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Abstract

Computing expected values of functions involving extreme values of diffusion processes can find wide ap-
plications in financial engineering. Conventional discretization simulation schemes often converge slowly.
We propose a Wiener-measure-decomposition based approach to construct unbiased Monte Carlo estimators.
Combined with the importance sampling technique and the Williams path decomposition of Brownian motion,
this approach transforms simulating extreme values of a general diffusion process to simulating two Brownian
meanders. Numerical experiments show this estimator performs efficiently for diffusions with and without
boundaries.
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1. Introduction

In financial engineering applications, extreme values
of diffusion processes are widely used to model the
maximum or minimum of underlying asset prices over
the life of some path-dependent options. For the pur-
pose of pricing such options, we need to compute the
expected values of functions involving these extremes
efficiently. More specifically, consider a time horizon
[0, T ] and a probability space (Ω,F ,P) equipped with
a standard Brownian motion {Wt : 0 ≤ t ≤ T}. Let
{Ft, 0 ≤ t ≤ T} be the augmented filtration gen-
erated by {Wt}. Suppose that a stochastic process
{St, 0 ≤ t ≤ T} is defined by the following stochastic
differential equation (SDE):

dSt = µ(St)dt + σ(St)dWt, S0 = s, (1)

where µ : R → R and σ : R → R are both Borel-
measurable functions. Introduce two extremes of
{St}, MT := max0≤t≤T St and mT := min0≤t≤T St,
respectively. We shall discuss Monte Carlo simulation
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schemes in this paper to obtain efficient estimates to
E [f (ST ,MT ,mT )] for a given measurable function f .

One typical financial application of this formula-
tion is to evaluate the floating strike lookback option.
Its (non-arbitrage) price can be expressed as

e−rTE[MT − ST |S0 = s],

where r is the risk-free interest rate (see, e.g., Chapter
7.4 of Shreve [32]). And another popular exotic op-
tion, the up-and-out barrier call, admits the following
no-arbitrage price representation

e−rTE[(ST −K)+1{MT <B}|S0 = s],

where K is the option strike price and B is a pre-
specified barrier (see, e.g., Chapter 7.1 of Shreve [32]).

Applying the conventional discretization simula-
tion schemes to SDEs, one can easily build up a
näıve algorithm to estimate the preceding expecta-
tions. Fix a large integer N and let h = T/N . Dis-
cretize Eq. (1) into

Ŝi+1 = Ŝi + µ(Ŝi)h + σ(Ŝi)∆Wi, (2)

for 0 ≤ i ≤ N − 1, where ∆Wi ∼ N(0, h). To
get an approximate value to MT or mT , we simu-
late a sequence of i.i.d. Gaussian random variables
∆Wi, 1 ≤ i ≤ N , and use the recursive relation
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(2) to generate sample paths for Ŝ. Then, the Eu-
ler approximations to MT and mT are formed by
M̂N := max0≤i≤N Ŝi and m̂N := min0≤i≤N Ŝi. Re-
peat the above procedure to draw L independent sam-
ples of (Ŝj

N , M̂ j
N , m̂j

N ), 1 ≤ j ≤ L. Averaging the
results across all samples will lead to the following
Monte Carlo estimates:

1
L

L∑

j=1

f
(
Ŝj

N , M̂ j
N , m̂j

N

)
. (3)

As N tends to infinity, (ŜN , M̂N , m̂N ) converge
jointly to (ST ,MT ,mT ) under some regularity con-
ditions. However, Asmussen, Glynn, and Pitman [4]
point out that the convergence of M̂N and m̂N turns
out to be the bottleneck of this näıve algorithm. They
prove that M̂N converges to MT in distribution at a
rate of 1/

√
N . In contrast, note that the convergence

rate of ŜN to ST is in the order of 1/N (see, e.g.,
Theorem 14.5.2 of Kloeden and Platen [26]).

As an alternative to overcome the difficulty of
the conventional discretization methods, we propose
an unbiased estimator in this paper on the basis
of a combination of the Wiener measure decompo-
sition and the importance sampling technique. In
the case of Brownian motion, the joint distribution
of (WT ,max0≤t≤T Wt,min0≤t≤T Wt) is known explic-
itly so that we can simulate them exactly. In or-
der to cope with a general diffusion governed by the
SDE (1), we take a Wiener-measure-decomposition
based approach to break the distribution law of
(ST ,MT ,mT ) down to some quantities related to the
Brownian motion {Wt}. This decomposition enables
us to develop an importance sampling estimator to
E [f (ST ,MT ,mT )] through the exact simulation of
(WT ,max0≤t≤T Wt,min0≤t≤T Wt).

The aforementioned Wiener measure decomposi-
tion yields an importance sampling weight which in-
cludes

exp
(
−

∫ T

0
φ(Wu)du

)

for some deterministic function φ. Generally speak-
ing, this exponential does not admit any closed-form
expressions and thus poses a technical obstacle for
the implementation of our Monte Carlo procedure.
A Poisson kernel is therefore introduced in this pa-
per to estimate this exponential function, based on a
key observation that it can be regarded as the prob-
ability of the event that no arrivals occur in [0, T ] for
a doubly stochastic Poisson process with a random

intensity {φ(Wt), 0 ≤ t ≤ T}. Combined with the
celebrated Williams path decomposition of Brownian
motion and a simulation of Brownian meanders, the
Poisson kernel estimator demonstrates a high degree
of efficiency and accuracy for diffusion processes, with
or without boundaries. Notice that diffusions with
boundaries are used popularly in financial engineering
to model asset prices, interest rates, and volatilities.
Furthermore, our estimators are also amenable to the
application of some variance reduction techniques to
improve the estimation quality further.

The mean-square error (MSE) of our estimators
outperforms significantly the conventional biased es-
timators such as the ones presented in (3). The un-
biasedness of our estimators leads to a fact that they
suffer only from the simulation variance. Therefore,
according to the central limit theorem, their MSE
will be reduced at a rate of 1/

√
L as we increase the

simulation size L. In contrast, the discretization es-
timators suffer from the discretization bias as well,
which makes the MSE of such estimators converge to
zero at a much slower rate even after an optimal ar-
rangement of computational efforts. One may refer to
Duffie and Glynn [14] or Chapter 6.3.3 of Glasserman
[17] for a detailed discussion on the issue of conver-
gence of MSE under the discretization schemes. From
this point of view, our estimators should be more pre-
ferred.

