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1. Introduction. Occupation-time-related derivatives are recently introduced products that have been attract-
ing much attention from investors and researchers. A defining characteristic of these contracts is an exercise
payoff that depends on the time spent by the underlying asset in a predetermined region. Typically, the specifica-
tion of the occupation regions involves flat barriers. In that sense, these contracts can be viewed as a generalized
type of barrier option.

The payoffs of barrier options are activated or extinguished as soon as the underlying asset prices cross
barriers. This discontinuity at the barriers poses an obstacle to the risk management of both option writers and
buyers. Take the knock-out barrier option as an illustration. Even if the buyer has a correct view on the overall
market trend, an accidental price jump across the barrier can easily wipe out his or her entire investment in
the options. Furthermore, as Chesney et al. [6] and Linetsky [21] argued, market manipulators also like to take
advantage of the fact that the payoffs are associated with barrier crossing, driving the underlying price to trigger
a crossing and profiting from the massive losses of the other party to the transaction.

Several scholars have proposed a series of occupation-time-related options to alleviate the risk management
difficulties inherent in barrier options caused by the discontinuity around the barriers. The payoffs now depend
not only on the barrier crossing, but also on how long the underlying price spends above or below the barrier.
Thus, option buyers can receive or lose value more gradually. One of the most popular examples is the step
option suggested by Linetsky [21, 22]. This derivative’s payoff is discounted at a rate defined by the occupation
time. Under the geometric Brownian motion (GBM) model, Linetsky [22] derived closed-form pricing formulae
for various single-barrier step options, and Davydov and Linetsky [11] investigated the pricing of double-barrier
step options via Laplace inversion. A second example is the corridor option traded in the foreign exchange
and interest rate markets. This option pays an amount at maturity that is associated with the time spent by a
reference index, usually an exchange or interest rate, below a given level or inside a band. Fusai [13] priced
this derivative under the GBM model by studying the distribution of the time spent by a Brownian motion
with drift inside a band. Another important type of occupation-time-related option is the quantile option, which
Miura [24] suggested as an alternative to the standard barrier option. A quantile is the minimum barrier to ensure
that the fraction of the occupation time during the lifetime of the option exceeds a given level. Dassios [9]
provided a formula for the quantile distribution of a Brownian motion with drift, as did Embrechts et al. [12]
and Yor [29]. Akahori [2] and Dassios [9] calculated the prices of a-quantile options for the GBM model. Kwok
and Lau [19] developed a pricing algorithm for quantile options based on the forward shooting grid method
under the GBM model. Leung and Kwok [20] derived the distribution functions of occupation times under the
constant elasticity of variance (CEV) process. Using an identity on quantiles of the processes with stationary and
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independent increments developed by Dassios [10], Cai [4] priced both the fixed- and floating-strike quantile
options numerically by applying Laplace inversion twice under a hyper-exponential jump diffusion model.

In reality, many occupation-time-related options are based on a discrete time monitoring. In other words, such
derivatives specify a series of reference dates. The occupation time is defined through the portion of monitoring
dates in which the underlying price is below or above some level or between two levels. Some research is devoted
to the study of such kind of options. However, the common feature of such research is that the underlying
asset price is assumed to follow a GBM model. For instance, Atkinson and Fusai [3] studied discrete quantile
options using the Spitzer identity of Brownian motions; Fusai and Tagliani [14] applied some numerical methods
of PDEs to price discrete corridor options; and Davydov and Linetsky [11] considered step options under the
discrete monitoring scheme.

In this article, we investigate the pricing and hedging problems of occupation-time-related options under Kou’s
double exponential jump diffusion model (Kou [16]). The model assumes the underlying asset return follows
a jump diffusion process with Poisson jump intensity and double exponentially distributed jump sizes. It is
appealing in two respects. The associated asset returns have heavier tails than normal distributions and hence
the model is capable of generating the asymmetric leptokurtic feature for asset returns and volatility smiles
for equity options, matching the empirical data better than the GBM model. The model also yields analytical
solutions to many pricing problems, including both European and path-dependent derivatives, in terms of Laplace
transforms. By applying numerical inversion algorithms we can easily obtain the prices.

The main result of this article is to derive the Laplace transform of the distribution of occupation times
regarding one barrier under Kou’s model, which enables us to calculate the prices of various related options
such as step options, corridor options, and quantile options. It turns out that the Laplace transform solves a
partial integro-differential equation (PIDE). We manage to reduce the equation to an ordinary integro-differential
equation (OIDE) using an integral transform. Note that derivatives of exponential functions are still exponential.
Then we can transform the OIDE into an ordinary differential equation (ODE) and rigorously show the existence
and uniqueness of the solution to the OIDE. This article contributes to the literature of occupation-time-related
options by generalizing the formulae for the GBM model to a model with discontinuous sample paths. It is
simple to recover all of the classical results obtained with the GBM model from ours by letting the jump
intensity be zero. The closed-form expressions of the Laplace transforms of the option prices also facilitate the
calculation of price sensitivities in relation with market variables and model parameters. As shown in §4, not
much extra effort is needed to obtain deltas, the price sensitivity with respect to the change of the underlying
price. Such sensitivities play a vital role in risk management of derivatives, and traders can use it to rebalance
the portfolio accordingly to achieve a desired exposure. In addition, our PIDE-OIDE approach can easily be
extended to derive a closed-form solution for the Laplace transform of the distribution of occupation times spent
within two barriers (a corridor).

Beyond financial settings, we should emphasize that the mathematical results about occupation times of a jump
diffusion process may find potential applications in other branches of applied probability. One candidate case
we can think of is in queuing theory. When service times or interarrival times have heavy-tailed distributions,
heavy-traffic limits for the queue-length process usually are given by jump diffusions (see Whitt [28], Chapter 6).
The results presented in this paper may be of interest to those who want to study the occupation time above or
below single level or between two levels for a heavy-traffic queue. The literature accumulates some progress in
this direction. For instance, Cohen and Hooghiemstra [8] discussed occupation times of Brownian excursions, a
special kind of diffusions, and their link with the M/M/1 queue. We hope that our results may stimulate further
investigation in jump-diffusion settings.

The organization of this article is as follows. Section 2 introduces Kou’s model and some of its elementary
properties. Section 3 demonstrates how to solve the PIDE to obtain the Laplace transform of the distribution of
the occupation times. Section 4 applies the results of §3 to pricing various derivatives including step options,
corridor options, and quantile options. Numerical results are given in §5. Appendices A—C are included to deal
with some technical issues that arise in the body of the text, and Appendix D discusses the extension of our
approach to the occupation times in a corridor.
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2. Kou’s model and its basic properties. Consider a market consisting of three securities only: a risk-free
bond, a stock, and an occupation-time-related option contingent upon the stock. The bond offers investors risk
free interest rate r. In Kou’s double exponential jump diffusion model (DEM), the stock price under the physical
probability measure is governed by the following dynamic,

ds, i
S—:,udt+0'dW,+d Yvi—1)),

1= i=1




Cai, Chen, and Wan: Occupation Times of Jump-Diffusion Processes
414 Mathematics of Operations Research 35(2), pp. 412-437, ©2010 INFORMS

where w and o are constants, {W,: t > 0} is a standard Brownian motion, {N,: ¢ > 0} is a Poisson process
with arrival rate A, and {V;: i=1,2,...} is a sequence of independent identically distributed (i.i.d.) random
variables. According to the model, the instantaneous asset return rate is subject to the effects of three factors:
a deterministic trend w, small fluctuations described by the Brownian motion, and large market shocks captured
by the Poisson-arrival jump part. To make the model more mathematically tractable, we further assume that
Y; :=1log(V;) follows a double exponential distribution, the probability density function (pdf) of which is

)= P"?e_nyl{yzo} + qeegyl{yd)}’

where n>1,0>0, p>0, ¢ >0, and p+ g = 1. In other words, there are two types of jumps in the process:
upward jumps with occurrence probability p and average jump size 1/m, and downward jumps with occurrence
probability ¢ and average jump size 1/60. Both types of jumps are exponentially distributed. We also assume
that {W,: t >0}, {N,: t >0}, and {Y;: i=1,2,...} are independent. This model, proposed by Kou [16] and
Kou and Wang [17, 18], is known as the double exponential jump diffusion model in the financial engineering
literature.

We need to work on a risk-neutral probability measure to calculate the option price. However, that measure is
not unique because of the jump diffusion assumption. Following Lucas [23], Naik and Lee [25], and Kou [16]
showed that there is a particular probability measure P* so that the equilibrium price of an option is given by the
expectation under this measure of the discounted option payoff if we consider a representative agent economy
with a hyperbolic absolute risk aversion (HARA)-type utility function. We point out that our argument will work
under any equivalent martingale measure that preserves the model structure, particularly the exponential type of
the jumps. Under this risk-neutral probability measure P*, S, follows another double exponential jump diffusion
model. More specifically, S, obeys

ds N
S—t =rdt+ oc*dW; + d<Z(Vl* - 1))

t— i=1

Under P*, {W/: t > 0} is a standard Brownian motion, {N;*: r > 0} is a Poisson process with arrival rate A*, and
{Yr:=log(V*):i=1,2,...} is also a sequence of i.i.d. double exponentially distributed random variables, but
with different parameters. The distribution of Y* is given by

fre(y) = P*”l*ein*yl{yzo} + q*O*ee*yl{yd)},

where the new set of parameters satisfy n* > 1, 6* > 0, p* >0, ¢* > 0, and p* + g* = 1. Moreover, {W,: t > 0},
{N}:t>0},and {Y*: i=1,2,...} are also independent under P*. As we are only interested in option pricing,
the difference between the physical and risk-neutral probability measures plays no role. From now on we drop
the superscript *, with the understanding that all of the processes and parameters in the subsequent discussions
are under P*.

Let X, be the log-return of the asset, i.e., X, :=1og(S,/S,). By It6’s formula (cf. Protter [27], Theorem IIL. 32,
p- 78), one can easily obtain

N,
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1 t
X,=X0+<r—§o'2—/\§>t+0'W,+ZYi, X, =0, (1)
i=1
where { is the mean percentage jump size
[=E[e" —1]= P14 9%
n—1 6+1

An additional requirement 1 > 1 is needed to ensure that E[V,] = E[e"'] < co and E[e*'] < oo; this essentially
means that the average upward jump cannot exceed 100%, which is quite reasonable in the reality of stock
markets. For notational simplicity, denote p :=r — %az — AL

Mathematically, the double exponential jump diffusion process (1) is a special Lévy processes because it has
stationary and independent increments. Its Lévy exponent is defined as

1 2 0
G(x):=—logE[exp(xX,) | X, =0]= a'_x2 + ox + )\( P + 7 1). (2)
t 2 n—x 6O+x
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Consider an algebraic equation G(x) =r + a for any given a > —r. It is easy to show that all four roots of the
equation are real numbers (cf. Lemma 2.1, Kou and Wang [17]). Denote them by B, ., B5.0» — Vi.a> —V2.ar
These roots satisfy

0<Bi,<m<PBy,<oo, O<vy ,<b0<7y,,<oo.

We will use these roots frequently when we derive the distributions of occupation times of (1) in §3. Explicit
formulae for the four roots are also presented in Appendix A for reference.

