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Abstract. The stochastic alpha-beta-rho (SABR) model becomes popular in the financial
industry because it is capable of providing good fits to various types of implied volatility
curves observed in the marketplace. However, no analytical solution to the SABR model
exists that can be simulated directly. This paper explores the possibility of exact simulation
for the SABR model. Our contribution is threefold. (i) We propose an exact simulation
method for the forward price and its volatility in two special but practically interesting
cases, i.e., when the elasticity β � 1, or when β < 1 and the price and volatility processes
are instantaneously uncorrelated. Primary difficulties involved are how to simulate two
random variables whose distributions can be expressed in terms of the Hartman-Watson
and the noncentral chi-squared distribution functions, respectively. Two novel simulation
schemes are proposed to achieve numerical accuracy, efficiency, and stability. One stems
from numerical Laplace inversion and Asian option literature, and the other is based on
recent developments in evaluating the noncentral chi-squared distribution functions in a
robust way. Numerical examples demonstrate that our method is fast and accurate under
various market environments. (ii) When β < 1 but the price and volatility processes are
correlated, our simulation method becomes a semi-exact one. Numerical results suggest
that it is still quite accurate when the time horizon is not long, e.g., no greater than
one year. For long time horizons, a piecewise semi-exact simulation scheme is developed
that reduces the biases substantially. (iii) For European option pricing under the SABR
model, we propose a conditional simulationmethod, which reduces the variance of the plain
simulation significantly, e.g., by more than 99%.
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1. Introduction
It has long been observed in the derivatives markets
that the implied volatility is not constant across options
contingent on the same underlying but with different
strike prices. The implied volatility is often relatively
lower for near-the-money foreign currency options,
and tends to rise in the in-the-money and the out-of-
the-money directions. Traders refer to this stylized pat-
tern as the volatility smile. In the equity and interest
rate markets, a typical shape of the implied volatil-
ity known as the volatility skew is that it decreases as
the strike price increases. The ubiquitous existence of
volatility smiles and skews poses a great challenge to
the practice of risk management in fixed income and
foreign exchange trading desks. These desks usually
have large exposure across a wide range of strikes.
The fact that different options correspond to different

implied volatilities indicates that we have to model
these smiles accurately to achieve an accurate and sta-
ble hedging.

Stimulated by practitioners’ need to deal with the
smile risk, there is a growing interest in stochastic
volatility models in the area of financial engineering;
see, for example, Hull and White (1987, 1988), Scott
(1987), Wiggins (1987), Johnson and Shanno (1987),
Stein and Stein (1991), Heston (1993), Duffie et al.
(2000), Fouque et al. (2000), Barndorff-Nielsen and
Shephard (2001), and so forth. The stochastic alpha-
beta-rho (SABR) model introduced by Hagan et al.
(2002) has gained popularity in the financial indus-
try to model foreign exchange and interest rate mar-
kets. On the one hand, the SABR model can fit implied
volatility smiles very well with only a few parameters;
on the other hand, it is capable of generating correct
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comovements between the underlying and the smile
curves, which overcomes a salient drawback of con-
ventional local volatility models proposed by Dupire
(1994, 1997) and Derman and Kani (1994, 1998).
Despite the above attractive features of the SABR

model, its complicated structure prevents us from
obtaining closed-form solutions to related pricing
problems of financial derivatives, including European
options, swaptions, and other path-dependent options
such as forward starting options. The literature so far
mainly relies on partial differential equation (PDE)
based approaches to find asymptotic expansions for
option prices under the SABR model. Hagan et al.
(2002) apply the singular perturbation technique in the
PDE to obtain an explicit asymptotic expansion for the
implied volatility, and then substitute it into Black’s for-
mula to yield an analytical approximation to the Euro-
pean option price. Obłój (2008) points out an inconsis-
tency between the results in Hagan et al. (2002) and
Berestycki et al. (2004) under amore general framework
and obtains a corrected version of the implied volatility
formula. Wu (2012) constructs a series expansion for
the joint density of the price and the volatility for the
SABR model through a hierarchy of parabolic equa-
tions and a near-Gaussian coordinate transformation.

However, the aforementioned approaches may have
three limitations. First, to the best knowledge of
the authors, almost all these methods are focused
on computations related to the distributions of the
price and the volatility, European option pricing, or
implied volatilities. It might be difficult to extend these
approaches to price actively traded path-dependent
options such as the forward starting options. Second,
the approximations obtained via these approaches per-
form well only under some limiting conditions of the
time to maturity and strike price, and may otherwise
result in relatively large deviations from the true val-
ues. For instance, the approximate implied volatilities
of Hagan et al. (2002) become less accurate when the
time to maturity is not small, or when the option is
deep in or out of the money; see, e.g., Hagan et al.
(2002), Benaim and Friz (2009) for detailed discussions.
Third, in general, only the first several terms are given
in the existing asymptotic expansion formulas, and
the higher-order terms are always too complicated to
obtain easily. Thus, it becomes difficult to control the
errors in various parameter settings.

In practice, Monte Carlo simulation is a popular
method for option pricing under the SABR model.
Nonetheless, the conventional discretization meth-
ods for the SDE simulation (see, e.g., Chapter 6 of
Glasserman 2004) may not be efficient enough to gen-
erate sufficiently accurate estimates. As shown in the
numerical examples in this paper, if choosing the Euler
scheme, we always have to simulate a large number
of sample paths to reduce the statistical error and, at

the same time, to increase the number of time steps
in each path to reduce the discretization bias. This
may incur a huge computational burden. More seri-
ously, the discretization methods potentially lead to
an extra distortion of the price distribution for the
SABR model besides the conventional one caused by
the discretization. Under the SABR model, the price
process is governed by a constant elasticity of variance
(CEV)-type diffusion whose value ranges in the inter-
val [0,+∞). However, the discretization methods may
generate negative values in the intermediate steps with
a significant probability. Therefore we have to restrict
the values within the domain by, e.g., truncating the
negative values to zero. This would then bring a new
distortion to the original price distribution.

In light of the absence of closed-form option pric-
ing formulas and the drawbacks of PDE-based asymp-
totic expansions and conventional discretization simu-
lation, the aim of this paper is to explore the possibility
of exact simulation for the SABRmodel. Apparently, this
relies heavily on the knowledge about the exact joint dis-
tribution of the forward price and the volatility. Unfor-
tunately, in general cases, it seems very difficult to
derive it, if not impossible. To the authors’ best knowl-
edge, there exists no “complete” answer to this ques-
tion in the literature. A “partial” solution is given as
follows. When the elasticity β� 1, we can show that the
forward price is conditionally normal given the termi-
nal volatility and integrated variance. For any β ∈ [0, 1),
if the price and volatility processes are instantaneously
uncorrelated (ρ � 0), Islah (2009) explicitly derives the
conditional distribution of the forward price, given the
terminal volatility and integrated variance, when 0 is
either an absorbing or a reflecting boundary; if ρ , 0,
the previously exact result for the conditional distribu-
tion serves as an interesting approximation. See Propo-
sitions 2.1 and 6.1.

Based on these results, our paper proposes an exact
simulation method for the forward price and the
volatility of the SABRmodel, when either β�1, or β < 1
and ρ � 0 with an absorbing or a reflecting boundary.
Note that these two special cases are interesting and
important for the SABRmodel in practice. In their orig-
inal paper of the SABRmodel, (Hagan et al. 2002, p. 91)
point out that “The exponent β and correlation ρ affect the
volatility smile in similar ways. . . . , it is difficult to distin-
guish between the two parameters.” Therefore, practically
we may either first fix ρ (e.g., � 0) and then allow β
to change, or first fix β (e.g., � 1) and then allow ρ to
change. This is reasonable because in the former case,
the leverage function Fβ−1

t can capture the dependence
of volatility on the asset price (see Ren et al. 2007),
while in the latter case, the negative correlation ρ can
account for the leverage effect (see Hagan et al. 2002).

Our exact simulation method in these two cases pos-
sesses several appealing features.
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(1) In contrast to the discretization schemes, the
exact simulation method leads to unbiased estimates.
This further results in a faster convergence rate for the
total simulation errors.

(2) Compared to the existing asymptotic expansion
methods for the SABR model, the errors of the exact
simulation are easier to control because simply increas-
ing the sample size N will make the errors converge to
zero at a rate of O(1/

√
N).

(3) The exact simulation scheme is more flexible in
several senses. First, it can be applied to pricing prob-
lems for not only European options but also other com-
plicated path-dependent options such as the forward
starting options. Second, it can be used for the SABR
models with different behaviors at the boundary (the
absorbing boundary and the reflecting boundary).

We plan to take three steps to achieve the exact sim-
ulation:

Step 1. Generate the terminal volatility.
Step 2. Simulate the integrated variance, given the

terminal volatility.
Step 3. Sample the terminal price, given the terminal

volatility and the integrated variance.
It turns out that ourmethod performs accurately and

efficiently. This is made possible because we overcome
two main difficulties in the implementation about
how to simulate two random variables whose distri-
butions can be expressed in terms of the Hartman-
Watson and the noncentral chi-squared distribution
functions, respectively. We propose two novel simula-
tion schemes to achieve numerical accuracy, efficiency,
and stability. One stems from numerical Laplace inver-
sion and Asian option literature, and the other is based
on recent developments in evaluating the noncentral
chi-squared distribution functions in a robust way.
Please see Sections 3.2 and 3.3 for details.

When ρ , 0, our exact simulation method becomes a
semi-exact one in that Steps 1 and 2 are exact, while only
Step 3 is an approximation. Intuitively, the approxima-
tion is expected to be good when the time horizon T
is small, and may become worse when T is big. This
might be because the correlation between the price and
volatility processes has a larger effect on the joint dis-
tribution at longer time intervals. Numerical results
suggest that this semi-exact simulation method is still
quite accurate when T is not big, e.g., no greater than
one year.
However, when T becomes large, our semi-exact

simulation method causes increasing biases. To reduce
the biases, we propose a piecewise semi-exact (PSE) sim-
ulation method, where we first divide the time hori-
zon [0,T] into several short pieces with the same piece
length ∆, and then apply the semi-exact simulation
method piece by piece. It is worth pointing out that ∆
needs not to be very small (i.e., the number of pieces
needs not to be big). In fact, ∆ � 0.5 or 1 is usually

short enough tomake the PSE simulationmethod quite
accurate. See Section 4.3.