This paper is related to the burgeoning literature
of the exact simulation of diffusions. Beskos and
Roberts [8] investigate an acceptance-rejection ap-
proach to simulate exactly from the marginal dis-
tribution of one-dimensional diffusions. Beskos, Pa-
paspiliopoulos, and Roberts [9, 10], Casella and
Roberts [12], and Chen [11] extend the method to
a more general class of diffusions. Giesecke and
Smelov [16] apply the localization technique proposed
by Chen [11] to generate exact samples of jump dif-
fusion models. In contrast to the previous literature,
the Poisson-kernel based estimator led by the current
paper enjoys higher efficiency because we can eval-
uate the importance sampling weight fast with the
help of the Wiener measure decomposition and Brow-
nian meander simulation. However, the exact diffu-
sion simulation algorithms spend a large amount of
time generating samples that will be discarded even-
tually.

This paper contributes to the literature of SDE ex-
tremes simulation as well. Andersen and Brotherton-
Ratcliffe [2], Beaglehole, Dybvig, and Zhou [5], and
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Baldi [6] suggest interpolating over each interval
[ih, (i + 1)h] with a Brownian bridge and then us-
ing its maximum/minimum to approximate MT or
mT . Kabaier [24] and Giles [17] propose the Richard-
Romberg extrapolation to generate SDE samples on
multiple levels of time grids, using coarser grids to
simulate a crude framework and finer grids to fine-
tune the bias. In conjunction with the previous
Brownian-bridge interpolation, the multi-level simu-
lation method is proven to lead to a significant bias
reduction and computational cost saving. Compared
with these alternatives, our approach is more sys-
tematic and provides unbiased estimators to extreme-
value-related payoffs. The numerical experiments in
this paper also display that it has a more appealing
performance.

Our method is also rooted in the literature of dif-
fusion sample path decomposition in the probability
theory. As noted by Williams [34], the sample path
of a Brownian motion, if the maximum/minimum is
given, can be decomposed into two “back-to-back”
Brownian meanders. Imhof [21] shows that we can
further express the Brownian meander as the square
root of a sum of three squared independent Brown-
ian bridges. These two facts play an essential role
in the construction of the proposed unbiased esti-
mators. Rogers and Williams [31] and Pitman and
Yor [29] extend the Williams’ path decomposition to
killed Brownian motions and a general class of one-
dimensional diffusions, respectively. The results of
this paper spell out a computational way to realize
their theoretical discoveries.

The remainder of this paper is organized as fol-
lows. In Section 2, we present a Wiener measure de-
composition to form the theoretical foundation for
our Monte Carlo estimators. Section 3 discusses the
implementation details, making use of E[f(ST ,MT )]
as an example. Section 4 extends the method to
cover more general payoff functions and diffusions
with boundaries. Section 5 summarizes some numer-
ical experiments and related variance reduction tech-
niques.

2. A Wiener Measure Decomposition

Denote DS := (s, s̄) to be the domain of the diffu-
sion process {St}. To facilitate the simulation proce-
dure, we need to transform the original process {St}
into a more tractable one. For this purpose, assume
that

Assumption 2.1. µ(x) is continuously differentiable
on (s, s̄) and σ(x) is twice continuously differentiable
on (s, s̄). σ(x) > 0 when x ∈ (s, s̄). In any compact
subset of DS, the function 1/σ(·) should be locally
integrable.

Introduce a transform, known as the Lamperti
transform in the probability literature (see, e.g., Flo-
rens [15]), such that

F (x) =
∫ x

s

1
σ(u)

du

for any interior point x ∈ (s, s̄).
It is apparent that F should be well-defined due to

Assumption 2.1. Furthermore, it is strictly increasing
because the integrand σ(u) > 0. Let Yt := F (St).
Ito’s lemma implies that the process {Yt} satisfies the
following new SDE:

dYt = b(Yt)dt + dWt, (4)

where the new drift function b is given by

b(y) =
µ(F−1(y))
σ(F−1(y))

− 1
2
σ′(F−1(y)).

By the monotone property of F , we know that
simulation of (ST ,MT ,mT ) is equivalent to simula-
tion of (YT ,max0≤t≤T Yt,min0≤t≤T Yt) through the
following relationship: ST = F−1(YT ), MT =
F−1 (max0≤t≤T Yt), and mT = F−1 (min0≤t≤T Yt).

The Lamperti transform maps DS into the domain
of Y , DY := (y, ȳ). In this paper, we consider two
cases: either DY = (−∞,+∞) or DY = (y,+∞). In
some models of financial interest, we will encounter
DY = (−∞, ȳ). However, it can be treated in a simi-
lar way as DY = (y,+∞). Let us investigate the case
DY = (−∞,+∞) first in this section and the next,
and defer the other one to a later discussion in Sec-
tion 4. We need an additional technical assumption
to ensure the two boundaries ±∞ are unattainable.

Assumption 2.2 (DY = (−∞,+∞)). There exist
E > 0, K > 0 such that b(y) ≥ Ky for all y ∈
(−∞,−E) and b(y) ≤ Ky for all y ∈ (E, +∞).

This assumption imposes a limit on the growth rate
of function b: when the process Y approaches ±∞,
b(Y ) is assumed to be bounded from above (or be-
low) by a linear function. The sub-linearity of func-
tion b prevents Y from exploding, i.e., reaching ±∞
in a finite time horizon. Since we are interested in
simulating extremes of the diffusion, this prevention
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should be necessary to exclude the cases in which the
maximum/minimum over [0, T ] is ±∞. It is worth
pointing out that although Assumption 2.1 defines
the constraints in terms of Y , it is simple to check
whether it holds with the original process S. Observe
that the unattainability of the boundaries of DY im-
plies that the boundaries of DS are also unattainable.
Under this assumption, we can show that

Lemma 2.1. Suppose that Assumption 2.2 holds.
Let τ = inf{t ≥ 0 : Yt /∈ (−∞,∞)}. Then,
P[τ = +∞] = 1.

Proof. This conclusion is proved in Proposition 1 of
Aı̈t-Sahalia [1].

The advantage of introducing Y is that we can
find an explicit expression for the likelihood ra-
tio of (YT ,max0≤t≤T Yt,min0≤t≤T Yt) with respect
to (WT ,max0≤t≤T Wt,min0≤t≤T Wt). This helps us
build up a Wiener-measure based estimator later for
the extreme-value-related option prices. Define

A(y) =
∫ y

0
b(u)du and φ(y) =

b2(y) + b′(y)
2

.

The following theorem presents the related result on
the likelihood ratio.