Another important tool to establish the key results of the article is the infinitesimal generator of X,. Note
that X, is a Markovian process and its infinitesimal generator is given by

(Sfu)(x) = ltlf})l E[M(Xt) | Xotz x] _ M(x)

1 " =/ *
= 0% () +fl () + A [ [ulx+y) —u(@)]fy () dy )
for any twice continuously differentiable function u.

3. Distribution of the occupation times. In this section, we will present the main results of the article—the
Laplace transforms of the distributions of occupation times of the double exponential jump diffusion process {X,}
given by (1). Once it is known, in principle we are able to calculate any option prices related with occupation
times. Consider a constant barrier & and let 7, denote the occupation time the log-return process {X,} spends
below £ until ¢, i.e.,

t
T =r1(h) = /0 T (4)

An occupation-time-related option with maturity 7 usually has a payoff associated with 7, and X,. Suppose it
is given by f (7, X;) for a general function f. Then pricing the option is equivalent to evaluating the following
discounted expected payoff

e_rTE[f(TT’ X7) | Xy =x] 5)

under the risk-neutral probability. This section is devoted to the calculation of the expectation.

Before jumping into mathematical details, we would like to motivate readers by the intuition behind the
scenes first. If the joint probability distribution of (7,, X,) is available explicitly for all ¢, the expectation in (5)
is obtainable by numerically integrating

By X0 | Xo=x1= [ [ £Gs.3) Flds. s T ),

where F(ds,dy; T,x) = P[t; € ds,X; € dy | X, = x]. So our pricing strategy starts from finding a closed-
form expression for the distribution F(ds, dy; T, x). The Laplace transform is a powerful tool in characterizing
probability distributions. We can invert the transforms to recover distributions easily, either using transform
tables when possible or resorting to other numerical methods. For any p > 0 and vy € R, define V(p, y; ¢, x) as
the Laplace transform of F(ds, dy; t, x) with respect to s and y, i.e.,

t o]
Vipyitx)= [ [ e F(ds. dysr,x) = E[e 7| Xy =]
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As mentioned in the introduction section, V can be determined by the solution of a PIDE for any fixed pair
of p and +y. A heuristic approach is now presented to obtain the equation and a much more rigorous treatment
is deferred to Theorem 3.2 below. Choose a short time duration é. Then 7, can be decomposed into two parts,
the contribution of 1,y _;, prior to § and the contribution after &:

t ) t
r,=f0 I{Xugh}du=/0 1{XM5,,}du+/5 1y, -y dut.

By the Markovian property and the Lévy properties of {X,} we have

E[e )i tonan deevX, | X — x] = E[eP k0 Touzn d¥Xs | X = x] = V(1 — 8, x).




Cai, Chen, and Wan: Occupation Times of Jump-Diffusion Processes
416 Mathematics of Operations Research 35(2), pp. 412-437, ©2010 INFORMS

If applying the Taylor expansion on V(¢ — 8, X;),
V(t,x) = E[e """ | X, = x]
= E[e™?h lwmen .y (s — 5, X5) | X, = x]

av
~ E|:e‘Pfo6 L, <ny due (V(t, X5) — 50—t(t, Xa)) ’ X, = xi| + 0(95). (6)
Note that e* ~ 1 + x + o(x). Hence, (6) can be rewritten approximately as

P
V(t,x)—E[V(t,X5) | Xy =x] = —SE[%(I, X;5) | X, :x] — pE|:fO Ly, <pydu-V(t, Xa)i| +0(8). (7

Divide both sides of (7) by 6 and take it to zero. The left-hand side converges to —<£V (z, x), thanks to (3), the
definition of the infinitesimal generator <. The right-hand side converges to

A%
_E(t’ x) = pli oy V(2 x).

In addition, we also know one boundary condition for the function V such that V (0, x) = ”*.
In summary, V should solve the following PIDE with Cauchy boundary condition
v
— +pl,y V=2V, forte(0,T] and x eR;
at (8)

V(0, x) = e, for x e R.

Theorem 3.1 rigorously establishes the relationship between the Laplace transform V and the solution to PIDE (8)
via the martingale problem formulation.

THEOREM 3.1.  Assume that V: [0,T] x R — R is a solution to PIDE (8), which is of class C"' on
[0, T] xR and C"? on [0, T] x R\{h}. Moreover, the left and right second derivatives at h, 9*V(t, h—)/dx*
and 9*V(t, h+)/dx?, exist and V is bounded by

max |V (1, x)| < Ce®H, xeR, )

0<r<

for constants C, > 0 and 0 < C, < min{n, 0}. Then V admits the following stochastic representation:
V(t,x)=E[e Phluamnder | X =x], 0<t<T, xeR. (10)

And such a solution is unique.

Proof. Introduce v(z,x) = V(T — t,x) for any ¢ € [0, T]. Following the arguments leading to the
Feynman-Kac formula (cf. Theorem 4.4.2, Karatzas and Shreve [15]), we attempt to apply It6’s formula on
v(t, X,)exp(—p fot 1ix -y ds) to calculate its expectation. However the irregularity of v(z, -) at barrier h forbids
us from doing so directly. From Lemma B.1 in Appendix B we know that there exists a series of functions
{v,(t,x): n=1,2,...} such that (1) v,(¢, x) converges to v(¢,x) as n — oo for any (z,x) € [0, T] x R;
(2) v,(t, x) is of class C*? in [0, T) x R for any n; (3) v,(t, x) = v(t, x) for any (¢, x) € [0, T] x (—o0, h]U
[h+ 1/n,00); and (4) for any (¢,x) € [0,T] x (h,h+ 1/n) and any n € N, max{|v,(z, x)|, |dv,(z, x)/dt],
[dv, (t, x)/dx], |0*v,(t, x)/dx*|} < M, where M is a positive constant independent of ¢, x, and 7.

Define
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v
e,(t,x):= a—t"(t, x) = pli v, (1, X) + L, (t, x).

According to the construction of {v,(¢, x)} and (9), some routine algebra manipulation will yield that there exist
positive constants M, and M,, independent of n, ¢, and x, such that

M 1
le,(t, x)| < 71 <400, for (¢,x)€[0,T] X (—o0, h]U |:h+ . oo) (11)

and
1
le,(t, x)| < M, < 400, for (t,x) €0, T]x (h, h+ —). (12)
n
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Now we are able to apply It6’s formula to v,(r + a, Xa)e‘Pfoa Lx=n 4 because v, is twice differentiable on
the whole real line with respect to x. Let 7,, :=inf{r € [0, T]: |X,| = m} for any m € N. It6’s formula for jump
diffusions (cf. Protter [27], Theorem II. 32, p. 78) implies that

an

anTy, T s
MG("’ m)(a) = 'Un(t +an Tm’ Xa/\T,,,)e_pfo ! Lxyem ds _ / e Pfg 1(X§Sh}d§en(t +s5—, Xs—) ds

0+

is a local martingale for any fixed r € [0,T], m, n €N, and 0 < a < T — ¢t. In other words, there should
be a nondecreasing sequence of stopping times {m,,k =1,2,...} such that P(lim,_, , 7, = +o0) =1 and
(MG ™ (a Am,): a€[0, T —1t]} is a true martingale. It follows that for any 0 <s < @ < T — ¢, we have

E[MG"™ (a A ) | F,] = MG™™ (s A ). (13)

Fix n € N and a sufficiently large m such that m > |h|+ 1. We intend to show that {MG"™ (a): a € [0, T —¢]}
is actually a true martingale. It suffices to show that sup,jo 7_ IMG™™ (a)| is integrable. Indeed, if this is true,
we can apply the dominated convergence theorem on (13). Letting k — +oo will yield

E[MG" " (a) | 7,] =MG"")(s)
forany0<s<a<T-—1tie, MG(""”)(a) is a martingale.

Fortunately, the integrability of sup,jo 7 MG ™ (a)| is implied by the observation that the two terms in
the expression of MG™ ™ («) can be bounded as follows. For the second term, we can show that

anT,— f:1 e
f e P e S e (45— X )ds
0

+
anT,— anT,—
< b, le, (t + 5= X, ) Lix,_cn nriyn 45 + /o+ le, (t + 5= X, ) Lix,_cl—m, mopnri/n, m)) 95
anT,— M1 Ml
<M, /0+ Lix, cpnnstymyy 48 + 7(01 ANT,—) <M, + - T, (14)

where the second inequality holds due to (11) and (12). For the first term, it is easy to see that
exp(—p fOMT'” 1ix -y ds) is always bounded by one. Thus,

Ivn(t + an Tm’ Xa/\Tm)e_pfOﬂme I(XSSM d5| S |vn(t + a N Tm9 XaAT,,,)|’ (15)
When @ <7, v,(t+a@AT,, X,07,) = v,(t + @, X,), which is bounded by max (o 7} ve[—m, m] [Va (S, X)| because

|X,| < m by the definition of 7,,. When @ > T, v,(t+a A T,, X,.1,)=0v,(t+T,, Xz ). By (9), its absolute
value is bounded by

_ N,
|'U(t +T,, XTm)| < Cl €2 MaXo<s<r Xl < CleCZ|x|+c2“~”|TeC20maxO§x§T |Ws|eC2 =i |Yi\'

Now we intend to show E[|v(? + T,,, X, )|] < +o0. On the one hand, some calculation illustrates that

0
E[CEH ] = exp )T ( 21 7 , 16
[e ]=exp n—C2+0—C2 < 400 (16)
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thanks to 0 < C, < min{n, 6}. On the other hand, we also have
E[eGom»ossr W] < 4 oo, (17)

Actually, notice that ¢©27mo==rWil <7 7 where

. — ecz'fmaXOngT W, and Z_ — eCZUmaXOEA.Sr(—WA.).

Z
Because both max,_,_; W, and max,_,_,(—W,) have the same distribution as |W;|, it follows that

EZ? =EZ? =E&C7 Wil =225 T ) (2C,0V/T),
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where ®(x) is the cumulative normal distribution function. According to Minkowski’s integral inequality, we
can obtain that

[EeCZUmaX0§:§T|Ws|]1/2 < [E(Z+Z_)]l/2 < %[E((Z+ _I_Z_)Z)]l/z < %[E(Zi)]l/z + %[E(ZE)]UQ
= [E(22)]'"? = [26*37 T ®(2C,0VT)]* < +o0.

Then (17) is proved.
From (16) and (17), we then have E[|v(t + T,,, Xy )|] < +oo. Therefore, the right-hand side of (15) will be
bounded by

|vn(t+a/\ Tm’ Xa/\Tm)|

IA

|vn(t +a, Xa)l{a<Tm}| +E|vn(t + Tm’ XTm)l{asz}l
max v, (5,3) |+ (e + Ty X)L

s€l0, T], xe[—m, m

A

Note that the right-hand side of this inequality has nothing to do with a. It follows that sup,.(o, 7— [V, (t + @ AT,
Xgnr,)| is integrable. Combining with (14), we have already shown that sup,cj 7 MG ™ (a)] is integrable.
Consequently, {MG" ™ (a): a € [0, T —t]} is a true martingale.

