
Universal Rigidity: Towards Accurate and Efficient
Localization of Wireless Networks

Zhisu Zhu
ICME

Stanford University
Stanford, CA 94305

Email: zhuzhisu@stanford.edu

Anthony Man–Cho So
Dept. of SE&EM

The Chinese University of Hong Kong
Shatin, N. T., Hong Kong

Email: manchoso@se.cuhk.edu.hk

Yinyu Ye
Dept. of MS&E

Stanford University
Stanford, CA 94305

Email: yyye@stanford.edu

Abstract—A fundamental problem in wireless ad–hoc and
sensor networks is that of determining the positions of nodes.
Often, such a problem is complicated by the presence of nodes
whose positions cannot be uniquely determined. Most existing
work uses the notion of global rigidity from rigidity theory to
address the non–uniqueness issue. However, such a notion is not
entirely satisfactory, as it has been shown that even if a network
localization instance is known to be globally rigid, the problem
of determining the node positions is still intractable in general.
In this paper, we propose to use the notion of universal rigidity to
bridge such disconnect. Although the notion of universal rigidity
is more restrictive than that of global rigidity, it captures a large
class of networks and is much more relevant to the efficient
solvability of the network localization problem. Specifically, we
show that both the problem of deciding whether a given network
localization instance is universally rigid and the problem of
determining the node positions of a universally rigid instance
can be solved efficiently using semidefinite programming (SDP).
Then, we give various constructions of universally rigid instances.
In particular, we show that trilateration graphs are generically
universally rigid, thus demonstrating not only the richness of
the class of universally rigid instances, but also the fact that
trilateration graphs possess much stronger geometric properties
than previously known. Finally, we apply our results to design a
novel edge sparsification heuristic that can reduce the size of the
input network while provably preserving its original localization
properties. One of the applications of such heuristic is to speed
up existing convex optimization–based localization algorithms.
Simulation results show that our speedup approach compares
very favorably with existing ones, both in terms of accuracy and
computation time.

I. INTRODUCTION

Thanks in part to recent advances in technology and pro-
duction capabilities, the deployment of large–scale wireless
ad–hoc and sensor networks is becoming increasingly feasible
and common. These networks can be used to perform a great
variety of tasks, such as target tracking and detection, data
collection and habitat monitoring, just to name a few. However,
in order to fully realize the potential of such networks, it is es-
sential that the positions of individual nodes can be determined
with reasonable accuracy. Of course, this can be achieved in
a straightforward manner by either manually configuring the
nodes or equipping each node with a Global Positioning Sys-
tem (GPS). However, as is well–known (see, e.g., [25]), such
a solution is often impractical or even infeasible. Therefore,
the network localization problem—namely, the problem of

determining the positions of nodes in a network—has attracted
much research interest over the years (see, e.g., [21, Chapter
17] and the references therein). One of the most common
settings under which the problem is studied is the so–called
fine–grained localization. In that setting, it is assumed that
all nodes can measure the distance between themselves and
their neighboring nodes (this can be achieved using various
hardware ranging techniques). Furthermore, some of the nodes
are designated as anchors, which means that their positions are
known (say, by manual configuration or through GPS). Hence,
the network localization problem becomes that of determining
the positions of non–anchor nodes so that they satisfy the
given distance measurements (for simplicity, we shall refer
to a non–anchor node as sensor in the sequel). Many solution
approaches have been proposed for this problem; see, e.g.,
[3], [4], [6], [10], [22]–[25], [27], [31]. However, it should
be noted that the problem as stated could be ill–posed, as
there may be more than one non–congruent localization of the
sensors satisfying the given distance measurements. Given the
importance of accurate node positions for many applications,
it is thus natural to ask whether a given instance of the network
localization problem is uniquely localizable, and if so, whether
that localization can be found efficiently.

In [11] (see also [1]), Eren et al. proposed to use tools
from rigidity theory (see [16] for an introduction) to address
these issues. In particular, they showed that for any d ≥ 1, a
generic network localization instance is uniquely localizable
in Rd iff its associated grounded graph is generically globally
rigid in Rd. Such a connection allows one to utilize powerful
results in rigidity theory to tackle the issue of unique network
localizability. For instance, when combined with a recent result
of Gortler et al. [15], one immediately obtains an efficient
algorithm for checking whether a given network localization
instance is uniquely localizable in Rd 1. Moreover, it spurs
a flurry of work on rigidity–based approaches for testing
network localizability; see, e.g., [12], [14], [33]. It should be
noted, however, that most of the latter approaches apply only
to the two–dimensional case.

1The original localizability test described in [11] applies only to instances
in R2, as it is based on a characterization of generically globally rigid graphs
in R2 due to Hendrickson [17] and Jackson and Jordán [18]. However, its
extension to higher dimensions is trivial in view of Gortler et al.’s result.



2

Although the approach proposed by Eren et al. [11] goes a
long way towards resolving the issue of unique network local-
izability, a nagging question remains: Suppose one knows that
a given network localization instance is uniquely localizable
in Rd for some d ≥ 1. Can one efficiently find the (unique)
localization, or declare that the given instance is infeasible?
Afterall, we are most interested in the positions of nodes in the
network. Unfortunately, the notion of global rigidity seems ill–
suited for answering this question. Indeed, unless RP = NP ,
there does not exist an efficient randomized algorithm that,
given an instance of the network localization problem with
a unique localization in R2, finds that localization [2]. In
other words, the knowledge that an instance has a unique
localization in Rd does not make the task of finding that
localization any easier (see [1], [7], [26] for related results
on the complexity of the network localization problem). Such
a disconnect motivates the following question:

(∗) Is there an alternative to the notion of global rigidity
that admits both efficient verification and realization?

In an attempt to answer this question, So and Ye [29] intro-
duced the notion of unique d–localizability and showed that
the problem of deciding whether a given network localization
instance is uniquely d–localizable, as well as the problem of
determining the node positions of a uniquely d–localizable
instance, can be solved efficiently using semidefinite program-
ming (SDP). However, unlike the notion of unique network
localizability introduced by Eren et al. [11], which is defined
in terms of global rigidity, the notion of unique d–localizability
is defined directly in terms of the uniqueness of solution
to a certain system of quadratic equations. Consequently,
the connection between the results of [11] and that of [29]
is not entirely obvious. Moreover, it is not clear how the
notion of unique d–localizability fits into the framework of
rigidity theory, and whether some of the rigidity–theoretic
constructions can be used to study properties of uniquely d–
localizable instances.

In this paper, we remedy the situation and provide further
theoretical foundation for the notion of unique d–localizability.
Specifically, we establish, for the first time, the precise condi-
tions under which the notion of unique d–localizability and the
rigidity–theoretic notion of universal rigidity are equivalent.
Using this equivalence, we are able to resolve the question
(∗) in the affirmative. In particular, even though universal
rigidity is a more restrictive notion than global rigidity, it has
much more favorable computational properties and is arguably
more relevant to the efficient solvability of the network local-
ization problem. Moreover, our equivalence result provides a
connection between optimization theory and rigidity theory.
This opens up the possibility of using tools from the former
to tackle problems in the latter.

