
3-HOP: A High-Compression Indexing Scheme for
Reachability Query

Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry
Department of Computer Science, Kent State University

Kent, OH 44242, USA
{jin,yxiang,nruan,dfuhry}@cs.kent.edu

ABSTRACT

Reachability queries on large directed graphs have attracted much
attention recently. The existing work either uses spanning struc-
tures, such as chains or trees, to compress the complete transitive
closure, or utilizes the 2-hop strategy to describe the reachability.
Almost all of these approaches work well for very sparse graphs.
However, the challenging problem is that as the ratio of the number
of edges to the number of vertices increases, the size of the com-
pressed transitive closure grows very large. In this paper, we pro-
pose a new 3-hop indexing scheme for directed graphs with higher
density. The basic idea of 3-hop indexing is to use chain structures
in combination with hops to minimize the number of structures that
must be indexed. Technically, our goal is to find a 3-hop scheme
over dense DAGs (directed acyclic graphs) with minimum index
size. We develop an efficient algorithm to discover a transitive clo-
sure contour, which yields near optimal index size. Empirical stud-
ies show that our 3-hop scheme has much smaller index size than
state-of-the-art reachability query schemes such as 2-hop and path-
tree when DAGs are not very sparse, while our query time is close
to path-tree, which is considered to be one of the best reachability
query schemes.

Categories and Subject Descriptors

H.2.8 [Database management]: Database Applications—graph
indexing and querying

General Terms

Performance

Keywords

Graph indexing, Reachability queries, Transitive closure, 3-Hop,
2-Hop, Path-tree

1. INTRODUCTION
The rapid accumulation of very large graphs from a diversity
of disciplines, such as biological networks, social networks, on-
tologies, XML, and RDF databases, among others, calls for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

graph database system. Important research issues, ranging theo-
retical foundations including algebra and query language [2], to
indices for various graph queries [20, 12] and more recently, graph
OLAP/summarization [17], have attracted much recent attention.
Among them, graph reachability query processing has evolved into
a core problem: given two vertices u and v in a directed graph, is
there a path from u to v (u→ v)?
Graph reachability is one of the fundamental research questions

across several disciplines in computer science, such as software en-
gineering and distributed computing. In the database research com-
munity, the initial interest in reachability queries has been driven by
the need to handle recursive queries, with focus on efficient and ef-
fective transitive closure compression. Recently, this problem has
captured the attention of database researchers again, due to the in-
creasing importance of XML data management, and fast growing
graph data, such as large scale social networks, WWW, and bio-
logical networks. For instance, in XML databases, the reachability
query is the basic building block for the typical path query for-
mat //P1//P2// · · · //Pm, where “//” is the ancestor-descendant
search and Pi is the tag. Reachability queries also have an impor-
tant role for managing/querying RDF and domain ontologies. In
bioinformatics, reachability queries can be used to answer basic
gene regulation questions in the regulatory network.

1.1 Prior Work
In order to tell whether a vertex u can reach another vertex v

in a directed graph, many approaches have been developed over
the years. For a reachability query, we can effectively transform a
directed graph into a directed acyclic graph (DAG) by coalescing
strongly connected components into vertices and utilizing the DAG
to answer the reachability queries. Thus, throughout the paper, we
will only focus on DAG. LetG = (V, E) be the DAG for a reacha-
bility query. In Table 1.1, we summarize these approaches in terms
of their index size, construction time, and query processing time
based on worst-case analysis. Here, n is the number of vertices
(n = |V |) and m is the number of edges (m = |E|). Parameter
k is the width of the chain decomposition of DAG G [11], t is the
number of (non-tree) edges left after removing all the edges of a
spanning tree ofG [19], and k′ is the width of the path decomposi-
tion [12]. These three parameters k, t and k′, are method-specific
and will be explained in more detail when we discuss their corre-
sponding methods.
DFS/BFS and Transitive Closure Computation: We first discuss
two classical approaches for reachability query, representing two
extremes with regard to index size and query time. DFS/BFS needs
to traverse the graph online and can take up to O(n + m) time to
answer a reachability query. This is too slow for large graphs. The
second approach precomputes the transitive closure of G, i.e., it
records the reachability between every pair of vertices in advance.

813

Index Size Construction Time Query Time

DFS/BFS O(n + m) − O(n + m)
Transitive Closure [16] O(n2) O(nm) O(1)
Opt. Chain Cover [11] O(nk) O(n3) O(log k)

Opt. Chain Cover [5] O(nk) O(n2 + kn
√

k) O(log k)
Opt. Tree Cover [1] O(n2) O(nm) O(log n)
Dual Labeling [19] O(n + t2) O(n + m + t3) O(1)
Labeling+SSPI [4] O(n + m) O(n + m) O(m− n)
GRIPP [18] O(m + n) O(n + m) O(m− n)

Path-Tree [12] O(nk′) O(mk′)/O(mn) log2 k′

2-Hop [9] Õ(nm1/2) O(n3|Tc|) Õ(m1/2)

Table 1: Worst-Case Complexity

While this approach can answer reachability queries in constant
time, its storage cost O(n2) is prohibitive for large graphs.
Indeed, tackling the storage cost by effectively compressing the
transitive closure has been the major theme of index construction
for graph reachability processing. Typically, however, improved
compression comes at the cost of slower query answering time. To
find the right balance between transitive closure compression and
reasonable query answering time is the driving force of ongoing
research into graph reachability indexing.
The existing research largely falls into two categories: the first
category attempts to apply simple graph structures, such as chains
and trees, to compress the transitive closure of a DAG. The optimal
chain cover, tree cover and the recent path-tree cover all belong to
this category. The second category, referred to as 2-hop indexing,
tries to encode the reachability using a subset of vertices which
serve as intermediaries, i.e., each vertex records a list of interme-
diate vertices it can reach and a list of intermediate vertices which
can reach it. Then, 2-hop reachability means the starting vertex can
reach an intermediate vertex (the first hop) and this intermediate
vertex can reach the end vertex (the second hop). In the following,
we go through these approaches in more detail.
Optimal Chain Cover: The basic idea of optimal chain cover is
to decompose a DAG into a minimal number of pair-wise disjoint
chains, and then assign each vertex in the graph a chain ID and
its sequence number in its chain. Given this, if a vertex can reach
another chain, it records only the smallest vertex it reaches in that
chain. In other words, each vertex in the compressed transitive
closure covers the remaining vertices (all the vertices with a higher
sequence number) in its respective chain. To determine if vertex u
reaches vertex v, we only need to check if u reaches any vertex (say,
v′) in v’s chain, and if yes, we check if the vertex v′ has a smaller
sequence number than v. This strategy can compress the transitive
closure since we need to record at most one vertex in each chain for
a given vertex. If the minimal number of chains for a DAG (also
referred to as the width of the DAG) is k, then this approach has
O(nk) index size and O(log k) query time.
Jagadish [11] pioneered the application of chain decomposition
in the database research community to compress the transitive clo-
sure. He demonstrated that the problem of finding the minimal
number of chains from G can be transformed into a network flow
problem, which can be solved in O(n3). He also proposed several
heuristic algorithms for chain decomposition in order to reduce the
computational cost and actual index size. Recently, Cheng [7] pro-
posed anO(n2 +kn

√
k) time algorithm to decompose a DAG into

a minimal number of chains.
The worst case complexity of the chain cover approach is clearly
decided by the width of DAG. If the width is high, we tend to have
a lot of chains with only a small number of vertices, resulting in
a high index cost. Another way to look at the compression rate

is by observing that each vertex in compressed transitive closure
covers a partial chain (from the vertex itself to the last vertex in
the chain). Let R(u) be the transitive closure of u. Let RC(u)
be the number of vertices u records for the chain decomposition.
Then, the compression ratio of the chain decomposition is defined

as
P

u∈V |R(u)|
P

u∈V |RC(u)|
. Thus, we can see that the compression ratio is

exactly the average size of the partial chains each vertex in the com-
pressed transitive closure covers.
Optimal Tree Cover and Its Variants: The optimal tree cover uti-
lizes a (spanning) tree to compress the transitive closure [1]. Each
vertex in the tree is labeled by a pair of numbers, corresponding to
an interval: if a vertex is an ancestor of another vertex in the tree,
the interval labeling guarantees that the interval of the first vertex
contains the interval of the second vertex. Note that if a vertex
reaches the root of a subtree in the original DAG, it will reach all
the vertices in the subtree. Thus, for each vertex in the DAG, we
can organize all the vertices in its transitive closure, i.e., all the ver-
tices it can reach, into pair-wise disjoint subtrees. To compress the
transitive closure, for each subtree, we only need to record its root
vertex. To answer the reachability query from vertex u to vertex v,
we check if the interval of v is contained by any interval associated
with those subtree roots we have recorded for u.
Agrawal et al. [1] formally introduced the tree cover and found

an optimized algorithm to discover a tree cover which can maxi-
mally compress the transitive closure. They also showed that the
tree cover approach can provide a better compression rate than the
optimal chain cover approach. The advantage of the tree cover ap-
proach over the chain cover approach comes from the fact that each
tree-cover vertex covers an entire subtree, while each chain-cover
vertex covers only a partial chain.
Several recent studies focus on the tree cover approach and try to

improve either its query processing time and/or provide a smaller
index size. Wang et al. [19] develop the Dual-Labeling approach
which tries to improve the query time and index size for very sparse
graphs, where the number of non-tree edges t is much smaller than
the number of vertices n (t << n). Their approach can reduce
the index size to O(n + t2) and achieve constant query answering
time. Unfortunately, many real world graphs would not satisfy the
condition required by this approach, and when t > n, this approach
will not help compress the index size.
Label+SSPI [4] and GRIPP [18] aim to minimize the index con-

struction time and index size. They achieve O(m + n) index con-
struction time and O(m + n) index size. However, this is at the
sacrifice of the query time, which will cost O(m − n). Both al-
gorithms start by extracting a tree cover and then deploy an online
search algorithm utilizing the tree structure to speed up the DFS
process.
Path-Tree Cover: The latest work to use a simple graph structure
to compress transitive closure is the path-tree cover approach, pro-
posed by Jin et al. [12], which generalizes the tree cover approach.
They observe that the covering capability of each vertex in the com-
pressed transitive closure is determined by the number of parents
and children each vertex has in the simple graph structure. For in-
stance, a chain vertex has one parent and one child while a tree
vertex has one parent and multiple children. The path-tree allows
two parents and multiple children. In path-tree cover, all vertices
in the original DAG are partitioned into pair-wise disjoint paths (k′

is the number of paths in the path-decomposition for a DAG G),
and then those paths serve as vertices in a tree structure. In other
words, the path-tree utilizes a tree-like structure, where each vertex
represents a path in the original DAG. Each vertex in the path-tree
needs only three numbers, two numbers for the interval label of the
tree-structure and one sequence number from a DFS traversal pro-

