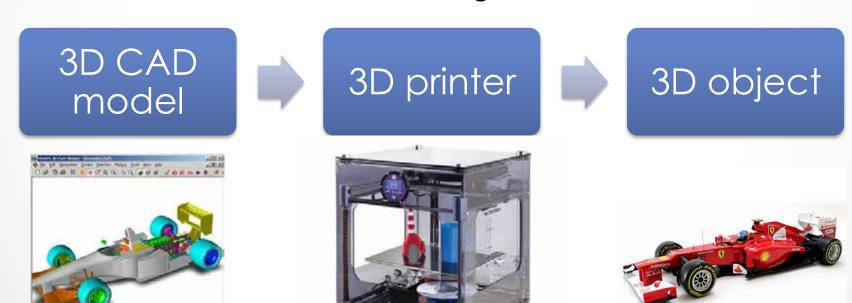
# 3D printing



# Group 1 Wong Fabiola Volkmac Reinecth Chan Ka Yun

#### "It will be awesome if they don't screw it up" 1


<sup>&</sup>lt;sup>1</sup> Title of Michael Weinbergs book about 3D printing opportunities and risks

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

## 3D printing is...

- the creation of 3 dimensional objects from a CAD¹ file
- a successive process adding material layer by layer on top of each other
- also called additive manufacturing



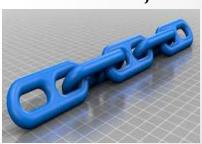
<sup>&</sup>lt;sup>1</sup> Computer-Aided Design: the use of computer systems to assist in the creation, modification, analysis, or optimization of a design

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

### Key benefits

- can safe costs especially in manufacturing prototypes
- reducing the waste of material and therefore the environmental impact
- possibility to personalize products according to individual needs and requirements
- possibility to manufacture interlocking objects




#### PREVENTION REUSE

ENERGY RECOVERY DISPOSAL

**Prototyping** 



**Interlocked objects** 



#### But...

- the object has first to be designed with an according software
- design may require expert judgement of physical feasibility and structure
- file conversion into a 3D printer readable file type can be time consuming

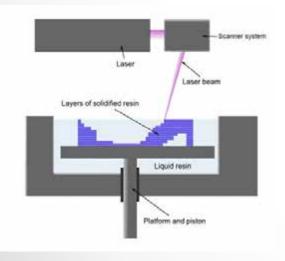


→ 3D printing can require advanced knowledge of the technology

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

## Important stages (1/2)

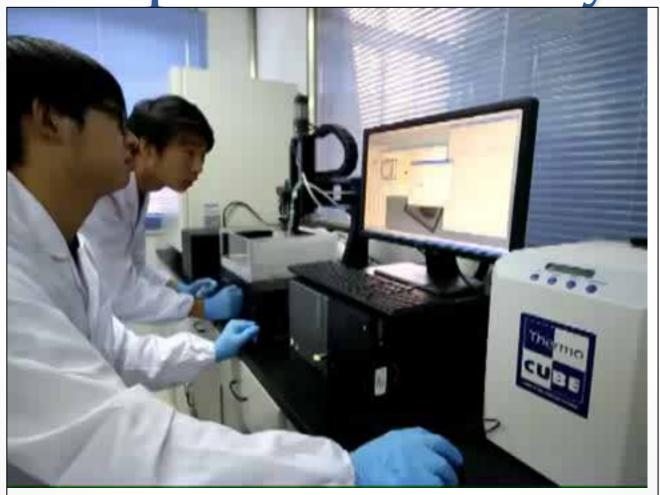
#### 1984


first 3D printing technique "stereolithography" was invented

#### 1992

first stereolithography machine was produced (by "3D Systems Inc.")

#### 2002


first working kidney was printed



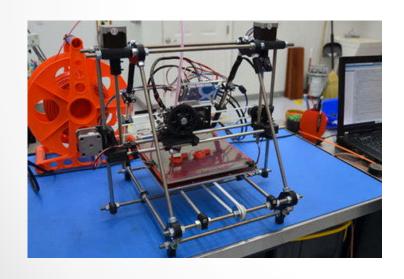




3D printed kidney



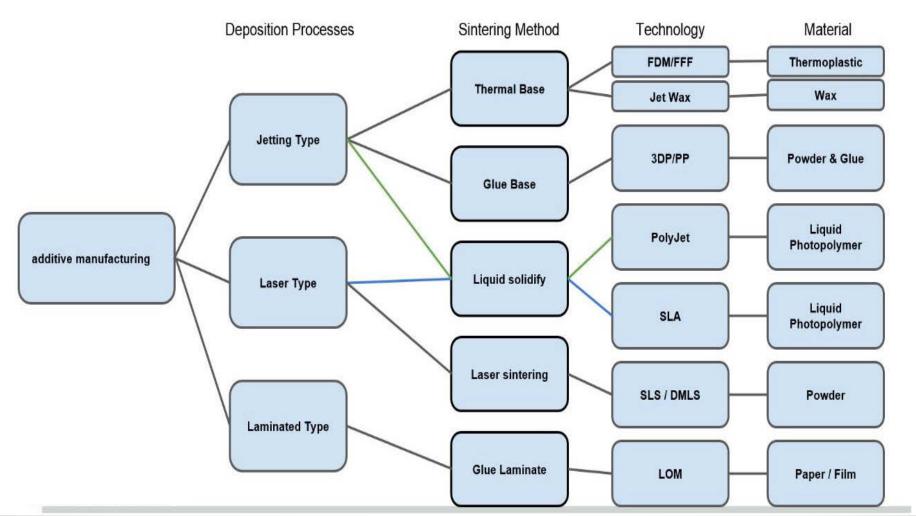
•11


## Important stages (2/2)

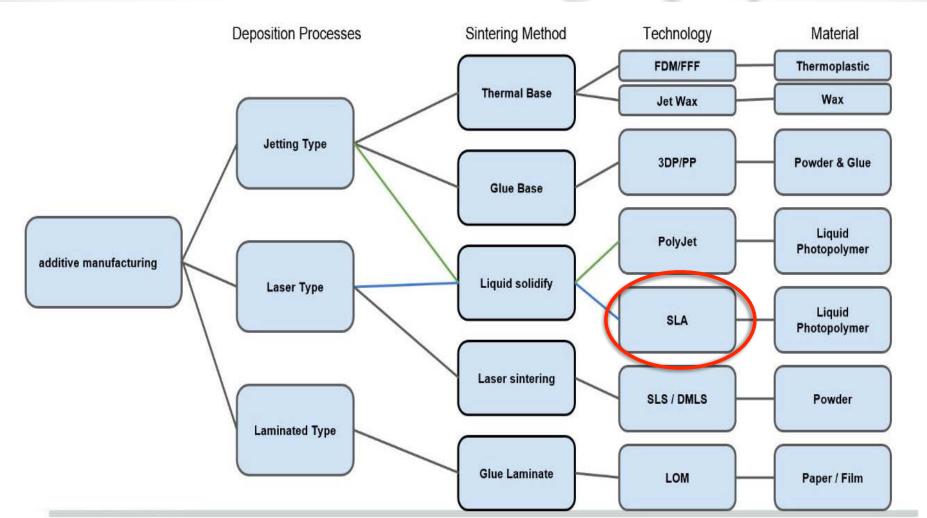
#### 2005

first self replicating printer (most of its parts)

