1648.3 1601.4 38.2 9.2 9.4 11.6
1600 * * * 163.9 19.9 23.8 51.7

Table 5.1
Computation time comparison (in seconds); “*” = Out of Memory.

5.2.2. Accuracy Comparison. Now, let us compare the accuracy of the var-
ious schemes. We follow [9, 37, 40, 27] and adopt the Root Mean Square Distance
(rmsd) as a measure of discrepancy between the computed locations and true locations
of the sensors:

rmsd =

(
1

n

n∑
i=1

∥xi − x̄i∥2
)1/2

.

Here, xi ∈ Rd is the position of sensor i as computed by any one of the schemes
above, and x̄i ∈ Rd is its true position. In Table 5.2, we record the average rmsd
values of FSDP, EES–FSDP and ES–FSDP for the experiments conducted in Section
5.2.1. The discrepancy in the average rmsd values between FSDP and EES–FSDP
can be attributed to the fact that the input instances are numerically different, thus
causing the solutions produced by the interior–point method to be slightly different.

n 100 200 400 800
FSDP 2.55e-02 5.29e-03 1.18e-02 5.52e-03

EES–FSDP 2.56e-02 6.12e-03 1.26e-02 5.48e-03
ES–FSDP 8.32e-02 2.29e-02 1.80e-02 9.86e-03

Table 5.2
rmsd comparison among FSDP, EES–FSDP and ES–FSDP.

Since the EES heuristic preserves the localization properties of the input instance,
the schemes that use it should perform better than those that use other, more ad hoc,
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edge sparsification heuristics. As can be seen from Table 5.2, EES–FSDP indeed
achieves a better accuracy than ES–FSDP in terms of the average rmsd. One partic-
ular example is shown in Figure 5.3, where we have a sensor network with 90 sensors,
10 anchors, and ρ = 0.2. We compare the sensor positions returned by EES–FSDP
with those returned by ES–FSDP. From the figure, we see that EES–FSDP localizes
the sensors quite accurately (rmsd=8.37e-05), while ES–FSDP fails to localize some
of the sensors correctly (rmsd=8.96e-02).
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ES−FSDP: rmsd=8.96e−02

Fig. 5.3. Comparison for EES and ES: localization (×) of a sensor network with 90 sensors
(◦), 10 anchors (♢) and ρ = 0.2.

As a further illustration, Figure 5.4 shows the result when we first apply EES–
SFSDP to one of the input instances, and then refine the solution using the gradient
descent procedure in [7]. We use “◦” to denote the true location of a sensor (whose
position is not known to the SDP) and “×” to denote the location of a sensor computed
by the algorithm. From the figure, we see that EES–SFSDP with gradient descent
can give a very accurate localization of the sensors.

6. Conclusion and Future Directions. In this paper, we developed a novel
edge sparsification heuristic for the sensor network localization problem and showed
that it possesses some nice theoretical properties. Specifically, we showed that our
heuristic can reduce the number of edges (and hence distance measurements) in the
input network, while at the same time preserving its localization properties. An
important component in our heuristic is a graph decomposition procedure, which al-
lows us to identify certain sparse generically universally rigid subgraphs of the input
graph. We then used our edge sparsification heuristic to speed up existing convex
relaxation–based localization algorithms, and simulation results showed that our ap-
proach is promising. Moreover, our speedup technique can be applied in conjunction
with existing ones (see, e.g., [20, 26, 27]), and they complement each other well.

The notion of universal rigidity plays an important role in the development of
our edge sparsification heuristic. In the future, it would be interesting to further
investigate the properties of universally rigid instances, as they are still not fully un-
derstood. Moreover, it would be nice to develop more efficient algorithms for verifying
and realizing universally rigid instances. Finally, in view of the complexity results in
[32, 4, 3, 12], it is worth identifying other classes of efficiently realizable globally rigid
instances. Such instances could potentially lead to more efficient edge sparsification
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SFSDP with equivalent edge sparsification and gradient descent

Fig. 5.4. Localization (×) of a sensor network with 475 sensors (◦), 25 anchors (♢) and ρ = 0.1,
computed by EES–SFSDP with gradient descent.

heuristics, and hence faster algorithms for solving the sensor network localization
problem.
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