814

cedure, to answer the reachability query between any two vertices
in the path-tree in constant time. In [12], authors proposed two
path-tree schemes, PTree-1 and PTree-2. PTree-1 utilizes optimal
tree cover and thus has O(mn) construction time while PTree-2
has O(mk) construction time.
Given this, to compress the transitive closure, a vertex u only
needs to record vertex v, such that 1) u → v and 2) there is no
vertex v′ such that u → v′ and v′ can reach v in the path-tree.
Theoretically, they prove that path-tree cover can always perform
the compression of transitive closure better than or equal to the
optimal tree cover approaches and chain cover approaches. Note
that the enhanced power of the path-tree cover is a consequence of
the increased parent/child connectivity of path-tree vertices vs. tree
cover or chain cover vertices.
2-HOP Indexing: The 2-hop labeling method proposed by Cohen
et al. [9] is quite different from the aforementioned simple graph
covering approaches. It compresses the transitive closure using a
subset of intermediate vertices. Each vertex records a list of in-
termediate vertices it can reach and a list of intermediate vertices
which can reach it. The index size is the total number of interme-
diate vertices each vertex records. They propose an approximate
(greedy) algorithm based on set-covering which can produce a 2-
hop cover with size no larger than the minimum possible 2-hop
indexing by a logarithmic factor. The minimum 2-hop index size is
conjectured to be Õ(nm1/2).
The major problem of the 2-hop indexing approach is its high
construction cost. The greedy set-covering algorithm needs to iter-
atively find a subset of vertices which utilizes a candidate vertex as
the intermediate hop. The subset of vertices are selected to mini-
mize the price measure, i.e., the cost of recording such an interme-
diate hop of these vertices with respect to the number of uncovered
reachable vertex pairs in this subset. Finding the subset of vertices
with minimal price can be transformed into the problem of finding
a densest subgraph in a bipartite graph. The approximate algorithm
to solve this subproblem is in the linear order with respect to the
number of edges in the bipartite graph. Besides, each vertex in the
DAG can serve as the intermediate hop which corresponds to a bi-
partite graph. Thus, for each iteration, it takesO(n3) to find such a
desired subset of vertices. Considering the iteration needs to cover
the entire transitive closure Tc, we can see its construction time is
O(n3|Tc|).
Several approaches have been proposed to reduce its construc-
tion time. Schenkel et al. propose the HOPI algorithm, which ap-
plies a divide-and-conquer strategy to compute 2-hop labeling [15].
Recently, Cheng et al. propose several methods, such as a geometric-
based algorithm [6] and graph partition technique [7], to produce
a 2-hop labeling. Though their algorithms significantly speed up
the 2-hop construction time, they do not produce the approxima-
tion bound of the labeling size which is produced by Cohen et al.’s
approach.

1.2 Our Contribution
Almost all these approaches work reasonably well for very sparse
graphs (where the number of edges is very close to the number of
vertices). However, as the ratio of the number of edges to the num-
ber of vertices increases, the size of the compressed transitive clo-
sure of the simple graph covering approaches can grow very large.
In many real world graphs, such as citation networks, the semantic
web, and biological networks, the number of edges can be several
times the number of vertices. In general, the simple graph covering
approach works well only for those DAGs which have a structure
similar to the building-block chain, tree, or path-tree structures.
However, in many real world graphs, since edge density is much

higher than in simple graph structures, many edges will be left un-
covered. Vertices of uncovered edges likely need to be recorded as
ancillary data in the compressed transitive closure of the DAG, in-
creasing the index size. Thus, the size of the compressed transitive
closure can become very large as the density grows.
The original 2-hop [9] builds on top of the set-covering frame-

work and is theoretically appealing as it achieves a guaranteed ap-
proximation bound. However, to our knowledge, there is little the-
oretical comparison between the 2-hop approach and the simple
graph covering approaches in existing research. Most studies do
not even empirically compare the 2-hop approach and the simple
graph covering approaches. This may be due in part to the 2-hop
approach not scaling well to large graphs, even graphs with only
thousands of vertices. Specifically, since the original 2-hop needs
to compute the complete transitive closure, it becomes very expen-
sive as the edge density of the graph becomes larger. Though sev-
eral heuristic techniques [15, 6, 7] have been proposed to construct
2-hop faster, they do not guarantee any approximation bound as the
original 2-hop does. None of these methods have compared their
compression ratio directly with the optimal 2-hop approaches, even
on relatively small graphs.
To summarize, the major research challenge for existing graph

reachability indexing is how to significantly compress the transitive
closure when the ratio between the number of edges and the number
of vertices increases. Driven by this need, we propose a new 3-hop
indexing scheme for directed graphs with higher density. The basic
idea in 3-hop indexing is to utilize a simple graph structure, rather
than a sole vertex, as an intermediate hop to describe the reachabil-
ity between source vertices and destination vertices. In this paper,
we focus on the chain structure. The new indexing scheme does
not need to compute the entire transitive closure. Instead, it only
needs to compute and record a number of so-called “contour” ver-
tex pairs, which can be orders of magnitude smaller than the size
of the transitive closure. Indeed, it is even much smaller than the
compressed transitive closure of the chain cover. The connectivity
of any pair of vertices in the DAG can be answered by those con-
tour vertex pairs. Further, we “factorize” these contour vertex pairs
by recording a list of “entry points” and “exit points” on some in-
termediate chains. We derive an efficient algorithm to generate an
index which approximates the minimal 3-hop indexing by a loga-
rithmic factor. Theoretically, we show that 3-hop labeling always
has a better minimal compression ratio than 2-hop labeling, and its
construction time is much faster than that of 2-hop.
We perform a detailed experimental evaluation on both real and

synthetic datasets by comparing 3-hop labeling, 2-hop labeling and
the state-of-the-art path-tree covering approach. Empirical studies
show that our 3-hop scheme has a much smaller index size than
prior state-of-art reachability query schemes for dense DAGs when
the number of edges is not close to the number of vertices, i.e.,
|E| 6≈ |V |. The query processing time of 3-hop is close to path-
tree’s, which is considered to be one of the best reachability query
schemes.

2. BASIC IDEAS OF 3-HOP INDEXING

2.1 Basic 3-Hop
The 3-hop reachability indexing is analogous to the highway sys-

tem of the transportation network. To reach a destination from a
starting point, you simply need to get on an appropriate highway
and get off at the right exit to get to the destination. The high-
way system in the 3-hop labeling is simple graph structures, such
as chains or trees, as they can encode the reachability information
using a constant labeling size. In this paper, we focus on utilizing

815

chains, i.e., each chain serves as a different highway. Since each
chain has a direction, each vertex u records a list of “entry points”
(the smallest vertices) it can reach on some chains. It also records a
list of “exit points” (the largest vertices) which can reach it in some
chains. Here, the order of vertices in the chain is with respect to
their topological order in that chain, i.e., a vertex with a smaller
number can reach a vertex with a larger number.
Given this, the three hops are 1) the first hop from the starting
vertex to the entry point of some chain, 2) the second hop from the
entry point in the chain to the exit point of the chain, and finally
3) the third hop from the exit point of the chain to the destination
vertex. The goal of 3-hop indexing is to assign all vertices with
a minimal total number of entry and exit points so that they can
maximally compress the transitive closure.

Figure 1: A simple example for 3-hop and 2-hop

Figure 1(a) shows an example using the chain 5 → 6 → 7 → 8
as the intermediate hop (or highway). Thus, each vertex not on
the chain only needs to record its entry point and exit point in that
chain, listing them in the set o and set i associated with each vertex,
respectively. To tell if vertex 2 can reach 9, we compare 2’s entry
point with 9’s exit point. We conclude that 2 can reach 9 because
2’s entry point of 6 precedes exit point 7, which then reaches vertex
9. In total, the simple 3-hop scheme records 8 vertices to encode
the transitive closure by using a single chain.
Figure 1(b), shows the optimal 2-hop labeling where each vertex
records a list of intermediate vertices it reaches and a list of vertices
which reach it. Here, 2-hop needs to record a total of 16 vertices
to encode the transitive closure. However, readers should be ad-
vised that this is a very simple and incomplete example giving the
basic idea of 3-hop. Detailed definitions, algorithms and complete
running examples of 3-hop will be given from now on.

