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Preliminary

Landmark Embedding

Consider S = {l1, . . . , lk} ⊆ V which are called landmarks. For
each li ∈ S , we compute the shortest distances to all nodes in V .
Then for ∀v ∈ V , it has a k-dimensional vector representation:

−→
D (v) = ⟨δ(l1, v), δ(l2, v), . . . , δ(lk , v)⟩

Given q = (a, b), we estimate shortest distance with landmark

embedding based on triangle inequality as

δ̃(a, b) = min
li∈S

{δ(li , a) + δ(li , b)}
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Landmark Selection Strategy

Selecting the optimal set of landmarks is very hard!

Betweenness centrality based criterion, NP-hard (Potamias et
al. [8])

Minimum K-center formulation, NP-hard (Francis et al. [2])

Graph measure based heuristics:

Random selection

Degree based landmark selection [2]

Approximate centrality based landmark selection [8]

Performance largely depends on graph properties, e.g., degree
distribution, diameter, etc.
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Embedding Performance

A query-independent global landmark set S is not accurate in
estimating shortest distances.
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Preliminary

Embedding Performance

Increasing the number of landmarks k improves the estimation
accuracy, but also increases the complexity.

Query time O(k)

Index time O(kn log n)

Index size O(kn)

Here k = |S | and n = |V |.
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Related Work

Landmark embedding has been widely used in estimating shortest
distances in

Road networks [13, 5]

Social networks and web graphs [9, 8, 12, 3]

Internet [2, 6]

Major differences between these methods lie in three aspects:

Landmark selection: random, degree, betweenness centrality,
coverage, etc.

Landmark organization: flat or hierarchical organization

Error bound or not: Thorup and Zwick [14] provide
(2k − 1)-approximation with O(kn1+1/k) memory
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Sketch Based Distance oracle [12, 3]

Let t = ⌊log n⌋ where n = |V |. Uniformly sample t + 1 sets of
landmarks (also called seed sets) of sizes 20, 21, 22, . . . , 2t .

2
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Figure: Multiple Seed Sets
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Related Work

K -Nearest Neighbor and Shortest Path Query on
Spatial Networks

Euclidean distance as a lower bound to prune the search space
(Papadias et al. [7])

First order Voronoi diagram for KNN query (Kolahdouzan and
Shahabi [4])

Shortest path quadtree for KNN query (Samet et al. [10])

Path-distance oracle of size O(n ·max(sd , 1ϵ
d
)), and answer a

query with ϵ-approximation in O(log n) time
(Sankaranarayanan en al. [11])

etc.
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Problem Statement

.
Example
..

......

Landmark set
S = {l1, l2, l3}.

For a query (a, b),
P(a, b) = (a, e, f , g , b).

l1 l2

l3
a b

c
d

e f g

h

P(l1, a) = (l1, c , e, a),
P(l1, b) = (l1, c , d , g , b)

Based on landmark l1,

δ̃(a, b) = δ(l1, a) + δ(l1, b)

But based on node c ,

δ̃L(a, b) = δ(c , a) + δ(c , b)

is more accurate because

δ̃(a, b) = δ̃L(a, b) + 2δ(l1, c)

.
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Query-Dependent Local Landmarks

Given a global landmark set S and a query (a, b), a
query-dependent local landmark function is

Lab(S) : V
k 7→ V

which maps S to a vertex in V , called a local landmark, depending
on the query nodes a and b.

With the local landmark function, we can estimate a shortest
distance of a query (a, b) as

δ̃L(a, b) = δ(Lab(S), a) + δ(Lab(S), b)

which can provide a more accurate distance estimation.
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Query-Dependent Local Landmark Scheme

Shortest Path Tree

.
Definition (Shortest Path Tree)
..

......

Given a graph G = (V ,E ), the shortest path tree rooted at a
vertex r ∈ V is a spanning tree of G , such that the path from the
root r to each node v ∈ V is a shortest path between r and v .

l1 l2

l3
a b

c
d

e f g

h

l1
l2

l3
a

b

c

de

f
g

h
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Query-Dependent Local Landmark Scheme

SPT Based Local Landmark Function

.
Definition (SPT Based Local Landmark Function)
..

......