Now, given the nice algorithmic features of the notion of
universal rigidity, it is natural to ask whether it captures a
sufficiently rich class of graphs. We answer this question in
the affirmative by showing that the trilateration graphs studied
in [11] are in fact generically universally rigid. This sharpens

the result in [11] and shows that trilateration graphs possess
much stronger geometric properties than previously known.
Moreover, when combined with our equivalence result, it
demonstrates the existence of sparse (i.e. with only O(|V |)
edges) uniquely d–localizable instances for any fixed d ≥ 1,
thus refuting a common belief that such instances must be
dense (e.g., with Ω(|V |2) edges). As trilateration graphs and
trilateration–based schemes are used in many localization
algorithms, we believe that our result will have interesting
implications on the performance of such algorithms.

In recent years, there has also been great interest in ap-
plying convex optimization techniques, particularly that of
SDP relaxation, to tackle the network localization problem
(see, e.g., [3], [4], [10], [20], [28]–[30], [32]). Although
convex optimization–based localization algorithms can usually
produce highly accurate results, they are also computationally
demanding. One way to speed up such algorithms is to reduce
the number of edges (and hence distance measurements) in
the input network (i.e. to sparsify the network). Unfortunately,
existing sparsification procedures (see, e.g., [20], [32]) do not
preserve the localization properties of the input. It could hap-
pen, for example, that the sparsified instance is not uniquely
d–localizable, even though the original instance is so. To
further demonstrate the power of our results, we show how the
generic universal rigidity of trilateration graphs can be used
to circumvent this problem. Specifically, we propose a novel
edge sparsification heuristic that can sparsify the input instance
while provably preserving its localization properties. Such a
heuristic is based on an efficient decomposition procedure
that identifies trilateration subgraphs in the grounded graph
associated with the input. Simulation results show that our
speedup approach compares very favorably with existing ones,
both in terms of accuracy and computation time.

The rest of the paper is organized as follows. In Section
II, we formulate the network localization problem and briefly
review the definition and properties of the notion of unique
d–localizability. In Section III, we introduce the notion of
universal rigidity and establish its relationship to that of unique
d–localizability. In Section IV, we give various constructions
of generically universally rigid graphs. In Section V, we apply
our results to develop a novel edge sparsification heuristic and
show how it can be used to speed up convex optimization–
based localization algorithms without sacrificing their accu-
racy. In Section VI, we provide simulation results of our edge
sparsification heuristic. Finally, we end with some closing
remarks and future directions in Section VII.

II. PROBLEM FORMULATION AND BACKGROUND

We begin by giving a formal definition of the network
localization problem. Let d ≥ 1 be the dimension in which
the nodes reside. (In practice, we usually have d = 2 or 3.
However, our results apply to any dimension.) Let G = (V,E)
be the given network. Without loss of generality, we assume
that G is connected. The nodes of G are partitioned into
two sets: the set Vs = {1, . . . , n} of sensors, and the set
Va = {n + 1, . . . , n + m} of anchors. Together, they induce



3

two subsets Ess, Esa ⊂ E, which are defined as follows:

Ess = {(i, j) ∈ E : i, j ∈ Vs}
Esa = {(i, j) ∈ E : i ∈ Vs, j ∈ Va}

Now, for each anchor i ∈ Va, its position ai ∈ Rd is
assumed to be known. Moreover, each edge (i, j) ∈ Ess

(resp. (i, j) ∈ Esa) is given a positive weight dij (resp. d̄ij),
which can be viewed as the distance between sensor i and
sensor j (resp. sensor i and anchor j). In particular, the
existence of an edge between i, j ∈ V means that the distance
between i and j is known. This allows us to assume without
loss that Eaa = {(i, j) : i, j ∈ Va} ⊂ E, as the distance
between any two anchors is trivially known. In summary, an
instance of the network localization problem is given by a 4–
tuple (G, (d, d̄),a, d), where G = ((Vs, Va), (Ess, Esa, Eaa))
is the input network, d = (dij)(i,j)∈Ess

∈ R|Ess|
+ and d̄ =

(d̄ij)(i,j)∈Esa
∈ R|Esa|

+ are the vectors of available distance
measurements, a = (ai)i∈Va

∈ Rdm is the vector containing
the positions of the anchors, and d ≥ 1 is the given dimension.
For simplicity’s sake, suppose that the given distance data are
exact. Then, the goal of the network localization problem is
to find an assignment of coordinates x̃ = (x̃1; . . . ; x̃n) ∈ Rdn

to the nodes in Vs (which, together with a ∈ Rdm, is called
a localization or realization of G) such that x̃ satisfies the
following system:

‖xi − xj‖22 = d2
ij for (i, j) ∈ Ess

‖ai − xj‖22 = d̄2
ij for (i, j) ∈ Esa

xi ∈ Rd for i = 1, . . . , n

(1)

In general, there could be multiple solutions to the above
system. However, if the graph G is generically globally rigid
in Rd and if the instance (G, (d, d̄),a, d) has at least d + 1
anchors and admits a generic2 localization p = (x̃;a) ∈
Rd(n+m), then there is a unique solution to the above system;
see, e.g., [11]. Moreover, there is an efficient algorithm for
verifying whether G is generically globally rigid in Rd [15].
Unfortunately, such an efficient verification procedure does not
translate into an efficient realization procedure. In particular,
even if we know that G is generically globally rigid in Rd,
it is still intractable to find the solution to Problem (1) (or
declare that no such solution exists) [2], [7].

In an attempt to circumvent this problem, So and Ye [29]
introduced the notion of unique d–localizability. Specifically,
an instance (G, (d, d̄),a, d) of the network localization prob-
lem is said to be uniquely d–localizable if (i) the system (1)
has a unique solution x̃ = (x̃1; . . . ; x̃n) ∈ Rdn, and (ii) for
any l > d, ((x̃1;0); (x̃2;0); . . . ; (x̃n;0)) ∈ Rln is the unique
solution to the following system:

‖xi − xj‖22 = d2
ij for (i, j) ∈ Ess

‖(ai;0)− xj‖22 = d̄2
ij for (i, j) ∈ Esa

xi ∈ Rl for i = 1, . . . , n

(2)

2We say that a point p = (p1, . . . , pl) ∈ Rdl is generic if there does not
exist a non–zero polynomial h : Rdl → R with integer coefficients such that
h(p1, . . . , pl) = 0.