2.2 Chain Decomposition for 3-Hop
A simple technique which can significantly boost the 3-hop com-
pression ratio is to apply a chain decomposition for the entire DAG
first. For the 3-hop perspective, such a decomposition would as-
sociate each vertex itself with a highway since each vertex is par-
titioned to a chain. This suggests that many vertices in the same
chain may share the same entry points and exit points of some other
chains. Thus, we do not need to explicitly record those points for
each of these vertices in the same chain, and therefore can further
compress the transitive closure. To better understand the intuition
of boosting 3-hop with a chain decomposition, let us see the run-
ning example in Figure 2.
Figure 2 is a DAG with 4 chains as a result of chain decompo-
sition. In 3-hop, each chain serves as a highway and each vertex
also belongs to a highway. In Figure 3, we show the vertices using

Figure 2: A simple DAG with a chain decomposition. (Dotted

arrow from 13→ 14 is not an edge in the original DAG, but an
inferred one using reachability).

chains C2 and C3 as intermediate hops (highways) to encode their
transitive closure. At the left of each chain, we draw those ver-
tices which record an entry point into that chain, and at the right of
each chain, we draw those vertices which record an exit point out
of the corresponding chain. To be more efficient, we organize into
an “outgoing” segment those consecutive vertices (on one chain)
which share the same entry point, and correspondingly we orga-
nize into an “incoming” segment those consecutive vertices (on one
chain) which share the same exit point.
Specifically, we organize all the vertices on the left which share

the same entry point into an “outgoing” segment, and all the ver-
tices on the right which share the same exit point into an “incom-
ing” segment. Each segment corresponds to a list of consecutive
vertices in a chain. For instance, the vertices in the outgoing seg-
ment from 1 to 3 all record vertex 6 in chain C2 as the entry point,
and they are the first three vertices in chain C1. The vertices in the
incoming segment from 17 to 20 all record vertex 11 in chain C3

as the exit point, and they are the last four vertices in chain C4.

Figure 3: Two examples of Reachability between segments

(through chains C2 and C3)

Intuitively, we can apply 3-hop with chain decomposition to an-
swer a reachability query. For example, to answer whether vertex 6
can reach vertex 19, we find that vertex 6 is in segment (6, 7)which
can reach vertex 12 in C3, and vertex 19 is in segment (19, 20)
which can be reached by vertex 14 in C3. Then we say 6 can reach

816

19 because 6 can reach 12, 19 can be reached by 14, and 12 reaches
14 in the chain C3.

2.3 3-Hop Indexing and Our Approach
The major research problem we will study in this paper is as
follows: Given a chain decomposition {C1, C2, . . . , Ck} of a DAG
G, how can we utilize 3-hop strategy to maximally compress the
transitive closure and answer reachability queries efficiently? Our
approach addresses this problem in three steps:
1.(Section 3) Given a chain decomposition, we first derive a con-
cise representation of the transitive closure, called the contour of
the transitive closure. This representation allows us to quickly iden-
tify those vertices which share the same entry point and vertices
which share the same exit point.
2.(Section 4)We show that a 3-hop strategy which maximally com-
presses the contour corresponds to a generalized “factorization” of
the contour. We develop an efficient greedy algorithm to approxi-
mate the optimal results within a logarithmic factor.
3.(Section 5) We provide a query processing procedure utilizing
the index based on the 3-hop compression of the transitive clo-
sure contour. We also derive a theoretically faster query processing
scheme by transforming 3-hop contour into a 3-hop segment index-
ing.

3. TRANSITIVE CLOSURE CONTOUR
In this section, we will study a concise representation of the tran-
sitive closure matrix based on the chain decomposition of the DAG.
This representation will form the basis for efficient construction of
the 3-HOP index. We will derive a fast algorithm to directly gener-
ate this concise representation.

3.1 Notation and Chain-Decomposition
Let G = (V, E) be a directed acyclic graph (DAG), where V =
{1, 2, · · · , n} is the vertex set, and E ⊆ V × V is the edge set.
We use (v, w) to denote the edge from vertex v to vertexw, and we
use (v0, v1, · · · , vp) to denote a path from vertex v0 to vertex vp,
where (vi, vi+1) is an edge (0 ≤ i ≤ p − 1). In a DAG, all paths
are simple paths, meaning each vertex in a path is distinct. We say
vertex v is reachable from vertex u (denoted as u → v) if there is
a path starting from u and ending at v.
A chain is the generalization of path, which is also a sequence of
vertices, (v0, v1, · · · , vp), where vi+1 is reachable from vi (vi →
vi+1, 0 ≤ i ≤ p− 1). Clearly, any path in G is also a chain. How-
ever, the reverse is not necessarily true (see chain C3 in Figure 2).
Let C1 and C2 be two chains of G. We use C1 ∩ C2 to denote the
set of vertices appearing in both chains and use C1 ∪ C2 to denote
the set of vertices appearing in either of the chains.

DEFINITION 1. (Chain Decomposition) A chain decomposi-
tion of DAGG = (V, E) is a collection of pair-wise distinct chains,
C1, C2, · · · , Ck, such thatC1∪C2∪· · ·Ck = V andCi∩Cj = ∅,
for any i 6= j. The integer k is called the width of the decomposi-
tion.

Given the chain decomposition, we assign to each vertex v a pair
of IDs, (cid,oid), where cid is the ID of the chain vertex v belongs
to, and oid is v’s relative order on the chain. For any two vertices
u and v in the same chain, we have u � v iff u.oid ≤ v.oid. If
u.oid < v.oid, we also say u is smaller than v and vice versa.
Several algorithms have been developed to partition a DAG into a
minimal number of chains to facilitate transitive closure computa-
tion [11, 5]. Our approach can utilize any of these approaches.

3.2 Transitive Closure between Two Chains
In this work, we will derive a more concise representation for

the transitive closure using the chain decomposition. We base this
representation on a key observation on how the transitive closure is
recorded in binary matrix format. Note that our approach does not
need to materialize this binary matrix representation of the transi-
tive closure.
Let M be the binary matrix representation of transitive closure

for G. Then, M [vi, vj] = 1 iff vi → vj . M [vi, vj] = 0 iff vi

cannot reach vj . We define an index (i, j) for M to be a cell. If
M(i, j) = 0, we say (i, j) is a 0-cell; else (i, j) is a 1-cell. Also,
we order the vertices based on their chain ID and within each chain,
we sort the vertices according to their order ID (oid). Thus, the ver-
tices in the same chain are contiguous in a linearly increasing order.
We also introduce the sub-matrix for any two chains Ci and Cj as
MCi,Cj , which has the rows of Ci and columns of Cj . Clearly, the
complete transitive closure M can be written as the union of the
k × k submatrices, such as

M =

2

6

6

6

4

MC1,C1
MC1,C2

· · · MC1,Ck

MC2,C1
MC2,C2

· · · MC2,Ck

...
...

. . .
...

MCk,C1
MCk,C2

· · · MCk,Ck

3

7

7

7

5

(1)

Figure 4: Pseudo-diagonal and Pseudo-upper triangular sub-

matrix. All blank cells are 0-cells.

It is easy to see that anyMCi,Ci is a special upper triangular ma-
trix, i.e., for any va � vb where va and vb are vertices of chain Ci,
M [va, vb] = 1 and for any va > vb, M [va, vb] = 0. We refer to
it as an upper uni-triangular matrix. Note that the geometry of this
submatrix describes and is equivalent to the intra-chain reachability
property. Therefore, there is no need to materializeMCi,Ci upper
uni-triangular matrices. Next, what does a submatrixMCi,Cj look
like when i 6= j?
To describe the shape of the submatrices between any two paths,

we introduce the following notation. Given submatrixMCi,Cj with
|Ci| rows and |Cj | columns, and two cells (x, y) and (x′, y′)where
x and x′ are vertices of chain Ci and y and y′ are vertices of chain
Cj , we say cell (x, y) dominates cell (x′, y′) in the matrixMCi,Cj

if x � x′ and y � y′. In other words, a cell dominates all the cells

817

located in its upper-right quadrant. As a simple observation, in any
submatrixMCi,Cj , the collection of all the cells being dominated
by cell (x, y) form a rectangle which has (x, y) as its lower-left
corner and upper right cell ofMCi,Cj as its upper-right corner.

DEFINITION 2. (Pseudo-Diagonal and Pseudo-Upper Trian-
gular matrix The pseudo-diagonal of a binary matrix (submatrix)

Ms is a set of 1-cells, such as {(x1, y1), (x2, y2), · · · , (xl, yl)},
such that 1) all the 1-cells in Ms are dominated by at least one

pseudo-diagonal cell, 2) none of the 0-cells in Ms are dominated

by any pseudo-diagonal cell, and 3) no pseudo-diagonal cell domi-

nates another pseudo-diagonal cell. If a binary matrix (submatrix)

has a pseudo-diagonal, we refer to it as a pseudo-upper triangular
matrix (submatrix).

Clearly, not every binary matrix is a pseudo-upper triangular ma-
trix containing a pseudo-diagonal. We next provide the following
theorem to reveal the shape of a submatrix between two chains.

THEOREM 1. LetMCi,Cj be the binary submatrix of the tran-

sitive closure between two different chains, Ci and Cj . MCi,Cj is

a pseudo-upper triangular matrix.

Proof Sketch:Our proof is constructive. We will first construct the
pseudo-diagonal explicitly. Then, we will show that the matrix is
indeed pseudo-upper triangular. Let the chainCi be (v1, v2, · · · , vp).
Let f(vi) be the first vertex in Cj vi can reach. If vi does not reach
any vertex in Cj , let f(vi) = +∞.
Then we construct the sequence as (f(v1), f(v2), · · · , f(vp)).
We can show f(vi) � f(vi+1) as follows: Because vi reaches
vi+1, vi will reach f(vi+1). Thus, f(vi) should be no larger than
f(vi+1). This also suggests that f(vi) = +∞, if exists, can only
appear at the end of a sequence.
Given this, we observe the following property for pseudo-diagonal:
A 1-cell (vi, f(vi)) (1 ≤ i ≤ p−1) is in the pseudo-diagonal if and
only if f(vi+1) ≻ f(vi) and f(vi) 6= +∞. Besides, (vp, f(vp))
is in the pseudo-diagonal if and only if it is a 1-cell. Thus, we
can scan the sequence (f(v1), f(v2), · · · , f(vp)) once to create
the pseudo-diagonal.
Now, we only need to show that any cell which is dominated by
one of the cells in the pseudo-diagonal is a 1-cell and otherwise, a
0-cell. Let (a, b) be a cell in the matrix and assume it is dominated
by one of the cell in the pseudo-diagonal, (vi, f(vi)). Then, by
definition, a � vi, and b � f(vi). In other words, a � vi in Ci

and f(vi) � b in Cj . We also know vi → f(vi). Thus, we have
a→ b, so (a, b) is a 1-cell.
Let (c, d) be a cell in the matrix and assume it is not dominated
by any of the cells in the pseudo-diagonal. Basically, we have d ≺
f(c). Since f(c) is the smallest vertex in chain Cj c can reach,
then c cannot reach d, meaning (c, d) is a 0-cell. 2
In Figure 4, we can see eachMCi,Cj , i 6= j, is a pseudo-upper
triangular matrix. We highlight their pseudo-diagonal cells with a
circle.