Theorem 2.1. Suppose that Assumptions 2.1 and
2.2 hold, and h : R3 → R is a Borel-measurable func-
tion. Then,

E[h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)]

= E

[
h(WT , max

0≤t≤T
Wt, min

0≤t≤T
Wt) ·BT

]
,

where the likelihood ratio factor

BT = exp
(

A(WT )−
∫ T

0
φ(Ws)ds

)
.

Proof. Under Assumption 2.2, it is easy to verify that
b is locally square-integrable, i.e., for any x ∈ R, there
exists a δ > 0 such that

∫ x+δ

x−δ
b2(y)dy < +∞.

Using a generalized Girsanov formula (Karatzas and
Shreve [22], Exercise 5.5.38, p. 352), we have

E[h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)1{τ>T}]

= E[h(WT , max
0≤t≤T

Wt, min
0≤t≤T

Wt)

· exp
(∫ T

0
b(Wu)dWu − 1

2

∫ T

0
b2(Wu)du

)
],

for every finite T > 0.
On the other hand, applying Ito’s lemma on A(WT )

will lead to

A(WT ) =
∫ T

0
b(Wu)dWu − 1

2

∫ T

0
b′(Wu)du. (5)

Substituting (5) into the above expectation,

E[h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)1{τ>T}]

= E[h(WT , max
0≤t≤T

Wt, min
0≤t≤T

Wt) ·B].

Lemma 2.1 excludes the possibility that Y explodes
in finite time. That is, P[τ = +∞] = 1. From this, it
is easy to show the theorem holds.

3. Brownian Meanders and Importance Sam-
pler of Diffusion Extremes

Theorem 2.1 lays out the theoretical foundation to
our unbiased estimators for the extreme-value-related
options. This section is devoted to illustrating the
implementation details, using E[f(ST ,MT )] as an ex-
ample for notational simplicity. One can easily deal
with E[f(ST ,mT )] by exploiting the symmetric sta-
tus of MT and mT . We defer the discussion of the
more general case E[f(ST ,MT ,mT )] to Section 4.

Denote KT := max0≤t≤T Wt and let ΘT := inf{u ∈
[0, T ] : Wu = KT }. Applying Theorem 2.1, we have

E[f(ST ,MT )] = E

[
f

(
F−1 (YT ) , F−1

(
max

0≤t≤T
Yt

))]

= E[f
(
F−1(WT ), F−1(KT )

) · exp(A(WT )) · C],

where

C = E

[
exp

(
−

∫ T

0
φ(Ws)ds

) ∣∣∣ΘT ,KT ,WT

]
. (6)

In view of this Wiener measure decomposition, we
propose the following three-step algorithm to provide
an unbiased estimator to E[f(ST ,MT )]:

1. generate exact samples of ΘT ,KT and WT ;
2. evaluate

exp(A(WT ))·E
[
exp

(
−

∫ T

0
φ(Ws)ds

) ∣∣∣ΘT ,KT ,WT

]
;

3. evaluate f
(
F−1(WT ), F−1(KT )

)
.

Then we can form an unbiased estimator if we take
a weighted average of f

(
F−1(WT ), F−1(KT )

)
using

the weight specified by the product in Step 2.

We explore how to implement the above three
steps in the subsequent subsections.
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3.1. Exact Simulation of (ΘT ,KT ,WT )
The joint distribution of this triplet is explicitly

known in the literature(see, e.g., Karatzas and Shreve
[22], Problem 2.8.17, p. 102). Note that the distribu-
tion function can be inverted easily, which makes it
convenient for us to simply use the inverse transform
method to generate samples for this triplet. More
specifically, generate three independent uniformly
distributed random variables (U, V,W ) ∼ Unif(0, 1)3

first; define sequentially that

ΘT = T sin2(πU/2), KT =
√
−2ΘT log(1− V ),

and

WT := KT −
√

2(T −ΘT )
(
− log

(
W

T −ΘT

))
.

3.2. Simulating Importance Sampling Weight
As noted in the introduction, the difficulty in eval-

uating the importance sampling weight in Step 2 of
our algorithm lies in the term

E

[
exp

(
−

∫ T

0
φ(Ws)ds

) ∣∣∣ΘT ,KT ,WT

]
(7)

because in most circumstances the expectation (7)
does not yield any closed-form expressions. To cir-
cumvent it, we establish the following proposition to
construct a Poisson-kernel estimator to the aforemen-
tioned conditional expectation.

Proposition 3.1. Suppose that N is a Poisson ran-
dom number with parameter ΛT for a positive con-
stant Λ, and {τ1, · · · , τN} are N independent uniform
random numbers in [0, T ]. All of them are indepen-
dent of the Brownian motion {Wt, 0 ≤ t ≤ T}. Then,

E

[
exp

(
−

∫ T

0
φ(Ws)ds

) ∣∣∣WT ,KT ,ΘT

]

= E

[
N∏

i=1

(
Λ− φ(Wτi)

Λ

) ∣∣∣WT ,KT ,ΘT

]
.

Proof. Conditional on the whole sample path of
{Wt, 0 ≤ t ≤ T} and N , the right-hand side of the
equation in the proposition statement equals

E

[
N∏

i=1

(
Λ− φ(Wτi)

Λ

) ∣∣∣Wt, 0 ≤ t ≤ T

]

=
+∞∑

n=0

E

[
n∏

i=1

(
Λ− φ(Wτi)

Λ

) ∣∣∣{Wt, 0 ≤ t ≤ T}, N = n

]

· e−ΛT (ΛT )n

n!
.

Furthermore, note that all τi’s are uniformly dis-
tributed in [0, T ]. We have

E

[
n∏

i=1

(
Λ− φ(Wτi)

Λ

) ∣∣∣{Wt, 0 ≤ t ≤ T}, N = n

]

=
(

1
T

∫ T

0

[
Λ− φ(Wt)

Λ

]
dt

)n

.

Combining the above two equations will yield that

E

[
N∏

i=1

(
Λ− φ(Wτi)

Λ

) ∣∣∣Wt, 0 ≤ t ≤ T

]

=
+∞∑

n=0

(
1
T

∫ T

0

[
Λ− φ(Wt)

Λ

]
dt

)n

· e−ΛT (ΛT )n

n!

= exp
(
−

∫ T

0
φ(Wt)dt

)
.

Taking expectations with respect to WT ,KT ,ΘT , we
prove the proposition.