The martingale property of MG ™ («) implies that

E[MG"™™ () | X, = x] = E[MG"™(0) | X, =x] =v,(t, x).
In other words,

v,(t,x) = E[v,(t+aAT,, XaATm)e"’fOMT'" To=m ds | X = x]

X0=x]. (18)

anT,, 51 d
—E[/ e P tixe=n Yo (t+5—, X, )ds
0+

Let n go to 4o0 in (18). The left-hand side converges to v. Meanwhile, (14) and (15) allow us to apply the
dominated convergence theorem on the right-hand side. Note that the second term on the right-hand side of (18)
goes to zero. After taking the limit, (18) becomes

anTy
(t,x) = E[v(t+ a AT, Xopp JePh " tixn®| X, = x]. (19)
Note that the term inside the expectation of (19) is bounded by
anTy
[o(t+ @ AT, Xoup, e P00 8] < ot + @ AT, Xong, )|
< C,CIHCIRIT (Comaxoc,<r W] o€ £ I¥

and the right-hand side can be shown to be integrable. We may be able to apply the dominated convergence
theorem again on (19) to get the limit as m goes to +oc. It follows that
u(t, x) = E[v(t + a, X, )e P o lx=n @],
Let a =T — ¢ in the last equation and recall the definition of v. We have
V(T — 1, x) = v(t, x) = E[o(T, X;_)e "0 Mxand] = E[V(0, X,_,)e Pl Mixnds],

The right-hand side is equal to E[e?*7-—P Jo " Lz ). Because ¢ is arbitrary, the proof is completed. [
Equation (8) is a PIDE with a Cauchy boundary, noting that & involves both differential and integral operators.

We intend to use the Laplace transform once again to convert it into an OIDE, which is much easier to solve.

Consider the first equation in (8). Introduce the following Laplace transform on the (discounted) value of V:
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u(x; a) = /O+oo e~ eV (¢, x)dt
for a sufficiently large positive a. Routine calculation shows that # must satisfy
(PLiycpy +r+a)u(x; a) —e™
=Zu(x; a) = 107u" (x; a) + pu' (x; a) + /\/Z[u(x +y; a) —u(x; a)lfy (y) dy. (20)

Thus, we have successfully removed the partial derivative in (8). For a general jump density f, it could still be
very difficult to solve (20) for a closed-form solution. However, when f, is a double exponential density, (20)
is solvable explicitly. We summarize the solution in the following theorem.
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THEOREM 3.2. For any 0 <y <min{n, 6}, p >0 and

_ 0
a+r>|p|y+20%y? —|—/\< P —i—q——l), (21)
n—vy 0-v

the Laplace transform
u(x; p,y,a,h) = / e—(a+r)tE[e—P1‘,+7Xz | X, = x]dt
0
w]eﬁl.a+p(x—h) + wzeBZ,LH»p(x_h) — cleY(X—h), x<h;

L T L N LAl D S

where
et et
C=—""3, Cr = 7~ 5
G(y)—a—r—p G(y)—a—r
and
o — (BZ,a+p - 7)(_71,a - 7)(_72 = V)(n— B, a+p)(0 + B a+p) (22)
! (Baatp = Br.arp) (V1.0 = Brarp) (= Y20 = Biarp) (M — ¥)(0 + 7) ‘iz
o — Bioatp =V Y10 =V (Y20 = V(0= Bauip) (0 + B i) (23)
2 (Bl atp BZ a+p)( yl a BZ u+p)( 72 a BZ u+p)(n ’)/)(0 + ‘Y) a2
o Brasy =N Boaiy = V(Y20 = VO 11,0 = 11,0) (24)
YT Brarn T 1) Brarn TN ) Tra F DM@+ 7)
e Brarp =M Baiy = N (Y1 = VM + 12, (0= %.0) 25)
T (Bl a+p+’)’2 a)(lBZ a+p+72 a)( ’YI a+72 a)(n ’Y)(6+’Y)
with "
£ (26)

Cih = .
2T (G(y)—a—r—p)(G(y)—a—r)
ProoF. Fix constants p, y, a, and h. Define

u(x), x<h
u(x) = (27)

uy(x), x> h.

Then the nonhomogenous OIDE (20) can be rewritten as two separate equations in the regions (—oo, i) and
(h, +0). For x < h,

2

T () + i (v) = (Va4 p)uy (¥)

0 h—x 400
+A[/_ u,(x +y)q0e” dy +/0 u(x+y)pme™™" dy + /h_ uy(x +y)pme ™ dy] = —e". (28)

and for x > h,
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o2
— 2 () + pay (x) = (A + a4 r)us (x)

h—x +oo
+ /\[ /_ uy (x +y)g0e™ dy + fh up(x+y)ghe” dy+ fo uy(x +y)pme ™ dy] == (29

We claim that the solution u,(x) and u,(x) must be of the following form

ul(x) — wleﬁl,a+p(x—h) + wZeﬁZ,a+p(x_h) —q e?’(x—h)’ x<h;
(30)
u,(x) = _Vle—vl.a(x—h) — Vze—“yz,a(x—h) — czey("‘h), x> h,
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where w,, w,, v, ¥,, ¢, and ¢, are constants to be determined. Indeed, for Equation (29), under a change of
variable z = x + y, it is transformed further to

0.2

h
T() =~y (x) + A+ at i) = Ae™ [ ()gbe” dz

—+o0

— )te_g"[ uy(2)q0e% dz — Ae™ / uy(z)pme " dz + e"*. (31)
h

X

Our purpose is to remove the three integrals in (31), one by one, to reduce the OIDE to an ODE in order to
make use of the theory of ODEs to solve the equation completely and to show the uniqueness of the solution at
the same time. First, any solution to (31) must have the third-order derivative. This point is easily seen from the
right-hand side of (31) because all terms are differentiable and so is u”(x). Multiplying both sides of (31) by e,

2

o ) h
Tea"u'z’(x) = —pe”u,(x) + (A +a+r)e™u,(x) — /\/ u,(z)g0e” dz

X +oo
- )\/h uy(z)q0e™ dz — )\e(9+’7)"/ uy(2)pme ™ dz + e®HVx,

Take differentiation on both sides of this equation to remove the first integral. Dividing the resulting OIDE by
e % yields

T o) = ~( G+ )u6) = (B0 A~ a = 7o) + (A + )0 = Agh+ Apli )

+o0
A+ 0)e™ [ u()pme T dz 4 (0+7)er. (32)

X

From (32), u should also be fourth-order differentiable. Hence, we can take a similar step to remove the integral
in (32) to obtain a nonhomogeneous ODE with constant coefficients as follows:

T+ [~ Z -0+ 2]+ [~ T - an -0 A-a—r o)
+[(n—0)(A+a+r)—anb+Aq0 — Apn]u;(x) + anbuy(x) = (n—y)(0 +y)e™. (33)

On one hand, it is easy to see that c,e”* is a particular solution to the ODE (33) for a constant c,. On the other
hand, the characteristic equation of the corresponding homogeneous ODE turns to be

(G —a=n)(y+0)(y—m) =0,
which has four real roots as mentioned in §2. Therefore, any solution to (33) can be expressed as
Uy () = 5, eP1a0D) 4 5 Braloh) _py oM gy g aah) _ o V6B for any x> b,

with v,, »,, v, v,, and ¢, undetermined. Furthermore, we can argue that the first two coefficients v, and v,
should be zero. In fact, we know that

u x o] o]
% zf e—(a+r)tE[e—pT,+Y(Xt—x) | XO — x] dt zf e—(a+r)tE[e—pT,+yX, | XO — O] dt,
0 0
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where the last equality is because of the Lévy property of X. The right-hand side of the above equality is less
than

© 1
—(a+r=Gy)t j.
e dt = < 400,
/o a+r—G(y)

because E[exp(—pT, + vX,) | X, = 0] < E[exp(vX,) | X, = 0] = exp(G(7y)). Thus, lim,_,  u,(x)/e"* < +oo0.
Note B, , > B, , > 7, which implies ¥, and #, must be zero. Consequently, any solution to the OIDE in (29)
can be expressed as

Uy (x) = —vye T g e 2T o YOI for x > h,
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with ¢,, v;, and v, to be determined. Similarly, we also can show any solution to the first OIDE in (28) is
expressed as

ul(x) — wleﬁl,a+p(x_h) + wzeBZ,a+p(x_h) _ CleY(X—h)’ for x < h,

with ¢;, w,, and w, to be determined.
Now we need six equations to determine these coefficients. Substituting u, (x), u,(x) into (28-29) yields that
for any x < h,

[e1e (G —a=r=p) = 1]er

w 14 14 C, — C
+ /\pn[ d ! 2 ! 2]e"(x—"> =0.

w
— + + +
M=Biarp M Boatp M+tYie MtYea MN—Y

and for any x > h,

~[ere (G(y) —a—r)— 1]

® [0) v 12 ¢ —c
+ /\qo[ L4 z 4t 42 1 2 } e 00 =,
0+Bl,a+p 0+B2,a+p 0_71,11 0_72,11 0+7
Therefore, u is a solution if and only if the coefficients w,, w,, v, v,, ¢, and ¢, satisfy the following four
equations:
4] 1) v 12 ¢ —c
c(G(y)—a—r—p)=e", — 2 41 42 T
N=Biarp M= Brurpy MN+tYe M+Ya. M-Y
W, W, vy V, =0

or(G(y) —a—r)=e"",

+ + + = :
O+Biap O0+Braiy 0—Ya 0—7. 0+vy

In addition, we can also obtain another two equations from the fact that u(x) is continuously differentiable at
barrier h:

W)+ Wy — =~V —V,—C,
Bi atp@1 + Boasp®@2 — C1Y = V1 oV1 + Yo, a2 — CY-

All of these equations are linear with respect to the undetermined parameters. To solve them, first we can

easily obtain that

h h

eY ev
TG —a—r—p TG —a—r

Substituting these two into the above linear system will reduce it further to

and
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A(p)e(p,y)=I(p. ), (34)
with ¢(p, v) = (@, 0, v, )", J(p, v) =cpp(1, v, 1/(n =), 1/(6+))", and
B 1 1 1 1 T
Bl,a+p BZ,a+p _YI,a _YZ,a
1 1 1 1
A(p) = ;
n_Bl,a+p n_BZ,a+p n+’)’1,a n+72,a
1 1 1 1
_0+Bl,a+p 0+BZ,a+p 0_71,11 0_72,a_

where ¢, = ¢, — ¢, = pe”"/((G(y) —a—r — p)(G(y) —a —r)). Appendix C shows that the matrix A(p) is
nonsingular and the coefficients defined by (22)—(25) solve the linear Equations (34). O

We also can extend the above approach to derive the distribution of occupation times the process spends
within two barriers. A minor technical gap remains. All detailed discussion is included in Appendix D.
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REMARK 3.1. The key step in the whole proof lies in (31). The assumption of exponential-type jump distri-
butions in Kou’s model allows us to differentiate the OIDE in order to transform the OIDE to an ODE. It seems
that our method does not apply for any jump distribution other than exponential-type distributions. For instance,
this transformation will not be workable for Merton’s jump diffusion model.