Geometrically, the above conditions state that the given in-
stance has a unique localization in Rl for all l ≥ d, and
that localization is given by (x̃,a) ∈ Rdn × Rdm. We
should emphasize that the notion of unique d–localizability
depends both on the combinatorial structure of G and the
geometric information embedded in (d, d̄) ∈ R|Ess|

+ × R|Esa|
+

and a ∈ Rdm.
As shown in [29], the problem of deciding whether a given

network localization instance is uniquely d–localizable, as well
as the problem of determining the node positions of a uniquely
d–localizable instance, can be solved efficiently by solving the
following SDP:

(0; ei − ej)(0; ei − ej)T • Z = d2
ij for (i, j) ∈ Ess

(ai;−ej)(ai;−ej)T • Z = d̄2
ij for (i, j) ∈ Esa

Z1:d,1:d = Id

Z ∈ Sd+n
+

(3)
Here, ei ∈ Rn is the i–th standard basis vector (where i =
1, . . . , n), Id is the d×d identity matrix, Sd+n

+ is the set of (d+
n)×(d+n) symmetric positive semidefinite matrices, A•B =
tr(AB) is the trace inner product of two symmetric matrices
A,B of the same dimension, and the constraint Z1:d,1:d = Id

implies that the matrix Z has the form:

Z =

[
Id X

XT Y

]
(4)

where X ∈ Rd×n and Y ∈ Rn×n. Specifically, So and Ye
proved the following theorem:

Theorem 1: (cf. [29, Theorem 2]) Suppose that the input
graph G is connected. Then, the following are equivalent:

1) The instance (G, (d, d̄),a, d) is uniquely d–localizable.
2) The solution matrix Z to (3), as given by (4), satisfies

Y = XT X .
Thus, in order to check whether a given instance is uniquely d–
localizable, it suffices to solve the SDP (3) and check whether
the solution matrix Z has the form Y = XT X . Moreover,
if this is the case, then the unique localization of the i–th
sensor is given by the i–th column of the matrix X , where
i = 1, . . . , n. We refer the reader to [29] for further details.

III. UNIQUE d–LOCALIZABILITY AND ITS
RIGIDITY–THEORETIC COUNTERPART

At this point, it is not clear how the notion of unique d–
localizability fits into the framework of rigidity theory. As
a result, the connection between the approach of [29] and
other rigidity–based approaches (see, e.g., [11], [12], [14],
[33]) for testing network localizability is not entirely obvious.
We now remedy this situation by establishing the precise
relationship between the notion of unique d–localizability and
the rigidity–theoretic notion of universal rigidity. We begin
with a definition.

Definition 1: Let d, l ≥ 1 be integers. Let G = (V,E)
be an l–vertex graph, and let p = (p1; . . . ; pl) ∈ Rdl be its



4

realization in Rd. We say that (G,p) is universally rigid in
Rd if for any realization q = (q1; . . . ; ql) ∈ Rhl of G in Rh

(where h ≥ 1 is arbitrary), we have:
[
‖pi − pj‖2 = ‖qi − qj‖2 for (i, j) ∈ E

]

=⇒
[
‖pi − pj‖2 = ‖qi − qj‖2 for 1 ≤ i < j ≤ l

]

In other words, p is the unique (up to congruence) realization
of G in any Euclidean space. If (G,p) is universally rigid in
Rd for all generic realizations p ∈ Rdl, then we say that G is
generically universally rigid in Rd.

The reader should contrast this definition with that of global
rigidity in Rd, which only requires that p is the unique (up to
congruence) realization of G in Rd; see, e.g., [8]. In particular,
the notion of universal rigidity is more restrictive than that of
global rigidity. However, its advantage would become clear
after we establish the following equivalence result:

Theorem 2: Suppose that (G, (d, d̄),a, d), where G =
((Vs, Va), (Ess, Esa, Eaa)), is a uniquely d–localizable in-
stance of the network localization problem, with p = (x̃;a) ∈
Rd(|Vs|+|Va|) being its unique localization in Rl for all l ≥ d.
Then, (G,p) is universally rigid in Rd.

Conversely, let G = (V,E) be a graph with |V | ≥ d + 1,
and let p ∈ Rd|V | be a realization of G in Rd. Suppose that
(G,p) is universally rigid in Rd. Then, whenever Vs, Va ⊂
V are such that |Va| ≥ d + 1, Vs = V \Va, and there exist
d + 1 affinely independent vectors in the family {pi}i∈Va , the
instance (G, (d, d̄),p|Va , d), where d = (‖pi−pj‖2)(i,j)∈Ess

,
d̄ = (‖pi − pj‖2)(i,j)∈Esa

, and p|Va = (pi)i∈Va , is uniquely
d–localizable.

Proof: Let q ∈ Rh(|Vs|+|Va|) be a realization of G in
Rh for some h ≥ 1. Since G contains the complete subgraph
Ga = (Va, Eaa), we can apply an isometry T to q so that
T (qi) = ai for all i ∈ Va. However, since (G, (d, d̄),a, d) is
uniquely d–localizable with p = (x̃;a) ∈ Rd(|Vs|+|Va|) being
its unique localization in Rl for all l ≥ d, we must have
T (q) = p. Since T is an isometry, it follows that ‖pi−pj‖2 =
‖qi − qj‖2 for 1 ≤ i < j ≤ |Vs| + |Va|, whence (G,p) is
universally rigid in Rd.

Conversely, suppose that (G,p) is universally rigid in Rd,
and that (G, (d, d̄),p|Va , d) is not uniquely d–localizable.
Then, there exists another realization p′ ∈ Rh|V | of G in Rh

for some h ≥ d, such that p′i = (pi;0) ∈ Rh for all i ∈ Va.
Since (G,p) is universally rigid in Rd, there exists an isometry
T such that T (p′) = p. On the other hand, since T fixes p|Va

and there are d+1 affinely independent vectors in {pi}i∈Va , we
conclude that T must be the identity. In particular, this implies
that p′ = p, which is a contradiction. Hence, the instance
(G, (d, d̄),p|Va , d) is uniquely d–localizable, as desired.

Theorem 2 has important algorithmic consequences. Indeed,
let G = (V,E) be an l–vertex graph and p ∈ Rdl be a
realization of G in Rd. Suppose that the family {pi}i∈V

contains d+1 affinely independent vectors. Then, by Theorems
1 and 2, we see that it is possible to check whether (G,p)
is universally rigid in Rd efficiently using SDP. Moreover,

if (G,p) is indeed universally rigid in Rd, then the unique
realization p can also be found efficiently using SDP. By
contrast, it is NP–hard to check whether (G,p) is globally
rigid in Rd [26]. Moreover, unless RP = NP , there does not
exist an efficient algorithm for finding the unique realization
p of a globally rigid instance (G,p) [2]. Thus, even though
universal rigidity is a more restrictive notion than global
rigidity, it is much more amenable to algorithmic treatment.