Based on this proposition, we present the following
procedure to estimate the expectation (7):

1. simulate N ∼ Poisson(ΛT );
2. generate independent τi, 1 ≤ i ≤ N , each of

which is from the distribution Unif(0, T );
3. sort {τ1, · · · , τN} to obtain their order statistics:

τ(1) < · · · τ(j−1) < ΘT ≤ τ(j) · · · < τ(N);
4. simulate Wτ(i) , 1 ≤ i ≤ N , under the given

WT ,KT , and ΘT ;
5. evaluate

Ĉ =
N∏

i=1

(
Λ− φ(Wτ(i))

Λ

)
. (8)

It is easy to show from Proposition 3.1 that

f
(
F−1(WT ), F−1(KT )

) · exp(A(WT )) · Ĉ
is an unbiased estimator to E[f(ST ,MT )].

A technical problem remains open so far: how do
we simulate Wτ(i) ’s for given WT ,KT , and ΘT ? The
answer is related to a classical result about the Brow-
nian motion — the celebrated Williams path decom-
position (see Williams [34] and Denisov [13]). Sup-
pose that W0 = 0,ΘT = θ, KT = k, and WT = y.
The decomposition asserts that {k −Wθ−u, 0 ≤ u ≤
θ} and {k −Wθ+u, 0 ≤ u ≤ T − θ} are two indepen-
dent Brownian meanders. Figure 1 shows the rela-
tionship of the two meanders and the original Brow-
nian motion. The two meanders sit back-to-back at
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Figure 1: The Williams path decomposition of a Brownian mo-
tion. Given that the maximum is KT , there are two Brownian
meanders sitting back-to-back at ΘT .

ΘT = θ. Furthermore, as noted in Imhof [21], the law
of a Brownian meander can be represented in terms
of three independent Brownian bridges.

The Williams path decomposition of Brownian mo-
tion and the Imhof representation of Brownian me-
anders suggest a simulation scheme to generate Wτi ’s
when the triplet (ΘT ,KT ,WT ) is known. More specif-
ically, denote {B1,j

t , 0 ≤ t ≤ θ}, j = 1, 2, 3, to be three
independent Brownian bridges from 0 to 0 over [0, θ]
and {B2,j

t , θ ≤ t ≤ T}, j = 1, 2, 3, to be three in-
dependent Brownian bridges from 0 to 0 over [θ, T ].
Given W0 = 0,ΘT = θ, KT = k, and WT = y, we can
show that

{Wu, 0 ≤ u ≤ θ} d=

k −
√(

k · (θ − u)
θ

+ B1,1
u

)2

+ (B1,2
u )2 + (B1,3

u )2

(9)

and

{Wu, θ ≤ u ≤ T} d=

k −
√(

(k − y)(u− θ)
(T − θ)

+ B2,1
u

)2

+ (B2,2
u )2 + (B2,3

u )2.

(10)

Now, the task of simulating Wτ(i) , 1 ≤ i ≤ N , is
transformed into how to simulate Brownian bridges

Bl,j at τi’s for l = 1, 2 and j = 1, 2, 3. It can be ac-
complished by some standard procedures in the exist-
ing literature (see, e.g., Glasserman [19], Section 3.1,
pp. 82–86).

4. Extensions

4.1. General Payoff Functions
In this section, we consider a more general pay-

off function f(ST ,MT ,mT ). Applying the Lamperti
transform, Theorem 2.1, and Proposition 3.1 we ob-
tain the following equality:

E[f(ST ,MT ,mT )]

= E
[
f

(
F−1(WT ), F−1(KT ), F−1(kT )

)
exp(A(WT ))Ĉ

]

where kT = min0≤t≤T Wt and Ĉ is defined in (8). In
light of this representation, we need a small modi-
fication on the algorithm presented in the last sec-
tion to construct an unbiased importance sampler for
E[f(ST ,MT ,mT )]. More specifically, it can be done
in the following six steps:

1. generate exact samples of (ΘT ,KT ,WT ) by fol-
lowing the procedure in Section 3.1;

2. simulate the Poisson random number N and in-
dependent uniform {τ1, · · · , τN} on the time in-
terval [0, T ];

3. sort {τ1, · · · , τN} to obtain their order statistics:
τ(1) < · · · τ(j−1) < ΘT ≤ τ(j) · · · < τ(N).

4. use the Brownian meander simulation to obtain
Wτ(1) , · · · ,Wτ(N)

;
5. generate minτ(i−1)≤t≤τ(i) Wt for all 1 ≤ i ≤ N and

let
kT = min

i
min

τ(i−1)≤t≤τ(i)
Wt;

6. construct the corresponding Poisson-kernel esti-
mator.

Now we discuss the generation of minτ(i−1)≤t≤τ(i) Wt

in Step 5, the only technical issue that makes this
algorithm different from the previous one in Section
3. Observe that

min
τ(i−1)≤t≤τ(i)

Wt = KT − max
τ(i−1)≤t≤τ(i)

(KT −Wt).

Recall that {KT−Wt, t ∈ [0,ΘT ]∪[ΘT , T ]} consists of
two pieces of Brownian meanders for given ΘT , KT ,
and WT . Therefore, simulation of

mei = max
τ(i−1)≤t≤τ(i)

(KT −Wt)
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can be done if we know how to sample the maximum
of the Brownian meander over a fixed time interval.

Denote τ = τ(i) − τ(i−1) and

Gi(a;x, y, τ)
= P[mei < a|KT −Wτ(i−1)

= x,KT −Wτ(i) = y]

We derive a closed-form expression of Gi in Lemma
A.1 of the appendix. Then, we can generate samples
of mei by applying the standard inverse transform
method. In other words, generate U ∼ Unif(0, 1)
and let mei = G−1

i (U), where G−1
i is numerically

inverted.

4.2. The cases of DY = [y,+∞)
In this subsection we consider the cases whose value

domain of the transformed process Y is given by
[y,+∞). Just as in the case DY = (−∞,+∞), we
need a technical assumption to rule out the possibil-
ity that the process Y attains the boundaries y or
+∞ in finite time.

Assumption 4.1 (DY = [y,+∞)). There exist
e, κ, α such that for all y < y < e, b(y) ≥ κ(y− y)−α,
where either α > 1, κ > 0 or α = 1, κ ≥ 1; There
exist E > 0, K > 0 such that b(y) ≤ Ky for all
y ∈ (E, +∞).

The above assumption ensures the existence and
uniqueness of the solution to SDE (4). When it is
violated, the process Y may reach y in [0, T ] with a
positive probability. However, different specifications
about the boundary behavior of Y on y will lead to
different solutions to the SDE. That would destroy
the uniqueness of the solution — see, e.g. Chapter
15.8 of Karlin and Taylor [23] — and surely makes
the simulation much more complicated. We leave the
research on how to extend our method to simulate
SDEs with different boundary specifications for fu-
ture investigation.

