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We propose a two-sided jump model for credit risk by extending the Leland–Toft
endogenous default model based on the geometric Brownian motion. The model shows
that jump risk and endogenous default can have significant impacts on credit spreads,
optimal capital structure, and implied volatility of equity options: (1) Jumps and
endogenous default can produce a variety of non-zero credit spreads, including upward,
humped, and downward shapes; interesting enough, the model can even produce,
consistent with empirical findings, upward credit spreads for speculative grade bonds.
(2) The jump risk leads to much lower optimal debt/equity ratio; in fact, with jump
risk, highly risky firms tend to have very little debt. (3) The two-sided jumps lead to
a variety of shapes for the implied volatility of equity options, even for long maturity
options; although in general credit spreads and implied volatility tend to move in the
same direction under exogenous default models, this may not be true in presence of
endogenous default and jumps. Pricing formulae of credit default swaps and equity
default swaps are also given. In terms of mathematical contribution, we give a proof
of a version of the “smooth fitting” principle under the jump model, justifying a
conjecture first suggested by Leland and Toft under the Brownian model.
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1. INTRODUCTION

Of great interest in both corporate finance and asset pricing is credit risk due to the
possibility of default. In corporate finance the optimal capital structure for a firm may be
selected by considering the trade-off between tax credits from coupon payments to debt
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holders and potential financial costs related to default. Credit risk also leads to yield
spreads between defaultable and risk-free bonds. Furthermore, credit risk may affect
firms’ equity values, which in turn will contribute to implied volatility smiles in equity
options.

There are basically two approaches to model credit risk, the structural approach and
the reduced-form approach. Reduced-form models aim at providing a simple framework
to fit a variety of credit spreads by abstracting from the firm-value process and postulating
default as a single jump time.1 Starting from Black and Scholes (1973) and Merton
(1974), the structural approach aims at providing an intuitive understanding of credit
risk by specifying a firm value process and modeling equity and defaultable bonds as
contingent claims on the firm value. An important class of the structural models is
the class of first-passage models, specifying default as the first time the firm value falls
below a barrier level. Depending on whether the barrier is a decision variable or not,
the default can be classified as endogenous or exogenous. For first-passage time models
with exogenous default see, e.g., Black and Cox (1976), Longstaff and Schwartz (1995),
and Collin-Dufresne and Goldstein (2001); and for endogenous default models see, e.g.,
Leland (1994), Leland and Toft (1996), Goldstein, Ju, and Leland (2001), and Ju and
Ou-Yang (2005). There are also links between the two approaches by incorporating
jumps or different information sets into structural models; see Duffie and Lando (2001)
and Jarrow and Protter (2004). For further background on credit risk, see Bielecki and
Rutkowski (2002), Das (1995), Duffie and Singleton (2003), Kijima (2002), Lando (2004),
and Schönbucher (2003).

1.1. Related Empirical Facts

We try to build a model to incorporate some stylized facts related to credit spreads,
optimal capital structure, and implied volatility. First, for credit spreads, related stylized
facts are: (1) Credit spreads do not converge to zero even for very short maturity bonds,
and there are many models addressing this issue.2 (2) Credit spreads can have upward,
humped, and downward shapes; as the firm’s financial situation deteriorates, credit spread
curves tend to change from upward, to humped, and maybe even to downward shapes,
in presence of severe financial distresses; see, for example, Jones et al. (1984), Sarig and
Warga (1989), and He et al. (2000). (3) For speculative grade bonds, in addition to
humped and downward shapes, credit spreads can even be upwards; see Helwege and
Turner (1999) and He et al. (2000). (4) Credit spreads tend to be negatively correlated
with the risk-free rate (Longstaff and Schwartz 1995; Duffee 1998). (5) A comprehensive
empirical study in Eom et al. (2004) suggests that empirical credit spread curves are much
flatter than what are predicted from the Leland-Toft model. All of the above-mentioned
empirical facts related to credit spreads will be incorporated in our model.

Second, we consider empirical facts related to capital structure, which is one of
the most important areas in corporate finance, going back to the celebrated MM

1 For reduced-form models, see, for example, Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull
(1997), Duffie and Singleton (1999), Collin-Dufresne, Goldstein, and Hugonnier (2003), Madan and Unal
(1998).

2 For instance, Duffie and Lando (2001) and Huang and Huang (2003) suggest that incomplete accounting
information or liquidity may lead to non-zero credit spreads. Leland (2004) supports the explanation of
jumps by pointing out that including jumps “may solve the underestimation of both default probabilities
and yield spreads.”
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theorem in Modigliani and Miller (1958). Many factors may affect the capital structure,
such as taxes, bankruptcy costs, agency costs and conflicts between various investors,
asymmetric information, corporate takeover and corporate control, and interactions be-
tween investment and production decisions.3 It is too ambitious to try to build one model
to address all these issues. Instead, in this paper we shall focus on a neoclassical view
investigating the optimal capital structure as a trade-off between taxes and bankruptcy
costs. Regarding this trade-off, empirical evidences seem to suggest that high volatility
(Bradley et al. 1984; Friend and Lang 1988; Kim and Sorensen 1986) and low recovery
values upon default (Bradley et al. 1984; Long and Malitz 1985; Kim and Sorensen
1986; Titman and Wessels 1988) generally lead to low debt/equity ratios. However, it
is quite interesting to observe that high tech firms, such as Internet and biotechnology
companies (which tend to have high volatility, large jump risk, and low recovery values
upon default), have almost no debt despite the fact that tax credits would be given for
coupon payments to debt holders. Large (perhaps even unrealistic) diffusion volatility
parameters are needed for pure diffusion-type endogenous models to generate very low
debt/equity ratio for these high tech firms. In this paper we show that jumps can lead to
significantly lower debt/equity ratios, particularly for high tech companies.

Third, we move on to study the connection between implied volatility in equity options
and credit spreads for the corresponding defaultable bonds. Discussion of this connection
arguably went back at least to the leverage effect suggested in Black (1976). Recent
empirical studies in Toft and Prucyk (1997), Hull et al. (2004), Cremers et al. (2005a)
seem to indicate a significant connection between implied volatility and credit spreads.
What we point out in this paper is that from a theoretical viewpoint, although in general
there may be a positive connection between implied volatility in equity options and
credit spreads with exogenous default and jumps, the situation may be reversed for
short maturity bonds with endogenous default and jumps. Therefore, we should be
careful about the difference between exogenous and endogenous defaults and control
the variations of firm specific characteristics, when analyzing the connection between
implied volatility and credit spreads.

1.2. Contribution of the Current Paper

Furthering the jump models in Hilberink and Rogers (2002), we extend the Leland–
Toft endogenous default model (Leland 1994; Leland and Toft 1996) to a two-sided
jump model, in which the jump sizes have a double exponential distribution (Kou 2002;
Kou and Wang 2003). The model shows that jump risk and endogenous default can
have significant impacts on credit spreads, optimal capital structure, and implied volatil-
ity of equity options. More precisely, we show: (1) Jumps and endogenous default can
produce a variety of non-zero credit spreads, including upward, humped, and down-
ward shapes; interesting enough, the model can even produce, consistent with empirical
findings, upward credit spreads for speculative grade bonds. See Section 3.2 for details.
(2) Compared with the diffusion model without jumps, the jump risk leads to much lower
optimal debt/equity ratios; in fact, with jump risk, highly risky firms tend to have very
little debt. This helps to explain why Internet and biotech firms have almost no debt. See
Section 3.1 for details. (3) The two-sided jumps lead to a variety of shapes for the implied
volatility of equity options, even for long maturity equity options; although in general

3 For surveys, see Harris and Raviv (1991), Ravid (1988), Bradley et al. (1984), Masulis (1988), Brealey
and Myers (2001), and a special issue of “Journal of Economic Perspectives,” partly dedicated to the subject
(Miller 1998; Stiglitz 1998; Ross 1988; Bhattacharya 1998; Modigliani 1998).
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credit spreads and implied volatility tend to move in the same direction, this may not be
true in presence of endogenous default and jumps. In fact, higher diffusion volatility may
lead to a lower endogenous default barrier, resulting in smaller credit spreads for bonds
with short maturities because the default is more likely to be caused by jumps for short
maturity bonds. See Section 3.3 for details. (4) We also study pricing of credit and equity
default swaps; see Section 3.4.

In terms of mathematical contribution, we give a proof of a version of the “smooth
fitting” principle for the jump model, justifying a conjecture first suggested by Leland
and Toft (1996) in the setting of the Brownian model. See Theorem 3.1 and Remark B.1
in Appendix B.

1.3. Related Literature

Kijima and Suzuki (2001) and Zhou (2001) introduced jump diffusions to exogenous
default models in Merton (1974) and Black and Cox (1976), respectively. Here we consider
endogenous default along with the optimal capital structure problem, under a different
jump diffusion model. We also discuss the connection with implied volatility. Fouque
et al. (2004) extended the exogenous default model of Black and Cox (1976) to include
stochastic volatility.

A closely related paper is Hilberink and Rogers (2002), which extends the Leland–
Toft model to Lévy processes with one-sided jumps and focuses on the study of capital
structure.4 Here we consider a jump diffusion model with two-sided jumps. In addition
to capital structure, we discuss broader issues, such as various credit spread shapes and
links between credit spreads and implied volatility; a mathematical justification of the
smoothing-fitting principle is also given here. These issues are not discussed in Hilberink
and Rogers (2002). Compared with one-sided jumps, two-sided jumps can generate more
flexible implied volatility smiles, such as non-monotone implied volatility smiles.

Linetsky (2006) extended the firm model in Black and Scholes (1973) to include one
jump to default, with the exogenous default intensity being a negative power function
of the stock price. Carr and Linetsky (2005) generalized the CEV model to include one
jump to default, with the exogenous default intensity being an affine function of the
CEV variance. Both papers reach some similar conclusions about credit spreads and
implied volatility as those in the current paper, but they do not consider the problem of
optimal capital structure. Here we use endogenous default under a different model, and
we also study optimal capital structure, various shapes of credit spreads, and the impact
of endogenous default on implied volatility.