COROLLARY 1. The transitive closure from any chain Ci to

another chain Cj ,

»

MCi,Ci MCi,Cj

∅ MCj ,Cj

–

can be described as a

directed graph, with vertex set V = V (Ci) ∪ V (Cj) and edge
set E = E(Ci) ∪ E(Cj) ∪{(vi, f(vi))|(vi, f(vi)) is a pseudo-
diagonal cell}, and no two edges cross, i.e., for any two pseudo-
diagonal cells, (vi, f(vi)) and (vj , f(vj), we have either
(vi.oid > vj .oid) ∧ (f(vi).oid > f(vj).oid), or
(vi.oid < vj .oid) ∧ (f(vi).oid < f(vj).oid).

Essentially, the edge links fromCi toCj do not cross each other.
Figure 5 shows two examples: edge links between C1 and C3, and
edge links between C3 and C4. Moreover, we can see that for
chains Ci and Cj , the starting vertices of the pseudo-diagonal cells
naturally divide chain Ci into several “outgoing” segments such
that all the vertices in a segment share the same “entry point” to
chain Cj . Similarly, the end vertices of these pseudo-diagonal cells
can divide chain Cj into several “incoming” segments where all
the vertices in a segment share the same ”exit point” from chain
Ci. For instance, in Figure 5, for chain C3 and C4, the pseudo-
diagonal cells, {(11, 17), (13, 18), (14, 19)} divide chain C3 into
four outgoing segments, (10, 11), (12, 13) and (14, 14), and chain
C4 into three incoming segments, (17, 17), (18, 18) and (19, 20).
Now, we formally introduce the transitive closure contour.

Figure 5: Edgelink between chain C1 and C3, and between

chain C3 and C4. Dotted arrows are virtual edges (paths).

DEFINITION 3. (Transitive Closure Contour) Given DAG G
and its chain-decomposition, C1 ∪ C2 ∪ · · ·Ck, the transitive clo-

sure contour, Con(G) is the set of all pseudo-diagonal cells for
each pseudo-upper triangular matrix,MCi,Cj , where i 6= j.

Given a chain decomposition, we can see the transitive closure
contour can precisely describe the complete transitive closure. We
will utilize this concise representation of transitive closure to build
our 3-HOP indexing.

3.3 Computing Transitive Closure Contour
We now present an efficient computation which can directly com-

pute the transitive closure contour without materializing the binary
matrix given a chain decomposition. The sketch of TransitiveClo-
sureContour is in Algorithm 1. We use a matrix S to record the
entire transitive closure contour of DAG G, Con(G). Each ele-
ment Si,j records the pseudo-diagonal ofMCi,Cj for chain Ci and
Cj .
The computation follows the reverse topological order (Loop 3-

21), which broadcasts the reachability information from bottom to
top. Si,j is an ordered set of pseudo-diagonal cells (p, q) between
chain i and chain j (in ascending order of q.oid), and Si,j .head()
gets the first (with smallest q.oid) pseudo-diagonal cell (p, q) in
Si,j For each vertex u, we use minoid[i] to record the smallest
vertex it can reach in chain Ci. At the beginning, we fillminoid[i]
with the smallest vertex that its own chain Cu.cid can reach in
chain Ci. This is done in Line 4, and we can retrieve this cell by

818

Algorithm 1 TransitiveClosureContour(G, C1 ∪ C2 ∪ · · · ∪ Ck)

Parameter: C1 ∪ C2 ∪ · · · ∪ Ck: the Chain Decomposition
1: Perform the Topological Sort of G
2: For each i, j, 1 ≤ i, j ≤ k, Si,j ← ∅
3: for u = |V (G)| downto 1 {following the reverse topological
order} do

4: For each i, 1 ≤ i ≤ k, minoid[i] ← y, where y = q.oid
and (p, q)← Su.cid,i.head() {y =∞ if Su.cid,i = ∅}

5: for each v: the immediate successor of u {in topological
order} do

6: if v.oid < minoid[v.cid] ∧ v.cid 6= u.cid then
7: minoid[v.cid]← v.oid
8: for each i = 1 to k do
9: Let y = q.oid:

(p, q)← argmin(p,q)∈Sv.cid,i
(p.oid ≥ v.oid)

10: if u.cid 6= i ∧minoid[i] > y then
11: minoid[i]← y
12: end if

13: end for

14: end if

15: end for

16: for each i = 1 to k do
17: if i 6= u.cid ∧minoid[i] < y {y = q.oid and (p, q) ←

Su.cid,i.head()} then
18: Su.cid,i ← Su.cid,i ∪ {(u, minoid[i])}
19: end if

20: end for

21: end for

Su.cid,i.head(). If Su.cid,i.head() is still empty, we fillminoid[i]
with∞.
After that, we visit each of vertex u’s immediate successors, v
(Line 5). Our visit follows their topological order, i.e., the smallest
vertex will be visited first. Note that by following this order, when
we have more than one immediate successor of u in the same chain,
we only need to visit the smallest vertex among them (Line 6).
Given this, the major operation is to update the smallest vertices
which u can reach using vertex v on each chain, i.e., to update
eachminoid[i]. Such an update comes from two sources: the first
source is from v itself. If v.oid has a smaller sequence number
than the current minoid[v.cid], meaning the edge (u, v) allows
u to reach a smaller vertex on v’s chain; the second source is from
the smallest vertices on other chains which v can reach. In the latter
case, for each chain Ci (Line 8), we need to get a pseudo-diagonal
cell (p, q) in SCv.cid,i, where p and v are in the same chain and p
is the smallest vertex v dominates (Line 9). Thus, q is the smallest
vertex u can reach via edge (u, v) directly. Given this, we will test
if q is smaller than the current smallest vertex u can reach in chain
i, and replace it if it does (Line 10). Finally, after visiting all u’s
immediate successors, we will add cell (u, minoid[i]) to Su.cid,i

if it is a pseudo-diagonal cell (Line 17 and 18).
The correctness of Algorithm 1 can be observed by the fact that
we maintain a list of the smallest vertex of each chain vertex u can
reach in minoid, and a cell (u, minoid[i]) is a pseudo-diagonal
cell iffminoid[i] is less than the smallest vertex in Su.cid,i (Corol-
lary 1). The time complexity of this algorithm is O(mk log n) in
the worst case. This is because the two biggest for loops, i.e. step
3 to step 21, runm times, since DAG G hasm edges, and the loop
from step 8 to 13 runs k time and finally step 9 takesO(log n) time
to do the binary search in the worst case.

4. 3-HOP LABELING FOR TRANSITIVE

CLOSURE CONTOUR

4.1 Problem Definition
Our goal in this section is to compress the transitive closure

contour, Con(G), using the 3-hop strategy. For any vertex pair
(u, v) ∈ Con(G), we say u is an out-anchor vertex for the con-
tour, and v is an in-anchor vertex. We will assign each out-anchor
vertex a list of intermediate “entry points” of some chains and as-
sign each in-anchor vertex a list of intermediate “exit points” of
some chains. To recover the reachability between an out-anchor u
and an in-anchor v, we will see if u can reach v in three hops, i.e.,
the first hop from u to an intermediate entry point, the second hop
to the intermediate exit point, and the third hop from the exit point
to v. Formally, we introduce the 3-hop reachability labeling for the
contour set Con(G) as follows.

DEFINITION 4. (3-HOP Reachability Labeling) Let Con(G)
be the transitive closure contour for G with respect to a chain-
decomposition. Let Vout and Vin be the sets of out-anchor vertices

and in-anchor vertices for Con(G), respectively. A 3-hop reach-
ability labeling assigns each out-anchor vertex u in Vout a label

Lout(u) (a set of intermediate entry points), and each in-anchor
vertex v in Vin a label Lin(v) (a set of intermediate exit points),
such that Lout(u), Lin(v) ⊆ V (G), and for every x ∈ Lout(u),
u → x and for every y ∈ Lin(v), y → v. Furthermore, we have
the following two conditions:

(1) (u, v) ∈ Con(G) =⇒ ∃x ∈ Lout(u), ∃y ∈ Lin(v),

such that x, y ∈ Ci, and x � y

(2) for any x ∈ Lout(u), y ∈ Lin(v), x, y ∈ Ci, and x � y

=⇒ u→ v

The size of the labeling is defined to be

Cost(3hop) =
X

u∈Vout

|Lout(u)|+
X

v∈Vin

|Lin(v)|

To simplify our discussion, we assume u ∈ Lout(u) and v ∈
Lin(v).

THEOREM 2. Finding a minimum 3-hop reachability labeling
for a given contour set Con(G) of a DAG G is an NP-hard prob-
lem.