Many models popularly used in financial engineer-
ing applications satisfy Assumption 4.1. Here we just
mention one example, the Cox-Ingersoll-Ross (CIR)
model, which is defined as

dSt = κ(α− St)dt + σ
√

StdWt, S0 = s > 0

where κ > 0, α > 0, σ > 0 are constants. Its corre-
sponding Lamperti transform is

F (x) =
2(
√

x−√s)
σ

.

One of the most important characteristics of the
model is its non-negativeness, i.e., DS = [0,+∞).
After the transformation, DY = [−2

√
s/σ,∞).

Under this assumption, we establish the corre-
sponding Wiener measure decomposition in the fol-
lowing theorem:

Theorem 4.1. Suppose that Assumptions 2.1 and
4.1 hold. Let τ = inf{t ≥ 0 : Yt /∈ (y,+∞)}. Then,
P[τ = +∞] = 1. Furthermore, if h : R3 → R is a
Borel-measurable function, we have

E[h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)]

=E
[
h(WT ,KT , kT ) · 1{kT >y} ·BT

]
,

where BT is defined in Theorem 2.1.

Proof. The first half of the theorem’s conclusion is
proved in Proposition 1 of Aı̈t-Sahalia [1]. To show
its second half, it is enough to prove the conclusion
is true for the following h such that

h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)

= 1{YT∈dx,max0≤t≤T Yt∈dy1,min0≤t≤T Yt∈dy2}

for any x, y1, y2 ∈ R, y2 < x < y1.
Define ς = inf{t ≥ 0 : Wt = y} and two sequences

of stopping times

τk = T ∧ inf
{

t ≥ 0 :
∫ t

0
b2(Yu)du ≥ k

}

and

τW
k = T ∧ inf

{
t ≥ 0 :

∫ t

0
b2(Wu)du ≥ k

}
.

for each integer k ≥ 0. Furthermore, define four
events such that

A := {YT ∈ dx, max
0≤t≤T

Yt ∈ dy1, min
0≤t≤T

Yt ∈ dy2, τ > T};
Ā := {WT ∈ dx,KT ∈ dy1, kT ∈ dy2, ς > T};
A(k) := A ∩ {τk = T} and Ā(k) := Ā ∩ {τW

k = T}.

It is easy to show the following

ξ
(k)
t = exp

(
−

∫ t∧τk

0
b(Yu)dWu − 1

2

∫ t∧τk

0
b2(Yu)du

)

is martingale for each k according to the Novikov con-
dition. Introduce a sequence of new probability mea-
sures P̃k such that dP̃k/dP = ξ

(k)
T . Denote Ẽ(k) to

7



be the corresponding expectation operator under the
new measures. Then,

E[1A(k) ] = Ẽ(k)
[
1A(k) · (ξ(k)

T )−1
]
. (11)

Using the fact dWt = dYt − b(Yt)dt, we observe

(ξ(k)
T )−1 = exp

(∫ T∧τk

0
b(Yt)dYt − 1

2

∫ T∧τk

0
b2(Yt)dt

)
.

The Girsanov theorem (Karatzas and Shreve [22],
Corollary 3.5.13, p. 199) implies

Yt∧τk
=

∫ t∧τk

0
b(Ys)ds + Wt∧τk

is a standard Brownian motion stopped at the time
τk under each new measure P̃k. Therefore, the right
hand side of (11) equals to E

[
1Ā(k)B

(k)
T

]
, where

B
(k)
T := exp

(∫ T∧τW
k

0
b(Ws)dWs − 1

2

∫ T∧τW
k

0
b2(Ws)ds

)

= exp

(
A(WT∧τW

k
)−

∫ T∧τW
k

0
φ(Ws)ds

)
,

where the second equality is due to Ito’s formula.
Therefore, we have

E[1A(k) ] = E
[
1Ā(k) ·B(k)

T

]
. (12)

Let k → +∞ on both sides of (12). Note that
function b is continuous in the interior set of DY .
Therefore, it must be square-integrable on every
compact set in (y,∞). We then have the integral∫ T
0 b2(Yu)du < +∞ on the event {τ > T}, which im-

plies that there exists a sufficiently large k such that
τk = T . By the dominated convergence theorem,

lim
k→+∞

E[1A(k) ] = E[1A].

On the other hand, following the same arguments
as in the process Y , we also can show

∫ T
0 b2(Wu)du <

+∞ on the event {ς > T}.

lim
k→+∞

E
[
1Ā(k) ·B(k)

T

]
= E [1Ā ·BT ] .

In addition, noting that {τ ≤ T} has zero probability
under Assumptions 2.1 and 4.1 and the fact ς > T ⇔
kT > y, we have proved the result of the theorem.

From Theorem 4.1, we have

E[h(YT , max
0≤t≤T

Yt, min
0≤t≤T

Yt)]

= E
[
h(WT ,KT , kT ) · 1{kT >y} · exp(A(WT )) · C

]
,

where C is given by the conditional expectation
(6). Therefore in theory we still can utilize the
Poisson kernel to obtain an unbiased estimator for
E[h(YT ,max0≤t≤T Yt,min0≤t≤T Yt)]. The algorithm
is summarized as follows:

1. generate exact samples of (θT , kT ,WT ), where
θT := inf{u ∈ [0, T ] : Wu = kT };

2. if kT < y, we set the weight of this sample to be
zero;

3. if kT > y, we further simulate the Pois-
son random number N , the order statistics
{τ(1), · · · , τ(N)}, the Brownian motion values
{Wτ(1) , · · · ,Wτ(N)

}, and the maximum KT ;
4. construct the corresponding Poisson-kernel esti-

mator using Ĉ.

Note that in the above algorithm, simulation
of (θT , kT ,WT ) is similar to the simulation of
(ΘT ,KT ,WT ) because of the symmetric property of
Brownian motion.

However, different from the cases of DY =
(−∞,+∞), the evaluation of Ĉ in this case some-
times suffers from a numerical instability. The rea-
son is that limy→y b(y) = +∞ under Assumption 4.1,
which leads to limy→y φ(y) = +∞. Take the CIR
process as an example. The corresponding function
b(y) is given by

4κα− σ2

2σ2(y + 2
√

s/σ)
− κ

2

(
y +

2
√

s

σ

)
.

As we can see, when y → −2
√

s/σ, b(y) tends to in-
finity. Therefore, when we obtain some Wτ(i) ’s that
are very close to y, some terms of (Λ − φ(W(τi)))/Λ
could be large negative numbers and thus the abso-
lute value of the weight Ĉ on this sample path will
be very large. This phenomenon introduces signifi-
cant variance for the unbiased estimator.