This paper contributes to the literature in three ways.
(i) It provides an alternative approach to tackling the
computational issues related to the SABR model, one
of the most popular stochastic volatility models in
finance. In the two special but practically interesting
cases, i.e., when the elasticity β � 1, or β < 1 and ρ � 0,
our simulation is exact and has several advantages over
the Euler scheme and existing asymptotic expansion
approaches. When ρ , 0, the exact simulation method
becomes a semi-exact one that is still quite accurate if
the time horizon is not long. When the time horizon is
long, a PSE simulation method is developed to reduce
the biases significantly.

(ii) For European option pricing under the SABRmo-
del, we propose a novel, conditional simulation method,
which reduces the variances of the plain simulation
estimators substantially, e.g., by more than 99%. See
Section 5 for more details. The idea of conditional sim-
ulation has been applied for European option pricing
under the Heston model (see Broadie and Kaya 2006).
A key step is that they express the conditional Euro-
pean option price, given the terminal volatility and the
integrated variance, explicitly as a Black-Scholes for-
mula, thanks to the conditional normal distribution of
the asset price. However, in general cases, the condi-
tional distribution of the forward price under the SABR
model becomesmuchmore complicated.We overcome
this difficulty with the aid of the results by Carr and
Linetsky (2006). See Theorem 5.1.

(iii) This paper also makes a contribution to the liter-
ature of the SDE simulation. Scholars recently began to
pay attention to exact simulations of SDEs, stimulated
by research developments in financial engineering.
There have been twomain threads in this direction. The
first is to use the special structures of the processes in
question. Broadie and Kaya (2004, 2006) exemplify the
standard reference in this thread to discuss the exact
simulation of affine stochastic volatility jump diffusion
models. Giesecke et al. (2011) explore exact simulation
for point processes with intensities driven by affine
SDEs. Our algorithm also belongs to this category. But
the nonlinearity of CEV diffusion in the price process
excludes the SABR model from the affine processes,
which makes this paper fundamentally different from
these early studies. Chen et al. (2012) build up a sim-
ulation scheme of the SABR model based on the tech-
nique of moment matching. Inspired by Islah (2009) as
well, they suggest to use lognormals to approximate
the Hartman-Watson distribution with the moments of
two distributions matched through small perturbation
expansion. In comparison, their simulation is not exact
even when the price and volatility processes are uncor-
related. Moreover, numerical results suggest that our
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method is more efficient than theirs; see Sections 4.2.2
and 4.4.
The second thread of the SDE exact simulation is

launched by Beskos and Roberts (2005). Their method-
ology combines the celebrated Girsanov Change of
measure theorem with the acceptance-rejection sam-
pling. Chen and Huang (2013) and Giesecke and
Smelov (2013) extend this method to diffusions with
unbounded drifts and jump diffusions, respectively. It
is well known in the SDE literature (see, e.g., Chap-
ter 5.5 of Karatzas and Shreve 1992) that time change and
removal of drift are two major ways to solve an SDE. The
literature started by Beskos and Roberts (2005) essen-
tially attempts to remove the drift using the Girsanov
theorem, while our paper aims at the time change tech-
nique. In this sense, our paper complements that liter-
ature too.
The remainder of this paper is organized as fol-

lows. In Section 2, we introduce the SABR model and
the conditional distribution of the forward price given
the volatility and integrated variance. Section 3 dis-
cusses implementation details of our exact simula-
tion method. Numerical results are given in Section 4,
where we also develop a PSE simulation scheme for
long time horizons when the price and volatility pro-
cesses are correlated. In Section 5, a conditional simula-
tion method is developed for European option pricing.
In Section 6, we extend our simulation method to the
SABR model with a reflecting boundary. All technical
proofs are deferred to the e-companion.

2. The SABR Model
The subsequent analysis uses a number of special func-
tions and random variables. We collect them together
here tomake referencing easier. A noncentral chi-squared
random variable χ′2(µ;λ) with µ degrees of freedom
and noncentrality parameter λ has probability density
function (pdf)

qχ′2(x;µ, λ)� 1
2 exp

(
− x + λ

2

) (
x
λ

) (µ−2)/4

Iµ/2−1(
√
λx)

for x > 0, where Ia( · ) is themodified Bessel function of the
first kind with index a given by

Ia(x)�
+∞∑
k�0

(x/2)a+2k

k!Γ(a + k + 1) , a ∈ �,

and Γ( · ) is the gamma function. Denote its cumulative
distribution function (cdf) by Qχ′2(x;µ, λ). The central
chi-squared random variable χ2(µ) is a special case of
the noncentral one with λ � 0. Its pdf qχ2(x;µ) and cdf
Qχ2(x;µ) are given by

qχ2(x;µ)� e−x/2xµ/2−1

2µ/2Γ(µ/2) and

Qχ2(x;µ)� �[χ2(µ) 6 x]�
∫ x

0
qχ2(y;µ) dy.

In addition, for any invertible function h: �→ �, we
use h−1 to denote its inverse function.

2.1. The SABR Model
Consider a probability space (Ω,F,�), on which two
independent standard Brownian motions {(W (1)

t ,W (2)
t ):

t > 0} are defined. Assume that G1 and G2 are the nat-
ural filtrations generated by them, respectively, and let
F�G1⊗G2. The SABRmodel describes the dynamics of
an asset’s forward price and its volatility, whose values
at time t, 0 6 t 6 T, are denoted by Ft and αt , respec-
tively. The SABRmodel is then given by the solution to
the following SDEs:

dFt � αt F
β
t · [

√
1− ρ2 dW (1)

t + ρ dW (2)
t ], (1)

dαt � ναt dW (2)
t , (2)

where the constants β ∈ [0, 1], ρ ∈ (−1, 1), and ν > 0.
Apparently, the volatility αt follows a geometric Brow-
nian motion and Ft is governed by a CEV-type
diffusion.

A subtle issue arises around the behavior of the for-
ward price process {Ft} at the boundary 0. We can
show that Ft is always nonnegative for all t > 0. How-
ever, under some parameter ranges, it reaches 0 in finite
time with a positive probability and the characteriza-
tion of Equation (1) alone is not sufficient to determine
the process uniquely. Additional specifications about
the behavior of {Ft} at 0 are hence needed. In this
paper, we consider two ways to specify the boundary
conditions: absorbing boundary and reflecting bound-
ary. Roughly speaking, the former one forces the pro-
cess to stay at 0 once it reaches the boundary; the latter
is to “bump” {Ft} back to the positive part immedi-
ately after it hits 0. More rigorous mathematical treat-
ments on the boundary classification for a general SDE
can be found in Borodin and Salminen (2002). In Sec-
tions 2–5, we focus on the absorbing boundary specifi-
cation and leave the discussion of reflecting boundary
to Section 6. Note that the absorbing boundary spec-
ification (for the CEV-type diffusions) is more valid
for modeling the asset price than the reflecting bound-
ary, because the latter causes an arbitrage opportu-
nity. Indeed, one can buy the asset at zero cost at the
moment it hits zero, and can earn a strictly positive
return later due to the reflecting boundary. See, e.g.,
Andersen and Andreasen (2000), Davydov and Linet-
sky (2001), Henry-Labordère (2009), Doust (2012).

2.2. The Conditional Distribution of FT Given α0,
αT , ∫T

0 α
2
s ds, and F0

In this paper, we intend to explore the possibility
of exact simulation from the joint distribution of FT
and αT . It turns out that our method relies on the con-
ditional distribution of FT given α0, αT , ∫T

0 α
2
s ds, and F0.
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The special case of β � 1 is relatively easy to treat.
Given α0, αT , ∫T

0 α
2
s ds and F0, solving the SDE (1) and

integrating the SDE (2) from 0 to T yields, respectively,

FT � F0 exp
{
−1

2

∫ T

0
α2

s ds + ρ
∫ T

0
αs dW (2)

s

+
√

1− ρ2

∫ T

0
αs dW (1)

s

}
, (3)∫ T

0
αs dW (2)

s �
αT − α0

ν
. (4)

Substituting (4) into (3), we obtain

FT � F0 exp
{
−1

2

∫ T

0
α2

s ds +
ρ

ν
(αT − α0)

+
√

1− ρ2

∫ T

0
αs dW (1)

s

}
.

Since {W (1)
s : 0 6 s 6 T} and {αs : 0 6 s 6 T} are indepen-

dent, it follows that provided α0, αT , ∫T
0 α

2
s ds, and F0,

the conditional distribution of ln FT is normal with
mean ln F0 − 1

2 ∫
T
0 α

2
s ds + (ρ/ν)(αT − α0) and variance

(1− ρ2) ∫T
0 α

2
s ds.

Unfortunately, in the general case of β < 1, it seems
very difficult to derive the exact joint distribution of
FT and αT . To the authors’ best knowledge, there exists
no “complete” answer to this question in the literature.
A nice “partial” solution is found by Islah (2009) and
presented in Propositions 2.1 and 6.1. See Section EC.2
in the e-companion for an outline of the related proofs.

Proposition 2.1 (Islah 2009). Fix T > 0 and suppose that
α0, αT , ∫T

0 α
2
s ds, and F0 are given.

(i) When β � 1, the conditional distribution of Ft is log-
normal and satisfies

ln FT ∼N
(
ln F0 −

1
2

∫ T

0
α2

s ds +
ρ

ν
(αT − α0),

(1− ρ2)
∫ T

0
α2

s ds
)
;

(ii) When β ∈ [0, 1), ρ � 0, and {Ft} have an absorb-
ing boundary at 0, the conditional distribution of Ft can
be expressed in terms of noncentral chi-squared distribution
functions, i.e.,

�

(
FT �0

����F0 , α0 , αT ,

∫ T

0
α2

s ds
)
�1−Qχ2

(
A0;

1
1− β

)
; (5)

�

(
FT 6 u

����F0 , α0 , αT ,

∫ T

0
α2

s ds
)

�1−Qχ′2

(
A0;

1
1− β ,C0(u)

)
for any u > 0, (6)

where

A0 �
1∫ T

0 α2
s ds

(
F1−β

0

1− β

)2

and

C0(u)�
1∫ T

0 α2
s ds
· u2(1−β)

(1− β)2 ;

(iii) When β ∈ [0, 1), ρ , 0, and {Ft} have an absorb-
ing boundary at 0, the conditional distribution of FT can be
approximated by the following:

�

(
FT � 0

���� F0 , α0 , αT ,

∫ T

0
α2

s ds
)

≈ 1−Qχ2

(
A; 1+

β

(1− β)(1− ρ2)

)
; (7)

�

(
FT 6 u

���� F0 , α0 , αT ,

∫ T

0
α2

s ds
)

≈ 1−Qχ′2

(
A; 1+

β

(1− β)(1− ρ2) ,C(u)
)

for any u > 0,

(8)

where

A �
1

(1− ρ2)
∫ T

0 α2
s ds

(
F1−β

0

1− β +
ρ

ν
(αT − α0)

)2

and

C(u)� 1

(1− ρ2)
∫ T

0 α2
s ds
· u2(1−β)

(1− β)2 .

