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Abstract

The stochastic-alpha-beta-rho (SABR) model introduced by Hagan et al. (2002) provides a popu-

lar vehicle to model the implied volatilities in the interest rate and foreign exchange markets. To

exclude arbitrage opportunities, we need to specify an absorbing boundary at zero for this model,

which the existing analytical approaches to pricing derivatives under the SABR model typically

ignore. This paper develops closed-form approximations to the prices of vanilla options to incor-

porate the effect of such a boundary condition. Different from the traditional normal distribution-

based approximations, our method stems from an expansion around a one-dimensional Bessel pro-

cess. Extensive numerical experiments demonstrate its accuracy and efficiency. Furthermore, the

explicit expression yielded from our method is appealing from the practical perspective because it

can lead to fast calibration, pricing, and hedging.
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1. Introduction

The SABR model introduced by Hagan et al. (2002) is widely used in the interest rate and

foreign exchange markets. It is a local stochastic volatility model in which the underlying (for-

ward price or rate) follows a constant elasticity of variance (CEV)-type diffusion process and the

dynamics of volatility is governed by a geometric Brownian motion. The popularity of the SABR

model comes from its closed-form asymptotic implied volatility formula and capturing the correct

comovement between the smile dynamics and the forward price (see, e.g., Hagan et al., 2002).

However, the forward price under the SABR model may hit zero with positive probability,

resulting in arbitrage opportunities. Therefore an absorbing boundary condition at zero must be

specified to avoid arbitrage opportunities (see, e.g., Delbaen and Shirakawa, 2002; Rebonato et al.,

2009). A number of analytical approaches presented in the existing literature ignore this require-

ment when they attempt to develop approximate solutions from the pricing partial differential

equations (PDEs). This leads to that some extensively used pricing formulas, such as those given

by Hagan et al. (2002), Obłój (2008) and Paulot (2015), could not rule out arbitrage opportunities.

Our research aims to address the issue how to derive new approximations for the vanilla option

price under the SABR model to incorporate the effect of the absorbing boundary condition.

To this end, this paper introduces a novel combination of three transformations to exploit the

structural properties of the SABR model. They are rescaling, the Lamperti transformation, and

homogenization. These transformations result in two expansion parameters based on the total

volatility of volatility (vol-of-vol) and the correlation between the underlying price and the volatil-

ity. The leading order operator in the transformed pricing PDE is the infinitesimal generator of a

one-dimensional Bessel process, from which we can derive an explicit zero-order approximation.

Furthermore, the transformations we use reveal clearly that the above leading order solution will

achieve a second-order accuracy because no first-order differential operators for either the total

vol-of-vol or the correlation appear in the SABR model after the transformations. To the best of

our knowledge, our approximation takes a new approach relative to the exisiting literature. We also

carry out an exhaustive set of numerical experiments to demonstrate the accuracy and efficiency

of our method.
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Our work relates to three strands of literature. First, a variety of ad-hoc numerical methods

have been proposed to address the absorbing boundary at zero for the SABR model. Neverthe-

less, none of these progress presents (approximate) analytical formulas for the option price. For

instance, Doust (2012) numerically calculates the probability that the forward price hits zero. In

the presence of an absorbing/reflecting boundary at zero, Hagan et al. (2015) analyze the model

in a special case that the correlation is zero. They also introduce the normal SABR model, which

is further analyzed by Balland and Tran (2013). Hagan et al. (2014) propose a numerical scheme

to solve a PDE with an absorbing boundary simplified from the SABR model. Gulisashvili et al.

(2015) study the probability of hitting zero without correlation and further apply it to small strike

implied volatilities. Compared with this literature, our paper is the first one to derive closed-form

approximation for the SABR model with an absorbing boundary and to analyze its accuracy order.

The second strand of the literature is on pricing continuously monitored barrier options. The

traditional analytical methods are often based on the symmetric structure of the underlying models.

Shreve (2004), Jiang (2005) apply the “reflection principle” or the “method of image” to obtain

analytical formulas for barrier options under the Black-Scholes model. Davydov and Linetsky

(2001), Linetsky (2007) develop a spectral method to tackle general one-dimensional models.

All one-dimensional diffusion models in these literature possess some symmetry properties since

their infinitesimal generators are at least formally self-adjoint (see, e.g., formula (3.2) of Linetsky

(2007)). Kwok et al. (1998) provide analytical formulas for barrier options under the multivariate

Black-Scholes model, using the symmetric structures of this model.

The third strand of literature is on asymptotic expansions of the option prices, which are pop-

ular in the option valuation because of their efficiency and flexibility. One well-know method is

based on the theory for analyzing generalized Wiener functionals initiated by Watanabe (1987).

For more details and references, one can refer to Li (2013) and Li (2014) for its applications to

statistical inference and vanilla option valuation, respectively. Another attractive method based on

perturbations of PDEs can be used to find asymptotic formulas for both vanilla and exotic options.

See, e.g., Fouque et al. (2000), Widdicks et al. (2005) for an application to vanilla options. As for

barrier options, Howison and Steinberg (2007) and Ilhan et al. (2004) derive asymptotic formulas

for barrier options under the Black-Scholes model and a fast mean-reverting stochastic volatility
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model, respectively, mainly leveraging on the symmetric structures of these two models.

Under the SABR model, it turns out that pricing a vanilla call without arbitrage is equivalent

to pricing a down-and-out call with a knock-out boundary at zero. However, the SABR model is

not symmetric, which makes the aforementioned approaches invalid. The paper contributes to the

literature by proposing a new method via a transformation combination to tame the intractability.

The remainder of the paper proceeds as follows: In Section 2, we present the SABR model and

the formulation of the arbitrage-free option pricing problem. In Section 3, we derive the analytical

formulas to approximate arbitrage-free vanilla option prices. In Section 4, we numerically justify

the validity of our formulas through option prices and implied volatilities. This paper is concluded

in Section 5. The related proofs and derivations are collected in the Appendixes.

2. The SABR Model and Problem Formulation

2.1. The SABR Model

Consider a probability space (Ω,F ,P), where P is a T -forward martingale measure (cf. Section

9.6.2 of Musiela and Rutkowski (2004) or Section 9.4 of Shreve (2004)). There are two indepen-

dent Brownian motions {Bt; 0 ≤ t ≤ T } and {Wt; 0 ≤ t ≤ T } defined on it. Let {F B
t ; 0 ≤ t ≤ T }

and {F W
t ; 0 ≤ t ≤ T } be the information filtrations generated by the two Brownian motions respec-

tively. Define Ft = F B
t ⊗ F W

t . Denote Ft and At to be the underlying asset’s forward price and

volatility at time t, for any arbitrary t ∈ [0,T ], respectively. The SABR model is specified by the

following system of stochastic differential equations (SDEs):


dFt = AtF
β
t [

√
1 − ρ2dBt + ρdWt],

dAt = νAtdWt,

(1)

where β ∈ [0, 1),1 ν > 0, ρ ∈ (−1, 1). The initial points F0 and A0 are positive. The parameter ν

is known as the volatility of volatility, which plays an important role in the following expansion

for the SABR model. It is clear that this is a local stochastic volatility model in which the forward

1If β = 1, the forward price is a lognormal process, which is always positive. This trivial case is not considered

throughout this paper.
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price F = {Ft; 0 ≤ t ≤ T } follows a CEV-type diffusion process and the dynamics of the volatility

A = {At; 0 ≤ t ≤ T } is given by a geometric Brownian motion.