#### 2011

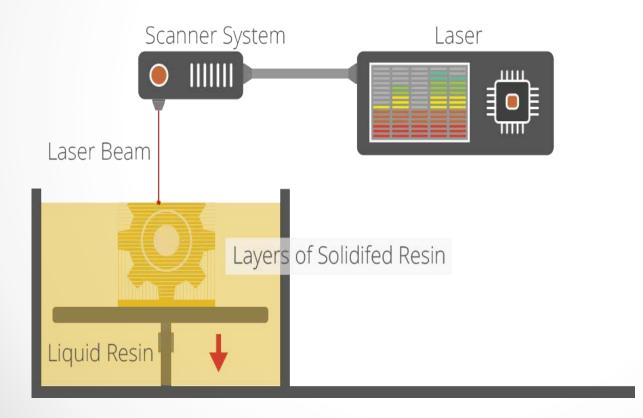

first 3D printed car called "Urbee" was introduced





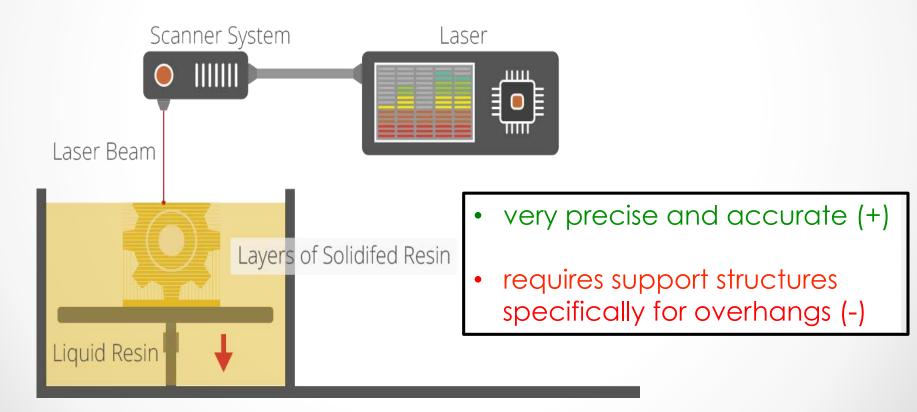

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

## 3D printing technologies

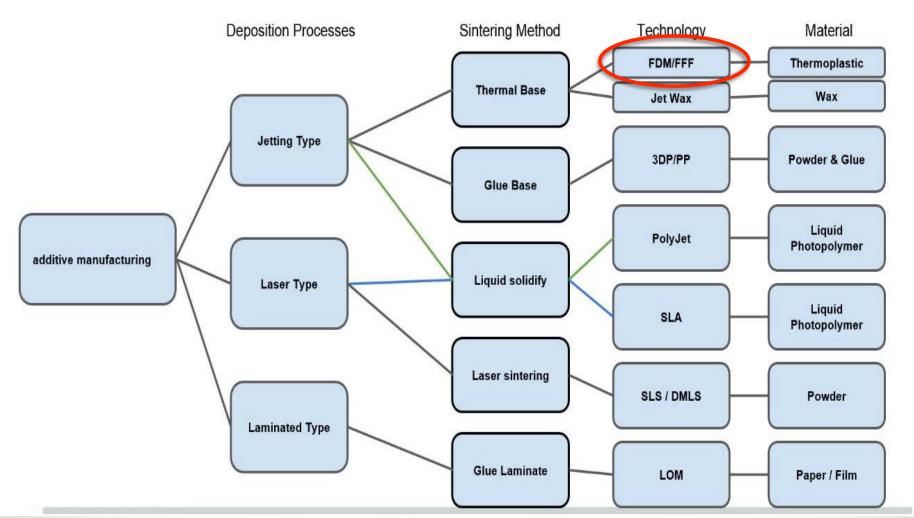



## 1. Stereolithography



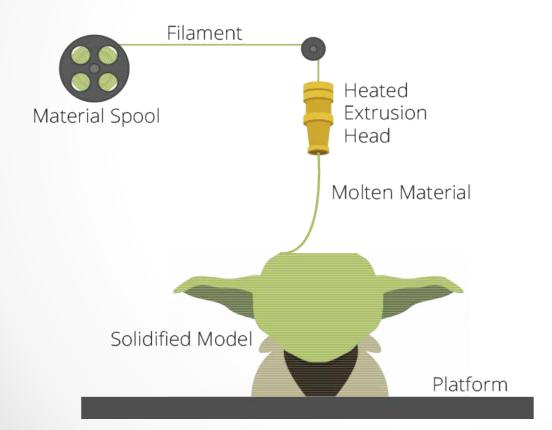

## • first 3D printing process (1984)

- uses liquid photopolymers
- laser based



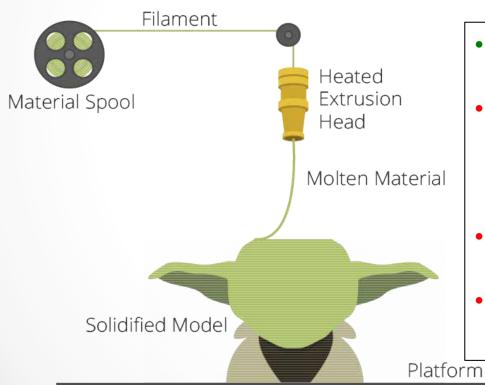

## 1. Stereolithography first 3D printing process (1984)

- uses liquid photopolymers
- laser based



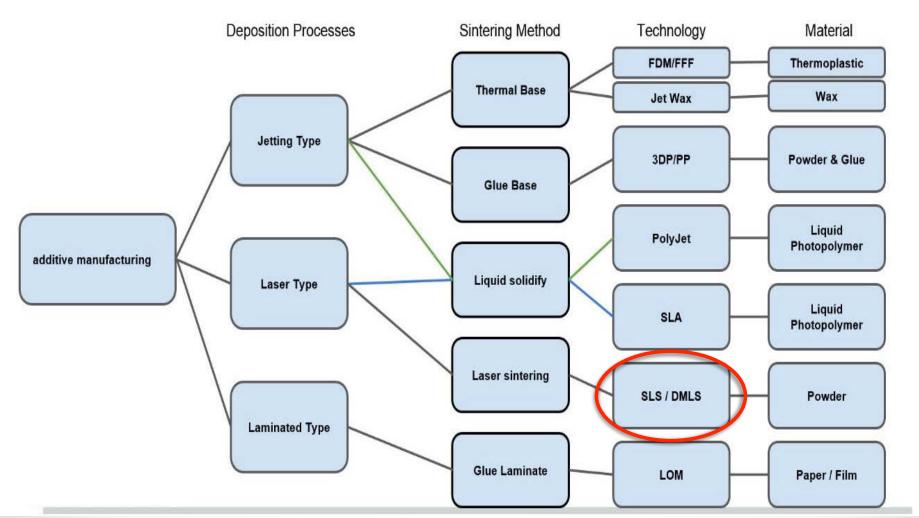

#### 2. Fused Deposition Modelling




#### 2. Fused Deposition Modelling

- thermal-based and uses extrusion of thermoplastic
- developed in the early 1990's by "Stratasys Ltd."

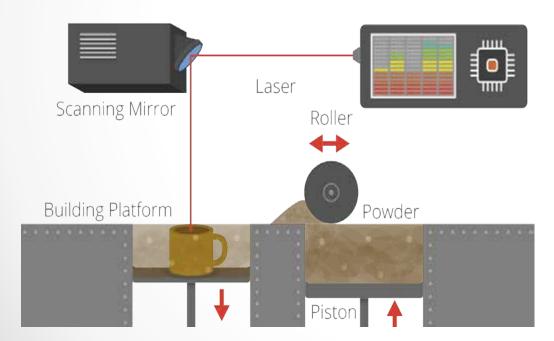



#### 2. Fused Deposition Modelling

- thermal-based and uses extrusion of thermoplastic
- developed in the early 1990's by "Stratasys Ltd."