Remark 2.1. When β � 1, or β ∈ [0, 1) and ρ � 0, Propo-
sition 2.1 provides an exact conditional distribution
of FT given α0, αT , ∫T

0 α
2
u du, and F0. In Section 3, we

shall propose an exact simulation method to sequen-
tially simulate αT , ∫T

0 α
2
u du, and FT . Note that these two

special cases are also interesting and important for the
SABR model in practice. For more details, please see
the seventh paragraph in Section 1.

Remark 2.2. When β ∈ [0, 1) and ρ , 0, (7)–(8) serve as
an approximation to the conditional cdf of FT . There-
fore the exact simulation method for ρ � 0 in Section 3
becomes a semi-exact one because the simulations of αT
and ∫T

0 α
2
u du are still exact, whereas the simulation of

FT given αT and ∫T
0 α

2
u du is based on the approximate

conditional cdf (7)–(8). However, numerical results
suggest that this semi-exact simulation method is still
quite accurate when T is not big, e.g., T 6 1. When
T is big, we will propose a PSE simulation scheme
to reduce the biases substantially. Specifically, we first
divide the time horizon into a small number of pieces,
e.g., five pieces when T � 5, and then employ the semi-
exact simulation piece by piece. See Section 4.3 for a
detailed discussion.

Remark 2.3. When β ∈ [0, 1), ρ � 0, and 0 is specified
as an absorbing boundary, the conditional distribution
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FT has a positive probability mass at the point 0. More-
over, it is worth pointing out that on the right-hand side
(RHS) of Equation (6), the argument u appears not in
A0 but in C0(u). This means that FT is not a noncentral
chi-squared randomvariable.We only know that its cdf
can be expressed in terms of the noncentral chi-squared
cdf. Therefore, existing algorithms of simulating non-
central chi-squared random variables no longer apply.
We resolve this issue by employing the inverse trans-
form method. Similar difficulty is also encountered for
the semi-exact simulation in the case of ρ , 0. See Sec-
tion 3.3 for details.

3. Simulation of the SABR Model
Based on Proposition 2.1 and Remarks 2.1–2.2, we pro-
pose a simulation scheme for the SABR model to gen-
erate sample pairs of FT and αT , given F0 and α0. It is
divided into three steps.

A Simulation Method for the SABR Model
Step 1. Generate a sample from the distribution

of αT , given α0.
Step 2. Sample from ∫T

0 α
2
s ds, given α0 and αT .

Step 3. Generate a sample from the distribution
of FT , given α0, αT , ∫T

0 α
2
s ds, and F0.

3.1. Sampling from αT Given α0
Since the volatility is driven by a geometric Brownian
motion, it follows that

αT � α0 exp
[
−1

2 ν
2T + νW (2)

T

]
.

Therefore the conditional distribution of lnαT , given
α0, is normal with mean lnα0− 1

2 ν
2T and variance ν2T.

Then, it is straightforward to sample from αT .

3.2. Sampling from ∫T
0 α

2
s ds Given α0 and αT

To sample from ∫T
0 α

2
s ds given α0 and αT , the condi-

tional distribution of ∫T
0 α

2
s ds apparently plays a crucial

role. Yor (1980) derives an explicit expression for the
conditional pdf of a similar r.v.,

A(µ)t :�
∫ t

0
exp(2B(µ)s ) ds , (9)

where B(µ)t :� Bt + µt with {Bt : t > 0} being a standard
Brownian motion and µ a constant; see also, e.g., Equa-
tion (1) on p. 1051 in Barrieu et al. (2004). Applying
Yor’s result, we obtain Proposition 3.1.

Proposition 3.1. The density function of ∫T
0 α

2
s ds, condi-

tioning on α0 and αT , is given by

P
(∫ T

0
α2

s ds ∈ dw
���� α0 , αT

)

�

√
2πTν
w

exp
{

1
2ν2

(
1
T

[
ln

(
αT

α0

)]2

−
α2

0 + α
2
T

w

)}
· I0(r̂) f r̂(ν2T)dw , (10)

where r̂ ≡ r̂(w) :� α0αT/(ν2w), Ia( · ) for a ∈ � denotes the
modified Bessel function of the first kind with index a, and
fr( · ) for r > 0 is the Hartman-Watson density function

fr(t)�
1

I0(r)
r

√
2π3t

exp
(
π2

2t

) ∫
+∞

0
exp

(
−

y2

2t

)
· exp(−r cosh(y)) sinh(y) sin

(
πy
t

)
dy ,

t > 0. (11)

Provided the explicit expression (10) of the condi-
tional pdf, it is tempting to integrate it numerically
to obtain the conditional cdf and generate a sam-
ple of ∫T

0 α
2
s ds, by the acceptance-rejection method or

by the inverse transform method. In either case, we
need to repeatedly evaluate the conditional pdf (10),
and thereby the Hartman-Watson density function
fr( · ) in (11). However, as observed by Yor (1992),
Barrieu et al. (2004), Boyle and Potapchik (2006),
among others, fr(t) is extremely difficult to compute
for small t. Indeed, as t tends to 0, the compo-
nent (r/

√
2π3t)exp(π2/(2t)) outside the integral in (11)

grows exponentially to infinity, while the sign of the
component sin(πy/t) inside the integral changes more
and more frequently. If high-precision computations
are not employed, this would lead to high inaccuracy
for the numerical outcomes of fr(t); see Figures 1–3 in
Barrieu et al. (2004) for this phenomenon. To achieve
an acceptable result, Boyle and Potapchik (2006) point
out that one has to compute the integral in (11) highly
precisely. They use a 90-digit precision during the com-
putation to generate adequately accurate approxima-
tions to f0.5(t) when t � 0.1. Nonetheless, this is not
appealing from the perspective of algorithm efficiency.

To overcome this difficulty, we intend to evaluate
the conditional cdf by inverting its Laplace trans-
form rather than integrating (10) numerically, and then
exploit the inverse transform method to generate a
sample of ∫T

0 α
2
s ds. In the interest of algorithm effi-

ciency, we surely prefer a simpler form of the Laplace
transform, which is not available for ∫T

0 α
2
s ds itself,

unfortunately; see Equation (5.5) in Matsumoto and
Yor (2005) for a complicated expression in terms of a
one-dimensional integral with the integrand involving
the Bessel function of the first kind.

However, we find that this idea is still applicable if
there exists a bĳection h( · ), defined in �+, such that
a simple closed-form Laplace transform of the condi-
tional cdf of h(∫T

0 α
2
s ds) is available. Denote by Lh( · )
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the cdf of h(∫T
t α

2
s ds) given α0 and αT , and by L̂h( · ) its

Laplace transform, i.e.,

L̂h(θ) :�
∫

+∞

0
e−θuLh(u) du , for θ > 0.

If L̂h( · ) is known explicitly, we can evaluate Lh( · )
numerically through some Laplace inversion methods.
Then, given a sample U ∼ Unif [0, 1], applying root-
finding algorithms can solve the equation Lh(V) � U
numerically to obtain the root V . Since V follows the
same distribution as h(∫T

0 α
2
s ds) conditioning on α0 and

αT , then h−1(V) is a sample of ∫T
0 α

2
s ds given α0 and αT .

Consider a special bĳection h(x) � 1/x for x > 0.
Matsumoto and Yor (2005) show that

E
[
exp

(
− λ

A(µ)t

) ���� B(µ)t � x
]
� exp

(
−
φx(λ)2 − x2

2t

)
for any t > 0 and λ > 0, (12)

where A(µ)t is defined in (9) and

φx(λ) :� arcosh(λe−x
+ cosh(x)). (13)

Here, cosh( · ) and arcosh( · ) denote the hyperbolic cosine
and inverse hyperbolic cosine functions, respectively, i.e.,

cosh(y)� e y + e−y

2 and

arcosh(z)� ln(z +
√

z2 − 1).
(14)

Based on (12), we establish the following proposition.

Proposition 3.2. When h(x) � 1/x, the Laplace transform
of Lh( · ) is given by

L̂h(θ)�
1
θ

exp
{
−
[φln(αT/α0)(θν2/α2

0)]2 − [ln(αT/α0)]2

2ν2T

}
,

(15)
where φx(λ) is defined in (13).

Remark 3.1. Note that L̂h(θ)with h(x)� 1/x has a sur-
prisingly simple form (15) that involves elementary
functions only. This appealing feature enables us to
evaluate Lh(u) very efficiently and accurately through
Laplace inversion. To the authors’ best knowledge,
most of the exact simulation methods resorting to the
Laplace transform to generate SDE samples choose
h(x) � x (see, e.g., Broadie and Kaya 2006, Giesecke
et al. 2011). In contrast, our paper selects h(x)� 1/x.

There has been extensive research on numerical
inversion of Laplace transforms. Here, we make use of
the Euler inversion algorithm proposed by Abate and
Whitt (1992), which has been applied widely in finan-

cial engineering, as well as general operations research
due to its high efficiency and accuracy. In addition, the
Euler inversion formula is very simple and thus easy
to implement. Specifically, given the Laplace transform
L̂h(θ), the original function Lh(u) reads

Lh(u)�
eM/2

2u
Re

(
L̂h

(
M
2u

))
+

eM/2

u

+∞∑
k�1
(−1)kRe

(
L̂h

(
M − 2kπi

2u

))
− ed , (16)

where Re(x) is the real part of x, M a positive constant,
i �
√
−1, and ed the discretization error

ed ≡ ed(Lh , u ,M) :�
+∞∑
k�1

e−kMLh((2k + 1)u).

One advantage of the Euler inversion algorithm is that
we can easily control the discretization error by choos-
ing a sufficiently large M. It follows immediately from
0 6 Lh 6 1 that

06 ed 6
e−M

1− e−M ≈ e−M for sufficiently large M. (17)

In our implementation, M is chosen to be 20 as sug-
gested by Abate and Whitt (1992).

Besides, when computing the (nearly) alternating
series of the form ∑

+∞
k�0(−1)k ak in (16), we accelerate the

convergence via Euler transformation, i.e., we approx-
imate ∑

+∞
k�0(−1)k ak by

E(m , n) :�
m∑

k�0

m!
k!(m − k)! 2

−mSn+k ,

where S j :�∑ j
k�0(−1)k ak . We set two parameters m � 20

and n � 35 in our implementation. See Abate and
Whitt (1992) for more details about the Euler inversion
method and Euler transformation.