The process F can hit zero with positive probability. A reflecting boundary is not appropriate

because it will lead to an arbitrage opportunity: we can buy the forward at zero cost when F

hits 0 and sell it for profit when it is reflected back to the positive region. To avoid the arbitrage

opportunity, we must impose an absorbing boundary condition for F at the origin; that is, if F

hits 0, it will remain there from then on. One can refer to Rebonato et al. (2009) for a detailed

discussion. Henceforth, we impose the following assumption on the model:

Assumption 1. 0 is an absorbing boundary of the process F.

This assumption not only ensures that there is no arbitrage opportunity but also ensures the unique-

ness of the solution to the SDE (1).

2.2. Formulation of the Arbitrage Free Option Pricing Problem

Under the T -forward measure, pricing the derivative can be achieved by calculating an ex-

pectation of its payoff (see, e.g., formula (2.20) of Brigo and Mercurio (2006)). Therefore, the

arbitrage-free European option price Vh(t, f , a) at time t is given by the following conditional ex-

pectation:

Vh(t, f , a) = E[h(FT )|Ft = f , At = a], (2)

where h(·) is the payoff function, which can be a call with payoff function h( f ) = ( f −K)+ or a put

with h( f ) = (K − f )+, and K is the strike price. The corresponding option prices are Vc(t, f , a) and

Vp(t, f , a), respectively. Let

τt := min{s ≥ t : Fs = 0} (3)

be the first time the process F hits the lower boundary 0, to which we refer as the barrier hereafter.

Under the assumption that the forward price F does not hit zero before time t, (2) can be rewritten

as follows:

Vh(t, f , a) = E[h(FT )1{τt>T } + h(0)1{τt≤T }|Ft = f , At = a].
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Specifically, if it is a call option, i.e., the payoff function is h( f ) = ( f − K)+, then

Vc(t, f , a) =E[(FT − K)+1{τt>T }|Ft = f , At = a]. (4)

Hence, pricing a European call under the SABR model without arbitrage is equivalent to pricing a

down-and-out call option with a knock-out boundary at zero. If it is a put option, then

Vp(t, f , a) =E[(K − FT )+1{τt>T }|Ft = f , At = a] + K · E[1{τt≤T }|Ft = f , At = a]. (5)

Thus, pricing a put is essentially equivalent to pricing a rebate option. The rebate option expires

when the forward price reaches zero, at which time and the option holder is refunded with a certain

premium (the amount is the probability of hitting zero). The same formulation can be found in

Hagan et al. (2014).

We first focus on deriving an approximate formula for the price of the call option without arbi-

trage, then the put is addressed similarly. The arbitrage-free European call option price Vc(t, f , a),

providing sufficient smoothness, is the solution to a backward Kolmogorov PDE with boundary

and terminal conditions. The PDE for Vc(t, f , a) is specified in the theorem below.

Theorem 1. Assume that ϕ(t, f , a) is differentiable in t, twice differentiable in f and a in the

interior of [0,T ] × R+ × R+. ϕ(t, f , a) is continuous to the boundary, bounded in a and at most

linear growth in f . Moreover, for t ∈ [0,T ) and f , a ∈ (0,+∞), ϕ(t, f , a) satisfies the following

backward Kolmogorov PDE

∂ϕ

∂t
+

1
2

(
a2 f 2β∂

2ϕ

∂ f 2
+ 2ρνa2 f β

∂2ϕ

∂ f∂a
+ ν2a2∂

2ϕ

∂a2

)
= 0, (6)

with boundary and terminal conditions

ϕ(t, 0, a) = 0, ϕ(T, f , a) = h( f ). (7)

Then, ϕ(t, f , a) admits a stochastic representation as follows:

ϕ(t, f , a) = E[h(FT )1{τt>T }|Ft = f , At = a].

In particular, such a solution is unique.

Proof. See Appendix A.
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3. Approximate Solutions to the Arbitrage-Free Option Pricing Problem

In this section, we shall develop approximate formulas for the arbitrage-free price of vanilla

options. We first consider the problem of pricing the call, i.e., solving the PDE (6) with the payoff

function being fixed at h( f ) = ( f − K)+ in (7). As shown in Section 3.1, three transformations on

(6) change the problem into a new one (19). Note that the leading order differential operator in

(19) is the corresponding infinitesimal generator of a one-dimensional Bessel process. This feature

results in a lot of tractability when we solve for the zero-order approximation. More importantly,

by exploiting the structure of the SBAR model, the three transformations we used also ensure

that all the first-order terms disappear when we expand the equation in terms of the total vol-of-

vol and the correlation. In other words, the zero-order approximation we obtain in this section

can actually achieve a high-order accuracy, providing a theoretical foundation to explain why

our approximation works very well in the numerical experiments, as illustrated in the subsequent

section. We derive the approximate formula for the put option price in Section 3.3.

3.1. Transformations

As aforementioned, the key leading to our approximation is three transformation steps that we

shall discuss in details in this subsection. We first rescale the time and state variables (cf. (8))

to introduce a new perturbation parameter, the total vol-of-vol. Then, we carry out the Lamperti

transformation (11) to unitize the volatility coefficient into 1. This operation yields a new differ-

ential equation (13) whose leading order differential operator L0 is the infinitesimal generator of a

one-dimensional Bessel process. Finally, we use a homogenization procedure to remove the total

vol-of-vol in the initial (terminal) condition, accomplishing the last step to an analytical zero-order

approximation.

3.1.1. Rescaling

We rescale the time and volatility variables while keeping the forward price unchanged as

follows:

τ =
T − t

T
, f = f , g =

a
ν
. (8)
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Let C1(τ, f , g) be the call option price after rescaling; that is,

C1(τ, f , g) := Vc(t, f , a) ≡ Vc(T (1 − τ), f , νg). (9)

Obviously, the following relationships should hold between the derivatives of functions Vc(t, f , a)

and C1(τ, f , g):

∂Vc

∂t
= (− 1

T
)
∂C1

∂τ
,
∂Vc

∂a
=

1
ν

∂C1

∂g
,
∂2Vc

∂a2
=

1
ν2

∂2C1

∂g2
,
∂2Vc

∂ f∂a
=

1
ν

∂2C1

∂ f∂g
.