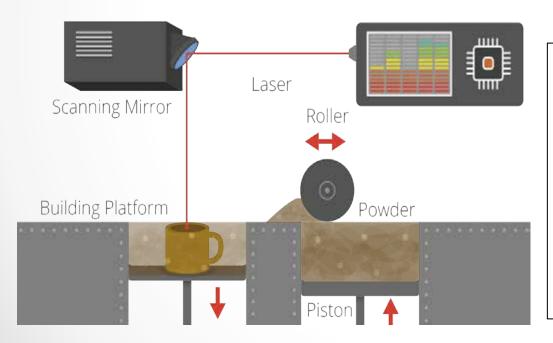


- accurate and reliable (+)
- requires support structures for overhangs and undercuts (-)
- relatively slow (-)
- problematic if waterproof parts are needed (-)


#### 3. Selective Laser Sintering



### 3. Selective Laser Sintering


- a laser is traced across compacted powder
- the powder fuses due to the energy of the laser 

  solid is formed
- new powder is added for every new layer



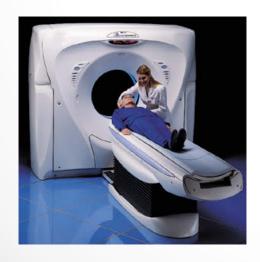
### 3. Selective Laser Sintering

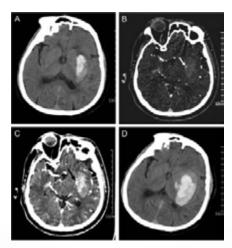
- a laser is traced across compacted powder
- the powder fuses due to the energy of the laser → solid is formed
- new powder is added for every new layer



- works with plastic, metal, ceramic or glass (+)
- powder serves as support structure (+)
- complex shapes (+)
- May require cooling time (-)
- surface finish less detailed (-)
- less accurate (-)

- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

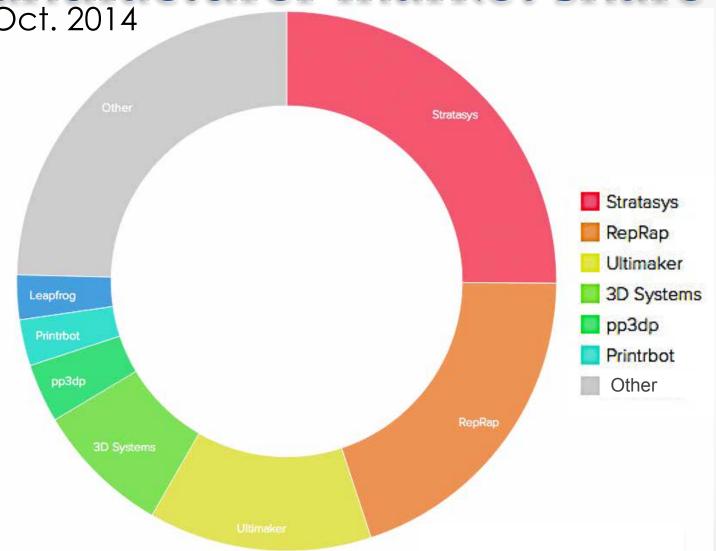

Related technology: 3D scanning


digitalizing the surface of objects for e.g. animations,
 3D measurement, archiving or 3D printing models



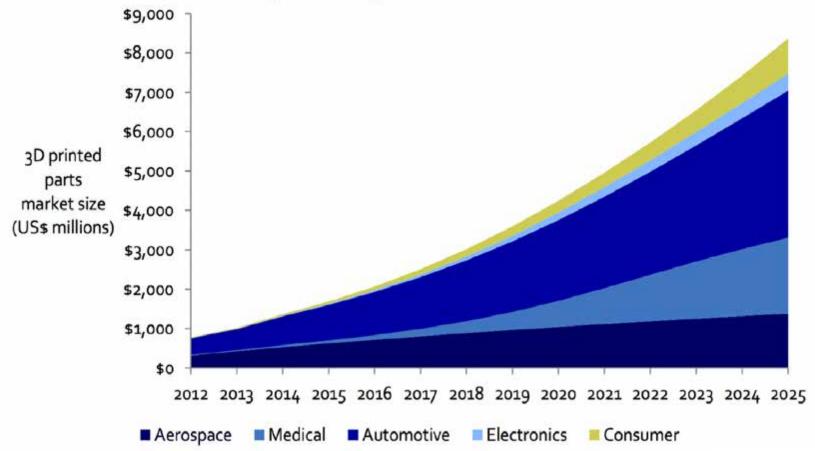
#### Related technology: 3D scanning

- Different technologies like
  - Contact 3D Scanning
  - Time-Of-Flight (laser) 3D Scanning
  - Triangulation (laser) 3D Scanning
  - Conoscopic 3D Scanning
  - Structured light 3D Scanning
  - Computed tomography (CT) 3D Scanning



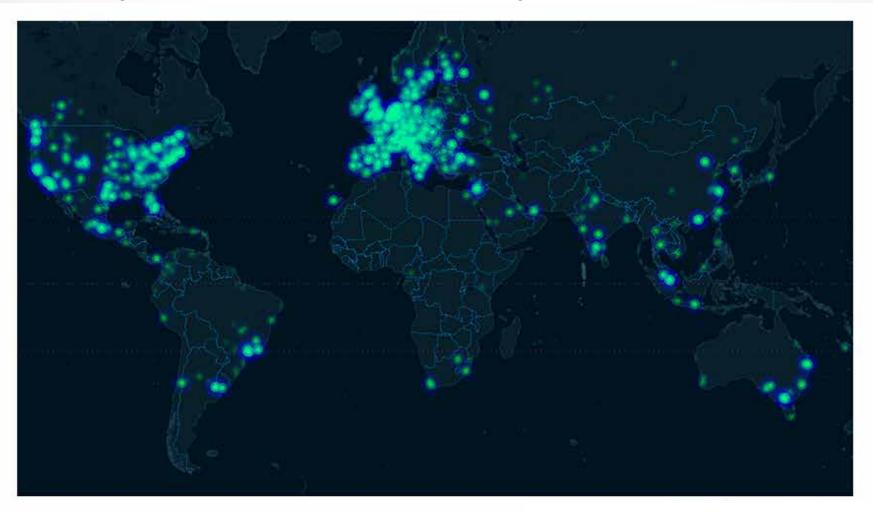






- a) What is 3D printing?
- b) Benefits and downsides
- c) Important stages
- d) 3D printing technologies & processes
- e) Related technology: 3D scanning
- f) Charts
- (2) Potential applications
- (3) Concerns and future development