Remark 3.2. When T is small, the exponent on the
RHS of (15) could be large, either positive or nega-
tive. We study this effect on the accuracy of the Euler
inversion algorithm as well as the selection of involved
algorithm parameters m and n in Section EC.5 in the
e-companion.We suggest a test tomake a proper choice
of m and n to achieve a desired accuracy. It turns
out that when T is no less than one month, which
is typical for common financial applications, choosing
m � 20 and n � 35 has achieved a high accuracy. See
Section EC.5 for details.

In summary, we go through the following two sub-
steps to complete Step 2, namely, to generate a sample
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of ∫T
0 α

2
s ds, given α0 and αT , from its exact conditional

distribution.

Two Substeps in Step 2
Substep 2.1. Generate a sample of V �

h(
∫ T

0 α2
s ds) � 1/

∫ T

0 α2
s ds, given α0 and αT , via the

inverse transform method.
Substep 2.2. Set

∫ T

0 α2
s ds � 1/V , i.e., 1/V is a sam-

ple of
∫ T

0 α2
s ds given α0 and αT .

In Substep 2.1, we need to solve the equation
Lh(V)� U to find V . Due to the monotonicity of
Lh , simple root-finding algorithms such as Newton’s
method and the bisection method are applicable. At
each iteration of the search for the root, the value of Lh
can be calculated quickly and accurately by inverting
its Laplace transform L̂h( · ) numerically via the Euler
inversion algorithm. The numerical tolerance of the
search is set to be 10−6 to achieve the desired accuracy
in our numerical experiments.

3.3. Sampling from FT Given α0, αT , ∫T
0 α

2
s ds, and F0

When β � 1, the conditional distribution of FT given αT
and ∫T

0 α
2
s ds is log-normal by Proposition 2.1. There-

fore, it is simple to sample from FT .
When 0 6 β < 1, we shall focus only on the case

of ρ � 0, where an exact simulation method will be
proposed to sample from FT given α0, αT , ∫T

0 α
2
s ds,

and F0. When ρ , 0, a similar method will serve as
an approximation. As discussed in Remark 2.3, when
ρ � 0, the conditional distribution of FT given in Propo-
sition 2.1 is not a noncentral chi-squared distribution.
Therefore the techniques of simulating the noncentral
chi-squared random variables, such as the ones used in
Broadie and Kaya (2006), no longer apply in our case.
We shall employ the inverse transform method as fol-
lows to achieve the purpose. Define P0 to be the condi-
tional probability of FT at 0 given by (5). Then, we first
generate a sample U ∼ Unif [0, 1]. If U 6 P0, then set
FT � 0. Otherwise, we use the root-finding algorithm to
find the root Û to the following equation, and then set
FT � Û:

�

(
FT 6 Û

���� F0 , α0 , αT ,

∫ T

0
α2

s ds
)

� 1−Qχ′2

(
A0;

1
1− β ,C0(Û)

)
� U. (18)

When searching the root of (18), we are required
to evaluate the noncentral chi-squared cdf Qχ′2(A0; B,
C0(Û)) repeatedly for fixed A0 and B ≡ 1/(1− β), but
various values of C0(Û). Moreover, in a complete run
of our exact sampling of (FT , αT), although the value
of B is always fixed by the model setting, the values of
A0 and C0(Û) vary with ∫T

0 α
2
s ds, and ∫T

0 α
2
s ds and Û,

Figure 1. (Color online) The 1,259 Pairs of (A0 ,C0(Û)) of
Qχ′2 (A0; B,C0(Û)) That We Encounter and Hence Need to
Evaluate When Exactly Generating 100 Samples from
(FT , αT)

4,000 6,000 8,000 10,000 12,000 14,000 16,000
0

3,000

6,000

9,000

12,000

15,000

18,000

A0

C0

Notes. Associated parameters are ν � 0.3, β � 0.8, ρ � 0, T � 0.5, α0 �

0.2, and F0 � 100. We can see that A0 varies over [4,161, 15,172] and
C0(Û) over [0, 16,948].

respectively. It can be seen from their expressions that
they are very sensitive to changes of these values under
many circumstances, for example, when α0 is small or
β is close to 1. As a result, A0 and C0(Û) may vary
over very broad ranges. Figure 1 shows all the pairs of
(A0 ,C0(Û)) of Qχ′2(A0; B,C0(Û)) that we encounter, and
thereby need to evaluate when generating 100 sam-
ples from (FT , αT) with α0 � 0.2 and β � 0.8. We can
see that A0 varies over [4,161, 15,172] and C0(Û) over
[0, 16,948].
It is clear from the discussion above that an algo-

rithm capable of evaluating the noncentral chi-squared
cdf Qχ′2(x; δ, λ) efficiently and accurately for very
broad ranges of parameters is crucial to our simulation.
Although a variety of algorithms have been designed
for computing Qχ′2(x; δ, λ) (see, e.g., Sankaran 1963,
Schroder 1989, Ding 1992, Penev and Raykov 2000),
most of them perform well only if the parameters
vary over certain narrow ranges, and always become
much less efficient otherwise. Recently, Larguinho et al.
(2011) proposed a two-part strategy that combines the
recursive method by Ding (1992) with the analytical
approximation by Penev and Raykov (2000). Numerical
experiments demonstrate that this strategy is consis-
tently efficient for all the parameters x and λ, while
guaranteeing high accuracy with the absolute error no
greater than 10−6.

To be specific, when the parameters x < 500 and
λ < 500, we adopt the following recursive algorithm
proposed by Ding (1992):

Qχ′2(x; δ, λ)�
+∞∑
k�0

yk tk , (19)
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where

t0 �
1

Γ(δ/2+ 1)

(
x
2

) δ/2
e−x/2 , y0 � u0 � e−λ/2 ,

tk � tk−1
x

δ+ 2k
, yk � yk−1 + uk ,

uk �
uk−1λ

2k
for k > 1.

Ding (1992) argues that when δ+2n > x, the truncation
error of the series (19) can be bounded by ∑

+∞
k�n yk tk 6

tn−1x/(δ + 2n − x). In our implementation, we select n
such that the truncation error 6 10−7.

In contrast, when the parameters x > 500 or λ >
500, we apply the analytic approximation of Penev and
Raykov (2000), Qχ′2(x; δ, λ) ≈Ψ(z), whereΨ( · ) denotes
the standard normal cdf and

z � sign(s − 1) ·
[
δ · (s − 1)2

(
1
2s

+ µ2 − κ(1− s)
s

)
− ln

(
1
s
− 2κ(1− s)

s(1+ 2µ2s)

)
+

2Θ(s)
δ

]1/2

,

with

µ2
� λ/δ, s �

√
1+ 4xµ2/δ− 1

2µ2 ,

η �
1+ 2µ2s − 2κ(1− s) − s − 2µ2s2

1+ 2µ2s − 2κ(1− s) ,

κ(s)� (1− s) ln(1− s)+ s − s2/2
s2 ,

Θ(s)�−3
2

1+ 4µ2s
(1+ 2µ2s)2 +

5
3
(1+ 3µ2s)2
(1+ 2µ2s)3

+
2(1+ 3µ2s)

(s − 1)(1+ 2µ2s)2 +
3η

(s − 1)2(1+ 2µ2s)

−
(1+ 2κ(η))η2

2(s − 1)2(1+ 2µ2s) .

Although no analytical result about the bound of the
approximation error exists in Penev and Raykov (2000)
and subsequent literature, Dyrting (2004) reports that
this method can guarantee an accuracy of at least 10−6

over the proposed parameter ranges by some numeri-
cal experiments.
To summarize, when 0 6 β < 1, we take the following

two substeps to complete Step 3.

Two Substeps in Step 3
Substep 3.1. Generate a uniform random vari-

able U ∼Unif (0, 1). If U 6 P0, then set FT � 0 and
the algorithm terminates. Otherwise, go to Sub-
step 3.2.

Substep 3.2. Sample from FT , given F0, α0, αT ,
and ∫T

0 α
2
s ds, via the inverse transform method.

Specifically, use the root-finding algorithm to
find the root Û of the equation �(FT 6 Û | F0 ,
α0 , αT , ∫T

0 α
2
s ds)� U, and then set FT � Û.

4. Numerical Results and a PSE
Simulation Scheme

In Subsections 4.1–4.2, we provide numerical compar-
isons between the proposed exact simulation method
for ρ � 0 and other existing numerical methods for
the SABR model. Our method appears to be very
accurate. The semi-exact simulation method for ρ , 0
is investigated in Subsection 4.3. Numerical exam-
ples suggest that this semi-exact simulation method
is still quite accurate when T is not big, e.g., T 6 1.
When T is large, we propose a PSE simulation method
to improve the accuracy substantially. Subsection 4.4
compares numerically the PSE simulationmethodwith
the Euler scheme and the low-bias scheme of Chen
et al. (2012). Subsection 4.5 gives an example of pricing
exotic options through our simulation method. All the
computations are completed using Matlab 7 on a desk-
top with an Intel Core2 Q9400 2.66 GHZ processor.

4.1. Test of the Accuracy of the Exact
Simulation Method

This subsection is devoted to testing the accuracy of
the exact simulation method for ρ � 0 using Euro-
pean call option prices. Here, we apply the finite differ-
ence method (FDM) to the associated PDEs for the call
option prices and use the resulting values as bench-
marks, where five algorithm parameters are involved,
two for the computing domains and three others for the
discretization stepsizes. To accelerate the convergence,
we use Yanenko’s scheme with Richardson extrapola-
tion (see, e.g., Duffy 2006).

First, we consider three parameter settings in Table 1,
corresponding to the interest rate market (F0 � 0.05),
the foreign exchange market (F0 � 1.10), and the equity
derivatives market (F0 � 100). In these settings, the
expansion formula by Hagan et al. (2002) is expected
to be highly accurate because T, α0Fβ−1

0 ν and log(K/F0)
are all small. Note that the corrected version of the pric-
ing formula of Hagan et al. (2002) by Obłój (2008) turns
out to generate the same results as the former.