To overcome this difficulty, we propose an
approximation estimator: instead of calculating
E[f(ST ,MT ,mT )], we use the unbiased estimator
to E[f(ST ,MT ,mT )1{mT >b}], by choosing a suitable
b ∈ DS , as an approximation to the former expec-
tation. Since s is unattainable for process S under
Assumption 4.1, limb→sP[mT > b] = 1. Therefore, if
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b is sufficiently close to s, E[f(ST ,MT ,mT )1{mT >b}]
serves as a good approximation to the original objec-
tive E[f(ST ,MT ,mT )]. In the meanwhile, the new
estimator avoids the issue of numerical instability be-
cause we exclude those sample paths with mT < b.
The numerical examples in Section 5 corroborate this
observation. It is also worth pointing out that this
new estimator is still unbiased for some down-and-
out options whose payoff function contains a part of
1{mT >x}.

5. Numerical Examples

5.1. Related Techniques of Variance Reduction

Our estimator is amenable to the application of
some variance-reduction techniques. We also find
that the Poisson intensity Λ has a direct influence
on the estimator variance. In this subsection, we dis-
cuss how to use the stratified sampling and choose a
suitable Λ to improve the algorithm efficiency.

As discussed in the previous sections, we simulate
(ΘT ,KT ,WT ) by applying their respective inverted
distribution functions on (U, V,W ) ∼ Unif[0, 1]3. To
make use of the stratified sampling, we stratify the
three coordinates of the cube [0, 1]3 into nj , j =
1, 2, 3, intervals of equal length. Each stratum has
the form of

Ai1,i2,i3 =
[
i1 − 1

n1
,

i1
n1

)
×

[
i2 − 1

n2
,

i2
n2

)
×

[
i3 − 1

n3
,

i3
n3

)

for all 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, and 1 ≤ i3 ≤ n3 and
the total number of strata is n1n2n3.

Following the discussion at the beginning of Section
3, our simulation objective can be further represented
as follows:

∑

i1,i2,i3

E
[
g(ΘT ,KT ,WT )

∣∣∣(U, V,W ) ∈ Ai1,i2,i3

]

· P((U, V,W ) ∈ Ai1,i2,i3),

where

g(ΘT ,KT ,WT )

= f
(
F−1(WT ), F−1(KT )

) · exp(A(WT )) · C.

Note that the probability P((U, V,W ) ∈ Ai1,i2,i3) is
simply 1/n1n2n3.

The simplest way to construct a stratified unbiased
estimator is proportional sampling, in which we en-
sure that the number of samples drawn from stratum

Ai1,i2,i3 is proportional to the theoretical probability
P((U, V,W ) ∈ Ai1,i2,i3) = 1/n1n2n3. Compared with
the vanilla unbiased estimator proposed in the last
section, the new one eliminates sampling variability
across strata and will lead to a significant variance
reduction effect as shown in the numerical examples.
For implementation details, one may refer to Chapter
4.3 of Glasserman [19] for a discussion on this issue.

Now, we turn to the choice of Λ. Here we face a
tradeoff between the estimator variance and the com-
putational time. A large Λ typically causes less vari-
ance, but it will lead to a large Poisson number N
and require us to simulate many Wτi ’s. On the other
hand, we need only small computational cost for a
small Λ. However, it is subject to a significant sim-
ulation variance. Figure 2 illustrates how a product,
computational time×variance, changes with Λ. This
product is widely used in the literature to reflect the
efficiency of Monte Carlo algorithms; see Chapter V
of Asmussen and Glynn [3]. We can see this tradeoff
very clearly from this figure. Our proposal is that
we need to run some pilot experiments to suggest an
optimal Λ to minimize the product before a larger
scaled computation.
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Figure 2: The dependence of Variance × Time on Λ when we
compute P[MT < B] for the Ornstein-Uhlenbeck model in Sec-
tion 5.2. The computational time is dominating in the right
wing of the curve of the product and the variance is dominat-
ing in its left wing. We can easily find an optimal Λ to minimize
the product from this figure.

5.2. Some Numerical Examples

In this subsection, we present some numerical re-
sults on four models: the geometry Brownian mo-
tion (GBM), the Ornstein-Uhlenbeck (OU) mean-
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reverting process, the logistic growth model (LGM),
and the CIR process. The domain of the OU pro-
cess is DS = (−∞,+∞) and the GBM, LGM, and
CIR models have DS = (0,+∞). To illustrate the
efficiency of the proposed Poisson-kernel unbiased es-
timators, we compare the performance of our un-
biased estimator with the traditional discretization
schemes such as the Euler method. The estimator
proposed in this paper demonstrates significant nu-
merical advantages over the traditional ones, whose
performances are even enhanced by the Brownian in-
terpolation technique. We also conduct comparisons
in each example between our estimators and the mul-
tilevel estimators of Giles [17, 18]. The numerical
experiments show that the MSE of our estimators
converges very fast to zero.

Consider the GBM first. The model is described
by the following SDE:

dSt = µStdt + σStdWt, S0 = s0.

Applying the corresponding Lamperti transform

F (x) =
1
σ

log
(

x

s0

)
,

we have

dYt =
(µ

σ
− σ

2

)
dt + dWt, Y0 = 0.

Observe the function φ(·) in this model is constant.
Therefore, the evaluation of C is straightforward: we
do not even need the Poisson kernel at all! We omit
the related numerical results for the interest of space.

The OU process is defined as a solution to the fol-
lowing SDE:

dSt = κ(α− St)dt + σdWt, S0 = s0,

where κ and α are positive constants. Note that
the drift is positive when St < α and negative when
St > α. Thus, the above process will be pulled to-
ward the level α, a property generally referred to as
mean reversion. A variation of this model is used
by Vasicek [33] to model short rates in the interest
rate market. Its corresponding Lamperti transform
is given by F (x) = (x− s)/σ. Under this transform,
we have

dYt =
κ

σ
(α− s− σYt) + dWt

if we let Yt = (St − s)/σ.

We test the performance of different simulation
schemes using two quantities P[MT < B] and
P[MT < B1,mT > B2] for some constants B, B1, and
B2. The respective outcomes are reported in Tables I
and II. It is apparent that the Poisson kernel estima-
tor combined with the variance reduction technique
of stratification yields the least root of mean squared
errors (RMSE) in a comparable time horizon among
all the numerical schemes under the test. This obser-
vation holds universally no matter which type of the
payoff function we use.