Given a global landmark set S and a query (a, b), the SPT based
local landmark function is defined as:

Lab(S) = arg min
r∈{LCATl

(a,b)|l∈S}
{δ(r , a) + δ(r , b)}

where LCATl
(a, b) denotes the least common ancestor of a and b

in the shortest path tree Tl rooted at l ∈ S .



. . . . . .

Querying Shortest Distance on Large Graphs

Query-Dependent Local Landmark Scheme

Least Common Ancestor

l1
l2

l3
a

b

c=LCAT(a, b)
de

f
g

h

δ̃L(a, b) = δ(c , a) + δ(c , b)

= δ(l1, a) + δ(l1, b)− 2δ(l1, c)

.
Theorem
..

......

Given a global landmark set S, ∀a, b ∈ V , we have

δ(a, b) ≤ δ̃L(a, b) ≤ δ̃(a, b)
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Query-Dependent Local Landmark Scheme

Efficient LCA computation - Transform LCA to RMQ

.
Definition (Range Minimum Query)
..

......

Let A[1, . . . , n] be an array. For indices 1 ≤ i ≤ j ≤ n,

RMQA(i , j) = arg min
i≤k≤j

{A[k]}

.
Observation
..

......

LCA(a, b) is the shallowest node encountered between the visits to
a and to b during a DFS of a tree T .
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Efficient LCA computation - Transform LCA to RMQ

Transform LCA to RMQ:

Perform a DFS search on an SPT T and record the sequence
of nodes visited

Record the level of each node in the tree as its distance to the
root

For two query nodes a, b, use an RMQ query to find the node
between them with the smallest level

Such a node is LCAT (a, b)

The complexities of the state-of-the-art RMQ technique [1] are:

Index Time O(n)

Index Size O(n)

Query Time O(1)
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Query-Dependent Local Landmark Scheme

Complexity of The Local Landmark Embedding Scheme

Online Query Time Complexity: O(k)

Offline Embedding Space Complexity: O(kn)

Offline Embedding Time Complexity: O(kn log n)

where k = |S | and n = |V |.

The query-dependent local landmark embedding has the SAME
complexities as the global landmark embedding.
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Optimization Techniques

Index Reduction with Graph Compression

A graph can be compressed by removing two special types of
nodes:

Tree node

Map to the root node and
record its distance to the
root
Remove the tree node

i j k
a

b

c

d

e f

g

h
l

m

n

o
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Optimization Techniques

Index Reduction with Graph Compression

A graph can be compressed by removing two special types of
nodes:

Tree node

Map to the root node and
record its distance to the
root
Remove the tree node

Chain node

Map to two end nodes
and record its distances to
both ends
Remove the chain node

i j k
a

b

c

d

e f

g

h
l

m

n

o
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Optimization Techniques

Index Reduction with Graph Compression

Query time: O(1)

δ̃L(a, b) = min
ra∈map(a),rb∈map(b)

{δ(a, ra) + δ̃L(ra, rb) + δ(b, rb)}

where map(a) contains the nodes that a maps to, i.e.,

map(a) contains a root node, if a is a tree node

map(a) contains two end nodes, if a is a chain node

map(a) contains a itself, otherwise

Index size: reduce size to O(n + (|S | − 1)n′) from O(|S |n), where
n′ and n are the number of nodes in the compressed graph and in
the original graph, respectively.
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Improving the Accuracy by Local Search

Connect two query nodes to
all local landmarks through
the shortest paths

a

b

lca1

lca2
lca3

lca4
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Optimization Techniques

Improving the Accuracy by Local Search

Connect two query nodes to
all local landmarks through
the shortest paths

Expand each node to include
its c-hop neighbors

The expanded nodes may
form shortcuts which provide
tighter distance estimation

a

b

lca1

lca2
lca3

lca4
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Experiments

Dataset Description

Table: Network Statistics

Dataset |V | |E | |V ′| |E ′|
Slashdot 77,360 905,468 36,012 752,478
Google 875,713 5,105,039 449,341 4,621,002
Youtube 1,157,827 4,945,382 313,479 4,082,046
Flickr 1,846,198 22,613,981 493,525 18,470,294
NYRN 264,346 733,846 164,843 532,264
USARN 23,947,347 58,333,344 7,911,536 24,882,476

|V ′| and |E ′| denote the number of nodes and edges in the
compressed graph.
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Comparison Methods and Metrics