Table 2 gives European call option prices obtained
by the exact simulationmethod, the expansion formula
of Hagan et al. (2002), and the FDM. Note that we
simulate a huge number of sample paths (10,240,000)
to generate the exact simulation prices. This results in
very small standard errors. For instance, the standard
errors in Case I.A are at the level of 10−6. However, all
the benchmarks still lie in the quite narrow confidence
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Table 1. Parameter Settings for Testing the Accuracy of the Exact Simulation Method

Case number F0 Range of K T ρ β ν α0

I.A (Interest rate market) 0.05 [0.045, 0.055] 1 0 0.55 0.03 0.20
I.B (Foreign exchange market) 1.10 [1.00, 1.20] 1 0 0.70 0.10 0.20
I.C (Equity derivatives market) 100 [90, 110] 1 0 0.60 0.20 0.30

intervals (CIs) of our exact simulation estimates. This
indicates that our exact simulation method is highly
accurate and reliable.
Second, we attempt to test the accuracy of our exact

simulation method for ρ � 0 when the expansion for-
mula of Hagan et al. (2002) is not reliable. To this end,
we consider three parameter settings in Table 3 in the
foreign exchange market, where we let the maturity T,
the volatility of volatility ν, and the strike K vary in

Table 2. Testing the Accuracy of the Exact Simulation Method When the Expansion Formula by Hagan et al. (2002) Is Highly
Accurate

K Exact simulation Standard errors 95% confidence intervals Hagan et al. FDM

Prices of European call options in the interest rate market (Case I.A)
0.045 0.01727 9.19E−06 [0.01725, 0.01728] 0.01726 0.01725
0.046 0.01681 9.09E−06 [0.01679, 0.01682] 0.01680 0.01679
0.047 0.01636 8.99E−06 [0.01634, 0.01637] 0.01635 0.01634
0.048 0.01592 8.89E−06 [0.01590, 0.01593] 0.01591 0.01590
0.049 0.01549 8.79E−06 [0.01547, 0.01550] 0.01548 0.01547
0.050 0.01507 8.69E−06 [0.01505 , 0.01509] 0.01506 0.01505
0.051 0.01466 8.60E−06 [0.01464, 0.01468] 0.01465 0.01464
0.052 0.01426 8.50E−06 [0.01424, 0.01427] 0.01425 0.01424
0.053 0.01387 8.40E−06 [0.01385, 0.01388] 0.01386 0.01385
0.054 0.01349 8.30E−06 [0.01347, 0.01350] 0.01348 0.01347
0.055 0.01311 8.20E−06 [0.01310, 0.01313] 0.01311 0.01310

Prices of European call options in the foreign exchange market (Case I.B)
1.00 0.14188 5.21E−05 [0.14178, 0.14198] 0.14196 0.14197
1.02 0.12903 5.03E−05 [0.12893, 0.12913] 0.12911 0.12911
1.04 0.11693 4.84E−05 [0.11684, 0.11703] 0.11701 0.11700
1.06 0.10559 4.64E−05 [0.10550, 0.10568] 0.10566 0.10565
1.08 0.09500 4.44E−05 [0.09492, 0.09509] 0.09507 0.09507
1.10 0.08518 4.23E−05 [0.08509, 0.08526] 0.08524 0.08523
1.12 0.07609 4.02E−05 [0.07601, 0.07617] 0.07616 0.07615
1.14 0.06774 3.81E−05 [0.06766, 0.06781] 0.06780 0.06779
1.16 0.06009 3.61E−05 [0.06002, 0.06016] 0.06014 0.06013
1.18 0.05312 3.40E−05 [0.05305, 0.05318] 0.05316 0.05316
1.20 0.04679 3.20E−05 [0.04673, 0.04685] 0.04683 0.04683

Prices of European call options in the equity derivatives market (Case I.C)
90 10.02941 1.48E−03 [10.02652, 10.03230] 10.03079 10.03078
92 8.08810 1.44E−03 [8.08527, 8.09092] 8.08957 8.08958
94 6.22929 1.37E−03 [6.22660, 6.23198] 6.23083 6.23085
96 4.52389 1.26E−03 [4.52143, 4.52636] 4.52561 4.52561
98 3.05762 1.09E−03 [3.05548, 3.05977] 3.05943 3.05938
100 1.90169 8.94E−04 [1.89994, 1.90344] 1.90301 1.90294
102 1.07945 6.83E−04 [1.07811, 1.08079] 1.08033 1.08027
104 0.55708 4.89E−04 [0.55612, 0.55803] 0.55771 0.55769
106 0.26164 3.29E−04 [0.26100, 0.26229] 0.26209 0.26209
108 0.11232 2.11E−04 [0.11191, 0.11273] 0.11269 0.11269
110 0.04444 1.30E−04 [0.04419, 0.04469] 0.04469 0.04468

Notes. We can see that the two benchmarks of Hagan et al. and the FDM lie in the very narrow CIs of our exact simulation estimates. This
suggests that our method is highly accurate.

wide ranges, respectively. The numerical results are
demonstrated in Figure 2. In Cases II.A and II.B (the left
andmiddle panels), whenT is bigger than 4 (years) or ν
is bigger than 0.5, the expansion formula ofHagan et al.
(2002) incurs an increasing upward bias. However, the
results of our exact simulation method always coincide
with those of the FDM. This is not surprising because
as mentioned earlier, Hagan’s expansion formula may
become less accurate when either T or α0Fβ−1

0 ν is large,
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Table 3. Parameter Settings for Testing the Accuracy of the Exact Simulation Method

Case number F0 K T ρ β ν α0

II.A (Maturity varies) 1.10 1.10 [1, 10] 0 0.80 0.40 0.30
II.B (Vol. of vol. varies) 1.10 1.10 1 0 0.80 [0.05, 0.95] 0.30
II.C (Strike varies) 1.10 [0.50, 2.30] 1 0 0.80 0.40 0.30

but the exact simulation method will consistently pro-
duce the unbiased estimator. In Case II.C (the right
panel), all three methods generate almost identical
numerical prices even when the European options are
deep in themoney (K/F0 �50%) and deep out ofmoney
(K/F0 � 200%). The pricing errors are not visible in this
case.

4.2. Comparison between the Exact Simulation
and Other Simulation Schemes

4.2.1. Comparison with the Euler Scheme. Broadie
and Kaya (2006) use the European call option to con-
duct a similar comparison between their exact simu-
lation and the Euler scheme under the Heston model.
Their numerical results indicate that the exact simula-
tion is more accurate than the Euler scheme, because
the former is unbiased, but the latter incurs a bias due
to the Euler discretization, and moreover, the former
can lead to a faster convergence rate. We shall illustrate
that, not surprisingly, our exact simulation method of
the SABRmodel for ρ � 0 possesses similar advantages
over the Euler scheme.
Intuitively, when the “real” initial volatility α0Fβ−1

0
and the volatility of volatility ν get larger, the forward
price {Ft : t ∈ [0,T]} will become more volatile. This
would then lead to more distortions of the distribution
of FT for the Euler scheme, and hence, a larger bias.
To reduce the bias, one has to increase the number
of discretization time steps at the cost of computation
time.

Figure 2. (Color online) Testing the Accuracy of the Exact Simulation Method When the Expansion Formula by Hagan et al.
(2002) Is Not Reliable
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Notes. The sample size of the exact simulation is 100,000. We can see that our results are still accurate and coincide with those of the FDM.

Consider the parameter settings with relatively large
α0Fβ−1

0 and ν and with different maturities (one year,
threeyears and five years) in Table 4. We shall compare
the root mean square (RMS) errors between the exact
simulation method and the Euler scheme. In the Euler
scheme, once a negative value is generated in an inter-
mediate step, we fix its value to be zero until maturity.

For a simulation estimator ÊuP of the true European
option price EuP, its RMS error is defined as

RMS error :�
√
Bias2

+Variance,

where

Bias :� Ɛ(ÊuP) −EuP and
Variance :� Ɛ[(ÊuP− Ɛ(ÊuP))2].

For a fixed sample size N and a fixed number of time
steps M, denote by ÊuP1(N,M) and ÊuP2(N) the Euler
simulation estimator and the exact simulation estima-
tor for the European option price under the SABR
model, respectively. Since ÊuP2(N) is unbiased when
ρ � 0, the corresponding RMS error is simply given
by its standard error. By contrast, the RMS error of
ÊuP1(N,M) consists of the standarderror andanonzero
bias. Besides, we shall compute the true option price
EuP via the FDM, and estimate the mean of the Euler
simulation estimator Ɛ[ÊuP1(N,M)]using ÊuP1(N ∗ ,M)
with N ∗ being a very large number such as 10,240,000.
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Table 4. Parameter Settings in the Comparison between the Exact Simulation Method and the Euler Scheme

Case number F0 Range of K T ρ β ν α0

III.A 0.05 [0.01, 0.09] 1 0 0.30 0.60 0.40
III.B 0.05 [0.01, 0.09] 3 0 0.30 0.60 0.40
III.C 0.05 [0.01, 0.09] 5 0 0.30 0.60 0.40

Table 5 compares the two simulation methods
through their RMS errors for the at-the-money Euro-
pean option prices in the three parameter settings in
Table 4. Figure 3 illustrates how the RMS errors of the
two simulation estimators converge. As suggested by
Duffie and Glynn (1995), the number of time steps for
the Euler scheme is simply set equal to the square root
of the sample size. We can see that the RMS errors of
the exact simulation estimators, which equal the stan-
dard errors, decay approximately at the rate O(1/

√
N)

in all three cases; see Table 6 for the decay ratios as N
increases and Figure 3 for its relationship with simula-
tion times. In comparison, the RMS errors of the Euler
estimators decay more slowly due to the biases.

4.2.2. Comparison with the Low-Bias Simulation
Scheme of Chen et al. (2012). Recently, Chen et al.
(2012) developed a low-bias simulation scheme for
the SABR model. Note that their method is biased
even when ρ � 0 because in an intermediate step, they
employ the moment matching method to approximate
the conditional distribution of ∫T

0 α
2
s ds given α0

and αT . To reduce the bias incurred by the moment
matching, they combine the moment matching with
the discretization method. Therefore, like the Euler

Table 5. Comparison of RMS Errors of at-the-Money European Call Option Prices between the Exact Simulation and the
Euler Scheme in the Three Parameter Settings in Table 4

Exact simulation Euler scheme

Sample size RMS err. Time (sec.) Steps Bias Std. err. RMS err. Time (sec.)