REMARK 3.2. Cai and Kou [5] studied a similar OIDE under a more general hyper-exponential jump diffusion
model as follows:

(Fu)(x) —(@a+r)u(x) =0, x<x;
(35)
u(x) = g(x), X > X,

where @ > 0 and g(x) is a known function. By transforming (35) into a homogeneous linear ODE with constant
coefficients, Cai and Kou managed to show that the solution to (35) must be of the form

i(x) =, ePrabi—xo) o a')zeﬁz.&(x—xo) + @, e~ Mali—x0) 4 @26—3’2,{;(/‘—10)'

Despite the similarity, (8) is much more complicated because it is nonhomogeneous and furthermore it contains
two OIDEs in two disjoint regions that are intertwined together due to the integral parts. We are still able to
reduce it down to a linear ODE, applying the same technique as in Cai and Kou [5] after some modification.

REMARK 3.3. Note that several structured products issued on the real financial market have a payoff written
on the occupation time, but with an interest rate or a spread of swap rates with different maturities as underlying.
These underlying processes are usually of mean reversion structure. However, our approach would be hard
to extend to the mean reversion jump diffusion cases. The primary technical barrier lies in the fact that the
corresponding OIDE, in which the coefficient of the first derivative is not a constant but a linear function of
state variable, is difficult to solve explicitly.

4. Pricing occupation-time-related options. In this section, several examples of occupation-time-related
options accumulated in the literature are considered, including the step options suggested by Linetsky [21], the
corridor options studied by Fusai [13], and the quantile options proposed by Miura [24]. Thanks to Theorem 3.2
and the special structures of these options, we can obtain closed-form expressions for the option prices in terms
of their Laplace transforms and then make it possible to suggest hedging strategies accordingly. Furthermore,
we are also able to calculate the price sensitivities very easily from the Laplace transforms, which is convenient
for risk management on the options. This section uses delta as an example. The calculation of other Greeks is
similar and thus omitted due to the space limitation.

From now on, we assume that L is the constant barrier to define the occupation times. Define 2 =1og(L/S,)
as the associated barrier for the log-return process {X,}.

4.1. Pricing step options. As mentioned in the introduction, Linetsky [22] introduced the step option to
overcome the hedging problem inherent in standard barrier options around the barrier. For down-and-out step
call options, the payoff at maturity is defined as the payoff of a standard European call option discounted at
a rate that depends on the amount of time spent by the underlying asset below a prespecified barrier. We can
classify these options into proportional step options, simple step options, and delayed barrier options according
to different discounting schemes used.

4.1.1. Proportional (geometric) step options. In this section, we focus on pricing a proportional step call
option, which has the payoff
e*PTT(h)(SOeXT _ K)+,
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where p is the nonnegative knock-out rate, S, is the initial underlying asset price, X; is the log-return value of
the underlying asset price at maturity 7, and 7,(h) is the occupation time as defined in (4). The pricing method
also applies to proportional step put options.

In some sense the proportional step option can be regarded as an extension of the standard barrier option and
the vanilla European option. With a finite positive knock-out rate p, it is obvious that

Lo, 1y (Soe™” = K)* < e (Spe’r — K)* < (Spe"" = K)™, (36)

where s, is defined as the first passage time of {X,} to the barrier 4, i.e., s, =inf{r > 0: X, < h}. The payoff of
the proportional step call option is sandwiched by the payoff of the vanilla European call on the right-hand side
of (36) and the payoff of the down-and-out barrier call on the left-hand side of (36). When p =0, the payoff
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of the step option coincides with that of the vanilla call. As p approaches +oo, it tends to the payoff of the
down-and-out barrier call.

Additionally, (36) also reveals one advantage of the step option over the standard barrier option. The down-
and-out barrier call eliminates the payoff to the investor immediately if the underlying process {X,} touches
the barrier h at or before T, i.e., 1, _ry = 0. However, the payoff of the step option does not disappear when
X crosses the boundary. Investors still receive a portion of the original payoff discounted depending upon the
length of the period that {X,} spends below %. This mollifies the discontinuity of the barrier options around #,
which eases the difficulty of risk management on barrier options to some degree. We have discussed it briefly
in the introduction section and Linetsky [22] has offered more details.

Under the risk-neutral probability measure, the proportional step call option price is

C/(K,T)=e""TE[e " (S eXr — K)* | S,].
Make a change of variable k = —log K for the convenience of later applying Laplace transforms. Then, we have
Ci(k, T)=e"TE[e PN (Sye*T — e )| S,].

Taking double Laplace transforms on the price function C,(k, T) with respect to xk and 7, respectively, and
applying the Fubini theorem to interchange the order of the expectation and the integral with respect to k, we
obtain

Sg+l s
ple+1)
Using Theorem 3.2, we can derive an explicit closed-form expression for the double Laplace transform above.

g (@, a):= /0 aT f_ e TC (k, T)dk = e~ E[e o KX ds+(e+DXr] g (37)

THEOREM 4.1.  With the initial underlying asset price S, and barrier L, assuming that (21) is satisfied, then
for any a >0 and 0 < ¢ < min{n, 0} — 1, the double Laplace transform of the proportional step call option
price C,(k, T) is

Sg+l
,a)=——u(0; p, 0+ 1,a,log(L/S,)),
&, a) oot 1) 0:p. ¢ 2(L/S,))
where u(x; p, 7y, a, h) is given by Theorem 3.2.

The delta of an option is defined as the derivative of the option price with respect to the current underlying
price S,,. Taking differentiation under the integral (37), we can easily see that

d o o d
—ai(ga)=[ dT [ e T (k, T) dx
s ea=[ar [ et eC e T dx
Accordingly, the transform of the delta is just the derivative of the transform of the price function with respect
to S,. Hence, the delta of the step option is also obtainable through the Laplace transform.

4.1.2. Simple (arithmetic) step options and delayed barrier options. In addition to the proportional step
options, Linetsky [21] also discussed two other kinds of step options, simple (arithmetic) step options and
delayed barrier options. Laplace transform techniques can also lead to analytical solutions to pricing problems
of these two step options.

The simple step option uses a discounting scheme that is different from what is used for the proportional step
option. The payoff of a simple step call option is defined as

(=7 (R)/9)" - (S, —K)".
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With a positive knock-out rate 1/4, investors will lose the option payoff gradually until the occupation time
accumulates up to ¥, when they will lose all of the value. This is a major difference from the proportional step
option, where investors will never lose the entire option value.

It is simple to convert the pricing problem of simple step options into that of the proportional step options
we discussed in §4.1.1 via Laplace transform. Note that for any p > 0,

] T 9K, T, 9)e ™ d = e—'TE[ / T 9 =7 () 9) e dD - (S — K | Soj|
0 0

e—rT

1
= (e~ K) = S Cpi K. T).
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The right-hand side of the formula above is calculable via double Laplace inversion. Thus, we can essentially
apply triple Laplace inversion to obtain C,, The numerical experiment in §5 indicates that the computation is
still very efficient.

The delayed barrier option poses an alternative discount factor 1, (-4, on the payoff of the vanilla European
call. Hence, the option value is wiped out completely if and only if 7,(k) > . We can also convert the associated
pricing problem into that of a proportional option formulation by taking a Laplace transform with respect to :

o) =) 1
/O e P Cy(K, T, 8)dd = e—’TE[ /0 1,_gye " dd - (Sye’ —K)* | SO] = C(pK.T).
Hence, triple Laplace inversion can also be applied to price delayed barrier options numerically.

4.2. Pricing corridor options. The corridor option is another example of occupation-time-related options.
It pays an amount at the maturity, dependent upon the time spent by a reference market variable below (or
above) a given barrier or inside an interval. The former option, i.e., the corridor option with single barrier, is
usually referred to as the hurdle option. In this subsection, we will concentrate on hurdle options only. Corridor
options with double barriers can be priced similarly. For details, see Appendix D. It is worth mentioning that
Fusai [13] studied the pricing of corridor options with double barriers under the GBM model. His approach
relied on the special properties of Brownian motion.

A corridor option with single barrier has the payoff max{7;(h) — K, 0} for a given strike K < T, and its price
at time zero is thus given by

Cor(K, T) = e ""E[max{7;(h) — K, 0}].

We need the expectation of 7,(/4) to proceed the price calculation. A nice property of the Laplace transform of
a probability distribution is that we can obtain any order moments of the distribution through the derivatives of
its Laplace transform at zero. Keeping this property in mind and using the notations in Theorem 3.2, we have

=) =) a
/ e_(a+r)TE['TT(h)] dT = / e—(a+r)Ta_
0 0 1Y

Then, taking a double Laplace transform of Cor(K, T') with respect to K and T, i.e.,

d
E[e P+ X | X = x]dT = %(x; 0,v,a,h). (38)
p=0

8eor (@, @) = /O /0 e " Cor(K,T)dK dT,

we can obtain Theorem 4.2 as follows:

THEOREM 4.2. For any ¢ and a > 0, we have

1 du 1
gcor(¢’ a) = _E%(O’ 0,0,aq, log(L/SO)) + Eu(o’ b, 0,a, log(L/SO)) - (39)

(a+r)e*
ProoFr. Applying the Fubini theorem to interchange the order of expectation and integrals in g_,., we have
Zeor (@, ) = / e @I ATE |:f e *®*max{7;(h) — K, 0} dK:|
0 0
1 = —(a+r)T 1 * —(a+nr)T —o1p(h)
=——f e E[TT(h)]dT—i——/ e E[e ¢ dT — —— .
¢ Jo ©> o (a+r)e?

The integral in the second term on the right-hand side above can be represented by u(0; ¢, 0, a, /). In addition,
we know from (38) that the integral in the first term is du(0; p, 0, a, h)/dp. The theorem is proved. [

What is interesting here is that we can also obtain a closed-form expression for du/dp, which is convenient
when calculating g,,.

ProposITION 4.1.  For any a > 0, we have

du L
%(0; 0,0, a,log(L/S,)) = (40)

. L Yi,a . L Y2,a
-V S_ —V, S_ . SO > L,
0 0
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where
o :ﬁ2,a’)’1,a’)/2,a (Bl,a_n)(ﬁl,a+0)
! 770(”+r)2 (Bl,a_BZ,a)(Bl,a+’YI,a)(Bl,a+72,11)’
o =Bl,a7],aY2,a (BZ,a_n)(BZ,aJ’_O)
’ na(a+r)2 (B2,a_Bl,a)(BZ,a+yl,a)(ﬁ2,a+72,a)’
5 Bl,aB2,a’Y2,a (71,a+7’)(’YI,a_0)
! 770(“+r)2 (’),l,a +Bl,a)(71,a+32,a)(71,a_’)’2,11),
~ _Bl,aﬁZ,a‘}/l,a (yl,a+n)(72,a_0)

2 nb(a+r)? (Yz,a +ﬁl,a)(72,a +,82,a)(72,a - yl,a).