Structural models with jumps tend to have similar impacts on credit spreads as those
from models with incomplete accounting information (Duffie and Lando 2001) or un-
observable default barriers (Giesecke 2001, 2004). This is mainly because there are
intrinsic connections between reduced-form models and structural models by chang-
ing information sets; see Section 3.2.1. Further references can be found in, for exam-
ple, Collin-Dufresne, Goldstein, and Hugonnier (2003), Çetin et al. (2004), Jarrow and
Protter (2004), and Guo et al. (2005). The main difference between the current paper and
these papers is that we also discuss endogenous default, optimal capital structure, and
related implied volatility in equity options.

4 Various discussions and representations on the optimal capital structure (but not explicit calculation)
for general Lévy processes are also given in Boyarchenko (2000); see also Le Courtois and Quittard-Pinon
(2006).
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There are several other papers using the double exponential jump diffusion model to
study credit risk. Mainly focusing on empirical aspects of exogenous default, Huang and
Huang (2003) and Cremers et al. (2005b) used the double exponential jump diffusion
model to extend the exogenous default model in Black and Cox (1976). Here we look at
modeling aspects of endogenous default (by extending Leland and Toft 1996). Dao and
Jeanblanc (2005) and Le Courtois and Quittard-Pinnon (2007) also studied endogenous
default with the double exponential jump diffusion model but emphasize behavior finance
aspects and default probabilities, respectively, while we investigate various shapes of credit
spreads, analytical solution of optimal endogenous default boundary, and the relation
between credit spreads and implied volatility. As a result, all these studies complement
each other without many overlaps.

In summary, what differentiates this paper from the related literature is that we put
optimal capital structure, credit spreads, and implied volatility into a unified framework
with both endogenous default and jumps. The unified framework is potentially useful
when analyzing a basket of securities (bonds, stocks, and options) on the same firm
and trying to infer one price from the prices of the other securities (which is sometimes
referred as “capital structural arbitrage” on Wall Street).

2. BASIC SETTING OF THE MODEL

2.1. Asset Model

To generalize the Leland and Toft (1996) model to include jumps, we will use a
double exponential jump-diffusion model (Kou 2002; Kou and Wang 2003) for the firm
asset. Essentially, it replaces the jump size distribution in Merton’s (1976) normal jump-
diffusion model by a double exponential distribution. Besides giving heavier tails, a main
advantage of the double exponential distribution is that it leads to analytical solutions for
debt and equity values, while they are difficult under the normal jump-diffusion model.

Since we view equity and debts as contingent claims on the asset, it is enough to
specify dynamics under a risk-neutral probability measure P, which can be determined
by using the rational expectations argument (Lucas 1978) with a HARA type of utility
function for the representative agent, so that the equilibrium price of an asset is given by
the expectation, under this risk-neutral measure P, of the discounted asset payoff. For a
detailed justification of the rational expectations equilibrium argument,5 see Kou (2002)
and Naik and Lee (1990).

More precisely, we shall assume that under such a risk-neutral measure P, the asset
value of the firm6 Vt follows a double exponential jump-diffusion process

dVt

Vt−
= (r − δ) dt + σ dWt + d

(
Nt∑

i=1

(Zi − 1)

)
− λξ dt,(2.1)

whose solution is given by

vt = V0 exp
{(

r − δ − 1
2
σ 2 − λξ

)
t + σ Wt

} Nt∏
i=1

Zi ,

5 Instead of using the rational expectations equilibrium argument, alternative approaches of finding
pricing measures for credit derivatives are given in Giesecke and Goldberg (2003) and Bielecki, Jeanblanc,
and Rutkowski (2004, 2005).

6 One can think of Vt as the value of an otherwise identical unleveraged firm.
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with r being the constant risk-free interest rate, δ the total payment rate to the firm’s
investors (including to both bond and equity holders), and the mean percentage jump
size ξ given by

ξ = E[Z − 1] = E[eY − 1] = puηu

ηu − 1
+ pdηd

ηd + 1
− 1.

Here Wt is a standard Brownian motion under P, {Nt, t ≥ 0} is a Poisson process with
rate λ, the Zi ’s are i.i.d. random variables, and Yi := ln(Zi ) has a double-exponential
density:

fY(y) = puηue−ηu y1{y≥0} + pdηdeηd y1{y<0}, ηu > 1, ηd > 0, pu + pd = 1.

Note that under the above risk-neutral measure, Vt is a martingale after proper
discounting: Vt = E[e−(r−δ)(T−t)VT |Ft], where Ft is the information available up to
time t.

2.2. Debt Issuing and Coupon Payments

The setting of debt issuing and coupon payments follows Leland (1994) and Leland
and Toft (1996). In the time interval (t, t + dt), the firm issues new debt with par value
pdt and maturity profile ϕ, where ϕ(v) = me−mv , i.e., the maturity of a specific bond is
chosen randomly according to an exponentially distributed random variable with mean
1/m. Therefore, at any time t, the par value of debt maturing in the time period (s, s +
ds) is given by(∫ t

−∞
pϕ(s − u) du

)
ds =

(∫ t

−∞
pme−m(s−u) du

)
ds = pe−m(s−t) ds, s ≥ t.(2.2)

The random maturity assumption is a standard assumption frequently used in the
literature, starting from Leland (1994). Obviously the main motivation is that this as-
sumption leads to analytical tractability. As Leland (1995) pointed out, a real-world
equivalent of the random maturity is a sinking fund provision, which is quite common
in corporate debt issues. Basically the provision means that part of the principal value
of debt will be retired on a regular basis. In particular, if we assume that the principal
will be retired at a rate m (the word “rate” means the constant in an ordinary differential
equation dx/dt = −mx), then the par value of debt maturing in the time period (s, s +
ds) is given by

pe−m(s−t)ds, s ≥ t,

which is exactly what we get in (2.2) by using the random exponential maturity assump-
tion.

Equation (2.2) has two implications. First, letting s = t in (2.2), we have that at time t
the par value of the debt maturing at the next moment (t, t + dt) is given by p dt, which
is the same as the par value of the newly issued debt, achieving a static balance. Second,
using (2.2), at time t the par value of all pending debt (with maturity from t to ∞) is a
constant, equal to ∫ +∞

t
pe−m(s−t) ds = p/m ≡ P.
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We also assume that before maturity bond holders will receive coupons at rate ρ until
default.

At each moment the firm has two cash outflows and two cash inflows. The two cash
outflows are after-tax coupon payment (1 − κ)ρPdt and principal due p dt, where κ is the
tax rate; the two cash inflows are btdt from selling new debts (where bt is the price of the
total newly issued bonds) and the total payment from the asset δVt dt. If the total cash
inflow (δVt + bt) dt is greater than the cash outflow ((1 − κ)ρP + p) dt, we assume that the
difference of the two goes to the equity holders as dividends; otherwise, additional equity
will be issued to fulfill the due liability. Note that the difference ((1 − κ)ρP + p) dt −
(δVt + bt) dt is an infinitesimal quantity. Thus, such a financing strategy is feasible as
long as the total equity value remains positive before bankruptcy. Therefore, we need to
impose the limited liability constraint on the dynamic of the firm’s equity; we will discuss
this constraint later in Section 3.1.

2.3. Default Payments

As in first-passage models, we assume that the default occurs at time τ = inf{t ≥ 0 :
Vt ≤ VB}. Upon default, the firm loses (1 − α) of V τ due to reorganization of the firm,
and the debt holders as a whole get the rest of the value, αV τ , after reorganization. Note
that V τ �=VB due to jumps.

To find the total debt value, total equity value, and optimal leverage ratio, it is not
necessary to spell out the recovery value for individual bonds with different maturities.
However, to model credit spreads we need to specify how the remaining asset of the firm
αV τ is distributed among bonds with different maturities. Three standard assumptions
are recovery at a fraction of par value, of market values, and of corresponding treasury
bonds; see Lando (2004), Duffie and Singleton (2003), and Jarrow and Turnbull (1995).
Here we shall use the assumption of recovery at a fractional treasury (Jarrow and Turnbull
1995). We use this assumption because it makes analytical calculation easier. More
precisely, upon default, the payoff of a bond with unit face value, coupon rate ρ, and
maturity T > τ is given by

c
{

e−r (T−τ ) +
∫ T−τ

0
ρe−rs ds

}
= c

{(
1 − ρ

r

)
e−r (T−τ ) + ρ

r

}
, 0 ≤ c ≤ 1.(2.3)

To determine c, we shall match the total payment to bondholder with the total remaining
asset αV τ . By the memoryless property of exponential distribution, the conditional
distribution of a bond’s maturity does not change, given its maturity is beyond τ . Thus,
we have by (2.2)

∫ +∞

τ

c
{(

1 − ρ

r

)
e−r (T−τ ) + ρ

r

}
· pe−m(T−τ ) dT = αVτ ,

yielding

c = αVτ(
1 − ρ

r

)
p

1
m + r

+ ρ

r
p

1
m

= αVτ (m + r )(
1 − ρ

r

)
Pm + ρ

r
P (m + r )

,
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via P = p/m. Therefore,

c = m + r
m + ρ

αVτ

P
.

To make sure that 0 ≤ c ≤ 1, we shall impose that

m + r
m + ρ

αVB

P
≤ 1.(2.4)

We will see that this assumption is satisfied by the optimal default barrier; see (3.4).
We should emphasize that this recovery assumption is irrelevant if one is only interested

in understanding debt values as a whole, but is relevant when we consider credit spreads
which in turn depend on cash flows to bonds with different maturities. In particular, our
results about optimal default boundary, optimal leverage level, and implied volatility will
not be affected by this recovery assumption.