Proof Sketch:We simply note that 3-hop labeling is a generaliza-
tion of 2-hop labeling. 2
To better understand this problem, we will describe it as a gener-

alized “factorization” problem and then transform it to the classical
set-cover problem. We start by partitioning each of the two anchor
sets, Vout and Vin, according to their intermediate chains:

V i
out = {u|u ∈ Vout and Lout(u) ∩ Ci 6= ∅}
V i

in = {v|v ∈ Vin and Lin(v) ∩ Ci 6= ∅}
Basically, V i

out contains those out-anchor vertices which record
intermediate vertices (entry points) in chainCi. Similarly, V

i
in con-

tains those in-anchor vertices which record intermediate vertices
(exit points) in chain Ci. Further, for each u ∈ V i

out, we define
Li

out(u) to be the vertex of Lout(u) ∩ Ci, and for each v ∈ V i
in

we define Li
in(v) to be the vertex of Lin(v)∩Ci . By Corollary 1,

Lout(u)∩Ci (or Lin(v)∩Ci) contains at most one vertex. Given

819

Figure 6: Generalized Join and Chain-Center Bipartite Graph

this, we introduce the following generalized join operator (similar
to Cartesian product):

V i
out ⊙ V i

in = {(u, v)|u ∈ V i
out, v ∈ V i

in, Li
out(u) � Li

in(v)}
In Figure 6(a), assume all the vertices on the left of chain C2

record their corresponding entry points into chain C2, and all the
vertices on the right record their exit points. For v = 12, 18, 19, as-
sumeLin(v)∩C2 6= ∅. For u = 3, 18, 13, 14, 4, assumeLout(v)∩
C2 6= ∅. Then, V 2

out = {3, 18, 13, 14, 4} and V 2
in = {12, 18, 19},

and V 2
out⊙V 2

in contains all the vertex pairs (u, v), where u is on the
left and v is on the right, such that u can reach v via the edges in the
graphs, i.e., {(3, 12), (3, 18), (3, 19), · · · , (4, 19)}. It also con-
tains all the edges in the graph, i.e., {(3, 6),(7, 12), · · · , (9, 19)}.
We consider {V 1

out, · · ·V k
out} ⊗ {V 1

in, · · ·V k
in} = V 1

out ⊙ V 1
in ∪

· · · ∪ V k
out ⊙ V k

in to be generalized factorization. Hence, we define
the cost of factorization as follows:

Cost(factorization) =

k
X

i=1

|V i
out|+

k
X

i=1

|V i
in|

Given this, we can rewrite our 3-hop reachability labeling prob-
lem as a generalized “factorization” problem: By assigning la-
bel Lout(u) for each vertex u ∈ Vout and Lin(v) for each ver-
tex v ∈ Vin, we want to find a factorization {V 1

out, · · ·V k
out} ⊗

{V 1
in, · · ·V k

in} with minimum cost such that

Con(G) ⊆ V 1
out ⊙ V 1

in ∪ · · · ∪ V k
out ⊙ V k

in

It is easy to see that the 3-hop reachability labeling problem is
equivalent to the generalized factorization of Con(G) where the 3-
hop indexing cost is equivalent to the corresponding factorization
cost:

Cost(3hop) = Cost(factorization)

In the following subsections, we will derive efficient algorithms
to produce minimized factorization and thus also the minimized 3-
hop labeling.

4.2 A Basic Approximation Algorithm for 3-
Hop Cover

In this subsection, we will transform the factorization problem
into a set-cover problem. For this purpose, we will first introduce
the notation of the chain-center bipartite graph.

DEFINITION 5. (Chain-Center Bipartite Graph)Given a DAG
G and a chain decomposition, C1 ∪ C2 ∪ · · · ∪ Ck, we construct

the chain-center bipartite graph for each chain as follows. Let

Bi = (Xi ∪ Yi, Ei) be the chain-center bipartite graph:
Xi = {u|∃a ∈ Ci, such that (u, a) ∈ Con(G)} ∪ {b|b ∈

Ci, such that ∃v, (b, v) ∈ Con(G)}
Yi = {v|∃b ∈ Ci, such that (b, v) ∈ Con(G)} ∪ {a|a ∈

Ci, such that ∃u, (u, a) ∈ Con(G)}
Ei = {(x, y)|x ∈ Xi and y ∈ Yi and (x, y) ∈ Con(G)}

Figure 6(b) is an example showing the bipartite graph for chain
C2. Now we can transform the factorization problem into the set-
cover problem as follows: Let the grounding set be Con(G). Let

the set of candidates be {B̂i|B̂i is a subgraph of Bi where 1 ≤ i ≤
k}. The weight of a candidate bipartite subgraph should reflect
the related index cost which is defined as the number of vertices in
V (B̂i), i.e., weight(B̂i) = |V (B̂i)|. For example, in Figure 6, the
circled bipartite subgraph has weight 5.
Then we may apply the classical greedy algorithm [8] to find the

minimal set cover as follows. LetR be the uncovered contour pairs
(initially, R = Con(G)). For each candidate set B̂i, where the

vertex sets X(B̂i) ⊆ Xi and Y (B̂i) ⊆ Yi and edge set E(B̂i) ⊆
Ei, we define the compression ratio of selecting B̂i as

ρ(B̂i) =
|E(B̂i) ∩R|
weight(B̂i)

=
|E(B̂i) ∩R|

|X(B̂i)|+ |Y (B̂i)|

At each iteration, the greedy algorithm selects the candidate set

with the highest compression ratio and puts it in the resulting set.

Then, the algorithm will update R by removing the newly covered
contour pairs, R = R\E(B̂i). The procedure proceeds until all
contour pairs are covered (i.e. R = ∅).
It has been proved that the approximation ratio of this algorithm

is ln(|Con(G)|) + 1 [8]. We now link this problem and its results
back to the aforementioned factorization problem. First, we note
that picking up a subgraph B̂i in the set cover corresponds to adding
a generalized join betweenX(B̂i) and Y (B̂i), i.e.,X(B̂i)⊙Y (B̂i).

This is because each non-Ci vertex v in B̂i needs to record in
Lout(v) an entry point to chain Ci, or record in Lin(v) an exit
point from chain Ci. It is easy to observe that non-Ci vertices ac-
count for at least half in B̂i. Given such a labeling, we can guaran-
tee to cover all the edges ofE(B̂i), i.e.,X(B̂i)⊙Y (B̂i) ⊇ E(B̂i).
Here, we may produce some edges which do not belong to the con-
tour, but this will not affect set cover results. Indeed, in the fac-
torization formulation, we may also produce extra edges which do
not belong to the contour. However, those edges all belong to the
complete transitive closure and thus will not affect the correctness
of our reachability indexing.
Second, we note that the optimal set cover results will choose

at most one subgraph from each chain-center bipartite graph, i.e.,
each vertex in each bipartite graph will be selected only once. In the
greedy algorithm, we may find several subgraphs which all come
from the same bipartite graphs. In this case, we can simply combine
their label sets, and the weight of the resulting subgraphs will be no
higher than the sum of the weights of these individual subgraphs.
Thus, this optimal result of the set-cover problem can be rewritten
exactly as a factorization result with each chain having at most one
join centered on it, and our approximation bound is maintained.
However, the major issue here is that the number of candidate

subgraphs is exponential. A similar issue exists for 2-hop labeling.
As suggested in [9], we can deal with this problem by realizing that
finding B̂i of the highest compression ratio is equivalent to finding
the densest subgraph of the bipartite graph B′

i = (Xi ∪Yi, Ei \R).

820

Given this, the basic idea of 3-hop labeling algorithm is: for each
iteration, we first find the densest subgraph of each bipartite graph

B′
i, and then among them (k subgraphs), we choose the densest
one and update the set R of uncovered contour pairs. We repeat
this iteration until R is empty.
Since finding the densest subgraph forms the core of our 3-hop
labeling algorithm, we formulate it precisely here:

DEFINITION 6. (Densest Subgraph Problem) LetG = (V, E)
be a graph (directed or undirected). For any subset Vs ⊆ V ,
let G[Vs] = (Vs, Es) be the induced subgraph of G, i.e., Es =
E ∩ Vs × Vs. The densest subgraph problem is to find a subset

Vs ⊆ V , such that the density of the induced subgraph, d = |Es|
|Vs|
,

Gs = (Vs, Es), is maximized.

The fastest exact algorithm for the densest subgraph problem
runs in O(|V ||E| log |V |2/|E|) [10]. In 2-hop labeling [9], the
author suggests using a linear 2-approximation algorithm for the
densest subgraph problem. Their algorithm is a simple variant of
[14]. It iteratively removes a vertex with the minimal degree from
the graph, and this gives V subgraphs. It returns a 2-approximate
densest subgraph and can run in linear time in the number of edges
in the graph.
In the next subsection, we will introduce a new approach to iden-
tify the densest subgraph, which will allow us to prune the search
space of these candidate subgraphs significantly.

4.3 A Faster Algorithm for 3-HOP Labeling
To describe our new algorithm for densest subgraph discovery,
we introduce the rank subgraph.

DEFINITION 7. (Rank Subgraph) LetG = (V, E) be an undi-
rected graph. Given a positive integer d, we will remove all the ver-
tices which have degree less than d and their adjacent edges in G,
and then we repeat this procedure to the new graph. Let Gd be the

resulting subgraph of G where each vertex in Gd is adjacent to at

least d other vertices in Gd. If no vertices are left in the graph, we

refer to it as the empty graph, denoted as G∅. Given this, we con-

struct a subgraph sequence G ⊇ G1 ⊇ G2 · · · ⊇ Gl ⊃ Gl+1 =
G∅, whereGl 6= G∅ and contains at least l + 1 vertices. We define
l as the rank of the graph G, and Gl as the rank subgraph of G.

Given this, we will use Gl as the approximate densest subgraph.