PrOOE. According to Theorem 3.2, u is a piecewise-defined function. To emphasize their dependence on

p and vy, we rewrite ¢, ¢;, ,, @, ¥y, and v, as ¢,(p, Y), &2(¥), @, (p,¥), wy(p,¥), vi(p,Y), and v,(p,¥),
respectively. When x < h =log(L/S,), by the product rule of function derivative, we have

d dw, (p, 9B1.a
a_u — eBl.aﬂz(X*h) (M + wl(p’ 7)h>
p ap ad

T eBrarpa=h) dw,(p,y)
ap

(41)

By dc,(p,
+w,(p, Y) i +p) _ 9Py e,

ap ap
Letting x = p = y =0 and noting that w, (0, y) = w,(0,y) =0 (cf. (22), (23), and (26)), we obtain that when

S() S Ls
ul (i)’*M N (S_)ﬁM _da(p,) @)
Pl \L o lpyp=00 \L =00 P lpy=00
Similarly, when S, > L, we have
n (L)) (Ly ey w
ap p=0 So dp (p.7)=(0,0) So ap (p.¥)=(0,0)

Note ¢(p,y) = (0,(p,y), wy(p,¥), v,(p,7Y), ,(p,y)) is the solution of the linear system (34), i.e.,
A(p)c(p,y) =J(p,v). Then

A ae(p, aJ(p,
8(/)) ¢(0,0) + A(0) 2PV _ (;) Y) '
P lp=o (p,7)=(0,0) P 1. m=0.0)
The fact that ¢(0, 0) = 0 implies
A(0) ae(p,y) _ 9. y)
. m=0.0 o Nr=00

In other words, we can obtain de(p, ¥)/dp|(, 1)=@,0)» i-€- the partial derivatives of (@,(p, ), w,(p,y),
v,(p, v), v2(p, v)) at (0,0) by solving the above equations. Then substituting the result back into (42) and (43)
yields (40) immediately, which completes the proof. [

o~
&, 1
.

o
23
=

5 E
© o
L
o c
=
©
2
=
@2
23
= 2
O +
o <
=
@ ©
n 2
i
b
58
O ®©
2
£y
32
=
QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

o) O
= £
a -
c
(]
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<

4.3. Pricing quantile options. Miura [24] introduced w@-quantile options as an extension of lookback
options. Its payoff depends on the a-quantile of the underlying asset price process, which is defined as

q(a, T)=inf{h: 7,.(h) > aT}, for any a € [0, 1].

Following Dassios [9], we will investigate the pricing of the fixed-strike @-quantile call option with payoff
(Spe??@ ™ — K)*. It is worth mentioning that when a =0 and y =1, g(a, T) is the running maximum of {X,}
over [0, T] so that the quantile option is reduced to the lookback option.
For any 0 <v <T, let
Qua(v, T) = e TE[(S,e”"/T D —K)*]
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be the (v/T)-quantile option price. A key observation that
{rr(h) <v}={q(v/T.T) > h} (44)

links the quantile options with occupation times. The Laplace transform of 7,(%) helps us again to establish
a theorem as follows on the closed-form double Laplace transform of the quantile option price. Inverting the
transform can then produce numerical prices.

THEOREM 4.3.  Assume that 0 <y < min{n, 8}. For any a >0 and p > 0 such that G(y) <a+p+r, the
double Laplace transform of Qua(v, T)) with respect to v and T is given by

gQ,m(p,a)zf / e e T Qua(v, )17, dT dv
o Jo

K K
’Y_L(SO/K)B]J-H)/V_’_ Y_L(SO/K)ﬁZ,a+p/7’ ifK > S0§
P Biap—Y P Boapy =
=‘7_S° ! _|_7_S° “2 _YS%_m (1 — (K /Sy)atn/7)
P Biap=Y P Brup=7 P ViatV
YS (V2. a+7)/ So—K .
- 1 —(K/Sy) 7 ™/7) + , if K <S,,
bty G @) =

where w,, w,, v,, and v, are given by Theorem 3.2 with both vy and h replaced by zero.

ProoF. With the change of variable s =T — v, we have

Sow(p-a) = /0 A e~ @PVe=5Qua(v, v+ 5) ds dv. (45)

Note that for any random variable Y,
+oo
E[(Y —K)"] =/ P(Y > u) du.
K

In particular,

+oo 1
K

Introduce another change of variable such that 2 =1log(u/S,)/7y. Then,

k

where k =1og(K/S,)/v. The equivalence (44) implies

LU+ s) > h] dh,
v+
Qua(v,v+s)= e_’("”)'ySOth/ P[7,,,(h) <v]dh. (46)
k
Substituting (46) back into (45) leads to
s @)= [ ¥Spe” ( [ [ e, (h) < vl ds dv) dh. 7)
The double integral (47) becomes

o0 o0 0 !
/ f e HEITpl7 L (h) < v]dsdv = f e~ gy f e "' P[r,(h) <v]dv
0 0 0 0
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under a change of variable = v+s. The integral on the right-hand side of this equality is equal to u(0, p, 0, a, h)

by Theorem 3.2. Hence,

1
_(wle_Bl.u+ph + w2e_62,a+ph), h>0;

/0 /0 e Pl () < u]dsdv=1 " |
— —(p, Vel +v eY2all + , h<O.
p( ! 2e7) (a+r)(a+r+p)

Plugging this into (47), routine calculation will complete the proof. [
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TaBLE 1. The double Laplace inversion (EI price) vs. Monte Carlo simulation (MC value) under the DEM.

o=0.2 =03
So K EI price MC value Std. err. EI price MC value Std. err.
Prices of proportional step options under the DEM
100 90 13.81882988 13.84674076 0.01999824 16.46304873 16.49739972 0.02805678
100 9.42438004 9.45073300 0.02077236 12.47130080 12.50586340 0.02936357
110 5.97929056 6.00093565 0.02087176 9.17850577 9.21094825 0.03010849
105 90 19.04025239 19.06951901 0.01933582 21.11914511 21.15570510 0.02798558
100 13.45926395 13.48746393 0.02121837 16.30658585 16.34289184 0.03019022
110 8.90133738 8.93024825 0.02272951 12.24916449 12.28871355 0.03195427
Deltas of proportional step options under the DEM
100 90 0.96243741 0.96296267 0.00149024 0.87472711 0.87493294 0.00135611
100 0.73048507 0.73064749 0.00128122 0.71370367 0.71343802 0.00126079
110 0.51700296 0.51785311 0.00122150 0.56523162 0.56654006 0.00123985
102 90 1.07858913 1.07768208 0.00156524 0.94680248 0.94689904 0.00139872
100 0.82650108 0.82629754 0.00133499 0.77681513 0.77684003 0.00129342
110 0.59299438 0.59407950 0.00126350 0.61938116 0.62083247 0.00126643

Notes. The default choices are A =3, r =0.05, n =30, § =20, p=¢g=0.5, L=102, p=1, and t = 1. The CPU time for the Laplace
inversion method is around 3.5 seconds. MC values along with the associated standard errors (denoted by std. err.) are obtained by using
50,000 time steps and simulating 100,000 sample paths, and the CPU time is around 10 minutes. This table shows that all of the EI prices
stay within the 95% confidence intervals of the associated MC values.

REMARK 4.1. Cai [4] developed a method to price both the fixed- and floating-strike quantile options numer-
ically using Laplace inversion twice under a more general hyper-exponential jump diffusion model. Our method
improves the efficiency because it requires inversion only once. His method can also be used to price floating-
strike quantile options under a more general jump diffusion model.

5. Numerical results. In this section we present numerical results of the option’s prices and hedging param-
eters. For numerical pricing and hedging of options via Laplace inversion, we use the analytical formulae in
§4 and the multidimensional Euler inversion algorithm, which was introduced by Choudhury et al. [7] and was
extended to the two-sided case by Petrella [26].

5.1. Proportional step options. We use the modified two-sided Euler inversion algorithm of Petrella [26] to
invert the two-sided Laplace transform with respect to « for the proportional step option. This algorithm is faster
and more stable numerically than the original Euler inversion when dealing with two-sided transforms, due to
the introduction of a scaling factor. The numerical results for the proportional step option prices (denoted by EI
price) are given in Table 1, where we also show the Monte Carlo simulation results (denoted by MC value) as

TaBLE 2. How the prices and deltas of a proportional step option change as A goes to zero.

Numerical results when the jump intensity is small

Prices Deltas

A P A

0.1 6.802016390247875 0.616344715465678
0.01 6.782466159399428 0.616240150248286
0.001 6.780507945848759 0.616229613080276
0.0001 6.780312092511664 0.616228558551593
0.00001 6.780292506857593 0.616228453089914
0 6.780290330669454 0.616228441372041

Notes. When A — 0, both of the prices and deltas converge to those under the GBM model.
The parameters we use are the same as the setting in Table 5.3 of Linetsky [22]: r = 0.05,
0=0.6, L=95, S,=100, K =100, and t =0.5. The jump parameters are n = 30, 8 =20,
and p =g =0.5. When A =0, our results are the same as Linetsky’s.
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a benchmark together with the associated 95% confidence intervals (denoted by 95% CI). The numerical prices
are given at the top and the delta values are given at the bottom. We can see that all the EI prices stay within
the 95% confidence intervals of the associated MC values. The pricing method based on our analytical pricing
formulae as well as the Euler inversion algorithm is accurate and efficient.

As A approaches zero, the double exponential jump diffusion model will converge to a geometric Brownian
motion. Therefore, we can expect both the price and delta of occupation-time-related options under the DEM
should also converge to those under the GBM. Table 2 verifies this intuition. Furthermore, it shows that our
numerical method works for GBM as well because it replicates Linesky’s result when we take A = 0.

TaBLE 3. The Laplace inversion (EI price) vs. Monte Carlo simulation (MC value).
=02 o=03
Sy K EI price MC value Std. err. EI price MC value Std. err.
Prices of simple step options under the DEM with A =3
100 90 9.67457995 9.70774495 0.02985213 12.01854880 12.06531905 0.03945057
100 7.07669587 7.10395013 0.02529039 9.56487211 9.60638463 0.03568811
110 4.75390837 4.77502124 0.02191003 7.33033262 7.36671170 0.03279602
102 90 12.16683520 12.20418981 0.03073929 14.18169934 14.22878114 0.04039522
100 8.92866361 8.95838153 0.02642060 11.30765966 11.34847947 0.03686850
110 6.03645208 6.05956925 0.02348342 8.69198201 8.72920403 0.03430783
Prices of delayed barrier options under the DEM with A =3
100 90 14.25719729 14.28598897 0.03006500 17.17147708 17.21579034 0.03853737
100 10.08003700 10.10164481 0.02591103 13.30997994 13.34463574 0.03570174
110 6.52095740 6.53852537 0.02366194 9.92977812 9.96000715 0.03416747
102 90 16.39440581 16.43625061 0.02796657 19.05103096 19.09098213 0.03691433
100 11.63440011 11.66789910 0.02483299 14.80000641 14.83260573 0.03481742
110 7.59164287 7.61545252 0.02366583 11.08553402 11.11870624 0.03402495
Prices of corridor options with single barrier under the DEM with A =3
o=02 o=03
K S, EI price MC value Std. err. EI price MC value Std. err.
0.2 95 0.46627793 0.46580529 0.00060334 0.44628615 0.44596639 0.00062321
100 0.34654861 0.34620580 0.00064820 0.35821596 0.35802303 0.00065590
105 0.22446654 0.22460171 0.00061260 0.26863327 0.26885828 0.00064341
0.4 95 0.31194613 0.31159386 0.00050566 0.29695209 0.29670152 0.00052092
100 0.22032156 0.22018846 0.00052382 0.22911706 0.22904177 0.00053315
105 0.13161829 0.13177739 0.00046635 0.16241928 0.16287320 0.00050042
Prices of quantile options under the DEM with A =3
=02 =03
a K EI price MC value Std. err. EI price MC value Std. err.
0.2 90 6.98491715 7.00339911 0.01605925 6.72911720 6.75874909 0.02063748
100 2.08465538 2.09972912 0.01122946 2.69357957 2.71698281 0.01554383
110 0.37724012 0.38423388 0.00552578 0.86545323 0.88162865 0.00988966
0.5 90 12.59539246 12.61168267 0.02098495 13.77086937 13.79326547 0.02941576
100 5.90331831 5.92048348 0.01876866 7.84321530 7.87143782 0.02685232
110 2.29109044 2.30873387 0.01459738 4.15347044 4.17954592 0.02304078