2.4. Debt, Equity, and Market Value of the Firm

At time 0 the price of a bond with face value 1 and maturity T when the firm asset V 0 =
V is given by

B(V; VB, T) = E
[

e−r T1{τ>T} + e−rτ · c
{(

1 − ρ

r

)
e−r (T−τ ) + ρ

r

}
1{τ≤T}

]
+ E

[∫ τ∧T

0
ρe−rsds

]
= e−r T P[τ ≥ T] + α

P
m + r
m + ρ

(
1 − ρ

r

)
E
[
Vτ e−r T1{τ≤T}

]
+ α

P
m + r
m + ρ

ρ

r
E
[
Vτ e−rτ 1{τ≤T}

] + ρ

r
(1 − E[e−r (τ∧T)])

=
(

1 − ρ

r

)
e−r T P[τ ≥ T] + α

P
m + r
m + ρ

(
1 − ρ

r

)
E
[
Vτ e−r T1{τ≤T}

]
+ α

P
m + r
m + ρ

ρ

r
E
[
Vτ e−rτ 1{τ≤T}

] + ρ

r

(
1 − E

[
e−rτ 1{τ≤T}

])
.

In our endogenous model, both P (which is related to the optimal debt/equity ratio) and
the endogenous default barrier VB will be decision variables.

According to the Modigliani–Miller theorem (Brealey and Myers 2001), the total
market value of the firm is the firm asset value plus the tax benefit and minus the
bankruptcy cost. More precisely, the market value of the firm at time 0 is

v(V; VB) = V + E
[∫ τ

0
κρ Pe−rt dt

]
− (1 − α)E

[
Vτ e−rτ

]
.

The total debt D(V ;VB) is equal to

D(V; VB) = P
∫ +∞

0
me−mT B(V; VB, T) dT,

and the total equity value is

S(V; VB) = v(V; VB) − D(V; VB).
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REMARK 2.1. In this static model (thanks to the exponential maturity profile), the
total firm value, total debt, and equity values are all Markovian and are independent of
the time horizon.

2.5. Preliminary Results for Debt and Equity Values

To compute the total debt and equity values, one needs to compute the distribution
of the default time τ and the joint distribution of V τ and τ . The analytical solutions for
these distributions depend on the roots of the following equation (which is essentially a
four-degree polynomial):

G(x) = r + β, β > 0, G(x) := − (
r − δ − 1

2σ 2 − λξ
)

x + 1
2σ 2x2

+ λ

(
pdηd

ηd − x
+ puηu

ηu + x
− 1

)
.

Lemma 2.1 in Kou and Wang (2003) implies that the above equation has exactly four
real roots. Denote the four roots to the equation above by γ 1,β , γ 2,β , −γ 3,β , −γ 4,β , with

0 < γ1,β < ηd < γ2,β < ∞, 0 < γ3,β < ηu < γ4,β < ∞.

Analytical solutions for all these roots are given in the appendix of Kou, Petrella, and
Wang (2005).

LEMMA 2.1. The value of total debt at time 0 is

D(V; VB) = P
∫ +∞

0
me−mT B(V; VB, T) dT

= P(ρ + m)
r + m

{
1 − d1,m

(
VB

V

)γ1,m

− d2,m

(
VB

V

)γ2,m
}

+ αVB

{
c1,m

(
VB

V

)γ1,m

+ c2,m

(
VB

V

)γ2,m
}

.

The Laplace transform of a bond price, B(V ;VB, T), is given by∫ +∞

0
e−βT B(V; VB, T) dT = ρ + β

β(r + β)

{
1 − d1,β

(
VB

V

)γ1,β

− d2,β

(
VB

V

)γ2,β
}

+ α(m + r )
P(m + ρ)

ρ + β

β(r + β)

× V

{
c1,β

(
VB

V

)γ1,β+1

+ c2,β

(
VB

V

)γ2,β+1
}

,

where

c1,β = ηd − γ1,β

γ2,β − γ1,β

γ2,β + 1
ηd + 1

, c2,β = γ2,β − ηd

γ2,β − γ1,β

γ1,β + 1
ηd + 1

, d1,β = ηd − γ1,β

γ2,β − γ1,β

γ2,β

ηd
,

d2,β = γ2,β − ηd

γ2,β − γ1,β

γ1,β

ηd
.
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The total market value of the firm is given by

v(V; VB) = V + Pκρ

r

{
1 − d1,0

(
VB

V

)γ1,0

− d2,0

(
VB

V

)γ2,0
}

− (1 − α)VB

{
c1,0

(
VB

V

)γ1,0

+ c2,0

(
VB

V

)γ2,0
}

,

and the total equity of the firm is given by S(V ;VB) = v(V ;VB) − D(V ;VB).

A short proof of this lemma, basically following from the calculation of the first
passage times in Kou and Wang (2003), will be given in Appendix A. Various versions of
the lemma and some similar results are also given in Huang and Huang (2003), Metayer
(2003), Dao and Jeanblanc (2005), and Le Courtois and Quittard-Pinon (2007). The
formulae above have interesting interpretations. For example, in the formula for the
total debt value, note that P(ρ+m)

r+m is the present value of the debt with face value P and
maturity profile φ(t) = me−mt in absence of bankruptcy. The term 1 − d1,m(VB/V)γ1,m −
d2,m(VB/V)γ2,m in the first sum is the present value of $1 contingent on future bankruptcy;
the second sum is what the bondholders can get from the bankruptcy procedure. Note that
due to jumps, the remaining asset after bankruptcy is not αVB. A similar interpretation
holds for the equity value.

3. MAIN RESULTS

We shall study four issues, the optimal capital structure with endogenous default, credit
spreads, implied volatility generated by the model, and pricing of credit and equity default
swaps. Both theoretical and numerical results will be reported in this section. Table 3.1
summarizes the parameters to be used in the numerical investigation. In addition, we
set the number of shares of stocks is 100, and we assume that 1 year has 252 trading
days.

TABLE 3.1
Basic Parameters for Numerical Illustration

Basic parameters:
σ = 0.2, κ = 35%, r = 8%, α = 0.5, ρ = 8.162%, δ = 6%, V 0 = 100, 1/m = 5.

Case A: Pure Brownian case, i.e., the jump rate λ = 0.
Case B: Small number of large jumps, 1/ηu = 1/3, 1/ηd = 1/2, pu = 0.5, λ = 0.2
Case C: Moderate number of small jumps, 1/ηu = 1/8, 1/ηd = 1/6, pu = 0.25, λ = 1.

The risk-free rate r = 8% is close to the average historical treasury rate during
1973–1998, and the coupon rate ρ = 8.162% is the par coupon rate for risk-free bonds
with semi-annual coupon payments when the continuously compounded interest rate
is 8% according to Huang and Huang (2003), who also set δ = 6%. The diffusion
volatility σ = 0.2, corporate tax rate 35%, and the recovery fraction α = 0.5 are chosen
according to Leland and Toft (1996).
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3.1. Optimal Capital Structure and Endogenous Default

In this subsection, we consider the problem of optimal capital structure with optimal
endogenous default, i.e., the optimal choices of debt level P and bankruptcy trigger level
VB. After presenting results for the optimal P and VB, we shall point out jump risk can
significantly reduce the optimal debt/equity ratio. In particular, the model implies that
for firms with high jump risk and few tangible assets (hence low recovery rate), such as
Internet and biotech companies, the optimal P is close to zero.

3.1.1. The Solution of a Two-Stage Optimization Problem. Deciding optimal P and
choosing optimal VB are two entangled problems that cannot be separated easily. For
example, when a firm chooses P to maximize the total firm value at time 0, the decision
on P obviously depends on the bankruptcy trigger level VB. Similarly, after the debt
being issued, the equity holders will choose an optimal VB, which of course depends on
the debt level P. Here we shall choose P and VB according to a two-stage optimization
procedure as in Leland (1994) and Leland and Toft (1996).

More precisely, for a fixed P, the equity holders find the optimal default barrier by
maximizing the equity value, subject to the limited liability constraint. It is the equity
value that is maximized because after the debt being issued, it is the equity holders who
control the firm. Mathematically the equity holders find the best VB by solving

max
VB

S(V; VB),(3.1)

subject to the limited liability constraint

S(V′; VB) ≥ 0, for all V′ ≥ VB ≥ 0.(3.2)

The limited liability constraint is imposed so that the equity value is always nonnegative
for any future firm asset value V ′, as long as the asset value V ′ is above the bankruptcy
trigger level VB. This is the first-stage optimization problem.

Clearly the optimal V∗
B ≡ V∗

B (P) to be chosen by the equity holders will depend on
P. At time 0, the firm will conduct the second-stage optimization to maximize the firm
value, as the debt holders will act in anticipation of what the equity holders may do later.
More precisely, the second-stage optimization is

max
P

v
(
V; V∗

B(P)
)
.(3.3)

The two-stage optimization problem partly arises due to the conflict of interests be-
tween debt and equity holders; in fact the two-stage optimization can be viewed as a
Stackelberg game (see Gibbons 1992) between the debt and equity holders. It is obvious
that choosing P and VB simultaneously will lead to a better market value of the firm.
Leland (1998) used the difference of the two to explain agency costs due to conflicts
between the equity and debt holders. Obviously the two-stage optimization is only a
rough approximation to complicated decision and negotiation problems between debt
and equity holders.7 Here is the result for the two-stage optimization.

7 An alternative approach is to model the strategic behavior by various investors of the firm; see Anderson
and Sundaresan (1996) and Mella-Barral and Perraudin (1997).
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THEOREM 3.1. (a) The first-stage optimization: Define

ε :=
ρ + m
r + m

(d1,mγ1,m + d2,mγ2,m) − κρ

r
(d1,0γ1,0 + d2,0γ2,0)

(1 − α)(c1,0γ1,0 + c2,0γ2,0) + α(c1,mγ1,m + c2,mγ2,m) + 1
.

Given the debt level P, if εP < V , then the optimal barrier level V∗
B solving (3.1) with the

constraint in (3.2) is given by V∗
B = εP; otherwise, the optimal choice of VB is to make τ B =

0. (b) The second-stage optimization: The bondholders will choose such P that εP < V .
After plugging the optimal V∗

B = εP into the second-stage optimization, we have that
v(V ;εP) is a concave function of P ∈ (0, V/ε), which implies that we can find a unique
optimal debt level P for the problem (3.3).