IV. CONSTRUCTION OF UNIVERSALLY RIGID INSTANCES

The notion of universal rigidity would not be very in-
teresting if it does not capture a sufficiently rich class of
graphs. In this section, we prove that trilateration graphs
are generically universally rigid. Furthermore, we show how
generically universally rigid graphs can be constructed in an
incremental manner. These results show that the notion of
universal rigidity is indeed non–trivial.

A. Generic Universal Rigidity of Trilateration Graphs

Let us begin with the definition of trilateration graphs.
Definition 2: Let d, l ≥ 1 be integers with l ≥ d + 1. An

l–vertex graph G = (V, E) is called a d–trilateration graph
if there exists an ordering {1, 2, . . . , l} of the vertices in V
(called a d–trilateration ordering) such that (i) the first d + 1
vertices 1, 2, . . . , d + 1 form a complete graph, and (ii) every
vertex j ≥ d + 2 is connected to at least d + 1 of the vertices
1, 2, . . . , j − 1.
The family of trilateration graphs was studied in [1], [11],
where it was shown that a d–trilateration graph is generically
globally rigid in Rd. This implies that if G is an (n + m)–
vertex d–trilateration graph with n ≥ 1 sensors and m ≥
d+1 anchors, then the instance (G, (d, d̄),a, d) has a unique
localization in Rd (i.e. there is a unique solution to the system
(1)) whenever (d, d̄) and a induce a generic realization of G
in Rd. We now sharpen this result by showing that the instance
(G, (d, d̄),a, d) is in fact uniquely d–localizable, i.e. it has a
unique localization in Rl for all l ≥ d.

Theorem 3: Let G be an (n + m)–vertex d–trilateration
graph with n ≥ 1 sensors and m ≥ d + 1 anchors. Given
a network localization instance (G, (d, d̄),a, d), let x̃ ∈ Rdn

be a feasible realization of the sensors. Suppose that the
realization (x̃,a) ∈ Rdn × Rdm of G is generic. Then, the
instance (G, (d, d̄),a, d) is uniquely d–localizable, and (x̃,a)
is its unique localization in Rd.

Proof: Let Vs = {1, . . . , n} be the set of sensors and
Va = {n + 1, . . . , n + m} be the set of anchors. Since G is a
d–trilateration graph, there exists an ordering π of the vertices
that satisfies the conditions in Definition 2. Let us first consider
the case where the first d + 1 vertices under π are all anchors
and show that the desired conclusion holds. Towards that end,
consider the vertex π(d + 2), which is the (d + 2)–nd vertex
under π. If it is an anchor, then there is nothing to argue.
Hence, suppose that it is a sensor. Since it is connected to
vertices π(1), . . . , π(d+1), we have the following constraints
in the SDP (3), where i = 1, . . . , d + 1:

‖aπ(i)‖22 − 2aT
π(i)xπ(d+2) + Yπ(d+2),π(d+2) = d̄2

π(i),π(d+2)



5

Here, xπ(d+2) is the π(d + 2)–nd column of the matrix X ∈
Rd×n in (3), and Yπ(d+2),π(d+2) is the (π(d + 2), π(d + 2))–
nd entry of the matrix Y ∈ Rn×n in (3). Upon eliminating
Yπ(d+2),π(d+2), we obtain the following system of d linear
equations in xπ(d+2) ∈ Rd (here, we have i = 1, . . . , d):

(aπ(i) − aπ(d+1))T xπ(d+2) =

1
2

(
‖aπ(i)‖22 − ‖aπ(d+1)‖22 + d̄2

π(d+1),π(d+2) − d̄2
π(i),π(d+2)

)

Since (x̃,a) is generic, the vectors {aπ(i) − aπ(d+1)}i=1,...,d

are linearly independent. Thus, there is a unique solution
to the above system, namely, xπ(d+2) = x̃π(d+2). This in
turn implies that Yπ(d+2),π(d+2) = ‖x̃π(d+2)‖22. Moreover,
since Y − XT X º 0 by the Schur complement and
(Y −XT X)π(d+2),π(d+2) = 0, we conclude that Yπ(d+2),l =
Yl,π(d+2) = x̃T

π(d+2)xl for l = 1, . . . , n.
Now, suppose that for i = d + 2, . . . , j with π(i) ∈ Vs,

we have xπ(i) = x̃π(i), Yπ(i),π(i) = ‖x̃π(i)‖22, and Yπ(i),l =
Yl,π(i) = x̃T

π(i)xl for l = 1, . . . , n. Consider vertex π(j + 1).
Without loss of generality, we may assume that it is a sensor.
Then, we have the following constraints in the SDP (3):

‖x̃π(l)‖22 − 2x̃T
π(l)xπ(j+1) + Yπ(j+1),π(j+1) = d2

π(l),π(j+1)

for (π(l), π(j + 1)) ∈ Ess, l = 1, . . . , j; and

‖aπ(l)‖22 − 2aT
π(l)xπ(j+1) + Yπ(j+1),π(j+1) = d̄2

π(j+1),π(l)

for (π(j +1), π(l)) ∈ Esa, l = 1, . . . , j. Since vertex π(j +1)
is connected to at least d + 1 of the vertices π(1), . . . , π(j),
there are at least d + 1 linear equations in the above system.
Since (x̃,a) is generic, we can extract d+1 independent linear
equations from it. Then, by using the same argument as before,
we see that xπ(j+1) = x̃π(j+1), Yπ(j+1),π(j+1) = ‖x̃π(j+1)‖22,
and Yπ(j+1),l = Yl,π(j+1) = x̃T

π(j+1)xl for l = 1, . . . , n.
Hence, the inductive step is completed. In particular, we
conclude that Y = X̃T X̃ , where X̃ = [ x̃1 · · · x̃n ], is
the unique solution to (3). It then follows from Theorem 1
that (G, (d, d̄),a, d) is uniquely d–localizable.

In summary, we have shown that if p ∈ Rdl is a generic
realization of an l–vertex d–trilateration graph G = (V,E)
(where l ≥ d+1), and if the positions of the first d+1 vertices
under the d–trilateration ordering of V are given, then p can
be found by solving systems of linear equations whenever
the distances dij = ‖pi − pj‖2 (for (i, j) ∈ E) are given.
Moreover, it will be the unique realization of G (with respect
to the positions of the first d+1 vertices) in Rh for all h ≥ d.

Now, let us consider the case where the first d + 1 vertices
under π are not all anchors. Suppose that there are two generic
realizations (x̃,a) and (ỹ,a) of G. Note that by our remark
in the preceding paragraph, both realizations must lie in Rd

and are unique with respect to the positions of the first d + 1
vertices under π. This implies that there exists an isometry
T : Rd → Rd that maps (x̃,a) to (ỹ,a). However, since the
m ≥ d + 1 generically positioned anchors are fixed by T ,
it follows that T must be the identity. In particular, we have
(x̃,a) = (ỹ,a), and the desired conclusion in the theorem
statement follows.