Notes. For the simple step and delayed barrier options, the default parameter choices are A =3, r =0.05, n =30, 6 =20, p=¢ =0.5,
L =102, 9 =0.5, and ¢ = 1. For the corridor options with single barrier, the default parameter choices are A =3, r = 0.05, n =30, 6 =20,
p=¢g=0.5, L=102, and t = 1. For the quantile options, the default parameter choices are A =3, r =0.05, n =34, 6 =34, p =0.6,
q=04, S, =100, y=1, and r = 1. All Monte Carlo values (denoted by MC value) along with the associated standard errors (denoted by
std. err.) are obtained using 50,000 time steps and simulating 100,000 sample paths. The CPU time of our numerical methods for generating
one price of simple step or delayed barrier options, corridor options, and quantile options is around 2 minutes, 3 seconds and 3 seconds,
respectively. The CPU time for Monte Carlo simulation is around 22 minutes for the quantile options and around 10 minutes for the other
three type of options. The table indicates that all the EI prices stay within the 95% confidence intervals of the associated MC values.
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5.2. Simple step, delayed barrier, corridor, and quantile options. The numerical prices and delta values
of other occupation-time-related options, including simple step, delayed barrier, corridor, and quantile options,
are given in Tables 3 and 4.

For the pricing and hedging of the simple step and the delayed barrier options, we need to do triple Laplace
inversions. First, we use a two-dimensional Euler inversion formula for the complex-valued function (Formula
(2.7) in Choudhury et al. [7] with /, =1, = 1) and then we do an extra one-dimensional Euler inversion (Formula
(4.6) in Abate and Whitt [1]). Our results show that the average time spent by one triple Laplace inversion is

TABLE 4. The Laplace inversion (EI value) vs. Monte Carlo simulation (MC value).

oc=0.2 oc=03

S, K EI price MC value Std. err. EI price MC value Std. err.

Delta of simple step options under the DEM with A =3

100 90 1.13763436 1.13898389 0.00377164 1.01630712 1.02072949 0.00332720
100 0.84343613 0.84598812 0.00282432 0.81774321 0.82201992 0.00274491
110 0.58164514 0.58407656 0.00219618 0.63765092 0.64174368 0.00233056
102 90 1.35962149 1.35725685 0.00391806 1.14862657 1.14872893 0.00336411
100 1.01249653 1.01289927 0.00291876 0.92657250 0.92805388 0.00276581
110 0.70396190 0.70573895 0.00226845 0.72529944 0.72715609 0.00234920
Delta of delayed barrier options under the DEM with A =3
100 90 1.04040458 1.00570473 0.02406215 0.92115385 0.90869264 0.02433650
100 0.75353143 0.73751457 0.01574238 0.72850514 0.72237409 0.01771596
110 0.51485647 0.50789855 0.00969742 0.56297401 0.55980380 0.01246820
102 90 1.09523707 1.07269986 0.02342268 0.95773171 0.93864846 0.02459732
100 0.79990286 0.78274507 0.01498936 0.76107256 0.75647237 0.01839117
110 0.55545444 0.54777543 0.00905981 0.59252471 0.59962847 0.01345097

Delta of corridor options with single barrier under the DEM with A =3

=02 =03
K Sy EI price MC value Std. err. EI price MC value Std. err.
0.2 100 —0.02563184 —0.02556980 0.00008900 —0.01844483 —0.01845705 0.00006192
102 —0.02669485 —0.02658852 0.00008981 —0.01900456 —0.01903014 0.00006164
104 —0.02209558 —0.02199631 0.00008277 —0.01683142 —0.01685143 0.00005857
0.4 100 —0.01912417 —0.01908412 0.00008163 —0.01398161 —0.01399076 0.00005720
102 —0.01957286 —0.01956383 0.00008143 —0.01424219 —0.01426468 0.00005648
104 —0.01569789 —0.01561718 0.00007313 —0.01235004 —0.01236274 0.00005286

Delta of quantile options under the DEM with A =3

=02 =03
a K EI price MC value Std. err. EI price MC value Std. err.
0.2 90 0.06855937 0.06908873 0.00077633 0.11127492 0.11060554 0.00093565
100 0.33498655 0.33507900 0.00118391 0.30939518 0.30898836 0.00117698
110 0.62926410 0.62827708 0.00108407 0.51724312 0.51748005 0.00115069
0.5 90 0.25471549 0.25497213 0.00115890 0.32410267 0.32348591 0.00124658
100 0.57434958 0.57383915 0.00121216 0.55614658 0.55658769 0.00125713
110 0.82522134 0.82466107 0.00096239 0.75014823 0.75064412 0.00111455

Notes. For the simple step and delayed barrier options, the default parameter choices are A =3, r =0.05, n =30, 6§ =20, p=¢ =0.5,
L =102, 4 =0.5, AS, =0.1, and ¢t = 1. For the corridor options with single barrier, the default parameter choices are A =3, r = 0.05,
n=30,0=20, p=qg=0.5, L=102, AS, =0.1, and ¢ = 1. For the quantile options, the default parameter choices are A =3, r =0.05,
n=34,0=34, p=0.6,g=0.4,S,=100, y =1, AS, =0.1, and = 1. Monte Carlo values for simple step and delayed barrier options (for
corridor and quantile options, respectively) along with the associated standard errors (denoted by std. err.) are obtained by using 100,000
time steps (20,000 time steps, respectively) and simulating 100,000 sample paths. The CPU time of our numerical methods for generating
one price of simple step or delayed barrier options, corridor options and quantile options is around 100 seconds and 3 seconds, respectively.
The CPU time for Monte Carlo simulation is around 25, 25, 4.3, and 9 minutes for the simple step, delayed barrier, corridor, and quantile
options, respectively. The table indicates that all the EI values stay within the 95% confidence intervals of the associated MC values.
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TaBLE 5. Comparison of continuous and discrete step option pricing.

Monitoring frequency

Relative differences

S, Monthly (%)  Biweekly (%)  Weekly (%)  Daily (%)  Continuous prices

95 4.698 1.974 1.011 0.922 7.22634078
100 3.489 1.583 0.998 0.783 10.35784700
105 9.458 4.049 2.027 0.828 14.37387610
110 8.940 3.918 2.003 0.720 18.50956926
115 8.866 3.947 1.982 0.616 22.75134627
120 8.841 3.957 1.975 0.534 27.12165429

Note. The relative difference is defined as (discrete price — continuous price)/continuous
price. The default parameters of the underlying process are r =0.05, 0 =0.2, A=3, n=
0 =15, and p =g =0.5. Consider a proportional step option with the parameters L = 102,
K =100, p =1, and t = 1. The occupation time refers to the time the underlying price
spends under L = 102. And we use 100,000 sample paths to simulate the discrete prices.

around two minutes, which is still very efficient compared to the Monte Carlo simulation. For the numerical
results of corridor and quantile option prices, it suffices to use a two-dimensional Euler inversion algorithm. Our
method is more efficient than Cai’s method (Cai [4]).

5.3. Discretization frequency effect. Our EI price is given under an assumption that the underlying price
is continuously monitored. However, in reality a sizable portion of contracts specify fixed reference times for
monitoring and the occupation time is defined according to the number of the monitoring dates in which the
underlying price is above or below some level or within a band. This may introduce substantial differences
between the two monitoring schemes. Some scholars have already studied the effect of discretization frequency
on the pricing of occupation-time-related options under GBM models. The main literature includes Atkinson
and Fusai [3], Davydov and Linetsky [11], and Fusai and Tagliani [14].

In this subsection, we aim to investigate how the discretization frequency will affect the pricing results under
the double exponential jump diffusions. Table 5 and Figure 1 compare our continuous-time outcomes in one
proportional step option example with the prices under discrete time monitoring, which are obtained through
Monte Carlo simulation, for various initial underlying prices. The monitoring frequencies we use are monthly,
biweekly, weekly and daily. That is, the time horizon, one year, is divided into 12, 26, 52, and 252 subintervals,
respectively. For discrete monitoring contracts, define the occupation time as follows:

N
= (t— tifl)l{s,i <L}s
i=1

where 0 =1, <--- <ty =T are the reference dates.

30 T T T T T T T
-- Continuous
25 | — Monthly
----- Biweekly
20 F | ---- Weekly 1
- - - Daily
— Hourly 4

-
o

(6]

Price of proportional step option
o

85 90 95 100 105 110 115 120

mo
o

Initial stock price S,

FIGURE 1. Comparison of continuous and discrete monitoring results under the DEM model.
Notes. As the discretization becomes finer, the discrete-time monitoring option prices converge to the continuous-time option prices under
all initial stock prices. The default parameters of the underlying process are r =0.05, 0 =0.2, A=3, n=0 =15, and p = g =0.5. Consider
a proportional step option with the parameters L =102, K =100, p =1, and ¢ = 1. The occupation time refers to the time the underlying
price spends under L = 102. And we use 100,000 sample paths to simulate the discrete prices.
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TaBLE 6. Comparison of the deltas of the continuous and discrete step options.

Monitoring frequency

Relative differences

S, Monthly (%) Biweekly (%) Weekly (%) Daily (%) Continuous delta

95 3.990 2.366 1.368 0.361 0.53553845
100 —3.411 —1.907 —0.643 0.275 0.72754990
105 4.342 2.670 1.752 0.466 0.82098985
110 8.048 4.428 1.915 0.256 0.83620619
115 8.850 3.936 1.824 0.195 0.86111472
120 8.935 3.986 2.108 0.138 0.88675445

Note. The relative difference is defined as (discrete delta— continuous delta)/continuous delta.
The default parameters of the underlying process are r =0.05, 0 =0.2, A=3, n=60=15,
and p = ¢ =0.5. Consider a proportional step option with the parameters L = 102, K = 100,
p=1, and t = 1. The occupation time refers to the time the underlying price spends under
L =102. And we use 100,000 sample paths to simulate the discrete deltas.

It is clear to see that the relative differences between the two schemes reduce significantly when the dis-
cretization becomes more frequent. Therefore, the continuous results should be a good approximation to those
contracts under frequent monitoring (say, daily or weekly). However, we should admit that significant differences
exist (e.g., more than 9% for S, = 105 in the case of monthly monitoring) between the continuous-time scheme
and the less-frequent discrete monitoring. It will then be important to distinguish these two under this scenario.

A similar convergence can be observed for the delta too. As the discretization becomes finer and finer, the
deltas under discrete monitoring will converge to the delta under continuous monitoring. Table 6 and Figure 2
demonstrate the related numerical experiments.