Substituting the above derivatives into the PDE (6), the new function C1(τ, f , g) in (9) under

the new coordinates (τ, f , g) now satisfies the following equation:

∂C1

∂τ
=
ε2

2

(
g2 f 2β∂

2C1

∂ f 2
+ 2ρg2 f β

∂2C1

∂ f∂g
+ g2∂

2C1

∂g2

)
, C1(τ, 0, g) = 0, C1(0, f , g) = ( f − K)+. (10)

Note that a new parameter ε = ν
√

T arises in (10). We refer to it as the total vol-of-vol from now

on.

3.1.2. Lamperti Transformation

The Lamperti transformation is a standard technique in the literature to transform a one-

dimensional diffusion process with a general volatility coefficient into a new diffusion with volatil-

ity of unity (that is, the coefficient of the diffusion term is 1). As one of the major innovative tech-

niques of this paper, we apply it to the SABR model, an example of two-dimensional diffusions.

Define new coordinates (x, y) as follows:

x =

∫ f

0

du
εuβg

=
f 1−β

ε(1 − β)g
, y = g. (11)

By it, we should have


∂x
∂ f = 1

ε f βg ,

∂x
∂g = −x

g ,

∂2 x
∂ f 2 =

−β
ε f 1+βg ,

∂2 x
∂ f∂g = −1

ε f βg2 ,

∂2 x
∂g2 = 2x

g2 ;



∂
∂ f = ∂x

∂ f
∂
∂x ,

∂2

∂ f 2 = ( ∂x
∂ f )2 ∂2

∂x2 + ∂2 x
∂ f 2

∂
∂x ,

∂
∂g = ∂x

∂g
∂
∂x + ∂

∂y ,

∂2

∂g2 = (∂x
∂g )2 ∂2

∂x2 + 2(∂x
∂g ) ∂2

∂x∂y + ∂2

∂y2 + ∂2 x
∂g2

∂
∂x ,

∂2

∂ f∂g = ( ∂x
∂ f

∂x
∂g ) ∂2

∂x2 + ( ∂x
∂ f ) ∂2

∂x∂y + ∂2 x
∂ f∂g

∂
∂x .
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Let C2(τ, x, y) denote the function C1(τ, f , g) transformed under the new coordinates (x, y); that is,

C2(τ, x, y) := C1(τ, f , g) ≡ C1(τ, (ε(1 − β)xy)1/(1−β), y). (12)

For τ ∈ (0, 1], x > 0, simple calculations show that the transformation changes the PDE (10)

regarding C1 into the following PDE regarding C2:

L0C2(τ, x, y) = (ερL1 + ε2L2)C2(τ, x, y), C2(τ, 0, y) = 0, C2(0, x, y) = ((ε(1− β)xy)2θ −K)+, (13)

where θ = 1/(2(1 − β)) and

L0 =
∂

∂τ
− 1

2
∂2

∂x2
− 1 − 2θ

2x
∂

∂x
, L1 = −x

∂2

∂x2
− ∂

∂x
+ y

∂2

∂x∂y
, L2 =

1
2

x2 ∂
2

∂x2
+ x

∂

∂x
+

1
2

y2 ∂
2

∂y2
− xy

∂2

∂x∂y
.

(14)

Now we can see clearly the advantages of such transformations under the SABR model from

the initial-boundary value problem (13). First, note that θ > 0 since β ∈ [0, 1). Via this transformed

equation, we manage to relate the SABR model to the celebrated Bessel process because the

leading order operator L0 is exactly the same as the infinitesimal generator of the latter with an

absorbing boundary at 0.2 A body of literature, upon which our zero-order approximation is based,

has been developed around how to explicitly solve the initial-boundary value problem associated

with L0; see, e.g., Davydov and Linetsky (2001); Polyanin (2001). In contrast with this existent

literature on one-dimensional diffusion models, a technical barrier still remains for the SABR

model due to its two-dimensional nature. In particular, the initial value C2(0, x, y) is a non-smooth

function and contains a fraction order of ε. That entails the last step we will discuss in the next

subsection. Second, the right hand side of the PDE (13) does not contain first-order terms in either

ε or ρ. As illustrated in Section 3.2, this observation implies that the approximation error of our

approach will be in the order of O(max(ε2, |ρ|ε)).
As far as we know, the introduction of this special Lamperti transformation is also new to the

study of the SABR model. The previous research, such as Hagan et al. (2002) and Doust (2012),

2A special case is β = 0, in which L0 turns out to degenerate the corresponding infinitesimal generator of a

one-dimensional Brownian motion.
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often use the infinitesimal generator of a Brownian motion as the leading term of their expan-

sion. Compared with these methods, the numerical experiments show that our new expansion can

achieve higher accuracy, especially in the presence of the absorbing boundary at zero.

3.1.3. Homogenization

To overcome the difficulty caused by the fractional order of ε in the initial value condition, we

use a further homogenization step in this subsection to remove ε from C2(0, x, y). Denote

k =
K1−β

ε(1 − β)
. (15)

Then we have

C2(0, x, y) = ((ε(1 − β)y · x)2θ − (ε(1 − β) · k)2θ)+ = γ(ε)((xy)2θ − k2θ)+, (16)

where

γ(ε) := (ε(1 − β))2θ. (17)

Define a new function C(τ, x, y) by dividing the coefficient γ(ε) from the function C2(τ, x, y):

C(τ, x, y) := γ−1(ε)C2(τ, x, y) ≡ (ε(1 − β))−2θC1(τ, (ε(1 − β)xy)2θ, y). (18)

From (13), we conclude that C(τ, u, v) satisfies the following equation:

L0C(τ, x, y) = (ερL1 + ε2L2)C(τ, x, y), C(τ, 0, y) = 0, C(0, x, y) = ((xy)2θ − k2θ)+, (19)

where L0, L1 and L2 are defined in (14). Note that the initial condition (cf. the last equality of

(19)) does not contain the fraction order of total vol-of-vol any longer.

Our approach differs from the traditional singular perturbation method. The singular pertur-

bation approach solves the initial-boundary value problem (see, e.g., Kevorkian and Cole, 1996;

Widdicks et al., 2005) by matched asymptotic expansion. Our analysis takes a brand-new route: a

combination of the Lamperti transformation (11) and the homogenization (16) transforms the orig-

inal PDE to (19), in which the perturbation parameters just appear in the equation itself, neither in

the boundary nor in the initial conditions.
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3.2. Approximate Solution to the Arbitrage-Free Call Option Price

So far we have introduced two perturbation parameters, ε and ρ, in the pricing PDE (19)

through three transformations. In order to derive an approximate solution to it and inspired by

Fouque et al. (2003), we carry out a double asymptotic analysis in the regime where both of them

are small independent parameters. In the following derivation we choose to expand first with

respect to ε and subsequently with respect to ρ. This choice is more convenient than the reverse

ordering which in fact gives the same result.