## Manufacturer market share Oct. 2014

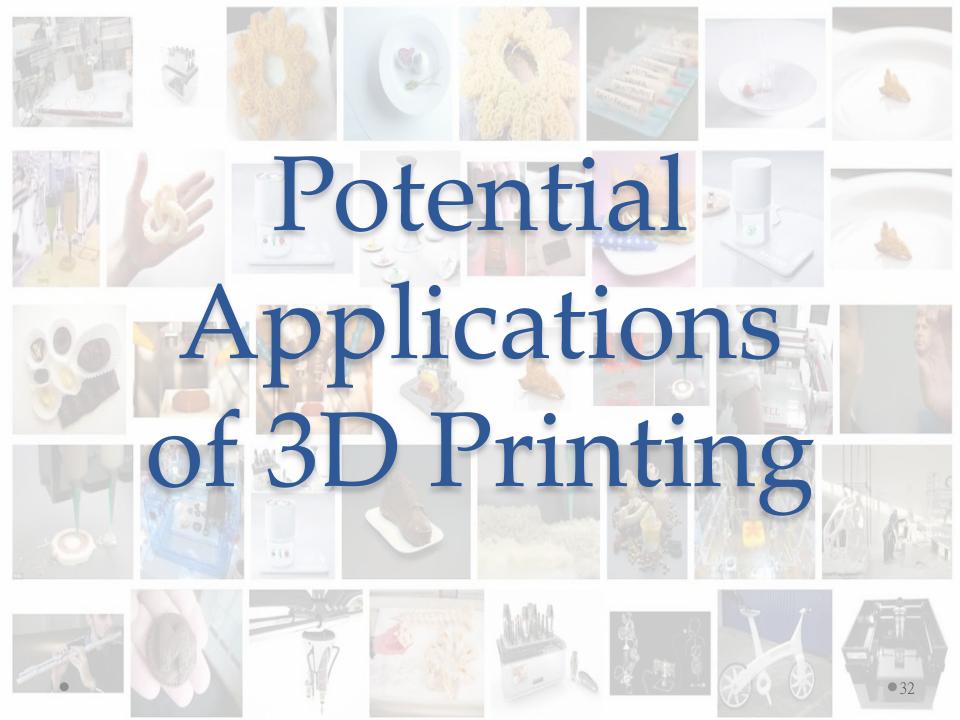



#### Future market size estimation

3D Printed Part Market Grows to \$8.4 Billion in 2025



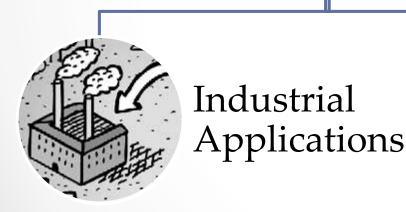
## 3D printing world map


Geographical distribution of over 7500 printers registered on www.3dhubs.com



(1) Introduction

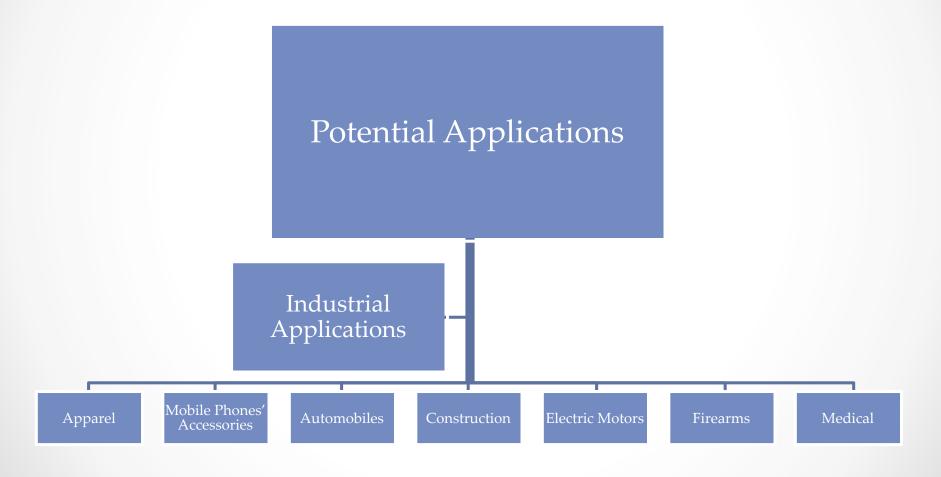
(2) Potential applications


(3) Concerns and future development

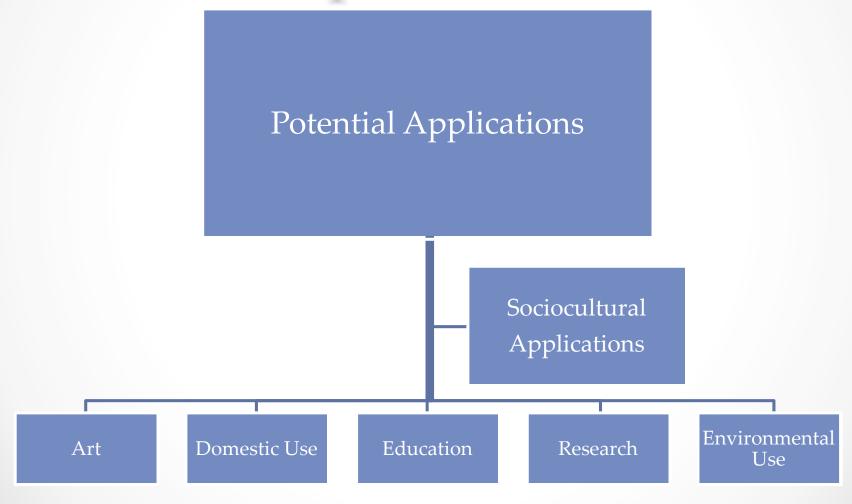


### To be presented...




Potential Applications






Sociocultural Applications

### To be presented...



### To be presented...



# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles



Construction



**Electric Motors** 



Firearms

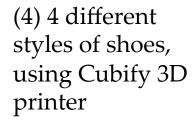


Medical

### Apparel

- Clothings such as:
- Bikinis
- Shoes
- Dresses
- Eyewear
- Hats




(1) 3D hat introduced by .MGX



(2) 3D printed dress coated in silicon



(3) Continuum Fashion: using solid nylon







(5) People can customize their own 3D printed glasses

### Apparel

- More to know:
- In March 2013
- New Balance manufactures 3D printed spike plates using soft SLS components
- SLS mimics the cushioning properties of foam midsoles
- Adapting to each athlete's personal preference





**38** 

# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles

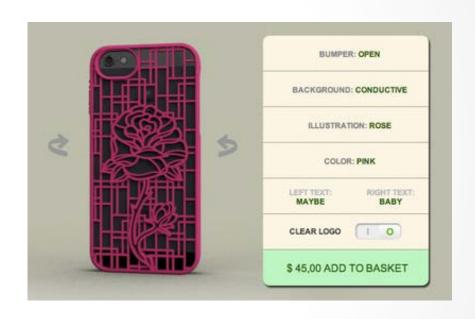


Construction



**Electric Motors** 




Firearms

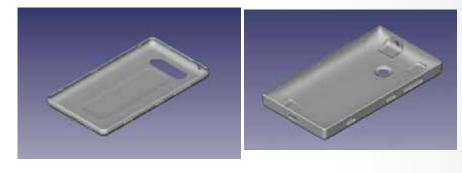


Medical

## Mobile Phones' Applications

- Mobile Phone:
- 3D printed shells are available for selling
- We can also tailormade with our own design – but it is of high difficulty to make it functional...




3D print service "Kees", personalised iPhone case for USD \$45

•40

## Mobile Phones' Applications

- More to know:
- In January 2013
- Nokia allowed customers to customize their own phone's back shell for phones such as Lumia 520 and Lumia 820.