Prices of European call options in Case III.A (T � 1)
10,000 1.14E−03 10.0 100 3.07E−03 1.25E−03 3.32E−03 1.3
40,000 6.02E−04 44.6 200 1.83E−03 6.20E−04 1.93E−03 11.2
160,000 3.05E−04 179.0 400 1.14E−03 3.12E−04 1.18E−03 88.1
640,000 1.52E−04 715.0 800 7.01E−04 1.52E−04 7.17E−04 694.9
2,560,000 7.62E−05 2,482.7 1,600 3.77E−04 7.62E−05 3.85E−04 4,814.2

Prices of European call options in Case III.B (T � 3)
10,000 1.82E−03 9.1 100 9.16E−03 2.41E−03 9.48E−03 1.4
40,000 1.02E−03 41.2 200 5.45E−03 1.09E−03 5.56E−03 10.7
160,000 5.23E−04 165.1 400 3.40E−03 6.15E−04 3.46E−03 84.0
640,000 2.63E−04 654.1 800 2.04E−03 2.74E−04 2.06E−03 675.5
2,560,000 1.34E−04 2,341.0 1,600 1.17E−03 1.33E−04 1.18E−03 4,707.7

Prices of European call options in Case III.C (T � 5)
10,000 2.09E−03 11.7 100 1.44E−02 2.94E−03 1.47E−02 1.5
40,000 1.27E−03 42.2 200 8.51E−03 1.39E−03 8.62E−03 11.6
160,000 6.62E−04 168.9 400 5.32E−03 9.13E−04 5.39E−03 90.3
640,000 3.40E−04 676.1 800 3.15E−03 3.66E−04 3.17E−03 711.5
2,560,000 1.77E−04 2,419.8 1,600 1.87E−03 1.76E−04 1.88E−03 5,001.2

scheme, they need to increase the sample size and the
number of time steps to improve the accuracy.

By contrast, our simulation scheme can exactly sim-
ulate ∫T

0 α
2
s ds, given α0 and αT , without biases. Table 7

compares the pricing results of the low-bias scheme,
our exact simulation method, and the Euler scheme.
The parameters are the same as in Case III.A, and the
sample sizes are all 100,000. It can be seen that our exact
simulation method is more efficient than the low-bias
scheme and the Euler scheme, and requires less time
to achieve the same accuracy.

Figure 3 shows the convergence of the RMS errors of
the exact simulation, theEuler scheme, and the low-bias
scheme in the parameter settings in Table 4. As sug-
gested by Chen et al. (2012), the number of time steps
of the low-bias scheme is chosen to be 1/50 of that for
the Euler scheme. When T � 1, the slopes (computed
by fitting with the least squares method) for the exact
simulation, the Euler scheme, and the low-bias scheme
are −0.499, −0.251, and −0.294, respectively. When T �

3, the slopes for the three methods are −0.495, −0.247,
and −0.314, respectively. When T � 5, the slopes for the
three methods are −0.493, −0.250, and −0.327, respec-
tively. As one can see, the Euler and low-bias schemes
convergemore slowly than the exact simulation.
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Figure 3. (Color online) Convergence of the RMS Errors of the Exact Simulation Method, the Euler Scheme, and the Low-Bias
Scheme in the Three Parameter Settings in Table 4, Namely, Cases III.A–C
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Notes. When T � 1, the slopes for the exact simulation method, the Euler scheme, and the low-bias scheme are −0.499, −0.251, and −0.294,
respectively. When T � 3, the slopes for the three methods are −0.495, −0.247, and −0.314, respectively. When T � 5, the slopes for the three
methods are −0.493, −0.250, and −0.327, respectively.

4.3. A PSE Simulation Method When ρ , 0
When β < 1 and ρ , 0, our simulation method becomes
a semi-exact one because the samplings of αT in Step 1
and ∫T

0 α
2
s ds in Step 2 are exact, and only the simula-

tion of FT given αT and ∫T
0 α

2
s ds in Step 3 is based on an

approximate conditional distribution. More precisely,
weapproximateαu for any u ∈ (0,T] inEquation (EC.10)
by αT to construct the approximate conditional dis-
tribution of FT . See Section EC.2 in the e-companion
for details. Therefore, intuitively, the approximation is
expected to be good when T is small, and to become
worse when T is big.

4.3.1. The Semi-Exact Simulation Scheme When T Is
Small (e.g., T 6 1). To illustrate the performance of the
semi-exact simulation scheme for small T, we use it to
compute the European option prices for wide rages of
parameters in the foreign exchange market, and com-
pare them with those obtained via the FDM. Specifi-
cally, we take 3 values for each of the 3 model parame-
ters, ν, β, and ρ, as 3 representative levels (low, middle,
and high), and select 11 strike prices, including at, in

Table 6. How the RMS Errors (Namely, Standard Errors) of the Exact Simulation Estimators Converge to 0 in the Three
Parameter Settings in Table 4

The convergence rate of the exact simulation estimator

Case III.A Case III.B Case III.C

Sample size RMS err. Decay ratio RMS err. Decay ratio RMS err. Decay ratio

10,000 1.14E−03 N/A 1.82E−03 N/A 2.09E−03 N/A
40,000 6.02E−04 0.526 1.02E−03 0.561 1.27E−03 0.609
160,000 3.05E−04 0.506 5.23E−04 0.514 6.62E−04 0.521
640,000 1.52E−04 0.500 2.63E−04 0.503 3.40E−04 0.513
2,560,000 7.62E−05 0.500 1.34E−04 0.508 1.77E−04 0.519

Note. It can be seen that the convergence rate is approximately O(1/
√

N), and verifies that our exact simulation estimators are unbiased.

and out of the money cases. The sample size of the sim-
ulation is 500,000. Numerical results suggest that the
semi-exact simulation scheme is quite accurate when T
is not big, e.g., T 6 1, and becomes more accurate as T
becomes smaller.

A summary of the results is given in Table 8. When
T � 1, for most cases (92.59%), the prices obtained via
the FDM fall into the narrow 95% CIs of our semi-exact
simulation estimates. The FDM prices fall outside the
CIs only in the extreme cases of ν � 0.9 and ρ � −0.9
(i.e., the volatility process is highly volatile and highly
correlated with the price process). However, in these
extreme cases, the pricing errors are still quite small
with the average relative error 1.33%. When T � 0.5, it
turns out that the FDM prices in all 297 cases fall into
the narrow CIs of our semi-exact simulation estimates.

4.3.2. A PSESimulation SchemeWhen T Is Big. When
the maturity T becomes large, our semi-exact simula-
tion method may no longer perform well. As one can
see in Figure 4, as T rises, our semi-exact simulation
method and the expansion formula of Hagan et al.
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Table 7. Comparison of European Call Option Prices Produced by the Exact Simulation, the Low-Bias Scheme, and the Euler
Scheme

K/F0

∆t 40% 80% 100% 120% 160% 200% Time (sec.)

Euler 1/400 0.0472 0.0429 0.0409 0.0389 0.0352 0.0318 49.4
1/800 0.0463 0.0420 0.0399 0.0380 0.0343 0.0309 99.1
1/1,600 0.0453 0.0411 0.0391 0.0372 0.0336 0.0303 194.0

Low-bias 1/4 0.0461 0.0419 0.0399 0.0379 0.0343 0.0310 78.4
1/8 0.0460 0.0418 0.0398 0.0378 0.0342 0.0308 175.8

Exact 0.0457 0.0416 0.0396 0.0377 0.0341 0.0308 98.3
True values 0.0456 0.0414 0.0394 0.0375 0.0339 0.0306

Notes. Parameters are the same as in Case III.A. “True values” are obtained by the FDM.

Table 8. A Summary of the Numerical Results for Testing the Semi-Exact Simulation Scheme When T � 1 and 0.5

T � 1 T � 0.5

The percentage of the cases where the FDM prices
fall into the CIs

92.59% The percentage of the cases where the FDM prices
fall into the CIs

100.00%

The average width of CIs 1.07E−03 The average width of CIs 7.20E−04
The average absolute error 2.21E−04 The average absolute error 7.16E−05
The maximum absolute error 2.54E−03 The maximum absolute error 2.36E−04
The average relative error 0.19% The average relative error 0.08%
The maximum relative error 3.17% The maximum relative error 0.34%
The average relative error for all “outside the CIs”

cases
1.33%

Notes. The parameters ν ∈ {0.1, 0.5, 0.9}, β ∈ {0.1, 0.5, 0.9}, ρ ∈ {−0.1,−0.5,−0.9}, K ∈ {1.00, 1.02, . . . , 1.20}, F0 � 1.1, and α0 � 0.3. “CI” denotes
“confidence interval.” Absolute and relative errors are between the FDM prices and our simulation estimates. We can see that the semi-exact
simulation scheme is quite accurate when T 6 1, and becomes more accurate as T becomes smaller.

Figure 4. (Color online) European Option Prices Obtained
by Our Semi-Exact Simulation Method, Our PSE Simulation
Method (with ∆� 1 and 0.5), the Expansion Formula of
Hagan et al. (2002) and the FDM, When the Maturity T
Increases
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Notes. The parameters are F0 �1.10, ρ�−0.8, β�0.4, ν�0.5, and α0 �

0.3. The sample size is 100,000. We can see that the PSE simulation
becomes more and more accurate when ∆ decreases from T (i.e., the
semi-exact simulation), to 1, and then to 0.5.

(2002) cause increasing upward biases. Moreover, the
biases of our method are even bigger than those of the
expansion formula of Hagan et al. (2002).

To reduce the biases, we intend to propose a PSE
simulation method. The idea is to first divide the time
horizon [0,T] into several short pieces with the same
piece length ∆, and then to simulate FT by applying
the semi-exact simulation method piece by piece. Since
our semi-exact simulation scheme is quite accurate for
short time intervals, this PSE simulation algorithm is
expected to perform well when the piece length ∆ is
sufficiently small. It is worth pointing out that ∆ needs
not to be very small (i.e., the number of pieces needs
not to be big). In fact,∆�1 or 0.5 has been short enough
to achieve a satisfactory accuracy. As demonstrated in
Figure 4, the PSE simulation scheme becomes increas-
ingly accurate when ∆ decreases from T (i.e., the semi-
exact simulation), to 1, and then to 0.5. Indeed, when
∆� 1, our method has outperformed the expansion for-
mula of Hagan et al. (2002) and has been quite accurate
when T 6 6. When∆�0.5, ourmethod is quite accurate
even in the extreme case T � 10. In summary, we take
the following steps to implement our PSE simulation
scheme.
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The PSE Simulation Method
Step 1. Divide the time horizon into a small num-

ber of short pieces with the piece length ∆ (typi-
cally ∆� 1 or 0.5 is short enough in practice);
Step 2. Apply the semi-exact simulation method

developed in Section 3 piece by piece until we
obtain a sample of FT .

Remark 4.1. It is worth noting that the PSE simulation
method differs greatly from the common discretiza-
tion in simulation. First, the former only needs to
divide the time horizon into a very small number of
pieces, e.g., five pieces when T � 5. However, the latter
always requires a much larger number (e.g., hundreds
or thousands) of discretization time steps. Second, in
each time step, the common discretization simply uses
the normal distribution to approximate the targeted
one, while in each piece, our PSE simulation applies
a sophisticated semi-exact scheme to accomplish the
simulation.