The proof, which is one of the main results in the paper, will be given in Appendix B. A
mathematical contribution of the paper is that the proof also gives a rigorous justification
of a smooth-pasting principle; more precisely, V∗

B is the solution of ∂S(V;V∗
B)

∂V |V=V∗
B

= 0.
Even under the pure Brownian model, Leland and Toft (1996) did not prove the result,
mainly because the proof needs the local convexity at VB, i.e., ∂2 S(V;VB)

∂V2 |V=VB ≥ 0. Instead,
Leland and Toft (1996, footnote 9) verified the above local convexity numerically and
made a conjecture that the smooth-pasting principle should hold. Hilberink and Rogers
(2002) gave a numerical verification of the local convexity and conjectured that the
smooth-pasting principle should hold under a one-sided jump model. Here we are able
to prove the smooth-pasting principle by first proving the local convexity. See Remark
B.1 at the end of Appendix B for details.8

REMARK 3.1. It is easy to see that V∗
B satisfies (2.4) because

0 < ε <

ρ + m
r + m

(d1,mγ1,m + d2,mγ2,m)

α(c1,mγ1,m + c2,mγ2,m + 1)
<

1
α

ρ + m
r + m

,(3.4)

which follows from the definitions of d i,m and ci,m as

d1,mγ1,m + d2,mγ2,m = γ1,mγ2,m

ηd
, c1,mγ1,m + c2,mγ2,m + 1 = (γ1,m + 1)(γ2,m + 1)

ηd + 1
,

γ1,m

ηd
<

γ1,m + 1
ηd + 1

,
ρ + m
r + m

>
κρ

r
, γ1,mγ2,m > γ1,0γ2,0.

3.1.2. The Impact of Jumps on Optimal Capital Structure. Table 3.2 shows the effect
of various parameters on the optimal leverage level. Consistent with our intuition, the
table shows that the optimal leverage ratio is an increasing function of the fractional
remaining asset α and the average maturity profile 1/m, and it is a decreasing function
of the jump rate λ and the diffusion volatility σ . More importantly, the table shows that
jump risk leads to much lower leverage ratios. In particular, with infrequent large jumps
(case B), the optimal leverage ratio is close to zero, even in the case of only one jump
every year (λ = 1), recovery rate α = 25%, and maturity profile 1/m not more than

8 After the current paper was tentatively accepted in 2006, Dr. A. Kyprianou also pointed out to us an
interesting and independent paper by Kyprianou and Surya (2007), in which they show that the smooth-
pasting principle may not hold for other jump-diffusion processes.
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TABLE 3.2
Effects of Various Parameters on the Optimal Debt/Equity Ratio

m−1 = 0.5 m−1 = 1 m−1 = 2 m−1 = 5

σ = 0.2 σ = 0.4 σ = 0.2 σ = 0.4 σ = 0.2 σ = 0.4 σ = 0.2 σ = 0.4
(%) (%) (%) (%) (%) (%) (%) (%)

Case B
α = 5% λ = 0 7.15 1.12 11.21 2.38 17.58 5.07 30.69 12.94

λ = 0.5 0.68 0.20 1.64 0.61 3.96 1.87 11.75 7.36
λ = 1 0.12 0.04 0.42 0.20 1.46 0.84 6.58 4.82
λ = 2 0.01 0.001 0.05 0.03 0.35 0.24 3.16 2.64

α = 25% λ = 0 13.81 3.22 18.35 5.31 25.12 9.17 38.44 19.11
λ = 0.5 2.50 0.88 4.37 1.89 8.11 4.31 18.71 12.69
λ = 1 0.66 0.28 1.5 0.78 3.69 2.31 11.94 9.27
λ = 2 0.07 0.04 0.29 0.18 1.19 0.87 6.91 6.01

α = 50% λ = 0 25.48 9.26 30.34 12.67 37.33 18.33 50.54 31.24
λ = 0.5 8.93 4.16 12.44 6.69 18.57 11.62 33.40 25.27
λ = 1 3.74 1.99 6.13 3.77 11.01 7.84 25.33 21.33
λ = 2 0.88 0.54 2.04 1.43 5.26 4.22 18.55 16.99

Case C
α = 5% λ = 0 7.15 1.12 11.21 2.38 17.58 5.07 30.69 12.94

λ = 0.5 4.77 0.88 7.94 1.96 13.22 4.36 24.93 11.79
λ = 1 3.39 0.70 5.94 1.62 10.44 3.79 21.08 10.80
λ = 2 1.88 0.45 3.64 1.14 7.05 2.91 16.13 9.21

α = 25% λ = 0 13.81 3.22 18.35 5.31 25.12 9.17 38.44 19.11
λ = 0.5 10.13 2.67 13.99 4.55 20.01 8.15 32.53 17.78
λ = 1 7.76 2.23 11.11 3.93 16.54 7.28 28.42 16.62
λ = 2 4.90 1.58 7.52 2.97 12.07 5.91 22.94 14.71

α = 50% λ = 0 25.48 9.26 30.34 12.67 37.33 18.33 50.54 31.24
λ = 0.5 20.66 8.17 25.19 11.44 31.90 16.96 45.13 29.90
λ = 1 17.21 7.24 21.46 10.36 27.93 15.75 41.15 28.70
λ = 2 12.56 5.76 16.38 8.60 22.45 13.72 35.66 26.67

The basic parameters are given by Table 3.1. λ = 0 is the pure Brownian case (case A). Note
that comparing to the pure Brownian case the jump risk reduces the optimal leverage ratio
significantly, often even making the ratio close to zero, especially in the case of infrequent
large jumps (case B).

2 years. Internet and biotech companies typically have low α (as they do not have many
“tangible” assets) and short maturity profile (as they do not have long operating history
to secure long-term debt even if they want to issue debts). Therefore, jump risk can lead
to a much lower debt/equity ratio, even making it close to zero, especially in the case of
infrequent large jumps.

3.2. Flexible Credit Spreads

In this subsection we try to incorporate four stylized facts related to credit spreads
as outlined in Section 1.1, namely, (1) non-zero credit spreads for very short maturity
bonds; (2) flexible credit spreads with possible upward, humped, and downward shapes;
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(3) upward credit spreads even for speculative grade bonds; and (4) the problem of over-
and underprediction of credit spreads for long- and short-maturity bonds, respectively,
in the Leland–Toft model.

By analogy to the case of discrete coupons, in the case of continuous coupon rate,
we shall define the yield to maturity, ν (T), of a defaultable bond with maturity T and
coupon rate ρ as the one satisfies

B(V; VB, T) = e−ν(T)T +
∫ T

0
ρe−ν(T)sds = e−ν(T)T + ρ

ν(T)
(1 − e−ν(T)T).

The credit spread is defined as ν (T) − r. The bond price B(V ;VB, T) can be computed
by using Lemma 2.1 and numerical Laplace inversion algorithms, such as the Euler
inversion algorithm in Abate and Whitt (1992).

3.2.1. Non-Zero Credit Spreads and a Connection with Reduced-Form Models. For
very short maturity bonds, the analytical solution of credit spreads is available.

THEOREM 3.2. We have

lim
T→0

ν(T) − r = λpd

(
VB

V

)ηd
[

1 − αVB

P
m + r
m + ρ

ηd

ηd + 1

]
.

In particular, by (2.4) the above limit for the short-maturity credit spread is strictly positive
as long as there is a downside jump risk (i.e., λpd > 0).

The proof will be given in Appendix C. As we mentioned in Section 1.2, there are
well-recognized connections linking reduced-form models and structural models. This
is perhaps one of the main reasons that adding jumps can produce flexible shapes of
non-zero credit spreads, just as in reduced-form models. In our particular setting,

P[τ ≤ t + �t | τ > t] = λpd

(
VB

Vt

)ηd

�t + o(�t).

Since the intensity ht in a reduced-form model satisfies

P[τ ≤ t + �t | τ > t] = ht�t + o(�t),

we have, to the first-order approximation, that the model behaves like a reduced-form
model with ht = λpd (VB/Vt)ηd , despite that the model also has a predictable component
(i.e., the diffusion component).

3.2.2. Upward, Humped, and Downward Credit Spreads. By adding jumps the model
can produce flexible credit spreads, including upward, humped, and downwards shapes.9

Normally, the credit spread shape is upward; as the firm’s financial situation deteriorates,
it becomes humped and even downward in face of immediate financial distress. Figure 3.1
illustrates that our model can reproduce this phenomenon.

9 All three kinds of shapes may prevail not only for corporate bonds but also for investment grade
sovereign bonds. For example, Schmid (2004, p. 277) shows that the credit spreads between Italian bonds
(with S&P rating AA) and German bonds (with AAA, rating which may be effectively treated as “risk-free”)
can have both upward and humped shapes, while the spreads between Greek bonds (with A− rating) in
general have downward shapes.
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FIGURE 3.1. Various shapes of credit spreads for two-sided jumps. The parameters used
are risk-free rate r = 8%, coupon rate ρ = 1%, payment rate δ = 1%, volatility σ =
10 %, corporate tax rate κ = 35%, bankruptcy loss fraction α = 50%, and average
maturity m−1 = 1/3 years for the first row and m−1 = 0.25 for the second row. In the
first row, the jump parameters are specified as 1/ηu = 1/3, 1/ηd = 1/2, pu = 0.75 and
λ = 0.5, while in the second row, the jump parameters are given in Case C with jump
rates λ = 2.

The shape of credit spreads for speculative bonds is a somewhat controversial subject.
Traditional empirical studies based on aggregated data for speculative bonds suggested
downward and humped shapes (e.g. Sarig and Warga 1989; Fons 1994). Helwege and
Turner (1999) argued that possible maturity bias (as healthier firms are able to issue longer
maturity bonds) may affect the aggregated empirical studies; instead, they suggested
that even speculative bonds may have upward shapes during normal times. However,
He et al. (2000) later argued that empirically humped and downward shapes should be
seen for speculative bonds, even after being adjusted for the maturity bias.