The Lumia 820 and Lumia 520 Shells



# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles



Construction



Electric Motors



Firearms



Medical

### Automobiles

- Vehicles:
- Nowadays, parts of the vehicles such as titanium exhaust components can be 3D printed
- For instance:
- Swedish supercar manufacturer Koenigsegg
- Produced the One:1
- Its titanium exhaust 3D printed takes three days to produce



A close-up of the exhaust tip



### Automobiles

- More to know:
- In September 2014
- Officially at the International Manufacturing Technology Show (IMTS) in Chicago, Illinois
- The world's first finalized
   3D printed car
   emerged, named
   "Strati"
- Electric with 2 seats





• 44

# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles



Construction



**Electric Motors** 



Firearms



Medical

### Construction

- Buildings printings:
- Quicker construction
- Lower labor costs
- More to know:
- In China, the WinSun company based in Shanghai
- Using large 3D printers, ten demo houses were built
- Measuring 200 square meters
- In 24 hours, each costing US \$5000
- 12 years to develop the large
   3D printer
- 6.6 meters tall, 10 meters wide and 150 meters long





Materials used: construction waste mixed with cement

### Construction

- More to know:
- In earlier 2014
- Amsterdam architects started building a fullsized 3D printed house
- Will be called "3D Print Canal House"
- Expected to take years to complete
- Using plastic heavily based on plant oil



Blueprints of the parts, to be combined like a Lego

### Construction

- More to know:
- The "Canal House"
- 3D printed on a Kamermaker
- It is a large-scale movable 3D printer of 6-meter tall
- Printing on different types of plastic





# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles

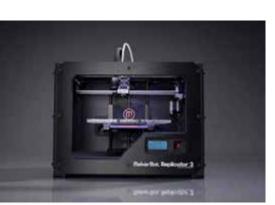


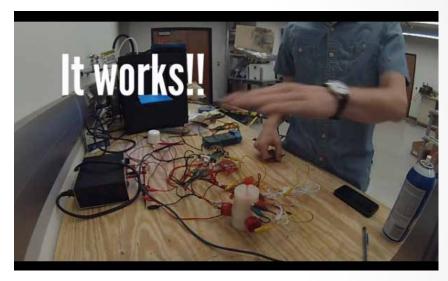
Construction

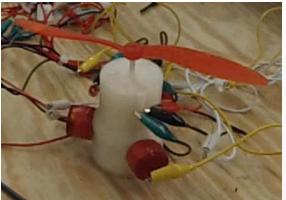


**Electric Motors** 




Firearms





Medical

### Electric Motors

- Electric Motors
- More to know:
- 3D printed Brushless DC Motor
- All parts 3D printed excluding magnets, solenoid wrapping wire, and hall effect sensors
- Using a Makerbot Replicator2







# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles



Construction



**Electric Motors** 



**Firearms** 



Medical

### Firearms

- Plastic guns:
- Defense Distributed (DD)
- A non-profitorganization designing3D printable firearms

#### More to know:

- In May 2013
- Defense Distributed gave yield to the first successful design of a 3D printed plastic gun



Prototype 3D printed gun from Defense Distributed

#### **Firearms**

United State
 Department of State
 ordered the removal of
 creation instructions
 from Defense
 Distributed's website



• 53

# Potential Applications – Industrial Applications



Apparel



Mobile Phones' Accessories



Automobiles

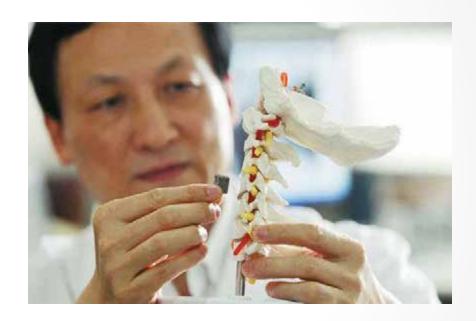


Construction



**Electric Motors** 




Firearms



Medical

### Medical

- Implants and devices for medical use: Prosthetic implants of teeth or bones can be tailorprinted to fit a patient's need
- In August 2014
- The world's first 3D printed section of the vertebra of a 12-year-old boy was implanted
- By doctors at Peking University Third Hospital



## **3-D Printed Vertebra**Director of Orthopedics at Peking University, holds the 3-D printed piece of vertebra

### Medical

- More to know:
- In 2012
- A 4-year-old little girl, born with a disease called arthrogryposis multiplex congenita, a condition that leaves her joints stiff and muscles underdeveloped
- Because of the disease, she cannot lift her arms without support





• 56

### Medical

- WREX (Wilmington Robotic Exoskeleton)
- Built with 3D printing with light materials
- Linear elastic bands are used both for balance and to assist movement in three dimensions against the effects of gravity





# Potential Applications – Sociocultural Applications



Art



Domestic Use



Education



Research



**Environmental Use** 

### Art

- Work of arts:
- Apart from 3D printing with plastic materials;
- Laybrick, laywood and nylon can also be used as raw materials
- Resulting in a big variety of shapes and textures of pieces of work



### Art

- More to know:
- Echoviren is the world's largest 3D printed art installation
- Two months (10,800 hours) of printing time to finish it
- The piece of art is believed to decompose back into the environment within 30 to 50 years.



# Potential Applications – Sociocultural Applications



Art



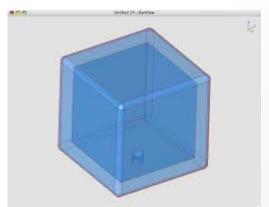
Domestic Use



Education



Research




Environmental Use

### Domestic Use

- Personal 3D printer:
- Choice of raw materials limited to plastic at the moment
- Only more advanced devices can create objects with various colors
- Normally limited to a single colour
- Limitations to shapes also occur, such as, a hollow cube





•62

## Sociocultural Applications – Domestic Use

More to know:

- Afinia H480 3D Printer Costs only \$1,299 USD → \$10,067.25 HKD

Uses ABS plastic filament: from \$31.99 USD/kg

Items produced: maximum size of around five cubic inches



# Potential Applications – Sociocultural Applications



Art



Domestic Use



Education



Research



Environmental Use

### Education

- Learning processes:
- Ranging from architectural planning to creation of historical artefacts
- 3D printing encourages imagination and creativity brought to the reality
- More to know:
- International Manufacturing Technology Show 2014
- Took place in Chicago
- Students were asked to use CAD modelling tools to produce wind turbine solutions – 3D printed



# Potential Applications – Sociocultural Applications



Art



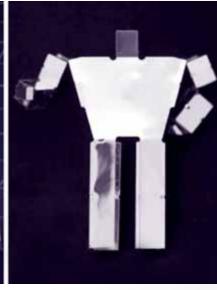
Domestic Use



Education



Research




**Environmental Use** 

### Research

- Paths to new developments:
- Allows research in medical and technological areas
- More to know:
- At the 2014 IEEE
   International Conference on Robotics and Automation
- Held in Hong Kong in late May and early June
- An assembled future robot was presented
- The 3D printed robots could change shape once exposed to heat





**6**7

# Potential Applications – Sociocultural Applications



Art

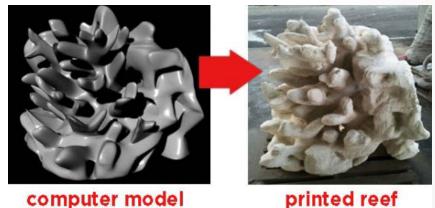


Domestic Use



Education




Research



**Environmental Use** 

### Environmental Use

- Man-made structures to the environment:
- Humans are able to build 3D printed structures that assemble the ones found in Mother Nature
- More to know:
- Using sandstone-like materials
- Neutral pH coral-shaped structures are created to encourage coral reefs colonization
- Restore any damages previously found



## Agenda

- (1) Introduction
- (2) Potential applications
- (3) Concerns and future development

"Every coin has two sides ..."