LEMMA 1. GivenG, letGs be the densest subgraph ofG, with
density d(Gs), and letGl be its rank subgraph with density d(Gl).
Then, the density of Gl is no less than half of the density of Gs:

d(Gl) ≥ d(Gs)

2

Proof Sketch:We prove this by way of contradiction. Suppose

d(Gl) < d(Gs)
2
, which suggests d(Gs) > 2×d(Gl) = 2 |E(Gl)|

|V (Gl)|
≥

2 l|V (Gl)|/2
|V (Gl)|

= l

Then, we claim that each vertex in Gs should have degree more
than l, i.e., for any v ∈ V (Gs), degree(v) > l. If not, assume
v′ ∈ V (Gs) has vertex degree dv′ ≤ l. Then, we can simply
remove this vertex to increase the density of the subgraph:

|E(Gs)|−dv′

|V (Gs)|−1
=

d(Gs)|V (Gs)|−dv′

|V (Gs)|−1
> d(Gs)|V (Gs)|−d(Gs)

|V (Gs)|−1
=

d(Gs)
Since each vertex inGs has degree more than l, we conclude that

Gs ⊆ Gl+1. However, Gl+1 = G∅, which contradicts that there is
a Gs with density more than 2× d(Gl). 2
Following this, we have the following interesting observation.

THEOREM 3. Consider we have k bipartite graphs,
B1,B2, · · · ,Bk. Let l1, l2, · · · , lk be their respective ranks. Let
S1, S2, · · · , Sk be their respective densest subgraphs, letGl1(B1),
Gl2(B2), · · · , Glk(Bk) be their respective rank graphs, and let
lmax = max (l1, l2, · · · , lk). Assume we have several maximum
rank graphs with rank lmax. Then, we claim that any maximum

rank graph Gli(Bi) where li = lmax has a density no less than

half of the density of the maximal density subgraphs:

d(Gli(Bi)) ≥ max1≤j≤k d(Sj)

2

Proof Sketch:The proof is similar to Lemma 1. We prove this

by way of contradiction. Suppose d(Gli(Bi)) <
max1≤j≤k d(Sj)

2
.

Then we can derive

max
1≤j≤k

d(Sj) > 2d(Gli(Bi)) = 2
|E(Gli(Bi))|
|V (Gli(Bi))|

≥ 2
li|V (Gli(Bi))|/2

|V (Gli(Bi))|
= li = lmax

Suppose d(Sp) = max1≤j≤k d(Sj). Then with similar argu-
ment as in the proof of lemma 1 we claim all vertices in Sp have
degree more than lmax. Hence we conclude Sp ⊆ Glmax+1

(Bp).
However, Glmax+1

(Bp) = ∅ according to the definition of rank
graph, a contradiction. 2
The key implication from Theorem 3 is that we can organize all

the bipartite graphs in a queue based on their ranks. If we know
l is the highest rank of all the bipartite graphs, then we can return
the first rank subgraphs we find from these bipartite graphs as the
2-approximation densest subgraph. We employ this technique in
the greedy algorithm by deriving an efficient incremental search
procedure for the densest subgraph from those bipartite graphs at
every iteration.

Algorithm 2 3HOPContour(G,Con(G), C1 ∪ · · ·Ck)

1: Construct Bipartite Graphs B1, · · · ,Bk;
2: For each Bi, construct vertex rank groups, compute the rank ri

of Bi and the density di of the rank graph Gri(Bi);
3: Sort all Bi into queue Q according to descending order of ri.
4: R← Con(G);
5: Pop the first element B from the queue Q;
6: while R 6= ∅ do
7: while B.r < B′.r {B′ (B′ ← Q.pop()) is the next element

in Q after popping the last bipartite graph} do
8: B′.r ← RankSubgraph(B′, R, B.r)
9: if B.r < B′.r then
10: insert B back to Q in the sorting order;
11: B ← B′

12: else

13: insert B′ back to Q in the sorting order;
14: end if

15: end while

16: R← R\E(Gr(B));
17: Update Lout and Lin for vertices in selected Gr(B).
18: B.r ← RankSubgraph(B,R,0);
19: end while

The sketch of our 3-hop labeling construction algorithm 3HOP-
Contour is in Algorithm 2. It starts with constructing k bipartite
graphs, each corresponding to a chain in 3-hop. Initially, we di-
rectly compute the rank of each bipartite graph and the density
of its corresponding rank subgraph (Line 2). We will then sort
all bipartite graphs based on their rank and put them in queue Q

821

(Line 3). Our goal is to cover the entire transitive closure contour
R = Con(G). The algorithm will iteratively pick the densest sub-
graphs and remove their edges until all the edges (vertex pairs) in
the transitive closure contour are covered (R = ∅). During this
covering process, we can make the following observation for the
rank of each bipartite graph: for any bipartite graph, its rank will
not be able to increase during the covering process. This is be-
cause in our covering processing, an increasing number of edges in
the contour will be covered and similarly for the edge set of each
bipartite graph. Say at a certain iteration, we compute the rank for
a bipartite graph B, denoted as B.r. Then, if we try to reevaluate
its rank for the updated graph, where the edge set is E(B)∩R, we
know the updated rank cannot exceed its earlier rank B.r. Indeed,
we can apply B.r as an upper bound of B’s new rank.
To further speed up the rank subgraph searching procedure, we
organize the vertices of each bipartite graph into different rank
groups: For a given bipartite graph with a rank l, let Gd be the re-
sulting subgraph of a given bipartite graph as we iteratively remove
all the vertices with degree less than d. Thus, we have a subgraph
sequence, G ⊇ G1 ⊇ G2 · · · ⊇ Gl ⊃ Gl+1 = G∅. We assign
each vertex v a rank d, if v ∈ V (Gd) and v /∈ V (Gd+1). Given
this, all the vertices with the same rank will be organized together
in each bipartite graph. We note that the rank of each vertex will
not be able to increase during the covering process as well. Thus,
using this organization, we can quickly prune the vertices with rank
lower than a given threshold. This will be applied to facilitate the
rank graph searching procedure.
The major iteration of our algorithm is in the loop in lines 6 to 19.
In every iteration, we greedily select the densest subgraphs from
our k bipartite graphs. This is done using the queue in the while
loop from Lines 7 to 15. We visit each bipartite graph according to
its order in the queue (Line 7). Let B be the bipartite graph which
has the highest rank among all the visited bipartite graphs for the
current iteration. Then, we always extract the first bipartite graph
B′ in the queue Q and compare its saved rank B′.r, which is the
upper bound of its real rank, with B’s real rank B.r.
If B′.r ≤ B.r, we know that the current rank is the highest one
all the bipartite graphs can have since all the remaining bipartite
graphs in the queue will not have a higher rank than B′.r. Thus, we
do the following: 1) we first extract the highest ranked subgraph
Gr(B) and apply it to cover R (Line 16); 2) we update Lout and
Lin for vertices in Gr(B); 3) we recompute the rank of B imme-
diately and use it as the first candidate rank for the next iteration
(Line 18).
However, if this is not the case (B′.r > B.r), we need to check if
the true rank of B′.r is higher than B.r. Here we will apply the ver-
tex rank group organization to speed up the search procedure: since
we already have bipartite graph B with rank B.r, we are not inter-
ested in B′ if it has equivalent or lower rank. Thus, we invoke the
RankSubgraph procedure with three parameters: B′ is the targeted
bipartite graph, R is the uncovered edges, and the last parameter
is the minimal rank in which we are interested. In this case, we
are only interested in ranks higher than B.r. This procedure will
apply R to remove those edges not in R and update the vertex rank
group. Again, it only updates those vertices with rank higher than
B.r. This is done in Line 8. For brevity, we omit the details of the
RankSubgraph procedure.
Putting all of these together, we can see Algorithm 2 createsLout

and Lin for the out-anchor and in-anchor vertices of the transitive
closure contour Con(G). As an example, in Figure 6 one of the
densest bipartite subgraphs is the circled subgraph which could be
selected by Algorithm 2. If selected, Algorithm 2 will add 9 to
Lout(4), Lout(14), and Lin(19). A complete labeling sets Lin

and Lout from Algorithm 2 are shown in Figure 7, where we only
show Lin(u) (or Lout(u)) of a vertex u if it is not empty, and set i
for Lin and set o for Lout.

Finally, we can claim the following optimalities of our 3HOP-
Contour algorithm. Due to space constraints, we omit the proofs.

THEOREM 4. The 3HOPContour algorithm finds a 3-hop la-
beling for the transitive closure contour Con(G) whose size is
larger than the smallest such labeling by at most anO(ln |Con(G)|+
1) = O(log n) factor, where n is the number of vertices in G.

THEOREM 5. For any DAG G, the minimum 3-hop labeling
cost (defined previously as Cost(3hop)) for transitive closure con-

tour Con(G), Opt3−hop, is always no larger than the minimum

labeling cost of 2-hop, Opt2−hop. In addition, the upper bound of

3-hop labeling cost produced by 3HOPContour algorithm,
O((ln |Con(G)|+ 1)(Opt3−hop)), is always no larger than
O((ln |V |2+1)(Opt2−hop)), the upper bound of labeling cost pro-
duced by Cohen et al’s 2-hop algorithm [9].

Figure 7: 3-Hop Labeling of Transitive Closure Contour

5. REACHABILITY QUERY PROCESSING

USING 3-HOP INDEXING
In Section 4, we show how to construct the 3-hop labeling for

the transitive closure contour. As a result of Algorithm 2, we get
Lout(u) and Lin(v) for each out-anchor vertex u and each in-
anchor vertex v, respectively. In this section we will show how
to efficiently answer reachability queries using these labelings. We
describe two approaches: the first approach directly applies the 3-
hop labeling of the contour to achieve a worst-case time complexity
O(|Con(G)|) while the second approach utilizes segments to re-
duce the query processing complexity.