Consider the following expansion for the solution to Eq. (19), in powers of ε first:

C(τ, x, y) = C(0)
ρ (τ, x, y) + ε ·C(1)

ρ (τ, x, y) + O(ε2). (20)

Substituting the RHS of (20) into Eq. (19) and comparing the coefficients of the constant term

and the ε-term, we find that the leading term C(0)
ρ (τ, x, y) and the first-order term C(1)

ρ (τ, x, y) should

satisfy respectively

L0C
(0)
ρ (τ, x, y) = 0, C(0)

ρ (τ, 0, y) = 0, C(0)
ρ (0, x, y) = ((xy)2θ − k2θ)+, (21)

and

L0C
(1)
ρ (τ, x, y) = ρL1C

(0)
ρ (τ, x, y), C(1)

ρ (τ, 0, y) = 0, C(1)
ρ (0, x, y) = 0. (22)

From (21), we can see that C(0)
ρ (τ, x, y) is indeed independent of ρ. Furthermore, noting that

L0 is the corresponding infinitesimal generator of a one-dimensional Bessel process, C(0)
ρ (τ, x, y)

is explicitly solvable according to the following lemma.

Lemma 1. For all continuous functions f (τ, x) and g(x), which exhibit at most linear growth in x,

the solution to the equation

L0P(τ, x) =

(
∂

∂τ
− 1

2
∂2

∂x2
− 1 − 2θ

2x
∂

∂x

)
P(τ, x) = f (τ, x),

with P(τ, 0) = 0 and P(0, x) = g(x) can be computed from

P(τ, x) =

∫ τ

0

∫ +∞

0
Λ(τ − s, x, ξ) f (s, ξ)dξds +

∫ +∞

0
Λ(τ, x, ξ)g(ξ)dξ,

11
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where Λ(τ, x, ξ) is given by

Λ(τ, x, ξ) =
xθξ1−θ

τ
exp

(
− x2 + ξ2

2τ

)
Iθ

( xξ
τ

)
, (23)

and Iθ(z) is the modified Bessel function of the first kind given below:

Iθ(z) =

+∞∑

m=0

(z/2)2m+θ

m!Γ(1 + m + θ)
.

Proof. One can refer to the content in Section 1.2 of Polyanin (2001) or Section 21 in Appendix I

of Borodin and Salminen (2002).

Invoking the previous lemma, detailed calculation in Appendix B shows that

C(0)
ρ (τ, x, y) =

∫ +∞

0
Λ(τ, x, ξ)((ξy)2θ − k2θ)+dξ

=(xy)2θ

(
1 − Q

(
k2

τy2
; 2θ + 2,

x2

τ

))
− k2θQ

(
x2

τ
; 2θ,

k2

τy2

)
. (24)

where

Q(x; κ, λ) =

∫ x

0
q(ξ; κ, y)dξ and q(ξ; κ, y) =

e−(ξ+y)/2

2

(
ξ

y

)(κ−2)/4

Iκ/2−1(
√
ξy). (25)

Here, q(x; κ, y) and Q(ξ; κ, y) are the density and cumulative distribution functions of a noncentral

chi-square distribution with non-centrality y and degree κ, respectively.

Then, we further expand C(1)
ρ (τ, x, y) with respect to ρ, i.e., C(1)

ρ (τ, x, y) = C(1,0)(τ, x, y) + O(|ρ|),
and substitute its RHS into Eq. (22). By matching coefficients we know C(1,0)(τ, x, y) satisfies the

following PDE, which further implies C(1,0)(τ, x, y) = 0 according to Lemma 1:

L0C
(1,0)(τ, x, y) = 0, C(1,0)(τ, 0, y) = 0, C(1,0)(0, x, y) = 0.

That means, we actually have C(1)
ρ (τ, x, y) = O(|ρ|) and hence the solution to Eq. (19) can be written

as

C(τ, x, y) = C(0)
ρ (τ, x, y) + O(ε ·max(ε, |ρ|)). (26)
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Given the formula for C(0)
ρ (τ, x, y) above, we can obtain the approximate formula for the call

option price under the original coordinates. Recall that θ = 1/(2(1 − β)). Combining the trans-

formations (8), (11), and (15) as well as the functions (9), (12), and (18) defined after each trans-

formation, then we have the following approximate solution V̄c(t, f , a) to the arbitrage-free call

option price under the original coordinates:

V̄c(t, f , a) = f ·
(
1 − Q

(
K2(1−β)/(1 − β)2

a2(T − t)
;

3 − 2β
1 − β ,

f 2(1−β)/(1 − β)2

a2(T − t)

))

− K · Q
(

f 2(1−β)/(1 − β)2

a2(T − t)
;

1
1 − β,

K2(1−β)/(1 − β)2

a2(T − t)

)
. (27)

Moreover, from (18) and (26), the approximation of the call option price now reads as follows:

Vc(t, f , a) = V̄c(t, f , a) + O(ε
2−β
1−β ·max(ε, |ρ|)). (28)

3.3. Approximate Solution to the Arbitrage-Free Put Option Price

Let ϕp(t, f , a) and H(t, f , a) be the down-and-out put option price and the probability that the

forward hits zero, which are given by

ϕp(t, f , a) = E[(K − FT )+1{τt>T }|Ft = f , At = a], H(t, f , a) = E[1{τt≤T }|Ft = f , At = a]. (29)

Thus by (5), the arbitrage-free put option price is given by

Vp(t, f , a) = ϕp(t, f , a) + K · H(t, f , a). (30)

Mimicking the procedure in Sections 3.1 and 3.2, we can derive an approximate formula for the

price of the down-and-out put option. The only difference is that the payoff function is h( f ) =

(K − f )+ instead of ( f − K)+ in PDE (10). Similarly, ϕp(t, f , a) can be approximated by ϕ̄p(t, f , a)

below (A sketch of the derivation is provided in Appendix C.)

ϕp(t, f , a) =ϕ̄p(t, f , a) + O(ε
2−β
1−β ·max(ε, |ρ|)),

ϕ̄p(t, f , a) =K ·
(
1 − Q

(
f 2(1−β)/(1 − β)2

a2(T − t)
;

1
1 − β,

K2(1−β)/(1 − β)2

a2(T − t)

))
(31)

− f · Q
(

K2(1−β)/(1 − β)2

a2(T − t)
;

3 − 2β
1 − β ,

f 2(1−β)/(1 − β)2

a2(T − t)

)
.
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Moreover, according to Theorem 4.5 in Yang and Wan (2016) and its proof, the probability of

hitting zero H(t, f , a) in (29) has the following representation:

H(t, f , a) =
1

Γ(θ)
Γ

(
θ,

f 2(1−β)/(1 − β)2

ε2(a/ν)2(1 − t/T )

)
+ O (ε ·max(ε, |ρ|)) , (32)

where Γ(θ, z) =
∫ ∞

z
e−xxθ−1dx and Γ(θ) = Γ(θ, 0) are the upper incomplete gamma and gamma

functions, respectively. Note that the first term on the right hand side of (32) converges faster than

any polynomial order of ε. Therefore, by the formulas (30), (31), and (32), the price for the put

option without arbitrage can be approximated by ϕ̄p(t, f , a) as follows:

Vp(t, f , a) = ϕ̄p(t, f , a) + O(ε ·max(ε, |ρ|)). (33)

We can summarize the above results in the following theorem.