To make the comparisons among various schemes
clearer, we further illustrate their relative perfor-
mances using the RMSE-Time plots. Figures 3 and
4 display the (log-)RMSE of each scheme shown
in Tables I and II against their respective (log-
)computation time. Consistent with the observation
we make in the tables, we find that the Poisson-kernel
estimators, with or without variance reduction, in-
deed enjoy faster convergence orders of RMSE against
time than any others. Note that the slopes of the
curves corresponding to our Poisson-kernel estimators
are close to −0.5. This observation verifies the unbi-
asedness of our estimators. Recall that the RMSE
for an unbiased estimator is caused only by the simu-
lation variance and therefore its slope of log(RMSE)
against log(Time) should be −0.5 according to the
central limit theorem.

−5 0 5 10
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

log(Time)

lo
g(

R
M

SE
)

Single Barrier, OU Process

 

 

Poisson−kernel estimator without variance reduction
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Figure 3: Performance of the six estimators in Table I. As we
increase the computation time, all estimators generate more
accurate results. The slopes of the curves corresponding to the
Poisson-kernel estimators with or without variance reduction
are −0.5735 and −0.4768, respectively.

The third example is the CIR process. We calculate
the quantities such as P[mT > B1] and P[MT < B2]
for some positive B1 and B2. By the discussion in Sec-
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Table I: Single Barrier, Ornstein-Uhlenbeck Process
POISSON POISSON+VR

Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.35192290 2.1353 66.74 0.35192749 0.4914 49.76
0.35192522 0.6953 267.37 0.35192545 0.1448 311.01
0.35191967 0.2628 2163.03 0.35192596 0.0698 2481.79

EULER EULER+BI
Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.35919531 74.4348 35.90 0.35121985 12.9748 43.88
0.35720850 53.1779 284.23 0.35202978 6.4823 337.30
0.35539874 34.8837 2262.67 0.35188983 1.5829 2630.53

MULTILEVEL MULTILEVEL+BI
Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.35538212 35.0889 136.23 0.35185142 0.8967 86.98
0.35329272 15.5768 842.39 0.35190362 0.4734 359.57
0.35254149 6.9727 5389.18 0.35191730 0.1764 2315.27

Table 1: Numerical results of various schemes for the estimation of P[MT < B] under the OU process. The parameters are
κ = 0.261, α = 0.717, σ = 0.02237, s0 = 0.6, and T = 1. When B = α, Yi [35] presents an explicit expression to the true
probability, which equals 0.35192710 under this set of parameters. The RMSE is calculated on the basis of 10 trials. The first row
documents the estimation results, the RMSE, and the computational time for our Poisson estimators with or without variance
reduction (“POISSON+VR” and “POISSON”, respectively). The performance of the vanilla Euler scheme is reported under the
category “EULER”. The columns with subtitles “EULER+BI” and “MULTILEVEL+BI” show the outcomes of the Euler and
Multilevel combined with the Brownian interpolation.
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Figure 4: Performance of the five estimators in Table II. The
slopes of the Poisson-kernel estimators with or without variance
reduction are−0.5405 and−0.4798, respectively. They are very
close to −0.5.

tion 4.2, our estimator is unbiased to the former one.
And we use P[MT < B2,mT > b] to approximate the
latter one by choosing a small b. The respective nu-
merical outcomes are reported in Tables III and IV.
The numerical results in both tables suggest that our
estimator is capable of producing sufficiently accurate
outputs in a short time framework.

5.3. Comparison with Exact Simulation

In this subsection we compare our importance sam-
pling method with Casella and Roberts [12]. This pa-
per proposes an exact simulation algorithm for jump-
diffusions on the basis of the acceptance-rejection
method in Beskos and Roberts [8]. Our method has
two obvious advantages in contrast to this literature.
First, we do not need the boundedness assumption on
the function φ as they require. Note that such an as-
sumption rules out the OU and CIR processes, which
find wide applications in financial engineering. Sec-
ond, our estimator is much more efficient than theirs
as shown in the following example.

To facilitate the comparison numerically, consider
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Table II: Double Barriers, Ornstein-Uhlenbeck Process
POISSON POISSON+VR

Estimator RMSE(×10−3) Time(s) Estimator RMSE(×10−3) Time(s)
0.43798282 0.3649 106.19 0.43790779 0.3893 16.34
0.43798470 0.1807 665.53 0.43808808 0.1916 104.63
0.43801983 0.1003 2659.65 0.43797019 0.0891 417.07

EULER EULER+BI
Estimator RMSE(×10−3) Time(s) Estimator RMSE(×10−3) Time(s)
0.45521582 17.2484 36.35 0.43797874 0.9091 45.86
0.44983521 11.8559 287.98 0.43773813 0.6950 352.72
0.44664099 8.6450 2290.27 0.43805220 0.2791 2748.02

MULTILEVEL
Estimator RMSE(×10−3) Time(s)
0.44458429 7.9713 39.31
0.44070210 2.7847 518.27
0.43931992 1.4159 3166.04

Table 2: Numerical results of various schemes for the estimation of P[MT < B1, mT > B2] under the OU process. The parameters
used in the table are κ = 1, α = 0, σ =

√
2, s0 = 2.10, B1 = −B2 = 2.40, and T = 1. The true value of P[MT < B1, mT > B2] is

0.4380 according to Keilson and Ross [25]. We skip the “MULTILEVEL+BI” part because we do not find an appropriate approach
in the existing literature to incorporating the Brownian interpolation to the multilevel scheme for the double barrier case.

a sin model given by

dSt = sin(St)dt + dWt, S0 = s,

and calculate the expectation of a single barrier pay-
off E[max(0, ST − K)1{max0≤t≤T St<B}]. Notice that
the corresponding function φ in this model is bounded
so that we can easily implement the Casella-Robert
algorithm for the purpose of comparison. Table V
illustrates that to achieve the same precision, the re-
quired time costs for the exact simulation are signif-
icantly larger than ours. The main bottleneck of the
exact simulation is that it has to waste a large amount
of time generating (and discarding) disqualified can-
didates.
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A. Brownian Meanders

We give a brief introduction to Brownian meanders
in this appendix. Following the terms of Pitman [28],

a Brownian meander, {Bme
t , 0 ≤ t ≤ T}, is defined

as a standard Brownian motion conditioning on that
it remains strictly positive for all 0 < t ≤ T . Given
the ending point Bme

T = r is fixed, the distribution
law of Bme is identical to a three-dimensional Bessel
bridge from 0 to r. Making use of this fact, we can
construct the conditioned meander from three inde-
pendent Brownian bridges. Namely,

(Bme
t |Bme

T = r)

d=

√(
rt

T
+ B0→0,1

t

)2

+
(
B0→0,2

t

)2
+

(
B0→0,3

t

)2

for 0 ≤ t ≤ T , where B0→0,j
t , j = 1, 2, 3 are three

independent copies of Brownian bridges from 0 to 0
on [0, T ]. When r = 0, the conditioned Brownian
meander becomes a Brownian excursion. One may
refer to Imhof [21], Williams [34], and Revuz and Yor
[30] for further discussion on this process.