The embedding methods for comparison:

Global Landmark Scheme (GLS)

Local Landmark Scheme (LLS)

Local Search (LS)

2RNE [5]

TreeSketch [3]

Evaluation Metrics: relative error

err =
|δ̃(s, t)− δ(s, t)|

δ(s, t)
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Average Relative Error

SlashD Google Youtube Flickr NYRN USARN
k = 20

Rand
GLS 0.6309 0.5072 0.6346 0.5131 0.1825 0.1121
LLS 0.1423 0.0321 0.0637 0.0814 0.0246 0.0786
LS 0.0000 0.0046 0.0009 0.0001 0.0071 0.0090

Cent
GLS 0.1520 0.0426 0.0595 0.0567 0.6458 1.5599
LLS 0.1043 0.0290 0.0489 0.0503 0.1536 0.4708
LS 0.0001 0.0074 0.0010 0.0003 0.1479 0.4703

k = 50

Rand
GLS 0.4535 0.4750 0.4549 0.4559 0.1188 0.0632
LLS 0.0727 0.0142 0.0391 0.0444 0.0103 0.0241
LS 0.0000 0.0022 0.0003 0.0001 0.0042 0.0030

Cent
GLS 0.1385 0.0245 0.0461 0.0524 0.6133 0.7422
LLS 0.0663 0.0140 0.0334 0.0284 0.1533 0.4505
LS 0.0000 0.0037 0.0005 0.0000 0.1455 0.4483
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Online Query Time in Milliseconds

SlashD Google Youtube Flickr NYRN USARN
k = 20

GLS 0.002 0.005 0.008 0.009 0.006 0.020
LLS 0.006 0.021 0.015 0.014 0.036 0.067
LS 0.158 2.729 2.818 4.735 0.681 58.289

k = 50
GLS 0.005 0.016 0.024 0.027 0.014 0.058
LLS 0.018 0.054 0.032 0.033 0.091 0.196
LS 0.527 3.492 4.178 6.817 1.585 98.221
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Index Size in MB

SlashD Google Youtube Flickr NYRN USARN
k = 20

GLS 6.2 57.9 90.7 124.7 21.2 1915.8
LLS 10.4 122.7 103.2 156.1 85.3 4424.6
LS 16.4 159.7 135.9 303.9 89.6 4623.6

k = 50
GLS 15.5 144.8 226.8 311.6 52.9 4789.5
LLS 23.3 284.5 216.1 333.8 203.9 9948.3
LS 29.4 321.4 248.7 481.6 208.2 10147.3
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Comparison with Other Methods
Dataset Algorithm AvgErr Query Time(ms) Index Size(MB)

SlashD
2RNE 0.8345 0.001 6.2

TreeSketch 0.0011 0.176 37.4
LS 0.0000 0.158 16.4

Google
2RNE 0.5750 0.001 57.9

TreeSketch 0.0048 3.549 383.7
LS 0.0046 2.729 159.7

Youtube
2RNE 0.7138 0.001 90.7

TreeSketch 0.0005 5.317 587.7
LS 0.0009 2.818 135.9

Flickr
2RNE 0.6233 0.001 124.7

TreeSketch 0.0001 7.333 959.6
LS 0.0001 4.735 303.9

NYRN
2RNE 0.4748 0.001 21.2

TreeSketch 0.0156 1.074 120.5
LS 0.0071 0.681 89.6

USARN
2RNE 0.4240 0.002 1915.8

TreeSketch 0.0379 104.769 14555.5
LS 0.0090 58.289 4623.6
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Conclusion

We proposed a query-dependent local landmark scheme, which
is more accurate than GLS and has the same complexities.

The local landmark scheme provides very accurate distance
estimation, with little dependency on the global landmark
selection strategy or the global landmark number.

The local landmark is computed at query time with an O(1)
RMQ operation. This is different from the sketch based
methods [12, 3], which build multiple landmark sets apriori to
reduce the estimation error.
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Q&A

Thanks!
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