An important consequence of Theorem 3 is that it estab-
lishes the existence of sparse uniquely d–localizable instances
(i.e. those whose graphs have only O(|V |) edges) for any fixed
d ≥ 1. This refutes a common belief that every uniquely
d–localizable instance must have Ω(|V |2) edges. Moreover,
by combining Theorems 2 and 3, we obtain the following
important corollary:

Corollary 1: d–trilateration graphs are generically univer-
sally rigid in Rd for all d ≥ 1.

B. Incremental Constructions of Generically Universally
Rigid Graphs

Having demonstrated the existence of generically univer-
sally rigid graphs, we now show how they can be used to
construct larger generically universally rigid graphs. The first
construction is based on the idea of trilateration extension
introduced in [11]. We begin with the definition.

Definition 3: Let d ≥ 1 be an integer. We say that a graph
G′ = (V ′, E′) is a d–trilateration extension of another graph
G = (V, E), where |V | ≥ d + 1, if V ′ = V ∪ {w} with
w 6∈ V , E ⊂ E′, and |{(w, v) ∈ E′ : v ∈ V }| ≥ d + 1. In
other words, G′ is obtained from G by adding a new vertex
to G and connecting it to at least d + 1 vertices of G.

Theorem 4: Let G = (V,E) be generically universally rigid
in Rd with |V | ≥ d + 1, and let G′ = (V ′, E′) be a d–
trilateration extension of G. Then, G′ is generically universally
rigid in Rd.
The proof of Theorem 4 follows a similar argument as in the
proof of Theorem 3. Due to space limitation, we shall defer
it to the full version of this paper [34].

Our second construction is based on taking the union of
generically universally rigid graphs. Specifically, we have the
following theorem:

Theorem 5: Let G1 = (V1, E1) and G2 = (V2, E2) be two
generically universally rigid graphs in Rd with |V1∩V2| ≥ d+
1. Then, the graph G = (V1 ∪V2, E1 ∪E2) is also generically
universally rigid in Rd.

Proof: Let p ∈ Rd|V1∪V2| be a generic realization of G in
Rd, and let q ∈ Rh|V1∪V2| be an arbitrary realization of G in
Rh for some h ≥ 1. Since G1 is generically universally rigid
in Rd, there exists an isometry T1 such that T1(q)|G1 = p|G1 .
Here, T1(q)|G1 (resp. p|G1) denotes the restriction of T1(q)
(resp. p) onto the coordinates corresponding to the vertices
of G1. By a similar argument, there exists an isometry T2

such that T2(q)|G2 = p|G2 . Now, observe that there exists
an isometry T such that T (T1(q))|G2 = T2(q)|G2 = p|G2 .
Since T fixes the generically positioned vertices in V1 ∩ V2

and since |V1 ∩ V2| ≥ d + 1 by assumption, it follows that
T must be the identity. In particular, since T1(q)|G1 = p|G1

and T1(q)|G2 = p|G2 , we conclude that T1(q) = p. This
completes the proof.

V. EDGE SPARSIFICATION AND APPLICATION TO SDP
SPEEDUP

Due in part to their simplicity and nice theoretical proper-
ties, trilateration graphs and trilateration–based schemes have



6

been used in many localization algorithms. In this section,
we demonstrate yet another application of trilateration graphs,
namely, to speed up existing convex optimization–based lo-
calization algorithms, while at the same time preserving their
accuracy.

To motivate this application and for the sake of concrete-
ness, let us consider again the SDP (3). As demonstrated
in [3], [4], the SDP (3) can often produce highly accurate
results. (In fact, this is quite typical of all recent convex
optimization–based localization algorithms; see, e.g., [3], [4],
[20], [30], [32].) However, a major drawback of (3) is that it
is computationally demanding. Indeed, the SDP (3) contains
(d+n)(d+n+1)/2 variables and d(d+1)/2+ |Ess|+ |Esa|
equality constraints. As such, an instance of (3) with only
a few hundred nodes is considered to be a challenge for
standard SDP solvers. A natural way to speed up the solution
time of (3) is to reduce the number of constraints in it. In
other words, we can preprocess the input before solving the
SDP (3) by removing edges from the input network. Such
an edge sparsification approach has indeed been pursued by
several researchers; see, e.g., [20], [32]. However, the proposed
schemes are quite ad hoc in nature and may remove edges
that are crucial to an accurate localization of the sensors. It
could happen, for example, that the sparsified instance is not
uniquely d–localizable, even though the original instance is so.
Thus, it is natural to ask whether one can develop an efficient
edge sparsification heuristic that can provably preserve the
localization properties of the input.

Using the generical universal rigidity of trilateration graphs,
we answer this question in the affirmative. The high–level
idea is simple: decompose the input graph into a number of
d–trilateration subgraphs and remove any redundant edges in
those subgraphs. For concreteness’ sake, let us describe our
edge sparsification heuristic—which we call the Equivalent
Edge Sparsification (EES) heuristic—for the case where d = 2
(which, of course, is a case of practical interest); see Algorithm
1. The generalization to d ≥ 3 will be straightforward.

Note that in line 8 of Algorithm 1, there is some freedom
in choosing which vertex i is to enter S and which three
edges that connect i to S are to be included in E′. In Section
VI, we shall discuss the specific selection rules used in our
simulations. For now, let us assume that they are chosen in an
arbitrary fashion.

A. Analysis of the EES Heuristic

Naturally, we would be interested in determining various
theoretical properties of the EES heuristic. Towards that end,
let us first analyze the structure of the graph produced by the
heuristic. We begin with a definition.

Definition 4: Let G1 = (V1, E1) and G2 = (V2, E2) be
vertex–disjoint subgraphs of a graph G = (V, E). The graph
join of G1 and G2 under G is the graph G1 +G G2 whose
vertex set is V1 ∪ V2 and edge set is E1 ∪E2 ∪ {(u, v) ∈ E :
u ∈ V1, v ∈ V2}.

Theorem 6: Let EES(G) be the output of the EES heuristic
when applied to the input graph G = (V,E). Then, we have

Algorithm 1 EES HEURISTIC

Input: A graph G = (V, E).
Output: An edge–sparsified graph EES(G).

1: Set S ← ∅, T ← V , and E′ ← ∅.
2: if there exists a 3–clique K3 = {i1, i2, i3} in G then
3: set S ← S ∪ K3, T ← T\K3, and E′ ← {(ij1 , ij2) :

1 ≤ j1 < j2 ≤ 3}
4: else
5: return G and stop
6: end if
7: while |S| < |V | do
8: Let i ∈ T be such that |{(i, j) ∈ E : j ∈ S}| ≥ 3. Set

S ← S∪{i}, T ← T\{i}, and E′ ← E′∪{(i, jk) : jk ∈
S, k = 1, 2, 3}. The vertices i ∈ T and j1, j2, j3 ∈ S
are chosen according to some pre–specified rule.