Theorem 2. Under Assumption 1, the prices for the call and put options without arbitrage, i.e.,

Vc(t, f , a) and Vp(t, f , a), can be expanded in (28) and (33), respectively.

Note that the approximate formulas in (27) and (31) involve the noncentral chi-square distri-

bution function, which can be evaluated very quickly and thus be applied in real time transactions.

There exist a lot of efficient algorithms to implement the noncentral chi-square distribution func-

tion. One can refer to Dyrting (2004) and Larguinho et al. (2013), which discuss the tradeoff be-

tween speed and accuracy for different approaches. They both provide a comprehensive literature

review and detailed numerical tests for the performance of various approaches. For convenience

and completeness, we also present and test some methods in detail in Appendix D. In the numer-

ical experiments, for the purpose of only illustrating the validity of our formulas, we directly use

the library function ‘ncx2cdf ’ in Matlab.

4. Numerical Experiments

This section verifies the accuracy and effectiveness of our approximate formulas (27) and (31)

for the call and put options without arbitrage. For the formula (27), implied volatilities rather

than option prices are examined since the implied volatility is modeled directly in practice. The

14
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approximate formula (31) for the put option price is directly examined. The codes for all numer-

ical experiments are written in Matlab R2013a, and implemented on a PC desktop with Intel(R)

Core(TM)2 Quad CPU Q9400@2.66GHZ.

We compare the performance of implied volatilities computed from three approaches: the

closed-form formula provided by Hagan et al. (2002), our approximate formula (27) for the call

option price, and the Monte Carlo simulation. First, the implied volatilities of Hagan et al. (2002)

are directly computed from their formula. Second, we first calculate the call option prices us-

ing (27), and then obtain the implied volatilities by numerically inverting the option prices. The

calculation of option prices through (27) and implied volatilities are accomplished by two library

functions ‘ncx2cdf ’ and ‘blsimpv’ in Maltab, respectively. Such computation only takes several

milliseconds on average for one trial. Third, the Monte Carlo simulations via Euler discretization

produce the call option prices without arbitrage based on (4). Then we also numerically inverted

the option price to the implied volatility. To monitor the absorbing boundary at zero, the number

of simulated samples is 1, 000, 000 and the number of time steps is 25, 200 per year, which apply

in this whole section.

The performance of these approaches is examined in three aspects. We compute the implied

volatilities with different levels of strike, vol-of-vol, and correlation. We first plot implied volatili-

ties generated by three methods against strike prices in Figures 1-4, which correspond to different

vol-of-vol, correlation, initial volatility, and beta (i.e., the parameter β in (1)), respectively. The

blue solid line, denoted by “MC”, is the implied volatilities generated by the Monte Carlo simula-

tions. The black dotted line, denoted by “HKLW”, is plotted from the implied volatility formula

of Hagan et al. (2002). The red dashed line, denoted by “This paper”, is generated by the formula

(27). Second, we plot errors of the formulas (27) and Hagan et al. (2002) relative to the Monte

Carlo simulations (benchmark) in Figure 5 when the vol-of-vol varies between 0.1 and 4 provided

four maturities “1/12, 1/4, 1/2, 1”. The black dotted and red dashed lines are plotted from Hagan

et al. (2002) and the formula (27), respectively. There are 40 points in each line. The relative error

is defined by “Relative error = |Method−MC|
MC ”, where “Method” is either “HKLW” or “This paper”.

Third, we plot the relative errors in Figure 6 as the correlation changes from “-0.1” to “-0.9”. The

rest of the other setting is similar to that in Figure 5.
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Figure 1: Implied Volatilities versus Strikes under Different Levels of Volatility of Volatility
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Notes: The black dotted, blue solid, and red dashed lines plot the implied volatilities generated by Hagan

et al. (2002)’s formula, the Monte Carlo simulation, and the formula (27), respectively. In the left panel,

the volatility of volatility is ν = 0.2, while in the right panel it is ν = 0.5. The rest of the parameters are

f = 0.05, T = 1, a = 0.1, β = 0.1, ρ = 0.

Figures 1-4 plot implied volatilities against strikes under different combinations of other pa-

rameters. The pictures on the left and right panels in Figure 1 correspond to relatively small and

large vol-of-vol, respectively, while the other parameters values are the same for both pictures.

For the two levels of vol-of-vol, the implied volatilities generated by the formula (27) are quite

close to the benchmark (the Monte Carlo simulation), whereas the implied volatility from Hagan

et al. (2002) deviates from the benchmark as the strike price decreases. The deviation becomes

substantially large for small strikes. Similar patterns appear in Figure 2, in which the correlations

for pictures on the left and right are relatively small and large, respectively.

In Figure 3, the pictures on the left and right panels have relatively small and large initial

volatilities, respectively. Implied volatilities from Hagan et al. (2002) are inconsistent with the

benchmark. For the formula (27), its performance may also become inconsistent relative to the

benchmark as the strikes become extremely small. However, the overall performance of our for-

mula (27) is better than that of Hagan et al. (2002).

For the picture on the left panel of Figure 4, our results almost overlap with the benchmark

when the beta is small (β = 0.2). In contrast, the distance between Hagan et al. (2002)’s implied
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Figure 2: Implied Volatilities versus Strikes under Different Degrees of Correlation
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Notes: The black dotted, blue solid, and red dashed lines plot the implied volatilities generated by Hagan

et al. (2002)’s formula, the Monte Carlo simulation, and the formula (27), respectively. In the left panel, the

correlation is ρ = 0.2, while in the right panel it is ρ = 0.5. The rest of the parameters are f = 0.05, T = 1,

a = 0.1, β = 0.1, ν = 0.1.

volatilities and the benchmark cannot be neglected. For the picture on the right panel of Figure 4

with a larger beta (β = 0.5), the implied volatilities generated by all three methods coincide with

each other for most of the strikes. However, for extremely small strikes, the implied volatilities

from both the formula (27) and Hagan et al. (2002) are almost the same, and a little larger than the

benchmark.

Figure 5 demonstrates the impact of the total vol-of-vol (ε = ν
√

T ) on the validity of the

formula (27). For a given maturity (T = 1/12, 1/4, 1/2, 1), each picture plots the relative errors

produced by the formula (27) and Hagan et al. (2002) as the vol-of-vol changes from 0.1 to 4.