## Concerns

about 3D Printing

### 1. Legal Issues



- Impact existing Intellectual Property(IP) regulations
- 3 major areas: Copyright, Patent and Trademark
- More easy to violate these protection laws with 3D printing



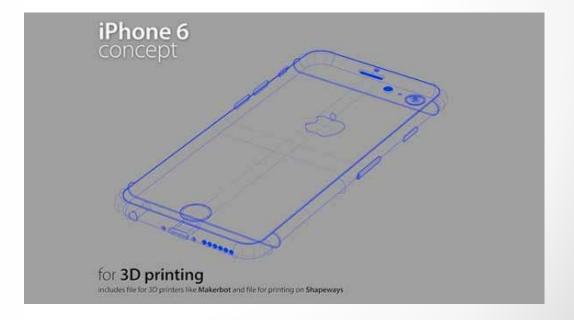


## 1. Legal Issues (Cont'd)

- Design blueprint files made available on the Internet for sharing
- Personal manufacturing of copyrighted objects are difficult to be detected, prevented or controlled.
- Discourage creative works










# 1. Legal Issues (Cont'd)

- A Japanese magazine, MacFan, had leaked pictures of the iPhone 6
- Two CAD artists immediately began selling CAD files of iPhone 6 mockups based on the pictures for people to 3D print at home





### 2. Criminal Issues

KeyMe App



### **3D Printed Key**





### 2. Criminal Issues (Cont'd)

### 3D Printed Fake Goods







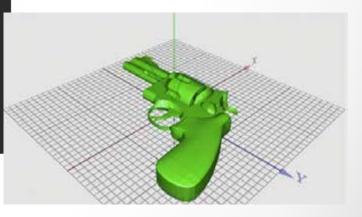


### 2. Criminal Issues (Cont'd)

**3D Printed Face Mask** 



# 3. Weapons


### The world's first 3D-printed gun

By Sebastian Anthony on July 26, 2012 at 10:56 am

292 Comments







### 3. Weapons (Cont'd)

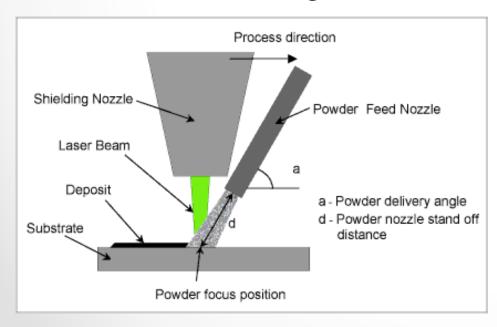
Now there are bullets that won't break your 3D-printed gun

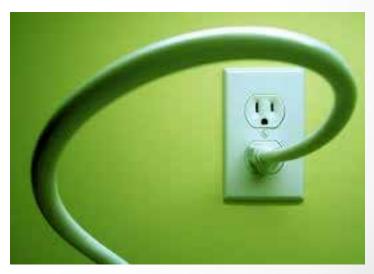


### 3. Weapons (Cont'd)

New: Japanese cops arrest man with

five 3D printed guns at home




### 4. Environmental Issues

### **High Energy Consumption**

- 3D printers consume about 50 to 100 times more electrical energy than injection molding to make an item of the same weight
- Laser direct metal deposition (where metal powder is fused together) used hundreds of times the electricity as traditional casting or machining





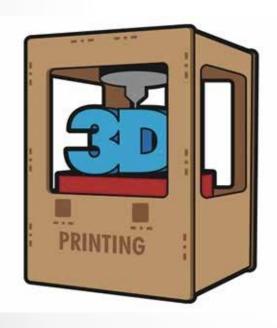
### 4. Environmental Issues (Cont'd)

### **Excessive Usage of Plastics**

- Plastic filament is one of the mostly used materials in 3D printing
- ABS filament, the most commonly used type of plastic, is non-biodegradable
- As 3D printing becomes popular, it is predicted that many unused or unnecessary plastic products produced

### 5. Health Issues

### **Unhealthy Air Emissions**


- The emissions from desktop 3D printers are similar to burning a cigarette
- 3D printers using PLA filament emitted 20 billion ultrafine particles per minute, and the ABS emitted up to 200 billion particles per minute while heating the plastic and printing small figures

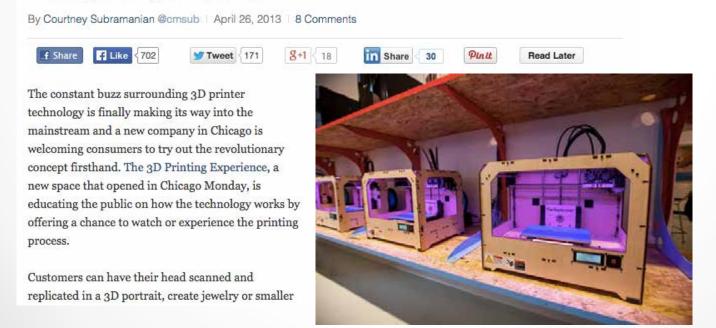


**8**3

# Future Development

# of 3D Printing






## 1. 3D Printing as Service

- Changes in business model & consume pattern
  - Less good stores, less pre-produced goods
  - More 3D printing services stores that provide product printing on demand

### **Chicago 3D Printing Shop Opens for Business**

3D printing is coming to a city near you.



# 2. 3D Copy Machine

- Big barrier of current 3D printing technology
  - Object Modeling
- 3D Copy Machine = 3D Scanner + 3D Printer
- 3D Scanner is a key element for successful future development of 3D printing
- Quick way to modeling an object

### All-In-One 3D Copy Machine Clones Objects

By Laura Chase on September 11, 2013 in Design ~



- Zeus 3D Copy Machine by AIO
- A fund raising project in KickStarter

## 2. 3D Copy Machine (Cont'd)

- Limitations on current 3D Copy Machine
  - Only copy the external appearance of objects
  - No internal structure or real functions
- Future Real 3D Copy Machine
  - Copy both external appearance and internal structure(e.g. Using X-ray?)
  - Copy the function of object as well



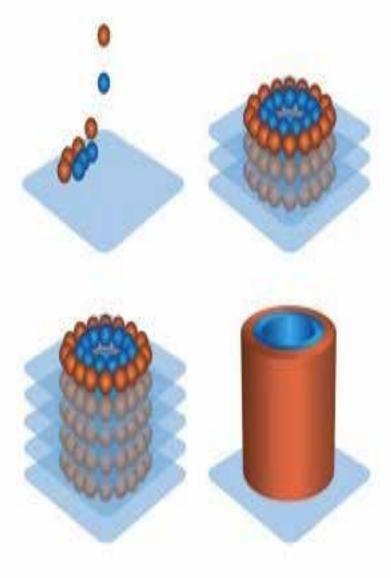
# 3. Material Detection & Multiple Printing Materials

- Most current 3D printers can only print objects with single pre-configured material (e.g. plastics)
- Real world objects consist of many diff. materials
- Key step for real 3D copy machine & object function copying
- New materials: wood, glass, elastic materials, etc...