For theoretical models, it is desirable to have all three shapes for speculative bonds. We
have seen that the model leads to humped and downward credit spreads for firms with
large leverage levels. Figure 3.2 shows that we can generate an upward-shaped curve for
the leverage level P/V = 50% and total volatility10 σ total = 40%. In pure Brownian model
with λ = 0 (the dash line), the credit spread curve is humped with a zero credit spread,

10 The total variance is denoted by σ 2
total = σ 2 + σ 2

jump, where

σ 2
jump = 1

t
Var

⎛⎝N(t)∑
i=1

(Zi − 1)

⎞⎠ = λ

{[
puηu

ηu − 2
+ pdηd

ηd + 2

]
−

[
puηu

ηu − 1
+ pdηd

ηd + 1

]2
}

, ηu > 2.
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FIGURE 3.2. Upward credit spread curves for speculative bonds. The parameters used
are the leverage ratio P/V = 50%, total volatility σ total = 40%, average bonds maturity
m−1 = 5 years, coupon rate ρ = 2%, and all the other parameters are the same as Case
B and basic parameters in Table 3.1.

as the maturity goes to zero. However, with jumps, the credit spread becomes upward.
Collin-Dufresne and Goldstein (2001) generated a similar upward credit spread curve
for speculative bonds (see Figure 3.3 in their paper) using the Brownian motion with a
stochastic exogenous default barrier; however, being a diffusion model, their model leads
to zero credit spread as the maturity goes to zero.

3.2.3. Effects of Various Parameters on Credit Spreads. Figure 3.3 shows that in our
model credit spreads decrease as the interest rate increases. This is consistent with the
negative correlation between credit spreads and risk-free rate found in empirical studies
mentioned in Section 1.2. Furthermore, if the risk-free rate has mean reversion, then the
credit spreads will be so too since they are negatively related in the model.

Figure 3.4 illustrates the effect of various parameters on credit spreads. In particular,
credit spreads decrease in α, increase in λ, and decrease in average maturity 1/m. All of
these are consistent with our intuition. However, it is interesting to point out that in Case
B for short-maturity bonds, the credit spread is actually a decreasing function of diffusion
volatility σ . To explain this, note that the endogenous optimal bankrupt barriers are V∗

B =
21.6947 (σ = 0.2), 19.5422 (σ = 0.3), and 17.3502 (σ = 0.4), respectively. For short-
maturity bonds, the defaults will be caused mainly by jumps rather than by the diffusion
part. Therefore, the low diffusion volatility case of σ = 0.2 has the largest probability
of defaulting in a short time because it is easier to cross the resulting higher barrier V∗

B
by jumps. On the other hand, for long-maturity bonds, the diffusion part of the process
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FIGURE 3.3. The effect of the risk-free rate on credit spreads. The parameters used are
the leverage level P/V = 30%, average bonds maturity m−1 = 5 years, and all the other
parameters are the same as those in Table 3.1.

plays a more important role to determine credit spreads; therefore, higher volatility in
diffusion part may lead to larger credit spreads.

In Figure 3.5, we fix the total volatility of the asset process to see the impacts of jump
and diffusion parts to credit spreads. Eom et al. (2004) found that empirical credit spread
curves are much flatter than what are predicted from the Leland–Toft model after their
calibration.11 Figure 3.5 seems to suggest that large infrequent jumps, as in Case B, lead
to results that might be more consistent with the empirical credit spread curves, as in
that case, jumps significantly reduce credit spreads for long-maturity bonds while lift up
credit spreads for short-maturity bonds.

3.3. Volatility Smile

In this subsection, we study the connection between credit spreads and implied volatil-
ity. The connection went back at least to Black (1976); for recent empirical studies of the
connection see, e.g., Toft and Prucyk (1997), Hull, Nelken, and White (2004), Cremers
et al. (2005a), and Carr and Linetsky (2005). The interesting points in this subsection are:
(1) We should carefully distinguish exogenous and endogenous defaults when we study
the possible connection between credit spreads and implied volatility; see Figure 3.6.
(2) Default and jumps together can generate significant volatility smiles even for long-
maturity equity options; see Figure 3.8.

11 Eom et al. (2004) did not report what calibration parameters were used in that paper.
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FIGURE 3.4. The effects of various parameters on credit spreads. The defaulting pa-
rameters used are the leverage ratio P/V = 30%, and all the other parameters are the
same as those in Table 3.1. Note the non-monotonicity in Case B in terms of σ , partly
because the optimal V∗

B is decreasing in σ .

The value of a call option written on the whole equity (or undiluted stock shares) is

e−r T E[max(S(VT) − K) · 1{τ>T}],(3.5)

where S(VT) is the equity value at the maturity of the option with the asset value of the
firm being VT, K is the strike price, and τ is the bankruptcy time. We assume that the
option becomes worthless if the bankruptcy happens before the option expires.

In our investigation, we use Monte-Carlo simulation to estimate the prices of such call
options. More precisely, 100,000 simulation runs of Vt with V 0 = 100 are generated, and
we price European call options with 60 different strike prices, Ki = S(V 0) − 2 × (i − 30),
i = 1, . . . , 60, according to (3.5). These options cover the cases of deep-in-the-money,
at-the-money, and deep-out-of-the money. In simulation of the dynamic of Vt in (2.1)
and the corresponding default time τ , we choose the discrete time unit to be 1 trading
day (i.e., 1/252 year). After getting the call prices, we calculate the corresponding implied
volatility from the Black–Scholes formula (without jumps and default), assuming these
simulated call prices to be the true market prices.12

12 To get the implied volatility from the Black–Scholes formula, we need to compute the dividend rate of
the stock. The average dividend rate d of the stock over [0, T ] must satisfy S0 = e−(r−d) E[ST ], where S0

and ST are the stock prices at time 0 and T, respectively. In the Monte-Carlo simulation, we use the average
dividend d = r + log(S0/E[ST ])/T in the Black–Scholes formula to compute the implied volatility.
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FIGURE 3.5. Credit spreads: Jump volatility vs. diffusion volatility. The parameters
are P/V = 30%, σ total = 0.40, and all the other parameters are the same as those in
Table 3.1. The plot for Case B seems to be more consistent with the empirical finding
in Eom et al. (2004).

3.3.1. Connection between Implied Volatility and Credit Spreads. With exogenous
default, the default barrier VB is a fixed constant independent of firm parameters, such as
σ ; while with endogenous default, the default barrier VB is chosen to be the optimal value
V∗

B in Theorem 3.1. In particular, with exogenous default the barrier VB is independent
of σ , while with endogenous default the barrier V∗

B is a function of σ .
In terms of the connection between implied volatility and credit spreads, Figure 3.6

shows a clear difference between exogenous and endogenous defaults. In the case of
exogenous default, we set the default boundary VB = P = 30 for all σ ′s; in the case of
endogenous defaults, different σ ′s lead to different choices of the optimal default barrier
V∗

B; in fact, V∗
B = 21.6947 (σ = 0.2), V∗

B = 19.5422 (σ = 0.3), V∗
B = 17.3502 (σ = 0.4),

respectively. Notice that in Figure 3.6, the lower σ is, the higher is VB.
Figure 3.6 shows that the implied volatility and the credit spreads tend to be positively

correlated with exogenous default. However, this is not true with endogenous default.
In particular, for short-maturity bonds with exogenous default both credit spreads and
implied volatility are increasing functions of the diffusion volatility, while this is not true
with endogenous default. The reasons are: (1) The higher σ leads to lower optimal default
barrier V∗

B. (2) For a short-maturity bond, the default is mainly caused by jumps rather
than by the diffusion part. Therefore, combining them together, with higher volatility σ ,
it is more difficult for the process to cross the (resulting lower) default level V∗

B in short
time period, leading to lower credit spreads for short-maturity bonds.

Of course, in practice all defaults must be endogenous, as the default decision will
clearly depend on the firm-specific parameters such as σ . Thus, the practical message from
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FIGURE 3.6. Exogenous default boundary vs. endogenous boundary. We use leverage
ratio P/V = 30%, the maturity of option T = 0.25 year, and the rest of parameters
as in Case B in Table 3.1. Note the non-monotonicity of the credit spreads under
endogenous default. For exogenous default we set VB = P = 30, and for endogenous
default we choose VB optimally.

here is that when analyzing the relation between credit spreads and implied volatility it is
important to control for variation in firm-specific characteristics, such as changing in σ .

3.3.2. Effects of Various Parameters on Implied Volatility. Figure 3.7 illustrates the
effects of various parameters on the implied volatility, which seems to be increasing in σ

and λ, and decreasing in 1/m and α; all of these make sense intuitively. Figure 3.8 aims
at comparing the impacts of jump volatility and diffusion volatility by fixing the total
volatility. It is interesting to observe that even for very long-maturity options, such as T =
8 years, the implied volatility smile is still significant, due to the combination of default
and jump risks. This should be compared with Lévy process models without default risk,
in which case the implied volatility smile tends to disappear for long-maturity options,
as the jump impacts are gradually washed out; see Cont and Tankov (2003). However,
the combination of jump and default seems to prolong the effect of implied volatility
significantly.

3.4. One-Sided Jumps vs. Two-Sided Jumps

We build a model with both upside and downside jumps. There are some differences
between one-sided jumps and two-sided jumps.
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FIGURE 3.7. Effects of various parameters on implied volatility. We use P/V = 30%,
call option maturity T = 1, and all other parameters as in Table 3.1.

(1) As we have shown in Theorem 3.2, the non-zero credit spreads are due to downside
jumps. Therefore, a jump-diffusion model with only upside jumps may not produce
non-zero credit spreads.

(2) One-sided downside jumps can also produce some flexible credit spreads, as in the
two-sided jump case; see Figure 3.9. However, models with two-sided jumps can
easily produce these pictures, as they have some extra parameters.