The magnitude of the total vol-of-vol instead of the vol-of-vol determines the region valid for the

approximation. In detail, the relative errors of the formula (27) are less than 1% for the following

cases: (i) T = 1/12 and ε ≤ 0.37, (ii) T = 1/4 and ε ≤ 1, (iii) T = 1/2 and ε ≤ 0.35, (ii)

T = 1 and ε ≤ 0.2. If we increase the tolerance level to 5%, then the formula (27) is valid for: (i)

T = 1/12 and ε ≤ 1.13, (ii) T = 1/4 and ε ≤ 1.55, (iii) T = 1/2 and ε ≤ 0.98, (iv) T = 1 and

ε ≤ 0.6. Moreover, Figure 5 also shows that the smaller the maturity, the larger the total vol-of-

vol valid for the approximation. In contrast, the relative errors of Hagan et al. (2002) are larger
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Figure 3: Implied Volatilities versus Strikes under Different Initial Volatilities
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Notes: The black dotted, blue solid, and red dashed lines plot the implied volatilities generated by Hagan

et al. (2002)’s formula, the Monte Carlo simulation, and the formula (27), respectively. In the left panel, the

initial volatility is a = 0.2, while in the right panel it is a = 0.5. The rest of the parameters are f = 0.05,

T = 1, β = 0.1, ρ = 0, ν = 0.1.

than 5% for T = 1 and 1% for T = 1/2. The last three pictures indicate that our formula (27)

always outperform Hagan et al. (2002)’s formula. It is worth noting that as the vol-of-vol becomes

extremely large, both methods produce biased results for T = 1/4, 1/2, 1.

Figure 6 studies how the correlation ρ affects the accuracy of the approximation. Similarly, for

a given maturity, each picture plots the relative errors of the formula (27) and Hagan et al. (2002) as

the correlation varies from −0.9 to −0.1. For all combinations of the correlation and the maturity,

the relative errors of the formula (27) are less than 1%. However, the closed-form formula of

Hagan et al. (2002) leads to more significant relative errors or even biased results. Specifically, the

relative errors of Hagan et al. (2002)’s formula are (i) less than 1% for T = 1/12, 1/4; (ii) about

2-5% for T = 1/2; (iii) 9-10% for T = 1. For short maturities (T = 1/12, 1/4), both methods

perform very well. Nonetheless, for relatively long maturities (T = 1/2, 1), the performance of the

formula (27) is much better than that of Hagan et al. (2002) for different correlations in this case.

To test the validity of the formula (31), we use it to compute the put option price and compare

with the results from Hagan et al. (2002) and the Monte Carlo simulation (the benchmark). The

Monte Carlo simulation of the put option price without arbitrage is based on the formula (5).
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Figure 4: Implied Volatilities versus Strikes under Different Betas
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Notes: The black dotted, blue solid, and red dashed lines plot the implied volatilities generated by Hagan

et al. (2002)’s formula, the Monte Carlo simulation, and the formula (27), respectively. In the left panel,

the index of the CEV component beta is β = 0.2, while in the right panel it is β = 0.5. The rest of the

parameters are f = 0.05, T = 1, a = 0.1, ρ = 0, ν = 0.1.

Hence the probability that the forward price hits zero has been tracked. We examine the relative

errors generated by different approaches against the vol-of-vol, the correlation, and the strike in

Figures 7, 8, and 9, respectively.

For each given maturity, Figure 7 plots the relative errors of the put option prices, which is

defined similar to that of implied volatilities, against the vol-of-vol in each picture. Given that the

relative error is less than 1%, the formula (31) is valid when ε is smaller than 0.46, 0.75, 0.35, 0.1

for the four maturities T = 1/12, 1/4, 1/2, 1, respectively. If the relative error is less than 5%,

then the formula (31) is valid when ε is smaller than 1.15, 1.3, 0.71, 0.5, respectively. For T = 1

and 1/2, the relative errors of the put option prices from Hagan et al. (2002) are always larger than

5% and 1%, respectively. Though both methods may be biased for T = 1/4, 1/2, 1 for particularly

larger vol-of-vol, all four pictures suggest that the performance of the formula (31) is preferable

to that of Hagan et al. (2002).

Figure 8 illustrates how the performance of each method is affected when the correlation varies

between −0.9 and −0.1. The relative error from our formula (31) is not sensitive to the variation

of the correlation because they are all less than 2% for all four maturities. This observation also
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Figure 5: Relative Errors of Implied Volatilities versus Volatilities of Volatility under Different Maturities
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Notes: “HKLW” is the relative error of Hagan et al. (2002), which is indicated by the black dotted line with

pluses. “This paper” is the relative error of the formula (27), which is the red dashed line with circles. The

relative error is obtained by “Relative error =
|Method−MC|

MC ”, where “Method” is either “HKLW” or “This

paper”. The parameters values are f = 0.05, a = 0.1, β = 0.1, ρ = −0.2, and K = 0.05.

numerically confirms that the effect of the correlation is not significant. On the contrary, Hagan

et al. (2002) has unfavorable relative errors (8%-9%) for T = 1. Figure 9 plots the relative errors

against the strike prices in each picture. Compared with the benchmark, the performance of the

formula (31) is much better that of Hagan et al. (2002). In contrast, for extremely small strikes,

Hagan et al. (2002) leads to significantly biased results for all four maturities.

In addition, Table 1 presents the performance of arbitrage-free option prices based on formulas

(27) and (31) for extremely large maturities, ranging from 1 year to 25 years. The errors of call

prices from (27) relative to the Monte Carlo simulation are smaller than 1% for all maturities. The

relative errors of put prices from (31) are all less than 1.4%. Therefore, at least for this group of
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Figure 6: Relative Errors of Implied Volatilities versus Correlations under Different Maturities
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Notes: “HKLW” is the relative error of Hagan et al. (2002), which is indicated by the black dotted line with

pluses. “This paper” is the relative error of the formula (27), which is the red dashed line with circles. The

relative error is obtained by “Relative error =
|Method−MC|

MC ”, where “Method” is either “HKLW” or “This

paper”. The parameters values are f = 0.05, a = 0.1, β = 0.1, ν = 0.1, and K = 0.05.

parameters, the formulas (27) and (31) are valid for very long maturities, which can be attributed

to that the accuracy of our approximation is jointly determined by the product of the vol-of-vol

and the maturity, i.e., the total vol-of-vol. In this case, the total vol-of-vol ranges from 0.1 to 0.5.

In sum, the overall performance of our approximate formulas is comparable with the bench-

mark (the Monte Carlo simulation) for small total vol-of-vol. First, for almost all levels of strike,

vol-of-vol, and correlation we have tested, the performance of our formulas (27) and (31) are bet-

ter than that of Hagan et al. (2002). Second, for almost all strikes under different other parameter

combinations, our formulas (27) and (31) produce results which are comparable to the benchmark.