5.4. Robustness of our pricing algorithm. We point out that our Laplace inversion-based pricing algorithm
is robust. As illustrated in Figure 3, our pricing algorithm retains its accuracy when some model parameters
vary within realistic ranges. More precisely, when 7 (6 and p, respectively) changes in [15, 100] ([15, 100]
and [0, 1], respectively), the relative errors between our numerical prices and MC prices are all less than 0.3%.
These ranges cover most cases in reality. For example, 1 € [15, 100] and 6 € [15, 100] mean that the expected
upward and downward jump sizes of return are between 1% and 6.67%. Note that the minimum and maximum
daily returns of S&P 500 from Aug. 1, 2007 to Oct. 26, 2009 (during the ongoing financial crisis) are —4.76%
and 4.11%, respectively. Absolute values of them are both smaller than 6.67%. Consequently, we draw the
conclusion that our pricing algorithm is robust and thus reliable.

6. Conclusion. In this paper, we investigate pricing and hedging problems of occupation-time-related
options such as step options, corridor options, and quantile options under Kou’s double exponential jump dif-
fusion model. By studying the occupation-time distribution, we derive the Laplace transform-based analytical

c 1.0 T T T T T T T
k] ey
a 09+ ‘__.-_-_'_",','.‘;'.'_': ;;;;; 4
o p s
o 08 i
2
» 0.7t g
T --- Continuous
5 06 — Monthly ]
o5 £ |- Biweekly ]
8_ -—-- Weekly
g 04r --- Daily i
— L — Hourl E
5 0.3 y
8 02p R
8 0.1 . . . . . . .

80 85 90 95 100 105 110 115 120

Initial stock price S,

FIGURE 2. Comparison of continuous and discrete monitoring deltas under the DEM model.
Notes. As the discretization becomes finer, the deltas of discrete monitoring converge to those of continuous monitoring under all initial
stock prices. The default parameters of the underlying process are r = 0.05, 0 =0.2, A =3, n=60 =15 and p = g = 0.5. Consider a
proportional step option with the parameters L =102, K =100, p =1, and ¢ = 1. The occupation time refers to the time the underlying
price spends under L = 102. And we use 100,000 sample paths to simulate the discrete deltas.
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x 1078 x 1078
T T T T 3

Relative error of delta

Relative error of price

20 40 60 80 100 20 40 60 80

100

ol— . . .

20 40 60 80 100 20 40 60 80
n n

FIGURE 3. The relative errors between the Euler inversion and MC simulation for varying p, 6, and 7.

100

Notes. We test the robustness of our method using the proportional step option. The default parameters of the jump diffusion processes are

r=0.05 06d=02,A=1,n=60=15, and p=¢g =0.5. The current underlying asset price is S, = 105. The option contract
p=1, K =100 and L =90. The occupation time is accumulated when the underlying price is less than 90.

parameters are

solutions to these pricing problems, which can be inverted numerically via the Euler Laplace inversion algorithm.

The numerical results indicate that our pricing formulae are both accurate and efficient.

Appendix A. Roots of the equation G(x) =r+a. The equation G(x) =r + a, with G(x) defined as (2),

can be reduced down to
ax* +ax* + ax* +a;x +a, =0,

where

a,=0", a; =2u—o*(n—190), a, =—0’n0 —2u(n—0) —2A —2(r +a),

a,=-="2un0 —2Ap(n+0)+2An+2(r+a)(n—90), a,=2(r+a)né.

It has four roots given by

T e N
Bra= 4a4+ 2 7 Pra= 4a4+ 2

a3 P1— D> _ay  pi+p,
Na=g T2 0 VTt

where

B B
P=vBi+C+C, Pr= B4_C0_C1——5, P3= B4—C0—C1+—5,
4 4p,

B, = a3 —3a,a; + 12a,a,, B, =2a} —9a,a,a; +27d>a, + 27a0a§ —T2aya,a,,
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2 2
[ S a3y 2a, a3 4a, _4ayay 8a; ay

B,= /B —4B}, B=->_“% p_G T p This % &
2 ! 0 37 442 3a Y7282 3a 5 a’ a al
3 4 3 4 4 4 3

J2B B
By=VBi+B, C°=3aBO’ C1=3€/§6a'
46 4

Appendix B. Lemma 1.

LEMMA B.1. Let f: [0, T] x R — R be a function of class C*' on [0, T] x R and C"? on [0, T] x R\{h}.
The left and right second derivatives (6f /9x*)(t, h—), (6>f/3x*)(t, h+) exist. Then, we can find a sequence of
{£,} € C2([0, T] x R) and a positive constant M, independent of t, x, and n, such that (1) f,(t, x) converges
to f(t,x) as n— oo for any (t,x) € [0,T] x R; (2) f,(t,x) = f(t,x) for any (t,x) € [0, T] x (—o0, h] U
[h+(1/n), 00); and (3) max{|f,|.10£,/d1],10f,/dx|,10°f,/9x*|} < M for any (t,x) € [0, T] x (h, h+1/n).

Proor. Introduce a polynomial to smooth the irregular point at x = A for the function f. Let f,(¢, x) =
f(t,x) for (t,x) € [0,T] x (=00, h] U [h + 1/n,00) and f,(t,x) = P,(t,n(x — h)) for (¢,x) € [0,T] x
(h, h+ (1/n), where P, is a fifth order polynomial given by
3. (f /ax)(t, h—)x2+ (9f/dx)(z, h)

2n? n
f, must be twice differentiable at x = h and x = h+1/n. It is easy to check that f, has second order derivative at
x = h and its differentiability at x = h+ 1/n is equivalent to requiring a, b, c to satisfy P (¢, 1) = f(z, h+1/n),

0P 1) _af(tht1/m) o @R(L1) _Pf(h+1/n)

a b c
P.(t,x)= ;xs + ﬁx“ + X x+V(t, h).

ox ox 0x? ox?
That is, {a, b, ¢} is a set of roots of the following linear equations:

1 af(t, h 192
at+b+c=n|nlflt.h+—-)—f(t, h) _ o) ———f(t,h—); (B1)
n ox 2 dx2

af(t,h+1 ) 92
Satabt3c=nf LRIV O (Y Ly, (B2)
ox dx dx?
Ff(t,h+1 9
20a+ 126+ 60 = LLREYD S (B3)
dx? 0x?

Note that the foregoing linear equations are solvable for any 7 and n. Using the conditions of f, we can show
that the right-hand sides of (B1)—(B3) are in the order of o(1) as n — +oo. Thus, the coefficients a, b, and ¢
are also in the order of o(1), which yields the property (3). From our construction it is also easy to see that
such f, satisfies (1) and (2). O

Appendix C. The property of the matrix A. By Gauss elimination of elementary column operation, we
can show that the determinant of the following matrix

1 1 1 |
A= 1 1 1 1 )
nN—a M—a MN—a; N—d
1 1 1 1
L 0+a, 0+4+a, O+a; 0+4a,

is given by

(n+0)1_-[1§i<j54(ai_aj) £0
iy 1<ja(m—a) (0 +ay)
A is thus nonsingular. Let b= (1, b, 1/(n—b), 1/(6 4 b))", then the linear equations

Ax=Db

det(A) = —

have a unique solution x* = (x}, x5, x3, x;)7, with

. H,.i(a;—b)(m—a;)(0+a)

x* = , 1=1,2,3,4.
' Hj;éi(aj —a;)(n—b)(6+D)
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Appendix D. Occupation times with double barriers. Our Euler inversion-based approach can be
extended to cover the occupation time that the underlying process spends inside two flat barriers, i.e., a corridor
with double barriers. There is one minor technical difficulty remaining: we cannot show nonsingularity of an
8 x 8 matrix rigorously, which we believe is true. Note that numerical experiments demonstrate that the matrix
should be invertible. Moreover, it turns out that this does not affect the validity of our numerical methods for
pricing occupation-time-related options. In this subsection, we first present the closed-form Laplace transform
of the joint distribution of the occupation time with double barriers and the log-return of the underlying at the
maturity. Then this result is applied to price corridor options with double barriers, and numerical results are
provided in Table D.1. To price other options related to occupation times with two barriers, readers may mimic
the arguments in §4.

Consider two barriers 7 and H with h < H and let 7, ;, denote the occupation times spent between the lower
barrier & and the upper barrier H until the maturity 7', that is,

T
T(h, H) 32/0 1, ox,<m dt.

Given any 0 <y <min{m, 6} and p > 0, our objective is to compute the following Laplace transform of 7,
and X;:
V(T, x;p,ys hH) = e™'" - E[e70:m %7 | X = x]. (D1)

Following similar derivation as in Theorem 3.1, we can show that such V uniquely solves the following PIDE
system:

av

—+plyyV=2V, forte(0,T] and x e R\{h, H};

at (DZ)
V(0, x) = e, for x e R.

For a > 0 satisfying (21), consider the Laplace transform of V (T, x; p, y) with respect to the maturity T

i(x;p,y,a; h,H) é/ e TV(T, x;p,y)dT.
0

TABLE D.1. Prices and deltas of corridor options with double barriers (denoted by EI value).

g=0.2 og=03

K So EI price MC value Std. Err. EI price MC value Std. Err.

Prices of corridor options with double barriers under the DEM with A =3

0.2 95 0.49444505 0.49360862 0.00075583 0.37046981 0.36989311 0.00076296
100 0.45098018 0.45017582 0.00073051 0.35035352 0.34997974 0.00073555
105 0.37305021 0.37252713 0.00070721 0.30838577 0.30811779 0.00070295
0.4 95 0.32304472 0.32235313 0.00065997 0.21695824 0.21656458 0.00062004
100 0.28990787 0.28934707 0.00062511 0.20313338 0.20289474 0.00059457
105 0.23235612 0.23187688 0.00058409 0.17455576 0.17424786 0.00055781

Deltas of corridor options with double barriers under the DEM with A =3

0.2 100 —0.01853381 —0.01852545 0.00007402 —0.01427373 —0.01428372 0.00005625
102 —0.02008015 —0.02014496 0.00007719 ~0.01505973 —0.01507682 0.00005713
104 —0.02149747 —0.02153651 0.00007988 ~0.01577619 —0.01577376 0.00005772
0.4 100 ~0.01499858 —0.01496464 0.00007158 —0.01131949 —0.01130931 0.00005388
102 —0.01588576 ~0.01590179 0.00007396 —0.01178545 —0.01179470 0.00005423
104 —0.01664286 —0.01667591 0.00007538 ~0.01219103 —0.01219225 0.00005426

Notes. The default parameter choices are A =3, r =0.05, n =30, 8 =20, p=¢ =0.5, [ =80 for pricing part or / = 50 for delta part,
L =110, and 7 = 1. The Monte Carlo simulation estimates (denoted by MC value) along with the associated standard errors (denoted by std.
err.) are obtained by using 50,000 time steps for pricing part or 20,000 time steps for delta part and by simulating 100,000 sample paths.
The CPU time of our numerical method for generating one corridor option price or delta is around 3 seconds. The CPU times for producing
one MC value of corridor option price and one MC value of delta are around 10 minutes and 4.3 minutes, respectively. The table indicates
that all the EI values stay within the 95% confidence intervals of the associated MC values.
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Similarly as in the case of occupation times with single barrier, we can transform the PIDE (D2) into an OIDE.
Some algebra can yield the closed-form solution for « as follows

wFePra) 4 kP _ ¢, oY), x<h:

_w?eﬁl.a+p(x_H) — wgeﬁZ,a+p(x_H) — V?e_yl,a+p(x_h)
u(x;p,y,a;h,H)=

_Vge—Vz,a+p(x—h) — cOeV("‘H), h<x<H;
Ver**/l,a(fo) + Vgefvz,a(fo) - CUe*/(fo)’ x>H,
where . " "
24 ev 24

‘L and

- CO - CU - .
G(y)—a—r G(y)—a—r—p G(y)—a—r
In other words, the solution # is a linear combination of exponential functions. The coefficient’s vector

(L L0 0 U U 0 O\
d= (07, 0, v, vy, v, v, 0, 0,)

satisfies a linear system

Bd =R. (D3)
Here R is an eight-dimensional vector
X 1 1\
R=(cy—cy) | x7,yx, s —— Ly, —
(v =) ( L R A 0+7)

where ¥ :=¢"~". B is an 8 x 8 matrix
B M NZg
Mz, N |

where Z; and Z,, are two 4 x 4 diagonal matrices with the diagonal elements being {0, 0, xPrave, xPrato} and

{0, 0, x".a+r, x72a+r}, respectively, and M and N are given by
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1 1 1 1
ﬁl,a ﬁ2,a _71,a+p _YZ,a+p
M= 1 1 1 1 ,
M—Bi. M—Bara Nt Yiare Mt Y2atp
1 1 1 1
_0+ﬁ1,a 6+BZ,a 0_’}/1,a+p 0_72,a+p_
and _ _
1 1 1 1
—Yia V2.4 Bl,a+p B2,a+p
N— 1 1 1 1
N+Yi,ae MNt+Ya n_Bl,a+p ”’7—,32,a+p
1 1 1 1
L 0—Ye O0—%0 O0+Biar, 0+Byai,

It seems difficult to show the nonsingularity of B. However, numerical experiments indicate that it should be
nonsingular. Moreover, it turns out that our pricing methods for occupation-time-related options based on the
Laplace transform result of the joint distribution of X; and 7, 5, are still valid. Here we shall price corridor
options with double barriers to illustrate the effectiveness of our pricing method. Because of similarities, pricing
of other options related to occupation times with two barriers is omitted. Consider a corridor call option with
double barriers, whose price is given by

Cor(K, T) = e E[max{Tog/s,).100(1/50) — K> O}];




Cai, Chen, and Wan: Occupation Times of Jump-Diffusion Processes
436 Mathematics of Operations Research 35(2), pp. 412-437, ©2010 INFORMS

where [ and L (I < L) are two barriers of the underlying asset price process S, that starts from S,. Mimicking
the proofs of Theorem 4.2 and Proposition 4.1, the double Laplace transform of Cor(K, T') with respect to K

and T
(@ a) = f f e~¢K=4T Cor(K, T) dK dT (D4)
o Yo
should be equal to
Zeor ( ) ! 312(0 0,0, a;log(1/S,),log(L/S,)) + ! i1(0; ¢, 0, a; log(1/S,),log(L/S,)) !
cor ,d)=——— 5V, 0, a; ’ —u 5 , U, a; ) - . N 5
8 (2 ® ap g 0 g 0 q02 @ g 0 g 0 (a+r)()02
where
au
6_(0; 0,0, a; log(1/Sy),log(L/Sy))
p
@ - (So/ P + & - (So/ 1), So<1;
- - - ~ 1
=1 —a" (Sy/L)Pre— @Y (Sy/L)Pra — DY (1/Sg)"e — Y- (1/Sy) ">« — m, <S8, <L;
U/ (L/So) " + 75 (L/So) ", Sy = L;

and d = (oF, @%, 00, 19, 0V, Y, @Y, @9)" satisfies the following linear system:

T
B(0)d = __ L (1,0, l, l, 1,0, 1, 1) .
(a+r)? n 0 m 0
Here is B with p =0.

Inverting the Laplace transform (D4) via the Euler inversion algorithm, we can price corridor options with
double barriers numerically. Numerical results are given in Table D.1, where we can see that all the numerical
prices obtained using our pricing method (denoted by EI value) stay within the 95% confidence intervals of
the associated MC simulation estimates (denoted by MC value). This demonstrates that our pricing method is
also accurate for pricing corridor options with double barriers. In addition, similarly as in the case of corridor
options with single barriers, we can also calculate deltas for corridor options with double barriers numerically.
Numerical results are also given in Table D.1, which also indicate the effectiveness of our numerical method.

Acknowledgments The authors thank two anonymous referees, the associated editor, and the area editor for
their helpful comments. The authors are also grateful to Prof. Vadim Linetsky of Northwestern University, USA;
Prof. S. G. Kou of Columbia University, USA; Prof. Yue-Kuen Kwok of Hong Kong University of Science
and Technology; Prof. Jiro Akahori of Ritsumeikan University, Japan; Prof. Angelos Dassios of the London
School of Economics and Political Science, UK; and Prof. Gianluca Fusai of Universita degli Studi del Piemonte
Orientale, Italy, for their valuable suggestions. In addition, the first author is grateful for the support from the
General Research Fund (GRF) of Research Grants Council of Hong Kong (Project Reference No. 610709). The
second and third authors are grateful for the support from the grant received under RGC Research Grant Direct
Allocation Scheme (Project ID: 2050371).

References

[1] Abate, J., W. Whitt. 1992. The Fourier-seriers method for inverting transforms of probability distributions. Queueing Systems 10(1)
5-88.

[2] Akahori, J. 1995. Some formulae for a new type of path-dependent option. Ann. Appl. Probab. 5(2) 383-388.

[3] Atkinson, C., G. Fusai. 2007. Discrete extrema of the Brownian motion and pricing of lookback options. J. Computational Finance
10(3) 1-43.

[4] Cai, N. 2009. Pricing quantile options in a flexible jump diffusion model. Techincal report, Department of IELM, HKUST, Hong Kong.

[5] Cai, N., S. G. Kou. 2008. Option pricing under a hyper-exponential jump diffusion model. Technical report, HKUST and Columbia
University, Hong Kong and New York.

[6] Chesney, M., M. Jeanblanc-Picqué, M. Yor. 1997. Brownian excursions and Parisian barrier options. Adv. Appl. Probab. 29(1) 165-184.

[7] Choudhury, G. L., D. M. Lucantoni, W. Whitt. 1994. Multidimensional transform inversion with applications to the transient m/g/1
queue. Ann. Appl. Probab. 4(3) 719-740.

[8] Cohen, J. W., G. Hooghiemstra. 1981. Brownian excursion, the m/m/1 queue and their occupation times. Math. Oper. Res. 6(4)
608-629.

o~
&, 1
.

o
23
=

5 E
© o
L
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
(e}
>£
=+
O ®©
2
£y
32
=
._QQ.
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

o) O
= £
E -
c
(]
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<




0
=
o
<
=
>
@
(o)
<
=
o
g
>,
)
o)
T
>
9
o
®
%)
©
>
a
o
o
2
<
=
e
o)
QL
=
b
S
=
2
S
ke
c
@
Qo
L
=
S
@
2
<
=
o
L
-
<
(=)
=
>
o
o
o
)
ke
o
<
n
=
o
(@)
LL
=

~
>
—
o
n
S
S
o
o
£
@
©
c
—
=}
2
=
o
=
S
-—
©
2
o]
o
©
>
©
2
)
Q2
2
©
aQ
C
)
n
&)
S
S
o)
o
o)
C
©
%)
&
<
=2
—
(o)
=
S
=
3]
=
c
Qo
=
©
£
P
o
o
=
©
c
9
=
oS
5]
<

Cai, Chen, and Wan: Occupation Times of Jump-Diffusion Processes

Mathematics of Operations Research 35(2), pp. 412437, ©2010 INFORMS 437
[9] Dassios, A. 1995. The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options.

Ann. Appl. Probab. 5(2) 389-398.

[10] Dassios, A. 1996. Sample quantiles of stochastic processes with stationary and independent increments. Ann. Appl. Probab. 6(3)
1041-1043.

[11] Davydov, A., V. Linetsky. 2002. Structuring, pricing and hedging double-barrier step options. J. Computational Finance 5(2) 55-87.

[12] Embrechts, P., L. C. G. Rogers, M. Yor. 1995. A proof of Dassios’ representation of the a-quantile of Brownian motion with drift.
Ann. Appl. Probab. 5(3) 757-767.

[13] Fusai, G. 2000. Corridor options and arc-sine law. Ann. Appl. Probab. 10(2) 634-663.

[14] Fusai, G., A. Tagliani. 2001. Pricing of occupation time derivatives: Continuous and discrete monitoring. J. Computational Finance
5(1) 1-37.

[15] Karatzas, L., S. Shreve. 1991. Brownian Motion and Stochastic Calculus. Springer-Verlag, New York.

[16] Kou, S. G. 2002. A jump-diffusion model for option pricing. Management Sci. 48(8) 1086-1101.

[17] Kou, S. G., H. Wang. 2003. First passage times of a jump diffusion processes. Adv. Appl. Probab. 35(2) 504-531.

[18] Kou, S. G., H. Wang. 2004. Option pricing under a double exponential jump diffusion model. Management Sci. 50 1178-1192.

[19] Kwok, Y. K., K. W. Lau. 2001. Pricing algorithms for options with exotic path-dependence. J. Derivatives 9(1) 23-38.

[20] Leung, K. S., Y. K. Kwok. 2007. Distribution of occupation times for CEV diffusions and pricing of a-quantile options. Quant.
Finance 7(1) 87-94.

[21] Linetsky, V. 1998. Steps to the barrier. RISK (April) 62-65.

[22] Linetsky, V. 1999. Step options. Math. Finance 9(1) 55-96.

[23] Lucas, R. E. 1978. Asset prices in an exchange economy. Econometrica 46(6) 1429-1445.

[24] Miura, R. 1992. A note on look-back options based on order statistics. Hitotsubashi J. Commerce Management 27(1) 15-28.

[25] Naik, V., M. Lee. 1990. General equilibrium pricing of options on the market portfolio with discontinuous returns. Rev. Financial
Stud. 3(4) 493-521.

[26] Petrella, G. 2004. An extension of the Euler Laplace transform inversion algorithm with applications in option pricing. Oper. Res. Lett.
32(4) 380-389.

[27] Protter, P. 2005. Stochastic Integration and Differntial Equations. A New Approach. Springer, Berlin.

[28] Whitt, W. 2002. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Applications to Queues. Springer-
Verlag, New York.

[29] Yor, M. 1995. The distribution of Brownian quantiles. J. Appl. Probab. 32(2) 405-416.



	Introduction.
	Kou's model and its basic properties.
	Distribution of the occupation times.
	Pricing occupation-time-related options.
	Pricing step options.
	Proportional (geometric) step options.
	Simple (arithmetic) step options and delayed barrier options.

	Pricing corridor options.
	Pricing quantile options.

	Numerical results.
	Proportional step options.
	Simple step, delayed barrier, corridor, and quantile options.
	Discretization frequency effect.
	Robustness of our pricing algorithm.

	Conclusion.
	Roots of the equation $G(x)=r+a$.
	Lemma 1.
	The property of the matrix A.
	Occupation times with double barriers.