4.4. Comparison between the PSE Simulation
Method and the Euler Scheme as Well as the
Low-Bias Scheme

This section is devoted to comparing our PSE simula-
tion method with the Euler scheme and the low-bias
scheme. First, we would like to compare the biases
of these three simulation methods. As mentioned in
Remark 4.1, for the same maturity, our PSE simula-
tion method requires a much smaller number of time
pieces (or time steps) to reduce the bias to an accept-
able level than does the common discretizationmethod
such as the Euler scheme (a similar phenomenon is
also observed in the comparison between the low-bias
scheme and the Euler scheme in Chen et al. 2012).
To further support this, we conduct a numerical com-
parison of the biases of the European option prices
obtained from the PSE simulation method, the Euler
scheme and the low-bias scheme with respect to the
number of time steps, and the results are shown in Fig-
ure 5. As we can see, on the one hand, the bias of the
PSE simulation method decays faster than the Euler
scheme. Indeed, if we use Ntime to denote the number
of time steps, Figure 5 suggests that the bias of the PSE
simulation method is approximately proportional to
(Ntime)−2, while the bias of the Euler scheme is approx-
imately proportional to (Ntime)−1. In contrast, although
the bias of the low-bias scheme appears to have a sim-
ilar decay rate as that of our PSE simulation method,
the magnitude of its bias is bigger than ours for the
same number of time steps. Intuitively, this is because
the low-bias scheme incurs an extra bias (caused by the
moment matching) in addition to the same bias as that
for our PSE simulation method.

Figure 5. (Color online) Decay of the Biases of the European
Option Prices Obtained from the PSE Simulation Method,
the Euler Scheme and the Low-Bias Scheme with Respect to
the Number of Time Steps
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Notes. The slopes for the PSE method, the Euler scheme, and the
low-bias scheme are about −2.0, −0.9, and −2.0, respectively. The
parameters are F0 � 1.10, ρ �−0.3, β � 0.3, ν � 0.8, α0 � 0.4, and T � 4.
The benchmark prices are obtained by the FDM. The sample sizes
for the bias estimation of these three methods are 10,240,000.

Next, we would like to compare the RMS errors of
these three simulationmethods. Like the Euler scheme,
when applying our PSE simulation method and the
low-bias scheme to option pricing under a limited com-
putational budget, we also need to make a trade-off
between increasing the number of time steps Ntime to
reduce the bias and increasing the number of simula-
tion samples N to reduce the statistical error. Note that
as shown in Figure 5, the biases of our PSE method
and the low-bias scheme decay faster than that of the
Euler scheme. Intuitively, this suggests that it might
be possible to enhance the overall efficiency of these
two methods by spending less computational effort on
the bias reduction. Indeed, Duffie and Glynn (1995)
show that for a simulation scheme designed for option
pricing, if the bias decays at the order of (Ntime)−p ,
then asymptotically it is optimal to increase Ntime pro-
portional to N1/(2p). Accordingly, for the Euler scheme,
Duffie and Glynn (1995) suggest choosing the num-
ber of time steps proportional to the square root of
the sample size (also see, e.g., Broadie and Kaya 2006).
Likewise, for our PSE simulation method and the low-
bias scheme, we would like to have Ntime increasing at
the order of N1/4. This implies less computational effort
on the bias reduction compared to the Euler scheme,
which coincides with our intuition. As mentioned in
Broadie and Kaya (2006), the optimal constant of pro-
portionality is usually not easy to determine. However,
this does not affect the asymptotically optimal decay
rate of the RMS error. According to the suggestion of
Broadie and Kaya (2006), for a given T and a specific
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Table 9. Comparison of the RMS Errors of the European Option Prices Obtained from the PSE Simulation Method, the Euler
Scheme, and the Low-Bias Scheme in the Same Parameter Setting as in Figure 5

PSE simulation Euler scheme Low-bias scheme

Sample size Steps RMS err. Time (sec.) Steps RMS err. Time (sec.) Steps RMS err. Time (sec.)

10,000 1 2.85E−02 14.3 400 7.62E−03 7.1 2 7.90E−02 9.0
40,000 2 8.46E−03 116.0 800 3.54E−03 55.2 3 3.50E−02 61.2
160,000 3 3.44E−03 655.6 1,600 1.77E−03 441.4 4 1.96E−02 349.8
640,000 4 1.99E−03 3,865.5 3,200 1.09E−03 3,500.7 6 7.66E−03 2,266.4
2,560,000 6 5.03E−04 22,597.7 6,400 5.92E−04 27,002.6 8 3.41E−03 12,631.9

sample size N , the number of time steps Ntime of our
PSE simulation method should be selected such that
the discretization bias is close to the statistical error.
Then, if we expect to further improve the accuracy, we
can increase Ntime proportional to N1/4.

Table 9 compares the RMS errors of the three simu-
lation methods for the at-the-money European option
prices in the same parameter setting as that in Figure 5.
The numbers of time steps are chosen based on the dis-
cussion above. Figure 6 illustrates how the RMS errors
of the three simulation estimators converge. In com-
parison, the RMS error of our PSE simulation method
decays faster than that of the Euler scheme. Moreover,
to achieve the same level of the RMS error, it takes less
time to use our PSE simulation method than it does to
use the low-bias scheme.

4.5. An Example of Pricing Exotic Options:
Forward Starting Options

Since analytical solutions or analytical approximations
usually do not exist for exotic option prices under the
SABR model, the Monte Carlo simulation approach
becomes especially useful. Here, we give an example
to price one type of exotic options—forward starting

Figure 6. (Color online) Convergence of the RMS Errors of
the PSE Simulation Method, the Euler Scheme, and the
Low-Bias Scheme in the Same Parameter Setting as in
Figure 5
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options—through our exact (or semi-exact) simulation
method. A forward starting option with maturity T2 is
the same as a European call optionwith a floating strike
kST1

, where k is a positive constant and ST1
is the under-

lying asset price at an intermediate time T1 ∈ (0,T2).
Therefore, its price is given by Ɛ[e−rT2(ST2

−kST1
)+]. The

simulation method applies in a straightforward way.
Table 10 gives the RMS errors of the forward starting
option prices obtained by the exact simulation method
and the Euler scheme in the same parameter settings as
in Table 4, while Figure 7 illustrates the convergence of
the RMS errors for these two methods. We can see that
the RMS errors of the exact simulation estimators decay
faster than those of the Euler estimators.

5. A Conditional Simulation Method for
European Option Pricing

This section proposes a conditional simulation method
for the pricing of European options under the SABR
model, which can substantially reduce the variance (by,
e.g., 99%) of the plain simulation estimators developed
in Section 3. This method is based on the following
theoretical result.
Theorem 5.1. The European call option price Ɛ[(FT −K)+]
under the SABR model with the absorbing boundary 0 has
the following formulas:

(i) When β � 1,

Ɛ[(FT −K)+]� F0Ɛ[e−(ρ
2/2)

∫ T
0 α2

s ds+(ρ/ν)(αT−α0)Ψ(d1)]
−KƐ[Ψ(d2)], (20)

whereΨ( · ) denotes the standard normal cdf,

d1 �
(1/2−ρ2)

∫ T

0 α2
s ds + (ρ/ν)(αT −α0)− log(K/F0)√
(1−ρ2)

∫ T

0 α2
s ds

and d2 �
−(1/2)

∫ T

0 α2
s ds + (ρ/ν)(αT −α0)− log(K/F0)√
(1−ρ2)

∫ T

0 α2
s ds

.

(ii) When β ∈ [0, 1) and ρ � 0,

Ɛ[(FT −K)+]
� Ɛ[C0(1)−1/(2(1−β))A(1+γ0)/2

0 (1−Q(C0(K); 3+ γ0 ,A0))]
−KƐ[Q(A0; 1+ γ0 ,C0(K))], (21)
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Table 10. Comparison of the RMS Errors of the Forward Starting Option Prices Obtained from the Exact Simulation Method
and the Euler Scheme

Exact simulation Euler scheme

Sample size RMS err. Time (sec.) Steps Bias Std. err. RMS err. Time (sec.)

10,000 1.06E−03 12.5 100 1.90E−03 9.55E−04 2.13E−03 2.1
40,000 4.93E−04 49.3 200 1.16E−03 6.07E−04 1.31E−03 16.7
160,000 2.52E−04 198.3 400 7.32E−04 2.80E−04 7.83E−04 130.0
640,000 1.29E−04 797.8 800 4.53E−04 1.29E−04 4.71E−04 1,027.3
2,560,000 6.37E−05 3,198.5 1,600 2.60E−04 6.44E−05 2.68E−04 8,185.6

Note. The parameters used are the same as in Table 4 except that T1 � 1, T2 � 2, and k � 1.

where γ0 � β/(1− β), and A0 and C0(u) are the same as in
Proposition 2.1.
(iii) When β ∈ [0, 1) and ρ , 0,

Ɛ[(FT −K)+] ≈ Ɛ
[
C(1)−1/(2(1−β))A(1+γ)/2Φ+

·
(
−
ρ2γ

2 ,C(K); 3+ γ,A
)]

−KƐ[Q(A; 1+ γ,C(K))],

where γ � β/((1− β)(1− ρ2)), A and C(u) are the same as
in Proposition 2.1, and

Φ+(p , k;δ, α) :�2p
+∞∑
n�0

e−α/2
(
α
2

)n
Γ(δ/2+ p + n , k/2)

n!Γ(δ/2+ n) (22)

with Γ(a , x) denoting the complementary incomplete gamma
function.

According to Theorem 5.1, we propose the following
conditional simulation method for European option
pricing, which is exact when β � 1, or β ∈ [0, 1) and
ρ � 0, and is semi-exact when β ∈ [0, 1) and ρ , 0.

Figure 7. (Color online) Convergence of the RMS Errors of
the Exact Simulation Method and the Euler Scheme for
Pricing of the Forward Starting Options
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Note. The slopes for the exact simulation method and the Euler
scheme are about −0.492 and −0.250, respectively.

The Conditional Simulation Method for
European Option Pricing

Step 1. Exactly generate a sample pair αT and
∫T

0 α
2
s ds, given α0, using the exact simulation

method developed in Section 3;
Step 2.A sample of Ɛ[(FT−K)+ |α0 , αT ,∫T

0 α
2
s ds ,F0]

is given by F0 e−(ρ
2/2)

∫ T
0 α2

s ds+(ρ/ν)(αT−α0)Ψ(d1)−KΨ(d2)
if β � 1, by C0(1)1/(2(β−1))A(1+γ0)/2

0 (1 − Qχ′2(C0(K);
3+γ0 ,A0))−K Qχ′2(A0;1+γ0,C0(K)) if β ∈ [0,1) and
ρ � 0, and approximately by C(1)1/(2(β−1))A(1+γ)/2

Φ+(−ρ2γ/2,C(K);3+γ,A) −KQχ′2(A;1+γ,C(K)) if
β∈[0,1) and ρ,0;
Step 3. Repeat Steps 1 and 2 for N times, and the

sample average gives an estimate for the European
option price Ɛ[(FT−K)+].