While Hagan et al. (2002) often leads to unsatisfactory results especially for small strikes. Third,
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Figure 7: Relative Errors of Put Option Prices versus Volatilities of Volatility under Different Maturities
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Notes: “HKLW” is the relative error of Hagan et al. (2002), which is indicated by the black dotted line with

pluses. “This paper” is the relative error of the formula (31), which is the red dashed line with circles. The

relative error is obtained by “Relative error =
|Method−MC|

MC ”, where “Method” is either “HKLW” or “This

paper”. The parameters values are f = 0.05, a = 0.1, β = 0.1, ρ = −0.2, and K = 0.05.

the vol-of-vol and the maturity, i.e., total vol-of-vol, jointly determine the valid region for the

approximation. Specifically, comparing with the benchmark, the performance of our formulas is

quite good when the total vol-of-vol is small. However, both our and Hagan et al. (2002)’s formu-

las generate in biased results for large total vol-of-vol. Finally, the formulas (27) and (31) perform

quite well across different correlations, which justifies the fact that the high order terms only with

respect to the correlation in the expansion are zero. When the maturity is one year, Hagan et al.

(2002) may lead to unfavorable results for different correlations.
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Figure 8: Relative Errors of Put Option Prices versus Correlations under Different Maturities
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Notes: “HKLW” is the relative error of Hagan et al. (2002), which is indicated by the black dotted line with

pluses. “This paper” is the relative error of the formula (31), which is the red dashed line with circles. The

relative error is obtained by “Relative error =
|Method−MC|

MC ”, where “Method” is either “HKLW” or “This

paper”. The parameters values are f = 0.05, a = 0.1, β = 0.1, ν = 0.1, and K = 0.05.

5. Conclusions

The SABR model is widely used in practice and has become the benchmark model in inter-

est rate and foreign exchange markets. However, the arbitrage-free vanilla option pricing formulas

under the SABR model remain unknown. In this paper, we derive explicit formulas to approximate

the vanilla option prices under the SABR model. Our formulas have several appealing features.

First, they are arbitrage-free because we have allowed for an absorbing boundary at zero. Second,

they are easy to implement. We can use either the library functions of most numerical software

packages or some efficient algorithms to evaluate them quickly, though they involve the noncentral

chi-square distribution function. Third, the analytical formulas lead to fast and effective numer-
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Figure 9: Relative Errors of Put Option Prices versus Strikes under Different Maturities
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relative error is obtained by “Relative error =
|Method−MC|

MC ”, where “Method” is either “HKLW” or “This

paper”. The parameters values are f = 0.05, a = 0.1, β = 0.1, ρ = −0.2, and ν = 0.2.

ical results, and thus can be applied to computing implied volatilities for real time transactions.

Finally, the extensive numerical experiments show the effectiveness of our approximate formulas

especially when the total vol-of-vol is small.
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Appendix A. Proof of Theorem 1

First of all, the stochastic process (F, A) defined in (1) admits a solution, see Theorem 3.1 in

Hobson (2010). Let S n = inf{t > 0 : F2
t + A2

t ≥ n2} and τn = inf{s > t : Fs ≤ 1
n }. Apparently, as

n→ +∞, the limit of τn is τt (cf. (3)). Applying Itô’s formula to ϕ(t, Ft, At) and recalling PDE (6)

for ϕ(t, f , a), we have

ϕ(T ∧ τn ∧ S n,FT∧τn∧S n , AT∧τn∧S n) = ϕ(t, Ft, At) +

∫ T∧τn∧S n

t

∂ϕ

∂ f
dFt′ +

∫ T∧τn∧S n

t

∂ϕ

∂a
dAt′ .

Taking expectation on both sides, the resulting stochastic integrals have zero expectations. Thus

we have

ϕ(t, f , a) = E[ϕ(T ∧ τn ∧ S n, FT∧τn∧S n , AT∧τn∧S n)|Ft = f , At = a].

Note that |ϕ(t, f , a)| < C(1 + | f |), where C is a positive constant. Moreover, by Proposition 5.1 of

Andersen and Piterbarg (2007), the process F has finite moments, e.g., E[|Ft|] < +∞. Recall the

boundary and terminal conditions for ϕ(t, f , a) in (7). As n→ +∞, by the dominated convergence

theorem, we have

ϕ(t, f , a) = E[h(FT )1{τt>T }|Ft = f , At = a].

Finally, the uniqueness of the solution is a direct consequence of the stochastic representation

above by taking h( f ) ≡ 0. The proof completes.
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Appendix B. Calculation of the Formula (24)

By the definitions of Λ(τ, u, ξ) in (23) and q(ξ; κ, y) in (25), the following relationship holds

Λ(τ, x, ξ) =
2ξ
τ
· q(

x2

τ
; 2θ + 2,

ξ2

τ
) =

x2θ

ξ2θ

2ξ
τ
· q(

ξ2

τ
; 2θ + 2,

x2

τ
). (B.1)

Let A1 = y2θ
∫ ∞

k/y
Λ(τ, x, ξ)ξ2θdξ and A2 = k2θ

∫ ∞
k/y

Λ(τ, x, ξ)dξ. Then,

C(0)(τ, x, y) =

∫ +∞

0
Λ(τ, x, ξ)((ξy)2θ − k2θ)+dξ = A1 − A2, (B.2)

Using the equalitise in (B.1), we can rewrite A1 and A2 as follows:

A1 = x2θy2θ

∫ ∞

k2

τy2

q(z; 2θ + 2,
x2

τ
)dz, A2 = k2θ

∫ ∞

k2

τy2

q(
x2

τ
; 2θ + 2, z)dz.

Recalling the noncentral chi-square distribution function Q(x; κ, y) defined in (25), we have that

A1 = (xy)2θ(1 − Q(
k2

τy2
; 2θ + 2,

x2

τ
)). (B.3)

Note the following equality holds (see, e.g., Schroder, 1989; Lesniewski, 2009),
∫ +∞

x
q(z; κ, y)dz +

∫ +∞

y
q(x; κ + 2, z)dz = 1.

Then we have an explicit formula for A2 as follows:

A2 = k2θQ(
x2

τ
; 2θ,

k2

τy2
). (B.4)

By the formulas (B.3) for A1, (B.4) for A2, and (B.2), then we have C(0)(τ, x, y) in (24).

Appendix C. Derivation of the Formula (31)

Mimicking the derivation of the formula (27), there are four steps to derive the approximate

formula in (31) for the put. We first define a function P1(τ, f , g) for the put option price after the

rescaling (8), whereby P1(τ, f , g) := ϕp(t, f , a) ≡ ϕp(T (1 − τ), f , νg) and P1(τ, f , g) satisfies the

PDE (10) with the same boundary condition and a different initial condition P1(0, f , g) = (K− f )+.