(3) The main difference between two-sided jumps and one-sided (downside) jumps lies
in implied volatility; see Figure 3.10. More precisely, similar to the case of equity
options, Figure 3.10 shows that two-sided jumps can generate more flexible implied
volatility curves compared with one-sided jumps, which tend to generate monotone
curves.

Although people have known for a long time that, numerically, two-sided jumps can
produce flexible volatility smiles for call and put options on stocks, a complete theoretical
justification of this is still needed. For example, only recently Benaim and Friz (2006a,
2006b) gave a rigorous proof of the asymptotic shape of the implied volatility curves, as
the strike price K goes to infinity or to zero under various models, including jump models.
On the other hand, Renault and Touzi (1996) and Sircar and Papanicolaou (1999) proved
that under a stochastic volatility model, if K is within the neighborhood of the initial
stock price S0, then the implied volatility curves should be convex. However, to our best
knowledge, it is still an open problem to give a complete theoretical investigation of the
whole implied volatility curves, not just for the cases of K ≈ S0, K → ∞, or K → 0.
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FIGURE 3.8. Implied volatility with fixed total volatility σ total = 40% and P = 30. The
first row is for Case B, with line 1 for σ = 0.1, λ = 0.26, line 2 for σ = 0.2, λ = 0.20,
line 3 for σ = 0.3, λ = 0.12, line 4 for σ = 0.4, λ = 0. The second row is for Case C,
with line 1 for σ = 0.1, λ = 4.47, line 2 for σ = 0.2, λ = 3.57, line 3 for σ = 0.3, λ =
2.08, line 4 for σ = 0.4, λ = 0. All the other parameters follow Table 3.1. Note that
the implied volatility is still significant even for T = 8 years.

3.5. Pricing of Credit and Equity Default Swaps

In this subsection we study credit and equity default swaps. Further background
on these derivatives can be found in Lando (2004), Medova and Smith (2004), and
Schönbucher (2003).

Consider a credit default swap (CDS) with maturity t on a T-year coupon bond (t < T)
issued by the firm with the asset value in (2.1). The buyer of the CDS makes continuous
payments at rate s, called the CDS spread, to the seller until either the end of the life of
the CDS (time t) or the default, whichever comes first; in return the seller will cover the
possible loss of the buyer due to the default. A central issue for CDS is the calculation
of the CDS spread s.

PROPOSITION 3.1. The CDS spread s is given by

s = r

(
1 − ρ

r

)
e−r (T−t) A5(t) + ρ

r
A3(t) − m + r

m + ρ

( α

P

){(
1 − ρ

r

)
e−r (T−t) A2(t) + ρ

r
A4(t)

}
1 − A3(t) − A1(t)

,
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FIGURE 3.9. Various shapes of credit spreads with one-sided (downsided) jumps. The
parameters used are risk-free rate r = 8%, coupon rate ρ = 1%, payment rate δ = 1%,
volatility σ = 10 %, corporate tax rate κ = 35%, bankruptcy loss fraction α = 50%,
and average maturity m−1 = 1/3 years for the first row and m−1 = 0.25 for the second
row. In the first row, the jump parameters are specified as 1/ηd = 1/2, pd = 100%, and
λ = 0.5, while in the second row the jump parameters are given as 1/ηd = 1/6, pd =
100%, and λ = 2.

where the Laplace transforms of the terms in the above equation are

L[A1(t)](β) := L[e−rt P[τ > t]](β) = 1
r + β

{
1 −

[
d1,β

(
VB

V

)γ1,β

+ d2,β

(
VB

V

)γ2,β
]}

,

L[A2(t)](β) := L
[
e−rt E

[
Vτ 1{τ≤t}

]]
(β) = VB

r + β

{
c1,β

(
VB

V

)γ1,β

+ c2,β

(
VB

V

)γ2,β
}

,

L[A3(t)](β) := L
[
E
[
e−rτ 1{τ≤t}

]]
(β) = 1

β

{
d1,β

(
VB

V

)γ1,β

+ d2,β

(
VB

V

)γ2,β
}

,

L[A4(t)]{β} := L
[
E
[
Vτ e−rτ 1{τ≤t}

]]{β} = VB

β

{
c1,β

(
VB

V

)γ1,β

+ c2,β

(
VB

V

)γ2,β
}

,

L[A5(t)](β) := L[e−rt P[τ ≤ t]](β) = 1
r + β

{
d1,β

(
VB

V

)γ1,β

+ d2,β

(
VB

V

)γ2,β
}

,

with d 1,β , d 2,β , c1,β , c1,β , γ 1,β , γ 2,β defined as in Lemma 2.1.
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FIGURE 3.10. One-sided jumps (upper panel) vs. two-sided jumps (lower panel). The
parameters used are the same basic parameters in Table 3.1 and the leverage ratio
P/V = 30%, the option maturity T = 0.25. The jump parameters follow Case C,
except in the upper panel (the one-sided jump case), where we set pu = 0. In all the
plots, the “moneyness” is defined to be the ratio of strike price to stock price.

Proof. The value of continuous spread payments from the buyer to the seller is

E
[∫ t

0
se−ru · 1{τ>u} du

]
= s E

[∫ τ∧t

0
e−rudu

]
= s

r
E[1 − e−r (τ∧t)]

= s
r

E
[
1 − e−rτ 1{τ≤t}

] − s
r

e−rt P[τ > t].

Upon default the loss for the bond holder is (1 − c){(1 − ρ

r )e−r (T−τ ) + ρ

r } via (2.3), and
the seller of the CDS will cover the loss. The value of the default payment from the seller
to the buyer is

E
[
e−rτ (1 − c)

{(
1 − ρ

r

)
e−r (T−τ ) + ρ

r

}
1{τ≤t}

]
=

(
1 − ρ

r

)
e−r T P(τ ≤ t) + ρ

r
E
[
e−rτ 1{τ≤t}

]
− m + r

m + ρ

(
α

P

){(
1 − ρ

r

)
e−r T E[Vτ 1{τ≤t}] + ρ

r
E
[
Vτ e−rτ 1{τ≤t}

]}
.

The CDS spread s is the one that makes two values equal, yielding the pricing formula
of s. The Laplace transforms of the terms involved can be found in Appendix A. �

Next, we study the pricing of equity default swap (EDS). The buyer of an EDS makes
continuous payments until either a payment event occurs or the EDS expires, while the
seller makes a single payment if the payment event occurs before the expiry of the EDS.
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Unlike a CDS, which has only one payment event (i.e., default), there are two possible
payment events in an EDS: a default on the bonds or a fall in the equity value below
some predefined level. For simplicity, if we focus on the case that the credit event is the
default, then the first payment event is a special case of the second with the predefined
level simply being zero, because the value of the equity becomes zero upon default in our
model.

More precisely, suppose that the notional value of an EDS is N, the expiry of the EDS
is t. The buyer of the EDS has to make a continuous payment at rate s̃, which is called
the EDS spread, while the seller of the EDS has to make a payment wN to the buyer
when the payment event is being triggered. We assume that the payment event is the first
time the equity value (or equivalently the undiluted stock value) falls below a constant
S∗, i.e., at the time inf{t ≥ 0 : S(Vt; VB) ≤ S∗}.

PROPOSITION 3.2. Let V∗ be the unique solution to the equation S(V ;VB) = S∗, which is
a strictly increasing function in V for V >VB, and let ς = inf{t ≥ 0 : Vt ≤ V∗}. The EDS
spread s̃ is given by

s̃ = rw N · E
[
e−rς · 1{ς≤t}

]
1 − E

[
e−rς 1{ς≤t}

] − e−rt P[ς > t]
,

where the Laplace transforms of the terms involved are

L[e−rt P[ς > t]](β) = 1
r + β

{
1 −

[
d1,β

(
V∗

V

)γ1,β

+ d2,β

(
V∗

V

)γ2,β
]}

,

L
[
E
[
e−rς 1{ς≤t}

]]
(β) = 1

β

{
d1,β

(
V∗

V

)γ1,β

+ d2,β

(
V∗

V

)γ2,β
}

.

Proof. Because S(V ;VB) is strictly increasing in V for V > VB (see Fact (iii) in
Appendix B) and S(V ;VB) is Markovian and static in Vt, we can represent the payment
event in S in terms of asset value V: The payment of the EDS is triggered at ς = inf{t ≥
0 : Vt ≤ V∗}. The value of continuous spread payments from the buyer to the seller is

E
[∫ t

0
s̃e−ru · 1{ς>u}du

]
= s̃

r
E
[
1 − e−rς 1{ς≤t}

] − s̃
r

e−rt P[ς > t].

The value of the payment from the seller to the buyer is

E
[
e−rς · w N · 1{ς≤t}

]
.

Setting the two values being equal leads to the solution of s̃. The Laplace transforms of the
terms involved can be found in Appendix A. �

4. CONCLUSION

We have demonstrated significant impacts of jump risk and endogenous default on credit
spreads, on optimal capital structure, and on implied volatility of equity options. Jump
and endogenous default can produce a variety of non-zero credit spreads, upward, down-
ward, and humped shapes, consistent with empirical findings of investment grade and
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speculative grade bonds. Jump risk leads to much lower optimal debt/equity ratios, help-
ing to explain why some high tech companies (such as biotech and Internet companies)
have almost no debt. The two-sided jumps lead to a variety of shapes for the implied
volatility of equity options even for long-maturity options; and although in general credit
spreads and implied volatility tend to move in the same direction for exogenous default,
this may not be true in presence of endogenous default and jumps. Pricing formulae for
credit and equity default swaps are provided.

There are several possible directions for future research. First, it will be of interest
to study convertible bonds with jump risk, as convertible bonds provide a natural link
between credit spreads and equity options. Second, the model in this paper is only a one-
dimensional model. Extensions of the model to higher dimensions will be very useful, so
that one can study correlated default events and pricing of collateralized debt obligations
(CDO). References of these products can be found in, e.g., Sirbu and Shreve (2005) and
Hurd and Kuznetsov (2005a, 2005b).