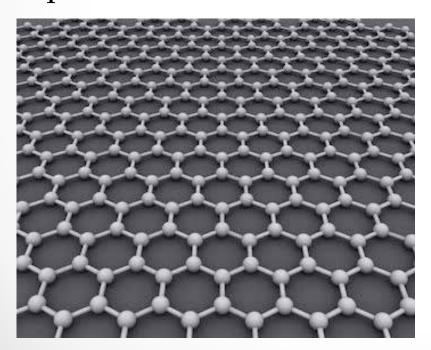
# 4. 3D Bioprinting

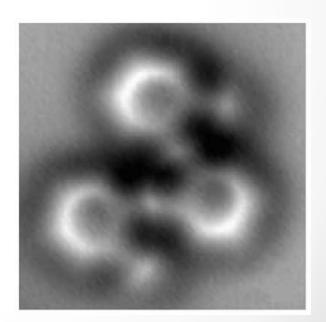
- 3D bioprinting is the process of generating spatiallycontrolled cell patterns using 3D printing technologies
- Applications: Build skin tissues, blood vessels, organs for transplantation
- Idea: Artificially construct living tissue by outputting living cells layer by layer
- Currently all bioprinters are experimental






# 4. 3D Bioprinting (Cont'd)


### 3D Bioprinting Process


- Take a person's cells and growing for enough cells
- 2. Form solid tissues by allowing the cells to attach with each others
- 3. Solid tissue is sucked into a glass tube that serves as printing material
- 4. Deposit the tissue one line at a time on top of a layer of gel
- 5. Over a few days, the cells will
  - merge into a single piece of tissue



# 5. 3D Printing Ultimate Goal – Atomic/Molecular Level 3D Printing

- Use element atoms or molecules as printing materials
- Can build any things theoretically
- Researchers are planning to build 3D printer that print Graphene





# 5. 3D Printing Ultimate Goal – Atomic/Molecular Level 3D Printing (Cont'd)

### **Printing Chemical Compounds - Drugs**

 3D Drugs Printed Project leaded by Lee Cronin from the University of Glasgow





• Slide 1

### Picture:

- <a href="http://www.skipmasta.de/phpBB2/ftopic24191.html">http://www.skipmasta.de/phpBB2/ftopic24191.html</a>
- Slide 5

#### Text and Pictures:

- http://docs.techsoft3d.com/visualize/3df/latest/GettingStarted/
   DefiningTheScenegraph C.html
- <a href="http://www.theregister.co.uk/2013/02/04/ten-3d-printers/">http://www.theregister.co.uk/2013/02/04/ten-3d-printers/</a>
- <a href="http://www.newsonfl.com/shopping/shopping-die.htm">http://www.newsonfl.com/shopping/shopping-die.htm</a>
- Slide 7

### Text and Pictures:

- http://www.cvent.com/en/event-management-software/event-emailmarketing.shtml
- <a href="http://www.british-assessment.co.uk/articles/guide-to-reducing-waste">http://www.british-assessment.co.uk/articles/guide-to-reducing-waste</a>
- <a href="http://www.brightsideofnews.com/2012/05/25/3D">http://www.brightsideofnews.com/2012/05/25/3D</a> printers-have-nothing-to-do-with-3D but-are-utterly-brilliant/
- http://www.3dprinter.net/wp-content/uploads/2012/03/3D printed-chain.jpg

Slide 8

### Text and Pictures:

- http://textually.org/3DPrinting/cat\_3d\_printing\_basics\_explained.html
- Slide 10

### Text and Pictures:

- <a href="http://en.wikipedia.org/wiki/Stereolithography">http://en.wikipedia.org/wiki/Stereolithography</a>
- <a href="http://www.micromanufacturing.com/content/stereolithography-microparts">http://www.micromanufacturing.com/content/stereolithography-microparts</a>
- <a href="http://www.dvice.com/2013-9-9/tiny-kidneys-are-worlds-first-3D">http://www.dvice.com/2013-9-9/tiny-kidneys-are-worlds-first-3D</a> printed-living-organs
- http://www.digitalartsonline.co.uk/news/hacking-maker/selfreplicating-3D printer-project-launched
- http://www.gizmag.com/urbee-2-transcontinental-us-10-gal/29716/

Slide 11

#### Video:

- <a href="https://www.youtube.com/watch?v=Tpy9NShieZg&spfreload=10">https://www.youtube.com/watch?v=Tpy9NShieZg&spfreload=10</a>
- Slide 12

#### Text and Pictures:

- http://www.techhive.com/article/256098/
   reprap 3d printers will soon self replicate like bunnies.html
- http://korecologic.com/about/urbee 2/
- Slide 14

#### Picture:

- <a href="http://www.custompartnet.com">http://www.custompartnet.com</a>
- Slide 16,19, 23

#### Text and Pictures:

- http://3dprintingindustry.com/3D printing-basics-free-beginners-guide/ processes/
- Slide 25

### Video:

- http://polhemus.com/scanning-digitizing/fastscan-cobra-ci/
- https://www.youtube.com/watch?v=SyzgBycPxyw

Slide 26

#### Text and Pictures

- http://www.rapidform.com/de/3D scanner/
- <a href="http://en.wikipedia.org/wiki/3D scanner#mediaviewer/File:Lidar P1270901.jpg">http://en.wikipedia.org/wiki/3D scanner#mediaviewer/File:Lidar P1270901.jpg</a>
- <a href="http://www.xhbv.com/quantitation-of-emphysema-by-computed-tomography-using-a-density-mask-program.html">http://www.xhbv.com/quantitation-of-emphysema-by-computed-tomography-using-a-density-mask-program.html</a>
- <a href="http://stroke.ahajournals.org/content/42/12/3441/F1.expansion.html">http://stroke.ahajournals.org/content/42/12/3441/F1.expansion.html</a>
- Slide 28

#### Picture:

- www.3dhubs.com/Trends
- Slide 29

### Picture:

- www.luxresearchinc.com/
- Slide 30

### Picture:

www.3dhubs.com/Trends

• Slide 37

Text: <a href="http://3dprintingindustry.com/fashion/">http://3dprintingindustry.com/fashion/</a>

Pictures:

- (1) <a href="http://www.3ders.org/articles/20130222-mgx-introducing-new-3d-printed-hats.html">http://www.3ders.org/articles/20130222-mgx-introducing-new-3d-printed-hats.html</a>
- (2) <a href="http://www.businessinsider.com/3d-printed-fashion-2014-8?op=1">http://www.businessinsider.com/3d-printed-fashion-2014-8?op=1</a>
- (3) <a href="http://www.continuumfashion.com/N12.php">http://www.continuumfashion.com/N12.php</a>
- (4) <a href="http://www.3d-printing.net/tags/shoes">http://www.3d-printing.net/tags/shoes</a>
- (5) <a href="http://i.materialise.com/blog/entry/design-3d-printed-glasses-with-tinkercad">http://i.materialise.com/blog/entry/design-3d-printed-glasses-with-tinkercad</a>
- Slide 38

### Text and Pictures:

- <a href="http://www.newbalance.com/press-releases/id/">http://www.newbalance.com/press-releases/id/</a>
  <a href="press-2013">press 2013</a> New Balance Pushes Limits of Innovation with 3D Printing.html</a>
- <a href="http://i0.wp.com/hypebeast.com/image/2013/03/new-balance-3-d-printed-shoes-1.jpg?w=1410">http://i0.wp.com/hypebeast.com/image/2013/03/new-balance-3-d-printed-shoes-1.jpg?w=1410</a>

Slide 40

#### Text and Picture:

- <a href="http://developer.nokia.com/community/wiki/3D">http://developer.nokia.com/community/wiki/3D</a> print a shell for your Nokia Phone
- <a href="http://www.fabbaloo.com/blog/2013/5/17/kees-3d-printed-cases.html">http://www.fabbaloo.com/blog/2013/5/17/kees-3d-printed-cases.html</a>
- Slide 41

### Text and Pictures:

- http://developer.nokia.com/community/wiki/
   3D print a shell for your Nokia Phone
- Slide 43

#### Text and Pictures:

- <a href="http://www.evo.co.uk/gallery/news/geneva">http://www.evo.co.uk/gallery/news/geneva</a> motor show/291859/ koenigsegg one1 supercar geneva 2014.html
- <a href="http://www.businessinsider.com/koenigsegg-one1-comes-with-3d-printed-parts-2014-2">http://www.businessinsider.com/koenigsegg-one1-comes-with-3d-printed-parts-2014-2</a>