Second, after performing the Lamperti transformation (11), define a new function P2(τ, x, y) :=

P1(τ, f , g) ≡ P1(τ, (ε(1 − β)xy)1/(1−β), y). Moreover, P2(τ, x, y) satisfies the PDE in (13) with the
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same boundary condition and a different initial condition P2(0, x, y) = (k− (ε(1− β)xy)2θ)+. Third,

the homogenization (18) allows us to obtain an initial value without perturbation parameters. Thus,

the new function is P(τ, x, y) := (ε(1 − β))−2θP2(τ, x, y) ≡ (ε(1 − β))−2θP1(τ, (ε(1 − β)xy)2θ, y).

Similarly, P(τ, x, y) satisfies the PDE in (19) with the same boundary condition and a different

initial condition P(0, x, y) = (k − (xy)2θ)+.

Finally, we can expand P(τ, x, y) first w.r.t. ε and then w.r.t. ρ. Then, the leading order term

P(0)
ρ (τ, x, y) satisfies the PDE in (21) with the different initial condition P(0)

ρ (0, x, y) = (k − (xy)2θ)+

and the same boundary condition. Moreover, the first order term and higher order terms with

respect to the correlation are also zero. Using arguments similar to those in Section 3.2, we have

P(τ, x, y) = P(0)
ρ (τ, x, y) + O(ε ·max(ε, |ρ|)),

P(0)(τ, x, y) = k2θ(1 − Q(
x2

τ
; 2θ,

k2

τy2
)) − (xy)2θQ(

k2

τy2
; 2θ + 2,

x2

τ
).

Reversing the above procedure, we can show that the approximate formula for the price of the

down-and-out put option under the original coordinates is given by ϕ̄p(t, f , a) in (31).

Appendix D. A Digestion on the Computation of the Noncentral Chi-Square Distribution

The computation of the noncentral chi-square distribution is well documented in the literature

since this distribution is widely used in finance and statistics. Two major approaches, the gamma

series method and analytical approximations, have been developed to compute the noncentral chi-

square distribution. Other typical methods include the asymptotic expansion by Temme (1993)

and the Bessel series method by Dyrting (2004). This distribution function can be easily im-

plemented using softwares such as Mathlab and Mathematica. One can refer to Dyrting (2004)

and Larguinho et al. (2013) for a comprehensive literature review and detailed numerical tests on

the performance of various methods. We then provide details of the gamma series method and

analytical approximations.

Appendix D.1. The Gamma Series Method

The cumulative and complementary distribution functions of the noncentral chi-square distri-

bution, i.e., Q(x; κ, y) and Qc(x; κ, y), can be expressed as series of incomplete gamma functions
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(see, e.g., Ding, 1992; Dyrting, 2004; Larguinho et al., 2013; Schroder, 1989)

Q(x; κ, y) =

∞∑

i=0

(y/2)ie−y/2

i!
γ(κ/2 + i, x/2)

Γ(κ/2 + i)
, Qc(x; κ, y) =

∞∑

i=0

(y/2)ie−y/2

i!
Γ(κ/2 + i, x/2)

Γ(κ/2 + i)
, (D.1)

where Γ(κ) =
∫ ∞

0
ξκ−1e−ξdξ, γ(κ, x) =

∫ x

0
ξκ−1e−ξdξ, and Γ(κ, x) = Γ(κ) − γ(κ, x) are gamma, lower

incomplete gamma, and upper incomplete gamma functions, respectively. Fraser et al. (1998) and

Larguinho et al. (2013) have applied the gamma series method for computing exact probabili-

ties directly. Carr and Linetsky (2006) also use it to calculate option prices in a jump to default

extended CEV model.

There are two approaches to evaluate the gamma series more efficiently. First, Schroder (1989)

and Ding (1992) reduce the gamma series into a double series of the gamma function, whereby

the gamma function can be evaluated through elementary functions, see, e.g., Press et al. (1992).

Second, Knüsel and Bablok (1996) and Benton and Krishnamoorthy (2003) (advocated by Dyrt-

ing, 2004; Larguinho et al., 2013 respectively) evaluate the summation by determining the number

of terms in the summation for a given level of error tolerance. Moreover, two consecutive terms

in the gamma series have a recurrence relation, which allows us to generate each term using the

previous one and determine the precise number of terms.

Appendix D.2. Analytical Approximations

For large argument x and noncentrality y (perhaps either x > 1000 or y > 1000, see, e.g.,

Benton and Krishnamoorthy, 2003; Dyrting, 2004), the analytical approximation is a method

of choice to compute the distribution function Q(x; κ, y). Specifically, the noncentral chi-square

distribution can be approximated by a standard normal normal distribution, that is,

Q(x/2; κ/2, y/2) ≈ Φ(z),

where Φ(·) is the standard normal distribution function. A typical approximation is provided by

Sankaran (1963), where

z = −1 − hp(1 − h + (2 − h)mp/2) − (x/(κ + y))h

h
√

2p(1 + mp)
,

where h = 1 − 2
3

(κ+y)(κ+3y)
(κ+2y)2 , p = 1

2
κ+2y

(κ+y)2 and m = (h − 1)(1 − 3h). Moreover, this approximation is

suggested by Schroder (1989).
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Appendix D.3. Numerical Tests

We test the speed and accuracy of the gamma series method and the analytical approximation

by Sankaran (1963). The noncentral chi-square distribution function Q(x; κ, y) is evaluated by the

gamma series method (D.1), the analytical approximation of Sankaran (1963) and the library func-

tion ‘ncx2cdf ’ of Matlab, in a cube [0.0001, 300.0001]× [1, 5]× [0.0001, 300.0001], respectively.

The grid selected covers the parameters values used in this paper. In each dimension, the length

of the step is one. Thus, the function is evaluated in 450,000 points. Since the time for computing

the function once is very small, the time in the table below indicates the total time for computing

450,000 function values. The results are summarized in the table below.

Table D.2: Testing the Algorithms to Compute the Noncentral Chi-square Distribution Function

Matlab Gamma Series (D.1) Sankaran (1963) A Sankaran (1963) B

Error NA 1.11E-16 0.010973 0

Time 118.19 51.74 18.97 NA

Notes: The row “Error” denotes the maximum absolute error between the values computed from the corre-

sponding method and Matlab. Specifically, “Sankaran (1963) A” measures the error in the whole cube, while

“Sankaran (1963) B” measures the error for either x ∈ [100.0001, 300.0001] or y ∈ [100.0001, 300.0001].

The row “Time” denotes the total running time for the corresponding method, which is measured in seconds

for total 450,000 function values. “NA” means “not applicable” for that case.

Table D.2 indicates that a combination of the gamma series (D.1) and the analytical approxi-

mation Sankaran (1963) can evaluate the noncentral chi-square function more efficiently without

sacrificing accuracy. Specifically, we evaluate the function for small argument x or small noncen-

trality y using the gamma series method. Once either x or y is larger than 100, we switch to the

analytical approximation Sankaran (1963).
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