5.1 3-HOP Contour Query Processing

Note that the 3-hop labeling of the transitive closure contour
Con(G) ensures that the reachability for any pair of vertices in
a DAGG can be inferred. This is because 3-hop labeling can cover
all the vertex pairs inCon(G), and Con(G) can cover all the other
vertex pairs in the transitive closure matrix.
Given this, to tell if vertex u in chain Ci can reach vertex v in

chainCj , we can first recover the pseudo-diagonal ofMCi,Cj using

822

the 3-hop labeling and then test if (u, v) is dominated by any of the
pseudo-diagonal cells. However, we do not need to consider those
pseudo-diagonal cells or the closure vertex pairs whose out-anchor
vertex is smaller than u or whose in-anchor vertex is bigger than v.
We can integrate these steps together and have the following query
processing procedure:
Step 1: In chain Ci, (u ∈ Ci), we collect all the smallest vertices
on any other chain that u can reach through the out-anchor vertex
u′, u � u′: (Lx.cid

out (u′) = Lout(u
′) ∩ Cx.cid)

X = {x|x ∈
[

u′�u

Lout(u
′) AND x � Lx.cid

out (u′) for any u′ � u}

Step 2: In chain Cj , (v ∈ Cj), we collect all the largest vertices on
any other chain which can reach v through the in-anchor vertex v′,
v′ � v: (Ly.cid

in (v′) = Lin(v′) ∩ Cy.cid)

Y = {y|y ∈
[

v′�v

Lin(v′) AND Ly.cid
in (v′) � y for any v′ � v}

Step 3: We see if there is an x, y pair, x ∈ X and y ∈ Y , such that
x.cid = y.cid and x � y.
Using the highway analogy, we can see the first step collects
those entry points u can reach on the intermediate chains, the sec-
ond step collects those exit points which reach v on the interme-
diate chains, and the third step checks to see if an entry point can
reach an exit point, i.e., if they are on the same chain and the en-
try point has smaller sequence number than the exit point. Note
that the worst-case query processing cost is O(|Con(G)|). This
can be observed by the fact that for any out-anchor vertex u, and
v ∈ Lout, we have (u, v) ∈ Con(G) (the same for any in-anchor
vertex). Thus, the first two steps cost maximally O(|Con(G)|)
time and the third step costsO(k), where k is the number of chains
in the chain-decomposition.
For example, in Figure 7, to tell whether u = 2 can reach v =

20, we get set X = {6, 15} by checking Lout(3),Lout(4) and
Lout(5); and set Y = {9, 13} by checking Lin(19),Lin(18), and
Lin(17). Since 6(∈ X) reaches 9(∈ Y) in C2, we say u can reach
v.

5.2 3-HOP Segment Query Processing

In this subsection, we introduce an indexing method on top of the
3-hop contour labeling to reduce the query processing complexity.
The worst-case query processing time is O(log n + k), where n is
the number of vertices in G. We can see the major bottleneck in
the first approach is its first two steps. To speed up these steps, the
new approach will break each chain into segments. Specifically,
for each chain Ci, we will break it into outgoing segments and
incoming segments.
We construct the segments for chain Ci with respect to another
chain Cj based on the 3-hop contour labeling. LetQout(i, j) be all
the out-anchor vertices of chain Ci which record an intermediate
entry point in chain Cj :

Qout(i, j) = {x|x ∈ Ci, Lout(x) ∩ Cj 6= ∅}
LetQin(i, j) be all the in-anchor vertices of chainCj which record
an intermediate exit point in chain Ci:

Qin(i, j) = {y|y ∈ Cj , Lin(y) ∩ Ci 6= ∅}
Then, we can order all the vertices x1, · · · , xl in Qout(i, j) such
that x1 � x2 � · · · � xl, l = |Qout(i, j)|, and order all the
vertices y1, · · · , yl′ in Qin(i, j) such that y1 � y2 � · · · � yl′ ,

l′ = |Qin(i, j)|. Given this, we construct the outgoing segments
for Ci, denoted by their sequence number,

(1, x1.oid), (x1.oid + 1, x2.oid), · · · (xl−1.oid + 1, xl.oid)

and the incoming segments for Cj ,

(y1.oid, y2.oid−1), (y2.oid, y3.oid−1), · · · (yl.oid, Cj .last().oid)

For example, in Figure 7, the outgoing segments constructed
from Qout(1, 2) are (1, 3) and (4, 4) where L2

out(1, 3) = 6 and
L2

out(4, 4) = 9. The incoming segments constructed fromQin(3, 4)
are (17, 17) and (18, 20)whereL3

in(17, 17) = 11 andL3
in(18, 20) =

13.
We say a vertex v is in a segment S = (x, y) (denoted as v ∈ S)

if x ≤ v.oid ≤ y. We note that all the vertices in each outgoing
segment share the same entry point of chain Cj and all the ver-
tices in each incoming segment share the same exit point of chain
Ci. Thus, we assign each outgoing segment (or incoming segment)
with a unique vertex on chain Cj (or Ci) as its label.
In the 3-hop segment indexing, we construct these outgoing and

incoming segments of each chain with respect to every other chain.
Then for all the segments which share the same starting vertex and
ending vertex, we combine all their individual labels into Lout(S),
where S is the combined segment. In addition, to facilitate query
processing, we construct an interval tree [3] for all the outgoing
segments in a single chain Ci and an interval tree for all the in-
coming segments in a single chain Cj . Given this, we can see that
the new query processing procedure for answering whether u can
reach v is as follows:
Step 1: In chainCi, (u ∈ Ci), we collect all the outgoing segments
which contain u and combine all their labels inX .

X = {x|x ∈
[

u∈S

Lout(S) AND x � Lx.cid
out (S) for any S ∋ u}

Step 2: In chain Cj , (v ∈ Cj), we collect all the incoming seg-
ments which contain v and combine all their labels in Y .

Y = {y|y ∈
[

v∈S

Lin(S) AND Ly.cid
in (S) � y for any S ∋ v}

Step 3: We see if there is an x, y pair, x ∈ X and y ∈ Y , such that
x.cid = y.cid and x � y.
The worst case query processing time is O(log n + k). Though

the number of segments could be maximally n2, the number of
segments covering u or v is actually no more than k. The interval
tree can return the segments which cover u in O(log n + k) time.
Finally, we note that the extra segments can contribute to anO(nk)
storage cost on top of the 3-hop contour labeling.

6. EXPERIMENTAL EVALUATION
In this section, we empirically compare the new 3-hop labeling

approach with the state-of-art simple graph covering approach, the
path-tree cover and the 2-hop labeling approach, on both synthetic
and real data. We also list query time of two classical approaches,
breadth-first search and depth-first search as benchmarks. We are
particularly interested in the following issues:

1. Index size: The major goal of this work is to derive an in-
dexing scheme for reachability query which can significantly
compress the transitive closure when the ratio between the
number of edges and the number of vertices is relatively high.
Specifically, we would like to learn how much we can gain
by using 3-hop labeling compared with two best available in-
dexing approaches, path-tree and 2-hop. Since each vertex in
the path-tree is labeled by three numbers (two numbers are

823

tree intervals and one number is depth-first order), and each
vertex in the 3-hop is labeled by two numbers (cid and oid),
we define the index size of the path-tree scheme for a graph
G = (V, E) to be the size of transitive closure plus 3 ∗ |V |,
and the index size of the 3HOP-Contour to be cost(3hop)
(defined in subsection 4.1) plus 2∗ |V |. The index size of the
3HOP-Segment is the size of all segments, i.e. two times the
number of segments, plus the cost of labeling. In this case
each segment has a label instead of each vertex. It is easy
to observe that the total labeling cost of 3HOP-Segment is
cost(3hop), the same as that of 3HOP-Contour.

2. Query processing time: As we mentioned before, there is a
trade-off between the compression rate of the transitive clo-
sure and the query answering time. In order to achieve a
high compression rate, the 3-hop indexing approach clearly
requires more runtime processing for answering reachability
queries than path-tree. However, the interesting question is
how fast 3-hop can answer queries and whether it is compa-
rable with path-tree and 2-hop.

3. Construction time: A major advantage of 3-hop compared
with 2-hop is that it does not require computing the full tran-
sitive closure and employs a new strategy to speedup the
densest subgraph identification. How can these factors speedup
the labeling process of the 3-hop compared with the 2-hop
approach?

Given this, we have specifically compared these six algorithms
in the experimental evaluation: 1) the original 2-hop approach by
Cohen et al. [9], denoted as 2HOP; 2) the path-tree approach
(PTree-1) proposed by Jin et al. [12], denoted as Path-Tree; 3)
the 3-hop labeling approach with 3-hop contour query processing,
denoted as 3HOP-Contour; 4) the 3-hop labeling approach with
3-hop segment query processing, denoted as 3HOP-Segment; 5)
Breadth-first Search; and 6) Depth-first Search. We have imple-
mented all six algorithms. The Path-Tree is an improved second
version with respect to the first version in [12]. Besides, since 3-
hop needs a chain decomposition, we implement a heuristic algo-
rithm developed by Jagadish, procedure-3 in [11]. All algorithms
are implemented using C++ based on the Standard Template Li-
brary (STL). We perform experiments on a Linux 2.6 machine with
2.0GHz CPU and 8.0GB RAM.
In the experiments, we collect all three measures: the index size,
the query time, and the indexing construction time, and each exper-
iment processes 100, 000 randomly generated queries.