Remark 5.1. Broadie and Kaya (2006) apply the con-
ditional simulation method for European option pric-
ing under the Heston model. They show that the con-
ditional European option price, given the volatility
process, can be expressed as a Black-Scholes formula,
thanks to the conditional normal distribution of the
asset price. As for the SABR model, when β � 1, the
forward price FT is also normally distributed condi-
tional on αT and ∫T

0 α
2
s ds. Hence, a similar conditional

Black-Scholes formula is also available. However, when
β < 1, the conditional distribution of FT becomes much
more complicated. We manage to derive an explicit
formula (exact if ρ � 0 and approximate if ρ , 0) for
the conditional European option price given αT and
∫T

0 α
2
s ds, using the results about the truncatedmoments

of noncentral chi-squared random variables in Carr
and Linetsky (2006).

The conditional simulation scheme enables us to
eliminate part of the variance caused by the price
process. Specifically, it removes the randomness of
{W (1)

t : 06 t 6 T}, hence achieving a significant variance
reduction compared to the plain simulation method in
Section 3. To illustrate, Table 11 provides a comparison
of the numerical prices produced by the conditional
simulation scheme and the plain exact simulation. It
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Table 11. Variance Reduction of the Conditional Simulation Method for European Option Pricing Compared to the Plain
Exact Simulation

Exact simulation Conditional exact simulation

Sample size Price Std. err. Time (sec.) Price Std. err. Time (sec.) Var. red. (%)

Prices of European call options in Case III.A (T � 1)
10,000 0.03763 1.14E−03 10.0 0.03945 4.08E−05 8.6 99.87
40,000 0.03950 6.02E−04 44.6 0.03944 2.04E−05 34.5 99.89
160,000 0.03965 3.05E−04 179.0 0.03942 1.03E−05 155.5 99.89
640,000 0.03960 1.52E−04 715.0 0.03941 5.14E−06 615.7 99.89
2,560,000 0.03951 7.62E−05 2,482.7 0.03942 2.57E−06 2,288.3 99.89

Prices of European call options in Case III.B (T � 3)
10,000 0.04075 1.82E−03 9.1 0.04368 3.95E−05 8.8 99.95
40,000 0.04390 1.02E−03 41.2 0.04368 1.98E−05 39.3 99.96
160,000 0.04394 5.23E−04 165.1 0.04364 9.96E−06 151.0 99.96
640,000 0.04377 2.63E−04 654.1 0.04364 4.99E−06 604.2 99.96
2,560,000 0.04380 1.34E−04 2,341.0 0.04364 2.50E−06 2,243.0 99.97

Prices of European call options in Case III.C (T � 5)
10,000 0.04055 2.09E−03 11.7 0.04473 3.86E−05 9.6 99.97
40,000 0.04460 1.27E−03 42.2 0.04472 1.93E−05 38.5 99.98
160,000 0.04485 6.62E−04 168.9 0.04469 9.76E−06 154.4 99.98
640,000 0.04469 3.40E−04 676.1 0.04469 4.89E−06 616.8 99.98
2,560,000 0.04481 1.77E−04 2,419.8 0.04469 2.45E−06 2,292.4 99.98

Notes. The parameters are the same as in Table 4 except that K � 0.05. The last column “Var. red.” denotes the ratio of variance reduction
defined as 1−Var[Conditional simulation]/Var[Exact simulation]. We can see that the conditional simulation method with the same sample
size can reduce the variance dramatically by, e.g., more than 99%.

can be seen that with the same sample size, the con-
ditional method reduces the variances of the plain
exact simulation estimators by more than 99%. We also
compare the RMS errors of the conditional simula-
tion with those of the plain exact simulation and the
Euler scheme, and find that the conditional simulation
method is much more efficient (see Figure 8).

6. An Extension: Exact Simulation
of the SABR Model with a
Reflecting Boundary

Under the SABRmodel with zero specified as a reflect-
ingboundary, noanalytical asymptotic expansions exist

Figure 8. (Color online) Convergence of the RMS Errors of the Conditional Simulation Method, the Plain Exact Simulation
and the Euler Scheme in the Three Parameter Settings in Table 4, Namely, Cases III.A–C

10−6

10−5

10−4

10−3

10−2

R
M

S
 e

rr
or

10−6

10−5

10−4

10−3

10−2

R
M

S
 e

rr
or

10−6

10−5

10−4

10−3

10−2

R
M

S
 e

rr
or

T = 1 T = 3 T = 5

100 101 102 103 104

Simulation time (sec.)

100 101 102 103 104

Simulation time (sec.)

100 101 102 103 104

Simulation time (sec.)

Euler scheme Exact simulation Conditional simulation

for the density function and distribution function of
the forward price FT . Moreover, analytical solutions or
approximations for the European option price and the
implied volatility are also unavailable. Consequently,
MonteCarlo simulationbecomespracticallyuseful. The
exact andsemi-exact simulationmethodsproposedear-
lier for the SABR model with an absorbing boundary
can be extended to the SABR model with a reflecting
boundarybasedon the following result. See Islah (2009)
or Section EC.2 in the e-companion for the proof.
Proposition 6.1 (Islah 2009). Assume thatT>0, β∈[0,1),
0 is a reflecting boundary, and α0, αT , ∫T

0 α
2
u du, and F0 are

given. Define δ0 � (1−2β)/(1− β) and δ � 1− β/((1− β) ·
(1−ρ2)).
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(i) When ρ � 0 and δ0 > 0,

�

(
FT 6 u

���� F0 , α0 , αT ,

∫ T

0
α2

s ds
)

� Qχ′2(C0(u); δ0 ,A0), (23)

where C0(u) and A0 are the same as in Proposition 2.1.
Indeed, FT conditional on α0, αT , ∫T

0 α
2
s ds, and F0 has the

same distribution as the power of a scaled noncentral chi-
squared random variable[(

(1− β)2
∫ T

0
α2

s ds
)
· χ′2

(
δ0; A

)]1/(2(1−β))

. (24)

(ii) When ρ , 0 and δ > 0,

�

(
FT 6 u

����F0 , α0 , αT ,

∫ T

0
α2

s ds
)
≈Qχ′2(C(u);δ,A), (25)

where C(u) and A are the same as in Proposition 2.1.

Accordingly, we can take the same three steps as in
Section 3 to exactly or semi-exactly sample from the
distribution of FT , except that in Step 3, we need to
deal with a different random variable given in Propo-
sition 6.1. Since in this case, the conditional cdf of FT
can also be expressed in terms of the noncentral chi-
squared cdf, the inverse transform method used in
Step 3 in the case of absorbing boundary still applies.
Alternatively, (24) implies that FT conditional on α0, αT ,
∫T

0 α
2
u du, and F0 can be simulated by first generating

a sample for the noncentral chi-squared random vari-
able χ′2(δ0; A), and then substituting it into (24). We
refer to Glasserman (2004) for the details of simulating
a noncentral chi-squared random variable. Numerical
experiments indicate that the two methods perform
similarly well.

Figure 9. (Color online) Marginal Densities of FT Under the SABR Model with a Reflecting Boundary
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Notes. The parameters are ν � 0.04, β � 0.3, ρ � 0, F0 � 0.05, α0 � 0.2, and T � 1. The sample size is 10,240,000. We can see that the densities
generated by the exact simulation and the Euler scheme are quite different near zero. Moreover, as the number of time steps increases, the
density generated by the Euler scheme approaches to the density generated by the exact simulation. The right panel is the magnified part near
zero of the left one.

As an illustrative example, Figure 9 depicts the
marginal density of FT under the SABR model with
a reflecting boundary using the exact simulation and
the Euler scheme with different numbers of time steps
(the right panel is the magnified part near zero of the
left one). In the Euler scheme, once a negative value
is generated in an intermediate step, we use its abso-
lute value instead to guarantee that the generated value
stays within the domain as well as to approximate the
reflecting behavior. We can see that the densities gener-
ated by the two simulation methods are quite different
in the neighborhood of 0. The density generated by the
exact simulation tends to increase as FT goes to 0, while
the densities generated by the Euler scheme tend to
decrease. However, Proposition 6.2 shows that when
δ0 ∈ (0, 1), the marginal density of FT goes to +∞ as u
goes to 0. This implies that the exact simulationmethod
performs better than the Euler scheme. Moreover, we
can see that as the number of time steps increases, the
density generated by the Euler scheme approaches to
the density generated by the exact simulation.
Proposition 6.2. Consider a SABR model with ρ � 0, δ0 ∈
(0, 1), and a reflecting boundary 0. Denote by pFT

(u) the
marginal density of FT . Then, limu→0+ pFT

(u)�+∞.
Remark 6.1. As documented in Goldstein and Keir-
stead (1997), in the period of 1991–1995, the short-term
interest rate in Japan declined to a very low level (below
0.4%) and still remained highly volatile. To address
this issue, it was proposed to describe the interest
rates using models with reflecting boundaries (see,
e.g., Goldstein and Keirstead 1997), and these stud-
ies were supported by much empirical evidence (see,
e.g., Aït Sahalia 1996, Stanton 1997). Since an important
application of the SABR model is in the interest rate
markets (see, e.g., the recent book by Rebonato et al.
2011), it might be interesting to consider a SABRmodel
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with reflecting boundary for the modeling of the inter-
est rates in such markets as Japan. Since the interest
rates in these markets could be very small (close to
zero) and still have great volatility, an accurate simu-
lation in the neighborhood of zero of the SABR model
with the reflecting boundary becomes important.

7. Concluding Remarks
In this paper, we explore the possibility of exact sim-
ulation for the SABR model, one of the most popular
stochastic volatility models in finance. In two special
but practically interesting cases, i.e., when the elastic-
ity β � 1, or β < 1 and the price and volatility processes
are instantaneously uncorrelated (ρ � 0), we develop
an exact simulation scheme for the forward price and
its volatility by proposing two novel simulation meth-
ods to circumvent two involved difficulties. When β < 1
and ρ,0, our simulationmethod becomes a semi-exact
one, which turns out to be still quite accurate when
the time horizon is not long, e.g., no greater than one
year. When the time horizon becomes longer, the semi-
exact simulation incurs increasing biases. A PSE simu-
lation scheme is developed that reduces the biases sub-
stantially. Finally, we propose a conditional simulation
method for European option pricing under the SABR
model. Numerical results suggest that it can reduce the
variance of the plain simulation dramatically, e.g., by
more than 99%.
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