Denote G(a;x, y, τ) to be the conditional distribu-
tion function of the maximum of a Brownian meander
with its initial and final values being given, i.e.,

G(a;x, y, τ) = P[ max
t≤s≤t+τ

Bme
s < a|Bme

t = x,Bme
t+τ = y].

The following lemma obtains an explicit expression
for G(a;x, y, τ).

12



Table III: Single Barrier, CIR Process
POISSON POISSON+VR

Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.64849668 1.9325 110.97 0.64812380 2.4896 7.73
0.64846448 1.0075 443.94 0.64845632 0.7309 30.97
0.64849171 0.5058 1175.80 0.64848162 0.4160 123.53

EULER EULER+BI
Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.65462597 63.0412 36.23 0.64791852 14.1872 43.59
0.65297534 45.1689 285.95 0.64835165 5.8901 337.31
0.65166558 31.9592 2280.36 0.64846559 4.5837 2649.64

MULTILEVEL
Estimator RMSE(×10−4) Time(s)
0.65134686 54.3738 22.07
0.64882261 14.7209 356.55
0.64904630 9.1839 2480.91

Table 3: Numerical results of various schemes for the estimation of P[mT > B1] under the CIR process. The parameter choices
are κ = 0.5, α = 0.06, σ = 0.15, s0 = 0.06, B1 = 0.03, and T = 1. We follow the procedure presented in Linetsky [27] to calculate
the true value of the probability, which is given by 0.6484896. The “MULTILEVEL+BI” part is skipped because this method
seems not converge to the correct value.

Lemma A.1. For any a > 0, y ∈ (0, a), and τ > 0,

G(a;x, y, τ) =




1 +
∑∞

n=−∞
e−2n2a2/τ

1−e−2xy/τ

(
e

2na(x−y)
τ − e−

2na(x+y)
τ

− 2xy
τ

)
,

0 < x < a;

1 +
∑∞

n=−∞
e−2n2a2/τ

2y/
√

τ

(
2na√

τ
e−

2nay
τ + (2na+2y)√

τ
e−

2nay
τ

)
,

x = 0.

Proof. From the above definition of Brownian mean-
ders and the scaling property of Brownian bridges, we
can easily show that the scaling property also applies
for the Brownian meanders; that is,

(Bme
s , t ≤ s ≤ t + τ |Bme

t = x,Bme
t+τ = y)

d=
(√

τBme
(s−t)/τ , 0 ≤ s− t ≤ τ

∣∣∣Bme
0 =

x√
τ
,Bme

1 =
y√
τ

)

for all τ ≥ 0. From this, we can see that

G(a;x, y, τ) = G(a/
√

τ ;x/
√

τ , y/
√

τ , 1).

Therefore, it suffices to calculate G(a;x, y, 1).
First, we assume x > 0, y ∈ (0, a). A key point

of the proof is the following distributional equality
implied by the definition of Brownian meanders:

{Bme
t , 0 ≤ t ≤ 1} d= {Bt, 0 ≤ t ≤ 1| min

0≤t≤1
Bt > 0},

where {Bt} is a standard Brownian motion. Applying
this equality and Bayes’ rule, we have

P[ max
0≤t≤1

Bme
t < a|Bme

0 = x,Bme
1 = y]

= P[ max
0≤t≤1

Bt < a|B0 = x,B1 = y, min
0≤t≤1

Bt > 0]

=
P[max0≤t≤1 Bt < a, min0≤t≤1 Bt > 0|B0 = x,B1 = y]

P[min0≤t≤1 Bt > 0|B0 = x,B1 = y]
.

(13)

It is straightforward to verify that the denominator
of the fraction on the right-hand side of (13) equals
1 − e−2xy. Let us focus on the numerator in the re-
mainder of the proof. Denote Tz to be the first pas-
sage time of {Bt} up to a level z. Using Bayes’ rule
again to represent the numerator,

P[ max
0≤t≤1

Bt < a, min
0≤t≤1

Bt > 0|B0 = x,B1 = y]

= P[T0 ∧ Ta > 1|B0 = x,B1 = y]

=
P[B1 ∈ dy, T0 ∧ Ta > 1|B0 = x]

P[B1 ∈ dy|B0 = x]
. (14)

Observe that

P[B1 ∈ dy|B0 = x] =
1√
2π

e−
(x−y)2

2 (15)

13



Table IV: Single Barrier, CIR Process
POISSON POISSON+VR

Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.42401006 2.0739 224.14 0.42404864 1.1147 188.80
0.42403968 1.0984 896.55 0.42401198 0.5121 755.31
0.42399204 4.8528 3584.77 0.42400730 0.2130 4742.35

EULER EULER+BI
Estimator RMSE(×10−4) Time(s) Estimator RMSE(×10−4) Time(s)
0.43239209 83.9981 72.16 0.42437003 11.7049 90.19
0.42995983 59.8195 571.83 0.42369934 6.1748 694.26
0.42815655 41.5452 4558.64 0.42381196 3.0290 5440.41

MULTILEVEL
Estimator RMSE(×10−4) Time(s)
0.42697681 42.3685 36.70
0.42513243 18.8276 471.41
0.42447096 8.8102 4359.42

Table 4: Numerical results of various schemes for the estimation of P[MT < B2] under the CIR process. The parameter choices
are κ = 0.5, α = 0.06, σ = 0.15, s0 = 0.06, B2 = 0.08, and T = 1. The true value is 0.4240057 given by Linetsky [27]. We use
P[MT < B2, mT > b] to approximate it and set b to be 10−4. The “MULTILEVEL+BI” part is skipped because this method
seems not to converge to the correct value.

and

P[B1 ∈ dy, T0 ∧ Ta > 1|B0 = x]

=
1√
2π

∞∑
n=−∞

(
e−

(x−y−2na)2

2 − e−
(x+y+2na)2

2

)
. (16)

Substituting (15) and (16) into (14) and (13), we can
work out G(a;x, y, 1) easily for the cases in which
x > 0. As for the cases when x = 0, it follows when
we take x → 0 on both sides of (13).
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