6.1 Synthetic Datasets
Here, we run two sets of experiments using the synthetic DAGs,
which are generated using a random directed acyclic graph genera-
tion algorithm described in [13].
In the first experiment, we generate a set of DAGs with 2, 000
vertices, and vary their average density from 2 to 12. We compare
all six approaches, 3HOP-Segment, 3HOP-Contour, 2HOP, Path-
Tree, breadth-first search, and depth-first search in this experiment.
From figure 8, both 3HOP-Segment and 3HOP-Contour con-
sistently obtain a better index size compression rate than 2HOP
and Path-Tree on all synthetic datasets. Overall, the index size of
3HOP-Contour and 3HOP-Segment are on average about 2.7 times
and 2.0 times better than the Path-Tree approach, and about 1.5
times and 1.1 times better than 2HOP. On the other hand, in Ta-
ble 2, we observe that path-tree has moderately faster query time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 2 4 6 8 10 12

In
d
e
x
 s

iz
e

|E| / |V|

Index size of rand2k datasets

3HOP-Contour
3HOP-Segment

Path-Tree
2HOP

Figure 8: Index size of Synthetic Datasets (2K)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 5 10 15 20 25

In
d
e
x
 s

iz
e

|E| / |V|

Index size of rand10k datasets

3HOP-Contour
3HOP-Segment

Path-Tree

Figure 9: Index size of Synthetic Datasets (10K)

824

Dataset
Query Time (in ms)

3HOP-Contour 3HOP-Segment Path-Tree 2HOP Breath-First Search Depth-First Search

rand2k_2 22.865 165.646 9.108 70.239 891.957 891.502

rand2k_4 49.354 566.175 26.051 297.801 2197.01 1796.84

rand2k_6 77.686 1092.2 33.785 514.546 4397.49 4358.84

rand2k_8 103.769 1422.82 31.626 589.059 6134.99 7553.84

rand2k_10 124.291 1661.82 28.322 574.64 7499.31 11305.3

rand2k_12 141.825 1748.04 28.411 722.005 8628.21 14917.4

Table 2: Query Time of Synthetic Datasets (2K)

Dataset DAG #V DAG #E Density

Arxiv 6000 66707 11.12

Citeseer 10720 44258 4.13

Go 6793 13361 1.97

Pubmed 9000 40028 4.45

Yago 6642 42392 6.38

Table 3: Real datasets

than 3HOP-Contour, as expected. However, 3HOP-Contour has
not only smaller index size than that of 3HOP, but shorter query
time as shown in Table 2. It is interesting to observe that 3HOP-
Contour is faster than 3HOP-Segment. We know that the query
time complexity of 3HOP-Segment is better than 3HOP-Contour.
However, in practice, we can see intuitively that more memory ac-
cess operations (e.g. searching interval trees and processing search
results) are needed in 3HOP-Segment, and interval trees are too
big to be loaded into system caches. Thus, it is reasonable that the
query time of 3HOP-Contour is better than that of 3HOP-Segment.
In terms of construction time, 3HOP-Contour and 3HOP-Segment
are several orders of magnitude faster than 2HOP. In this experi-
ment, 2HOP finishes index construction of a dataset between 7 and
21 hours, while 3HOP-Segment and 3HOP-Contour take only 1
second to 71 seconds. To explain the phenomena, we notice that 3-
hop needs to take O((kn2) ∗ |Con(G)|) construction time (Recall
we have k bipartite graphs corresponding to k chains. Each bipar-
tite graph starts as a complete bipartite graph with O(n2) edges.)
while 2-hop takes O(n3|Tc|). |Con(G)| is the number of contour
points and |Tc| is the size of transitive closure. Although in worst
case |Con(G)| could be equal to |Tc|, in practice, |Con(G)| is
much smaller. In addition, we have developed and implemented a
new technique (Theorem 3) which can speed up 3-hop labeling by
up to O(k).
In the second experiment, we generate randomDAGs with 10, 000
vertices, and vary their densities from 2 to 25. Note that we do not
compare with 2HOP in the second experiment because 2HOP can-
not process such large scale datasets due to memory constraints.
Figure 9 shows the index size of the two 3-hop approaches and
the path-tree approach. Here, 3HOP-Contour and 3HOP-Segment
can achieve up to 6.0 times and 5.3 times smaller index sizes than
Path-Tree. On average, 3HOP-Contour and 3HOP-Segment have
3.9 times and 3.1 times smaller index sizes, respectively, than Path-
Tree. The query processing time and construction time are similar
to the first experiments and we omit them here.
It is interesting to observe that there is a peak occurring at density

10 on the index size for all three algorithms. Since 3-hop labeling
relies on chain decomposition and path-tree labeling depends on
path decomposition, an increase in density potentially may result
in better chain or path decomposition (i.e. with fewer chains or
paths w.r.t. DAG). This can explain the peak phenomena.

6.2 Real Datasets
To evaluate our indexing scheme on real datasets, we have col-

lected five real datasets listed in Table 4. All graphs are extracted
from real-world large datasets with density being larger than or
close to 2. Among them, arXiv is extracted from a dataset of ci-
tations among scientific papers from the arxiv.org website 1. Sim-
ilarly, citeseer contains citations among scientific literature pub-
lications from the CiteSeer project 2, and pubmed was extracted
from an XML registry of open access medical publications from
the PubMed Central website 3. GO contains genetic terms and their
relationships from the Gene Ontology project 4. Yago describes the
structure of relationships among terms in the semantic knowledge
database from the YAGO project 5.
Table 4 shows the index size and query time of three methods,

the two 3-hop approaches and the path-tree approach. Again, in this
experiment, the 2HOP approach fails by running out of memory.
As shown in the table, the index sizes of 3HOP-Contour are re-

duced significantly with respect to Path-Tree, and the index sizes
of 3HOP-Segment are smaller than Path-Tree in 3 out of 5 datasets.
On average, 3HOP-Contour and 3HOP-Segment obtain 1.7 times
and 1.2 times better compression rates than the Path-Tree approach.
As expected, we found that the query time of Path-Tree is better
than 3HOP.
The 3HOP-Contour has a similar construction time to 3HOP-

Segment therefore we only report 3HOP-contour construction time
here. It takes 8530, 106, 25, 257, and 25 seconds to construct
indexing for dataset arXiv, citeseer, go, pubmed, and yago, respec-
tively. The Path-Tree is much faster and takes only 10, 0.73, 0.2,
0.77, and 0.55 seconds, respectively for these datasets. This is
expected since the 3-hop approach is more computationally expen-
sive. However, the new approach has an evidently higher compres-
sion rate and its query processing time is also comparable to the
path-tree approach.

7. CONCLUSION
In this work, we introduce a new 3-hop indexing scheme with

high compression rate targeting the directed graphs with higher
edge-vertex ratio. We not only show that our index size can achieve
a guaranteed approximation bound, but also demonstrate its ap-
plicability through extensive experimental evaluations on both real
and synthetic datasets. More importantly, we believe this method
potentially opens a new way to compress the transitive closure and
leads to new provocative questions. For instance, how can other
simple graph structures, such as trees, serve as the intermediate hop
(highway)? How can we derive the average complexity of these

1http://arxiv.org/
2http://citeseer.ist.psu.edu/oai.html
3http://www.pubmedcentral.nih.gov/
4http://www.geneontology.org/
5http://www.mpi-inf.mpg.de/ suchanek/downloads/yago/

825

Dataset
Index Size Query Time (in ms)

3HOP-Contour 3HOP-Segment Path-Tree 3HOP-Contour 3HOP-Segment Path-Tree Breadth-First Search Depth-First Search

ArXiv 47472 64378 86855 125.382 1060.2 24.278 19029.2 129587

Citeseer 51035 72167 91820 87.763 523.488 23.32 4567.16 4781.19

Go 27764 41798 37729 53.354 250.261 10.39 2697.67 2780.23

Pubmed 54531 72215 107915 72.491 533.495 21.818 4083.08 4224.54

Yago 27038 39638 39181 44.495 229.416 12.256 2605.56 2622.23

Table 4: Comparison between 3HOP and Path-Tree

compression approaches, including the simple graph covering ap-
proaches, 2-hop, and 3-hop? We plan to investigate these problems
in the future.

8. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and
knowledge bases. In SIGMOD, pages 253–262, 1989.

[2] Renzo Angles and Claudio Gutierrez. Survey of graph
database models. ACM Comput. Surv., 40(1):1–39, 2008.

[3] M.de Berg, M.van Kreveld, M.Overmars, and
O.Schwarzkopf. Computational Geometry. Springer, 2000.

[4] Li Chen, Amarnath Gupta, and M. Erdem Kurul.
Stack-based algorithms for pattern matching on dags. In
VLDB ’05: Proceedings of the 31st international conference

on Very large data bases, pages 493–504, 2005.

[5] Yangjun Chen and Yibin Chen. An efficient algorithm for
answering graph reachability queries. In ICDE, pages
893–902, 2008.

[6] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang,
and Philip S. Yu. Fast computation of reachability labeling
for large graphs. In EDBT, pages 961–979, 2006.

[7] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang,
and Philip S. Yu. Fast computing reachability labelings for
large graphs with high compression rate. In EDBT, pages
193–204, 2008.

[8] V. Chvátal. A greedy heuristic for the set-covering problem.
Math. Oper. Res, 4:233–235, 1979.

[9] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. In
Proceedings of the 13th annual ACM-SIAM Symposium on

Discrete algorithms, pages 937–946, 2002.

[10] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications. SIAM
J. Comput., 18(1):30–55, 1989.

[11] H. V. Jagadish. A compression technique to materialize
transitive closure. ACM Trans. Database Syst.,
15(4):558–598, 1990.

[12] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang.
Efficiently answering reachability queries on very large
directed graphs. In SIGMOD Conference, pages 595–608,
2008.

[13] Richard Johnsonbaugh and Martin Kalin. A graph generation
software package. In SIGCSE ’91: Proceedings of the
twenty-second SIGCSE technical symposium on Computer

science education, pages 151–154, New York, NY, USA,
1991. ACM.

[14] Guy Kortsarz and David Peleg. Generating sparse
2-spanners. In SWAT ’92: Proceedings of the Third
Scandinavian Workshop on Algorithm Theory, pages 73–82,
1992.

[15] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An
efficient connection index for complex XML document
collections. In EDBT, 2004.

[16] K. Simon. An improved algorithm for transitive closure on
acyclic digraphs. Theor. Comput. Sci., 58(1-3):325–346,
1988.

[17] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel.
Efficient aggregation for graph summarization. In SIGMOD
Conference, 2008.

[18] Silke Trißl and Ulf Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD ’07: Proceedings
of the 2007 ACM SIGMOD international conference on

Management of data, pages 845–856, 2007.

[19] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and
Jeffrey Xu Yu. Dual labeling: Answering graph reachability
queries in constant time. In ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering

(ICDE’06), page 75, 2006.

[20] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure
similarity search in graph databases. In SIGMOD
Conference, pages 766–777, 2005.

826