APPENDIX A: PROOF OF LEMMA 2.1

For any β > 0, consider the Laplace transform of the bond price:∫ +∞

0
e−βT B(V; VB, T) dT =

(
1 − ρ

r

) ∫ +∞

0
e−(r+β)T P[τ ≥ T] dT

+ α

P
m + r
m + ρ

(
1 − ρ

r

) ∫ +∞

0
e−(β+r )T E[Vτ 1{τ≤T}] dT

+ α

P
m + r
m + ρ

ρ

r

∫ +∞

0
e−βT E

[
e−rτ Vτ 1{τ≤T}

]
dT + ρ

rβ

− ρ

r

∫ +∞

0
e−βT E

[
e−rτ 1{τ≤T}

]
dT.

By Fubini’s theorem, we can see that the four integral terms inside are∫ +∞

0
e−(r+β)T P[τ ≥ T] dT = E

[∫ τ

0
e−(r+β)T dT

]
= 1

r + β
[1 − Ee−(r+β)τ ],∫ +∞

0
e−(β+r )T E[Vτ 1{τ≤T}] dT = E

[
Vτ

∫ +∞

τ

e−(β+r )T dT
]

= 1
β + r

E
[
Vτ e−(β+r )τ ],∫ +∞

0
e−βT E

[
e−rτ Vτ 1{τ≤T}

]
dT = E

[
Vτ e−rτ

∫ +∞

τ

e−βT dT
]

= 1
β

E
[
Vτ e−(β+r )τ ],∫ +∞

0
e−βT E

[
e−rτ 1{τ≤T}

]
dT = E

[
e−rτ

∫ +∞

0
e−βT1{τ≤T} dT

]
= 1

β
E[e−(r+β)τ ].

In summary, we know that∫ +∞

0
e−βT B(V; VB, T) dT = ρ + β

β(r + β)
[1 − E[e−(r+β)τ ]]

+ α(m + r )
P(m + ρ)

ρ + β

β(r + β)
E
[
Vτ e−(β+r )τ ].
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Define Xt = ln(Vt/V ), which means Xt = (r − δ − 1
2σ 2 − λξ )t + σ Wt + ∑Nt

i=1 Yi , and
consider X̃t = −Xt, τ̃ ≡ inf{t ≥ 0 : X̃t ≥ − ln( VB

V )}. It is easy to see that τ̃ = τ , so that
we only need the exact forms of E[e−(β+r )̃τ+Xτ̃ ] and E[e−(r+β )̃τ ], which are all given in
Kou and Wang (2003). In particular, with the notations of G(·), γ 1,β , γ 2,β , −γ 3,β , −γ 4,β

and c1,β , c2,β , d 1,β , d 2,β , we have

∫ +∞

0
e−βT B(V; VB, T) dT = ρ + β

β(r + β)
− ρ + β

β(r + β)
E[e−(r+β )̃τ ]

+ α(m + r )
P(m + ρ)

ρ + β

β(r + β)
VE[e−(β+r )̃τ−X̃τ̃ ]

= ρ + β

β(r + β)
− ρ + β

β(r + β)

{
d1,βeγ1,β ln(VB/V) + d2,βeγ2,β (ln(VB/V))}

+ α(m + r )
P(m + ρ)

ρ + β

β(r + β)
Veln(VB/V)

× {
c1,βeγ1,β ln(VB/V) + c2,βeγ2,β (ln(VB/V))

}
,

from which the conclusion follows. The debt value follows readily by letting β = m. Next,

v(V; VB) = V + Pκρ

r
{1 − E[e−r τ̃ ]} − (1 − α)VE[e−r τ̃−X̃τ̃ ],

from which the result follows. �

APPENDIX B: PROOF OF THEOREM 3.1 AND THE LOCAL CONVEXITY

LEMMA B.1. Consider the function f (x) = Axα1 + Bxβ1 − Cxα2 − Dxβ2 , 0 ≤ x ≤ 1.

Note that f (1) = A + B − C − D. In the case of 0 ≤ α1 ≤ α2 ≤ β 1 ≤ β 2, if A + B ≥
C + D and A ≥ C, then f (x) ≥ 0 for all 0 ≤ x ≤ 1.

Proof. Simply note that

f (x) ≥ Axα2 + Bxβ2 − Cxα2 − Dxβ2 = xα2{(A− C) − (D − B)xβ2−α2} ≥ 0. �

LEMMA B.2. We have

ε ≥
ρ + m
r + m

d1,mγ1,m − κ
ρ

r
d1,0γ1,0

αc1,m(γ1,m + 1) + (1 − α)c1,0(γ1,0 + 1)
.(B.1)

Proof. By the definitions of d 1,m, d 2,m, d 1,0, d 2,0 and c1,m, c2,m, c1,0, c2,0, and the fact
that γ 1,m > γ 1,0 and γ 2,m > γ 2,0, we have



370 N. CHEN AND S. G. KOU

d2,mγ2,mc1,0(γ1,0 + 1) − d1,mγ1,mc2,0(γ2,0 + 1)

= γ1,mγ2,m(γ1,0 + 1)(γ2,0 + 1)
ηd (ηd + 1)(γ2,m − γ1,m)(γ2,0 − γ1,0)

× [(ηd − γ1,0)(γ2,m − ηd ) − (ηd − γ1,m)(γ2,0 − ηd )] ≥ 0;

d1,0γ1,0c2,m(γ2,m + 1) − d2,0γ2,0c1,m(γ1,m + 1)

= γ1,0γ2,0(γ1,m + 1)(γ2,m + 1)
ηd (ηd + 1)(γ2,m − γ1,m)(γ2,0 − γ1,0)

× [(ηd − γ1,m)(γ2,0 − ηd ) − (ηd − γ1,0)(γ2,m − ηd )] ≤ 0.

These inequalities, along with the fact that

d2,mγ2,mc1,m(γ1,m + 1) = d1,mγ1,mc2,m(γ2,m + 1),

d2,0γ2,0c1,0(γ1,0 + 1) = d1,0γ1,0c2,0(γ2,0 + 1),

yield

ρ + m
r + m

d2,mγ2,m − κρ

r
d2,0γ2,0

(1 − α)c2,0(γ2,0 + 1) + αc2,m(γ2,m + 1)
≥

ρ + m
r + m

d1,mγ1,m − κρ

r
d1,0γ1,0

(1 − α)c1,0(γ1,0 + 1) + αc1,m(γ1,m + 1)
,

from which the conclusion follows as a/b >c/d if and only if a+b
c+d > c

d . �

LEMMA B.3. For any V ≥ VB ≥ εP, we have H ≤ 0, where

H := (ρ + m)P
(r + m)VB

{
d1,mγ1,m

(
VB

V

)γ1,m

+ d2,mγ2,m

(
VB

V

)γ2,m
}

− Pκρ

r VB

{
d1,0γ1,0

(
VB

V

)γ1,0

+ d2,0γ2,0

(
VB

V

)γ2,0
}

− (1 − α)
{

c1,0(γ1,0 + 1)
(

VB

V

)γ1,0

+ c2,0(γ2,0 + 1)
(

VB

V

)γ2,0
}

− α

{
c1,m(γ1,m + 1)

(
VB

V

)γ1,m

+ c2,m(γ2,m + 1)
(

VB

V

)γ2,m
}

.

Proof. Note that

H ≤ C2

(
VB

V

)γ1,m

+ D2

(
VB

V

)γ2,m

− A2

(
VB

V

)γ1,0

− B2(γ2,0 + 1)
(

VB

V

)γ2,0

,

where

A2 = Pκρ

r VB
d1,0γ1,0 + αc1,m(γ1,m + 1) + (1 − α)c1,0(γ1,0 + 1),

B2 = Pκρ

r VB
d2,0γ2,0 + αc2,m(γ2,m + 1) + (1 − α)c2,0(γ2,0 + 1),

C2 = (ρ + m)P
(r + m)VB

d1,mγ1,m, D2 = (ρ + m)P
(r + m)VB

d2,mγ2,m.
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Since 0 < γ 1,0 ≤ γ 1,m < γ 2,0 < γ 2,m, by Lemma B.1, we only need to show A2 + B2 ≥
C2 + D2 and A2 ≥ C2. To do this, note that, since c1,m + c2,m = 1 and c1,0 + c2,0 = 1, we
have

εP =
C2 + D2 − κρ P

r VB
(d1,0γ1,0 + d2,0γ2,0)

A2 + B2 − κρ P
r VB

(d1,0γ1,0 + d2,0γ2,0)
VB.

The fact VB ≥ εP implies that A2 + B2 ≥ C2 + D2 . By (B.1),

VB

P
≥ ε ≥

ρ + m
r + m

d1,mγ1,m − κ
ρ

r
d1,0γ1,0

αc1,m(γ1,m + 1) + (1 − α)c1,0(γ1,0 + 1)
.

Therefore, A2 ≥ C2, and the conclusion follows. �
Now we are in a position to prove that the optimal V∗

B = εP. The proof is based on
four facts:

Fact (i): The optimal VB must satisfy VB ≥ εP. To show this, note that for all V ′ >VB,
0 ≤ S(V ′ ;VB), which is equivalent to saying that VB must satisfy the constraints that for
all 0 < x(=VB/V ′) < 1,

VB

x
+ Pκρ

r

{
1 − (d1,0xγ1,0 + d2,0xγ2,0 )

} − (ρ + m)P
r + m

{
1 − (d1,mxγ1,m + d2,mxγ2,m )

}
−(1 − α)VB

{
c1,0xγ1,0 + c2,0xγ2,0

} − αVB
{
c1,mxγ1,m + c2,mxγ2,m

} ≥ 0.

Rearranging the terms, we have, for all 0 < x < 1,

VB ≥
(ρ + m)P

r + m

{
1 − (d1,mxγ1,m + d2,mxγ2,m )

} − Pκρ

r

{
1 − (d1,0xγ1,0 + d2,0xγ2,0 )

}
1
x

− (1 − α)
{
c1,0xγ1,0 + c2,0xγ2,0

} − α
{
c1,mxγ1,m + c2,mxγ2,m

} .