9: if |{(i, j) ∈ E : j ∈ S}| < 3 for all i ∈ T then
10: let GT = (T, ET ), where ET = {(i, j) ∈ E : i, j ∈

T}, and compute (T, E′
T ) = EES(GT )

11: set E′ ← E′ ∪ {(i, j) ∈ E : i ∈ S, j ∈ T} ∪ E′
T ,

S ← S ∪ T , and T ← ∅
12: end if
13: end while
14: return (V, E′)

the following decomposition:

EES(G) = G0 +G G1 +G G2 +G · · ·+G Gk (5)

Here, k ≥ 0 is some integer, Gi = (Vi, Ei) is a minimal 2–
trilateration graph (i.e. G′i = (Vi, E

′
i) is not a 2–trilateration

graph for any E′
i ( Ei) for i = 0, 1, . . . , k−1, Gk = (Vk, Ek)

is either a minimal 2–trilateration graph or a triangle–free
graph, and V0, . . . , Vk are mutually disjoint with V = ∪k

i=0Vi.
In particular, each Gi is a subgraph of G, and the number of
edges in EES(G) is bounded above by O(k|V |) if Gk is a
minimal 2–trilateration graph, and by O(k|V |+ |Vk|2) if Gk

is a triangle–free graph.
Proof: The desired decomposition follows directly from

the definition of the EES heuristic. To determine the number
of edges in EES(G), we first note that the number of edges
in an l–vertex minimal 2–trilateration graph is O(l). Thus,
if Gk is a minimal 2–trilateration graph, then the number of
edges in EES(G) can be bounded above by

∑k
i=0 O(|Vi|) +

2
∑k

j=1

∑k
i=j O(|Vi|) = O(k|V |) (since |V | =

∑k
i=0 |Vi|).

On the other hand, if Gk is a triangle–free graph, then by
Turán’s theorem (see, e.g., [5, Chapter VI, Theorem 1.1]),
we have |Ek| = O(|Vk|2). Thus, it follows that the number
of edges in EES(G) is bounded above by

∑k−1
i=0 O(|Vi|) +

O(|Vk|2) + 2
∑k−1

j=1

(∑k−1
i=j O(|Vi|) + O(|Vk|)

)
= O(k|V | +

|Vk|2). This completes the proof.
Theorem 6 shows that the graph returned by the EES

heuristic does indeed have a small number of edges in general.
Next, we come to the most important feature of the EES
heuristic, namely that it preserves the localization properties
of the input instance. We first prove the following theorem:



7

Theorem 7: Let G = ((Vs, Va), (Ess, Esa, Eaa)), and let
(G, (d, d̄),a, 2) be an arbitrary feasible network localization
instance. Suppose that p = (x̃;a) ∈ R2(|Vs|+|Va|) is a generic
realization of the instance (EES(G), (d, d̄)|EES(G),a, 2) in
R2, where (d, d̄)|EES(G) is the restriction of (d, d̄) onto the
edges of EES(G). Then, p is also a generic realization of
(G, (d, d̄),a, 2) in R2.

Remark. Since EES(G) is a subgraph of G, it is clear
that any realization p ∈ R2(|Vs|+|Va|) of (G, (d, d̄),a, 2) will
also be a realization of (EES(G), (d, d̄)|EES(G),a, 2). Thus,
the converse to Theorem 7 holds even without the genericity
assumption.

Proof: Let E ≡ Ess∪Esa∪Eaa, and consider the decom-
position of EES(G) given by (6). Recall that by Theorem 6,
G0, . . . , Gk−1 are 2–trilateration graphs. Thus, by Corollary 1
and the genericity of p, we see that (Gj ,p|Gj

) is universally
rigid in R2 for j = 0, 1, . . . , k−1, where p|Gj

is the restriction
of p onto the vertices of Gj . In particular, since p satisfies
the distance constraints corresponding to the edges in Ej and
(G, (d, d̄),a, 2) is feasible, we see that p must also satisfy the
distance constraints corresponding to the edges in (Vj×Vj)∩E
for j = 0, 1, . . . , k−1. This, together with the definition of the
EES heuristic, implies that p satisfies the distance constraints
corresponding to the edges in ((V \Vk)× V ) ∩ E.

Now, if Gk is a 2–trilateration graph, then by the above
argument, we see that p also satisfies the distance constraints
corresponding to the edges in (Vk × V ) ∩ E. Otherwise, Gk

is a triangle–free graph, and we have Ek = (Vk × Vk) ∩ E
by definition of the EES heuristic. In particular, we see that
p again satisfies the distance constraints corresponding to the
edges in (Vk × V )∩E. Thus, in both cases, we can conclude
that p satisfies the distance constraints corresponding to the
edges in

[
((V \Vk)×V )∩E

]∪[
(Vk×V )∩E

]
= (V ×V )∩E =

E. In other words, p is a generic realization of (G, (d, d̄),a, 2)
in R2, as desired.

In a similar fashion, we can prove the following theorem:
Theorem 8: Suppose that (G, (d, d̄),a, 2), where G =

((Vs, Va), (Ess, Esa, Eaa)), is a uniquely 2–localizable in-
stance of the sensor network localization problem, with p =
(x̃;a) ∈ R2(|Vs|+|Va|) being its unique localization in Rl for
all l ≥ 2. Furthermore, suppose that p is generic. Then,
the instance (EES(G), (d, d̄)|EES(G),a, 2) is also uniquely
2–localizable, and p is its unique localization in Rl for all
l ≥ 2.
The proof of Theorem 8 is similar to that of Theorem 7 and
is deferred to the full version of this paper [34].

We remark that although Theorems 6 to 8 are stated for the
case where d = 2, they can be generalized to other values of
d in a straightforward manner.

Finally, let us discuss the implementation and analyze
the computational complexity of the EES heuristic. At the
beginning, we construct a global list L of all 3–cliques in
the input graph G and maintain, for each vertex i ∈ V , a list
Li of 3–cliques to which it belongs. All of these can be done
in O(|V |3) time. Lines 1 and 8 can be implemented in O(|V |)
and O(|S| · |V |) time, respectively. Given the list L, line 2 can

be implemented in O(1) time. Now, if the condition in line 9 is
satisfied, then before proceeding to line 10, we will first delete
from L those 3–cliques that have at least one vertex in S using
the lists {Li}i∈S . Such a pruning step allows us to conclude
that throughout the course of the algorithm, each element in L
is accessed at most a constant number of times. As a result, the
total runtime of the EES heuristic can be bounded by O(|V |3).
Note that the complexity of the EES heuristic is much lower
than that required for solving the SDP (3). This justifies the use
of the EES heuristic as a preprocessing procedure for speeding
up the solution time of (3).