Slide 44

### Text and Pictures:

- http://mashable.com/2014/09/16/first-3d-printed-car/
- Slide 46

#### Text and Pictures:

- http://en.wikipedia.org/wiki/Building printing
- <a href="http://www.ibtimes.co.uk/china-recycled-concrete-houses-3d-printed-24-hours-1445981">http://www.ibtimes.co.uk/china-recycled-concrete-houses-3d-printed-24-hours-1445981</a>
- Slide 47

#### Text and Pictures:

- <a href="http://www.bbc.com/news/technology-27221199">http://www.bbc.com/news/technology-27221199</a>
- Slide 48
- <a href="http://www.3ders.org/articles/20140117-3d-print-canal-house-project-begins-to-open-to-public-in-march.html">http://www.3ders.org/articles/20140117-3d-print-canal-house-project-begins-to-open-to-public-in-march.html</a>
- <u>www.gizmag.com/kamermaker-3d-printed-house/26752/</u>

Slide 50

#### Text and Pictures:

- <a href="http://www.instructables.com/id/3D-Printed-DC-Motor/">http://www.instructables.com/id/3D-Printed-DC-Motor/</a>
- http://www.amazon.com/MakerBot-Replicator-2X-Experimental-Printer/dp/ B00H9KQKH6
- Slides 52 and 53

#### Text and Picture:

- http://en.wikipedia.org/wiki/Defense Distributed
- <a href="http://www.theverge.com/2013/5/3/4296580/defense-distributed-claims-to-have-created-the-worlds-first-fully-3d">http://www.theverge.com/2013/5/3/4296580/defense-distributed-claims-to-have-created-the-worlds-first-fully-3d</a>
- Slide 55

### Text and Picture:

- <u>www.bbc.com/news/technology-16907104</u>
- <a href="http://www.popsci.com/article/science/boy-given-3-d-printed-spine-implant">http://www.popsci.com/article/science/boy-given-3-d-printed-spine-implant</a>
- Slide 56

### Text and Pictures:

- http://www.stratasys.com/industries/medical
- <a href="https://ca.news.yahoo.com/blogs/good-news/3d-printed-magic-arms-help-4-old-emma-163015946.html">https://ca.news.yahoo.com/blogs/good-news/3d-printed-magic-arms-help-4-old-emma-163015946.html</a>

Slide 57

### Text and Pictures:

- <a href="http://jaecoorthopedic.com/products/categories/mobile-arm-supports/wrex-7252d-wilmington-robotic-exoskeleton/">http://jaecoorthopedic.com/products/categories/mobile-arm-supports/wrex-7252d-wilmington-robotic-exoskeleton/</a>
- Slides 59 and 60

#### Text and Picture:

- <a href="http://www.lpfrg.com/applications/3d-printing-for-art-design">http://www.lpfrg.com/applications/3d-printing-for-art-design</a>
- <a href="http://www.forbes.com/sites/rakeshsharma/2013/08/27/the-worlds-largest-3d-printed-art-installation/">http://www.forbes.com/sites/rakeshsharma/2013/08/27/the-worlds-largest-3d-printed-art-installation/</a>
- Slide 62

#### Text and Pictures:

- <a href="http://www.pcpro.co.uk/features/383671/3d-printing-the-myths-and-the-reality/2">http://www.pcpro.co.uk/features/383671/3d-printing-the-myths-and-the-reality/2</a>
- <a href="http://www.bbc.com/news/technology-16503443">http://www.bbc.com/news/technology-16503443</a>

Slide 63

### Text and Picture:

- <a href="http://www.afinia.com/3d-printers">http://www.afinia.com/3d-printers</a>
- Slide 65

### Text and Pictures:

- http://3dprintingindustry.com/education/page/2/
- 3dprintingindustry.com/2014/10/14/kids-cad-3d-printers-test-turbine-design-solutions/
- Slide 67

### Text and Picture:

- <a href="http://www.livescience.com/46010-robots-self-assemble-when-heated.html">http://www.livescience.com/46010-robots-self-assemble-when-heated.html</a>
- Slide 69

### Text and Pictures:

- <a href="http://www.forbes.com/sites/ptc/2013/10/21/3d-printed-reef-restores-marine-life-in-the-persian-gulf-3/">http://www.forbes.com/sites/ptc/2013/10/21/3d-printed-reef-restores-marine-life-in-the-persian-gulf-3/</a>
- <a href="http://successfulreefkeeping.com/wp-content/uploads/2013/08/3D-printed-reef-560x276.jpg">http://successfulreefkeeping.com/wp-content/uploads/2013/08/3D-printed-reef-560x276.jpg</a>

Slide 72 and 73

#### Text and Pictures:

- <a href="http://epthinktank.eu/2014/03/17/legal-aspects-of-3d-printing/">http://epthinktank.eu/2014/03/17/legal-aspects-of-3d-printing/</a>
- Slide 74

### Text and Pictures:

- http://www.inside3dp.com/thanks-cad-artist-can-3d-print-apple-watchhome/
- Slide 75

#### Pictures:

- <a href="http://www.3ders.org/articles/20140730-breaking-into-a-house-is-now-easier-with-a-3d-printer.html">http://www.3ders.org/articles/20140730-breaking-into-a-house-is-now-easier-with-a-3d-printer.html</a>
- Slide 76

#### Pictures:

- <a href="http://siliconangle.com/blog/2013/03/12/china-the-new-hub-of-fake-3d-printing/">http://siliconangle.com/blog/2013/03/12/china-the-new-hub-of-fake-3d-printing/</a>
- Slide 78

### Pictures:

- http://www.extremetech.com/extreme/133514-the-worlds-first-3d-printed-gun

Slide 79

#### Pictures:

- <a href="http://mashable.com/2014/11/06/bullets-3d-printed-gun/">http://mashable.com/2014/11/06/bullets-3d-printed-gun/</a>
- Slide 80

#### Pictures:

- <a href="http://www.theregister.co.uk/2014/05/08/">http://www.theregister.co.uk/2014/05/08/</a> japanese cops arrest man with five 3d printed guns at home/
- Slides 81,82,83

#### Text and Pictures:

- http://www.techrepublic.com/article/the-dark-side-of-3d-printing-10-thingsto-watch/
- Slide 85

### Text and Pictures:

- <a href="http://newsfeed.time.com/2013/04/26/chicago-3d-printing-shop-opens-for-business/">http://newsfeed.time.com/2013/04/26/chicago-3d-printing-shop-opens-for-business/</a>
- Slides 86,87,88

### Text and Pictures:

- <a href="http://www.psfk.com/2013/09/easy-3d-printer-scanner-fax.html">http://www.psfk.com/2013/09/easy-3d-printer-scanner-fax.html</a>

Slide 79

### Text and Pictures:

- <a href="http://en.wikipedia.org/wiki/3D">http://en.wikipedia.org/wiki/3D</a> bioprinting
- Slide 80

### Text and Pictures:

- <a href="http://www.investmentu.com/article/detail/28026/organovo-3d-bioprinting-pharmaceuticals#.VGG6dPSUem4">http://www.investmentu.com/article/detail/28026/organovo-3d-bioprinting-pharmaceuticals#.VGG6dPSUem4</a>
- Slide 81

#### Text and Pictures:

- <a href="https://gigaom.com/2013/10/10/researchers-plan-to-develop-3d-printer-that-prints-graphene/">https://gigaom.com/2013/10/10/researchers-plan-to-develop-3d-printer-that-prints-graphene/</a>
- Slide 82

#### Text and Pictures:

http://3dprinting.com/products/medical/3d-printing-drugs/