In particular,

VB ≥ lim
x→1

(ρ + m)P
r + m

{
1 − (d1,mxγ1,m + d2,mxγ2,m )

} − Pκρ

r

{
1 − (d1,0xγ1,0 + d2,0xγ2,0 )

}
1
x

− (1 − α)
{
c1,0xγ1,0 + c2,0xγ2,0

} − α
{
c1,mxγ1,m + c2,mxγ2,m

}
= P ·

ρ + m
r + m

(d1,mγ1,m + d2,mγ2,m) − κρ

r
(d1,0γ1,0 + d2,0γ2,0)

(1 − α)(c1,0γ1,0 + c2,0γ2,0) + α(c1,mγ1,m + c2,mγ2,m) + 1
= εP,

thanks to L’Hospital’s rule.
Fact (ii): The solution of ∂S(V;VB)

∂V |V=VB = 0 is given by VB = εP. Indeed, we have

∂

∂V
S(V; VB) = 1 + Pκρ

r
1
V

{
d1,0γ1,0

(
VB

V

)γ1,0

+ d2,0γ2,0

(
VB

V

)γ2,0
}

− (ρ + m)P
r + m

1
V

{
d1,mγ1,m

(
VB

V

)γ1,m

+ d2,mγ2,m

(
VB

V

)γ2,m
}

+ α
VB

V

{
c1,mγ1,m

(
VB

V

)γ1,m

+ c2,mγ2,m

(
VB

V

)γ2,m
}

+ (1 − α)
VB

V

{
c1,0γ1,0

(
VB

V

)γ1,0

+ c2,0γ2,0

(
VB

V

)γ2,0
}

.
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Thus,

∂S(V; VB)
∂V

|V=VB = 1 + 1
VB

Pκρ

r
{γ1,0d1,0 + γ2,0d2,0} + (1 − α){c1,0γ1,0 + c2,0γ2,0}

− 1
VB

(ρ + m)P
r + m

{d1,mγ1,m + d2,mγ2,m} + α{c1,mγ1,m + c2,mγ2,m},

which shows (ii).
Fact (iii): For all V >VB ≥ εP, we have ∂S(V;VB)

∂V > 0. To show this, note that

∂

∂V
S(V; VB) = − VB

V
H + 1 − α

VB

V

{
c1,m

(
VB

V

)γ1,m

+ c2,m

(
VB

V

)γ2,m
}

− (1 − α)
VB

V

{
c1,0

(
VB

V

)γ1,0

+ c2,0

(
VB

V

)γ2,0
}

≥ 1 − α
VB

V
{c1,m + c2,m} − (1 − α)

VB

V
{c1,0 + c2,0}

= 1 − VB

V
> 0,

via Lemma B.3 and the facts that c1,m + c2,m = 1 and c1,0 + c2,0 = 1.
Fact (iv): We have S(V ; y1) ≥ S(V ; y2), if εP ≤ y1 ≤ y2 ≤ V . Indeed, for any fixed V,

we have ∂
∂VB

S(V; VB) = H ≤ 0 for all 0 ≤ VB/V ≤ 1.
With the above four facts, we can show that εP is the optimal solution if εP < V and

optimal τ = 0 if εP ≥ V . Indeed, when εP ≥ V , by fact (i), the optimal V∗
B ≥ εP ≥ V ,

which implies the process should be stopped at time 0, i.e., τ = 0. When εP < V , first, εP
satisfies the constraints that S(V ′; εP) ≥ 0 for all V ′ ≥ εP, because S(εP, εP) = 0 and S is
increasing in V by (iii); second, any VB ∈ (εP, V ] cannot be better, as by (iv) S(V ; εP) ≥
S(V ; VB); and any VB less than εP is ruled out by (i).

For the second-stage optimization problem, the bondholders face two options: either
choose P satisfying εP < V or choose P satisfying εP ≥ V .

Case 1. Bondholders choose P such that εP ≥ V . By the first-stage optimization
problem, the equity holder will choose τ = 0 and the firm value v would be αV .

Case 2. Bondholders choose P such that εP < V . The equity holder will choose V∗
B

= εP, the firm value would be

v(V; εP) = V + Pκρ

r

{
1 − d1,0

(
εP
V

)γ1,0

− d2,0

(
εP
V

)γ2,0
}

− (1 − α)V

{
c1,0

(
εP
V

)γ1,0+1

+ c2,0

(
εP
V

)γ2,0+1
}

= V

{
1 + κρ

r

(
P
V

)
− B3

(
P
V

)γ1,0+1

− C3

(
P
V

)γ2,0+1
}

,

B3 := (1 − α)c1,0ε
γ1,0+1 + κρ

r
d1,0ε

γ1,0 , C3 := (1 − α)c2,0ε
γ2,0+1 + κρ

r
d2,0ε

γ2,0 .
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Since B3 > 0, C3 > 0, the function v(V ; εP) is concave in P. Meanwhile, when εP < V ,
the firm value becomes

v(V; εP) = V + Pκρ

r

{
1 − d1,0

(
εP
V

)γ1,0

− d2,0

(
εP
V

)γ2,0
}

− (1 − α)V

{
c1,0

(
εP
V

)γ1,0+1

+ c2,0

(
εP
V

)γ2,0+1
}

≥ V − (1 − α)V
{
c1,0 + c2,0

} = αV.

Therefore, Case 2 is better than Case 1 in terms of maximizing the firm value v . In sum-
mary, the bondholder will choose P such that εP < V and maximizes concave function
v(V ; εP). �

REMARK B.1. In the above proof, the results (ii) and (iii) actually imply a local
convexity at VB. More precisely, for all V ≥ VB ≥ εP, we have the local convexity

∂2S(V; VB)
∂V2

∣∣∣∣
V=VB

≥ 0.

We can show this by contradiction. Suppose this is not the case. By (ii), we have

0 >
∂2S(V; VB)

∂V2

∣∣∣∣
V=VB

= lim
V′↓VB

∂S(V; VB)
∂V

− ∂S(V; VB)
∂V

∣∣∣∣
V=VB

V′ − VB
= lim

V′↓VB

∂S(V; VB)
∂V

V′ − VB
.

Thus, there must be Ṽ > VB ≥ εP such that ∂S(Ṽ;VB)
∂Ṽ

< 0, which contradicts result
(ii). The local convexity has been conjectured in Leland and Toft (1996, footnote 9)
under the Brownian model, and in Hilberink and Rogers (2002) under a one-sided jump
model; both papers verified it numerically. Here we are able to give a proof for the local
convexity for the two-sided jump model mainly because we prove the local convexity in-
directly by using Laplace transforms. It is difficult to verify the convexity directly without
using Laplace transforms even in the case of Brownian motion, due to the difficulty in
analyzing the monotonicity of various normal distribution functions.

APPENDIX C: PROOF OF THEOREM 3.2

First, by the conditional memoryless property of the overshoot distribution,

E[Vτ | τ ≤ T] = V · E
[

exp
(

log
(

Vτ

V

)) ∣∣∣∣τ ≤ T
]

= V · VB

V
ηd

ηd + 1
+ o(1),

as the probability of the default caused by the diffusion is o(1). Second,

P[τ ≤ T] = λTpd

(
VB

V

)ηd

+ o(T).

Therefore,

E[Vτ · 1{τ≤T}]e−r T = E[Vτ | τ ≤ T]P(τ ≤ T)e−r T

=
{

V · VB

V
ηd

ηd + 1
+ o(1)

}{
λpd T

(
VB

V

)ηd

+ o(T)
}

{1 − r T + o(T)} ,
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from which we have

E[Vτ · 1{τ≤T}]e−r T = VB
ηd

ηd + 1
λpd

(
VB

V

)ηd

T + o(T).(C.1)

E[Vτ · 1{τ≤T}] = VB
ηd

ηd + 1
λpd

(
VB

V

)ηd

T + o(T).

Furthermore, since

E[Vτ · 1{τ≤T}]e−r T ≤ E[Vτ e−rτ · 1{τ≤T}] ≤ E[Vτ · 1{τ≤T}],

we also have

E[Vτ e−rτ · 1{τ≤T}] = VB
ηd

ηd + 1
λpd

(
VB

V

)ηd

T + o(T).(C.2)

Finally note that

1 = lim
T→0

1
T

E
[∫ T

0
e−rsds

]
≥ lim sup

T→0

1
T

E
[∫ τ∧T

0
e−rsds

]
≥ lim inf

T→0
E
[

1
T

∫ T

0
e−rsds · 1{τ≥T}

]
= 1,

by the dominated convergence theorem. Thus,

1 = lim
T→0

1
T

E
[∫ τ∧T

0
e−rsds

]
.(C.3)

In summary, we have, via (C.1)–(C.3),

B(V; VB, T)

= e−r T P[τ > T] + α

P
m + r
m + ρ

(
1 − ρ

r

)
E[Vτ · 1{τ≤T}]e−r T

+ α

P
m + r
m + ρ

ρ

r
E
[
Vτ e−rτ · 1{τ≤T}

] + ρE
[∫ τ∧T

0
e−rsds

]
= (1 − r T)

(
1 − λpd T

(
VB

V

)ηd
)

+ αVB

P
m + r
m + ρ

ηd

ηd + 1
· λpd

(
VB

V

)ηd

T + ρT + o(T)

= 1 −
[

r + λpd

(
VB

V

)ηd
]

T + αVB

P
m + r
m + ρ

ηd

ηd + 1
· λpd

(
VB

V

)ηd

T + ρT + o(T).

Thus, L’Hospital’s rule leads to

ν(0) = lim
T→0

1 − B(V, 0; VB, T)
T

+ ρ = r + λpd

(
VB

V

)ηd
[

1 − αVB

P
m + r
m + ρ

ηd

ηd + 1

]
,

from which the proof is terminated. �
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