B. Further Processing of the SDP

To summarize, we have just developed a novel edge spar-
sification heuristic that can provably preserve the localization
properties of the input. To the best of our knowledge, this is the
first heuristic with such a theoretical guarantee. The instance
obtained after we apply the edge sparsification heuristic typi-
cally has fewer distance constraints, and hence its associated
SDP can already be solved faster than the one associated
with the original instance. It turns out that it is possible to
further improve the computational efficiency of solving those
SDPs by using recently developed general–purpose speedup
techniques (i.e. these techniques apply to general SDPs and do
not necessarily take advantage of the structure of the network
localization problem; see, e.g., [13], [19], [20]). Moreover,
besides improving the solution time of the SDP (3), one can
also improve the accuracy of the solution by using a gradient
descent procedure (see, e.g., [3]). Specifically, after solving
the SDP (3) and obtaining a solution X∗, one can use it as
a starting point for local gradient descent procedures. Due to
space limitation, we refer the reader to [3], [13], [19], [20] for
details of these approaches.

VI. SIMULATION RESULTS

In this section, we present some preliminary computational
results to show the effectiveness of our edge sparsification
approach in solving the network localization problem. All
simulations are ran on a 2.8GHz CPU PC with 2 GB memory.

A. Effectiveness of the EES Heuristic

To demonstrate the effectiveness of the EES heuristic, we
randomly place 500 nodes over the unit square [0, 1]× [0, 1].
Two vertices are connected by an edge if their distance is
at most ρ, where ρ = 0.05, 0.06, . . . , 0.15 (we shall refer to
the parameter ρ as the radio range of the sensors). Moreover,
in line 8 of Algorithm 1, we choose the vertices i ∈ T and
j1, j2, j3 ∈ S according to the following strategy. First, we
label the vertices using the Reverse Cuthill–McKee Ordering
[9] (this typically can speed up matrix computations). Then,
we pick the vertices i ∈ T and j1, j2, j3 ∈ S so that
{j1, j2, j3} forms a 3–clique. If this is not possible, then we
just pick the vertex i ∈ T with the smallest label; and among
the neighbors of i that are in S, we choose three that have the
largest labels.



8

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

radio range ρ

(a
fte

r 
E

E
S

)/
(b

ef
or

e 
E

E
S

)

Fig. 1. The ratios of the number of edges before and after applying the EES
heuristic to randomly generated 500–node sensor networks.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
3482 edges before EES

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1494 edges after EES

Fig. 2. Effect of the EES heuristic on a randomly generated 500–node sensor
network.

The percentage of edges kept by the EES heuristic is shown
in Figure 1. As the plot demonstrates, the reduction in the
number of edges becomes more substantial as the radio range
increases. One particular example is shown in Figure 2. There
are 3482 edges in the 500–node network before we apply the
EES heuristic. After we apply the heuristic, only 1494 edges
are left.

B. Performance of EES–Preprocessed SDP–Based Localiza-
tion Algorithms

Next, we investigate the performance of various SDP–
based localization algorithms when the input instance is first
sparsified by the EES heuristic. To begin, we generate random
sensor networks over the unit square with 90% sensors and
10% anchors, where the total number n of nodes ranges from
100 to 1600. We set ρ = 2/

√
n and solve the resulting network

localization problems using four different schemes:
• FSDP: the SDP formulation (3) of Biswas and Ye [4]
• SSDP: the so–called sparse SDP formulation of Kim et

al. [20]

n FSDP EES–FSDP SSDP EES–SSDP
100 4.8 3.8 5.9 3.8
200 24.0 14.4 23.9 8.7
400 262.8 118.2 110.9 27.6
800 2439.3 1116.9 674.7 115.1

1600 * * * 639.1

TABLE I
COMPUTATION TIME COMPARISON (IN SECONDS); “*”=OUT OF

MEMORY; RADIO RANGE ρ = 2/
√

n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SSDP with equivalent edge sparsification and gradient descent

Fig. 3. Localization (×) of a sensor network with 475 sensors (◦), 25
anchors (♦) and ρ = 0.1, computed by EES–SSDP with gradient descent.

• EES–FSDP: FSDP after applying the EES heuristic
• EES–SSDP: SSDP after applying the EES heuristic

The average computation time of each of these schemes is
given in Table I. As one can see, the EES heuristic does
help to significantly reduce the computation time of the SDP
formulations in question. For the case where n = 1600, both
FSDP and SSDP without EES give rise to very large SDPs,
and our computer ran out of memory when solving them.

Figure 3 shows one of the results produced by EES–SSDP
with gradient descent (see the discussion in Section V-B). We
use “◦” to denote the true location of a sensor (whose position
is not known to the SDP) and “×” to denote the location of
a sensor computed by the algorithm. As can be seen from
the figure, EES–SSDP with gradient descent can give a very
accurate localization of the sensors.

To further evaluate the accuracy of the above schemes, we
follow [4], [20], [30], [32] and use the Root Mean Square
Distance (rmsd) to measure the discrepancy between the
computed locations and true locations of the sensors, i.e.
rmsd =

(
n−1

∑n
i=1 ‖xi − x̄i‖2

)1/2
. Here, xi ∈ Rd is the

position of sensor i as computed by any one of the schemes
above, and x̄i ∈ Rd is its true position. As an illustration, we
record the corresponding average rmsd values of FSDP and
EES–FSDP in Table II. The discrepancy in the average rmsd
values between FSDP and EES–FSDP can be attributed to the
fact that the input instances are not uniquely 2–localizable. In



9

n 100 200 400 800
FSDP 2.10e-02 3.23e-02 1.85e-02 1.17e-02

EES–FSDP 1.99e-02 3.18e-02 2.06e-02 1.99e-02

TABLE II
RMSD COMPARISON BETWEEN FSDP AND EES–FSDP

particular, the SDP (3) is simply a relaxation of the original
problem and may not return an exact localization. Thus, the
localizations returned by FSDP and EES–FSDP could be
different.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the notion of universal rigidity
and showed that it is not only more amenable to algorithmic
treatment, but also more relevant to the efficient solvability of
the network localization problem than the notion of global
rigidity. Furthermore, we demonstrated the richness of the
class of universally rigid instances. In particular, we proved
that trilateration graphs, which are widely used in the design
of localization algorithms, are generically universally rigid.
Finally, we developed a novel edge sparsification heuristic
that can reduce the number of edges (and hence distance
measurements) in the input network while preserving its
localization properties. We used such a heuristic to speed
up existing convex optimization–based localization algorithms,
and simulation results showed that our approach is promising.

In the future, it would be interesting to further investigate the
properties of universally rigid instances and their algorithmic
implications, as they are still not fully understood. Moreover,
in view of the complexity results in [1], [2], [7], [26], it would
be worthy to identify other classes of efficiently realizable
globally rigid instances.

ACKNOWLEDGMENTS

The authors would like to thank Professor Wenan Zang
for discussions related to the d–trilateration graphs. Anthony
Man–Cho So’s research is supported by Hong Kong Research
Grants Council (RGC) General Research Fund (GRF) Project
No. CUHK 416908.

REFERENCES

[1] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R.
Yang, B. D. O. Anderson, and P. N. Belhumeur, “A Theory of Network
Localization,” IEEE Trans. Mobile Comput., vol. 5, no. 12, pp. 1663–
1678, 2006.

[2] J. Aspnes, D. Goldenberg, and Y. R. Yang, “On the Computational
Complexity of Sensor Network Localization,” in Proc. ALGOSENSORS
2004, LNCS 3121, pp. 32–44, 2004.

[3] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite Pro-
gramming Based Algorithms for Sensor Network Localization,” ACM
Trans. Sensor Networks, vol. 2, no. 2, pp. 188–220, 2006.

[4] P. Biswas and Y. Ye, “Semidefinite Programming for Ad Hoc Wireless
Sensor Network Localization,” in Proc. IPSN 2004, 2004, pp. 46–54.

[5] B. Bollobás, Extremal Graph Theory. London: Academic Press, 1978.
[6] J. Bruck, J. Gao, and A. A. Jiang, “Localization and Routing in Sensor

Networks by Local Angle Information,” ACM Trans. Sensor Networks,
vol. 5, no. 1, Article 7, 2009.

[7] M. Bădoiu, E. D. Demaine, M. Hajiaghayi, and P. Indyk, “Low–
Dimensional Embedding with Extra Information,” Disc. Comput. Geom.,
vol. 36, no. 4, pp. 609–632, 2006.

[8] R. Connelly, “Generic Global Rigidity,” Disc. Comput. Geom., vol. 33,
no. 4, pp. 549–563, 2005.

[9] E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric
Matrices,” in Proc. 1969 24th Nat’l Conf., 1969, pp. 157–172.

[10] L. Doherty, K. S. J. Pister, and L. El Ghaoui, “Convex Position
Estimation in Wireless Sensor Networks,” in IEEE INFOCOM 2001,
vol. 3, 2001, pp. 1655–1663.

[11] T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse,
B. D. O. Anderson, and P. N. Belhumeur, “Rigidity, Computation, and
Randomization in Network Localization,” in IEEE INFOCOM 2004,
vol. 4, 2004, pp. 2673–2684.

[12] Z. Fekete and T. Jordán, “Uniquely Localizable Networks with Few
Anchors,” in Proc. ALGOSENSORS 2006, LNCS 4240, pp. 176–183,
2006.

[13] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting Sparsity
in Semidefinite Programming via Matrix Completion I: General Frame-
work,” SIAM J. Opt., vol. 11, no. 3, pp. 647–674, 2000.

[14] D. K. Goldenberg, A. Krishnamurthy, W. C. Maness, Y. R. Yang,
A. Young, A. S. Morse, A. Savvides, and B. D. O. Anderson, “Network
Localization in Partially Localizable Networks,” in IEEE INFOCOM
2005, vol. 1, 2005, pp. 313–326.

[15] S. J. Gortler, A. D. Healy, and D. P. Thurston, “Characterizing Generic
Global Rigidity,” 2007, preprint.

[16] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, ser.
Graduate Studies in Mathematics. Providence, Rhode Island: American
Mathematical Society, 1993, vol. 2.

[17] B. Hendrickson, “Conditions for Unique Graph Realizations,” SIAM
J. Comput., vol. 21, no. 1, pp. 65–84, 1992.

[18] B. Jackson and T. Jordán, “Connected Rigidity Matroids and Unique
Realizations of Graphs,” J. Comb. Theory, Ser. B, vol. 94, no. 1, pp.
1–29, 2005.

[19] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita, “Exploiting Spar-
sity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite
Matrix Completion,” Department of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology, Oh–Okayama, Meguro–ku, Tokyo
152–8552, Japan, Tech. Rep. B–452, 2009.

[20] S. Kim, M. Kojima, and H. Waki, “Exploiting Sparsity in SDP Relax-
ation for Sensor Network Localization,” SIAM J. Opt., vol. 20, no. 1,
pp. 192–215, 2009.

[21] X. Li, Wireless Ad Hoc and Sensor Networks: Theory and Applications.
New York: Cambridge University Press, 2008.

[22] H. Lim and J. C. Hou, “Distributed Localization for Anisotropic Sensor
Networks,” ACM Trans. Sensor Networks, vol. 5, no. 2, Article 11, 2009.

[23] D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using
AOA,” in IEEE INFOCOM 2003, vol. 3, 2003, pp. 1734–1743.

[24] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller,
“Mobile–Assisted Localization in Wireless Sensor Networks,” in IEEE
INFOCOM 2005, vol. 1, 2005, pp. 172–183.

[25] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic Fine–Grained
Localization in Ad–Hoc Networks of Sensors,” in Proc. ACM MobiCom
2001, 2001, pp. 166–179.

[26] J. B. Saxe, “Embeddability of Weighted Graphs in k–Space is Strongly
NP–Hard,” in Proc. 17th Allerton Conf. Commun., Control, and Com-
put., 1979, pp. 480–489.

[27] Y. Shang and W. Ruml, “Improved MDS–Based Localization,” in IEEE
INFOCOM 2004, vol. 4, 2004, pp. 2640–2651.

[28] A. M.-C. So and Y. Ye, “A Semidefinite Programming Approach to
Tensegrity Theory and Realizability of Graphs,” in Proc. 17th ACM–
SIAM SODA, 2006, pp. 766–775.

[29] ——, “Theory of Semidefinite Programming for Sensor Network Lo-
calization,” Math. Prog., Ser. B, vol. 109, no. 2, pp. 367–384, 2007.

[30] P. Tseng, “Second–Order Cone Programming Relaxation of Sensor
Network Localization,” SIAM J. Opt., vol. 18, no. 1, pp. 156–185, 2007.

[31] C. Wang and L. Xiao, “Locating Sensors in Concave Areas,” in IEEE
INFOCOM 2006, 2006, pp. 1–12.

[32] Z. Wang, S. Zheng, Y. Ye, and S. Boyd, “Further Relaxations of the
Semidefinite Programming Approach to Sensor Network Localization,”
SIAM J. Opt., vol. 19, no. 2, pp. 655–673, 2008.

[33] Z. Yang, Y. Liu, and X.-Y. Li, “Beyond Trilateration: On the Localiz-
ability of Wireless Ad–Hoc Networks,” in IEEE INFOCOM 2009, 2009,
pp. 2392–2400.

[34] Z. Zhu, A. M.-C. So, and Y. Ye, “Universal Rigidity and Edge Sparsi-
fication for Sensor Network Localization,” 2009, preprint, available at
http://www.se.cuhk.edu.hk/∼manchoso/papers/unirigid.pdf.


