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The problem of estimating data properties using sampling frequency histograms has attracted extensive

interest in the area of databases. The properties include the number of distinct values (NDV), entropy, and

so on. In the field of databases, property estimation is fundamental to complex applications. For example,

NDV estimation is the foundation of query optimization, and entropy estimation is the foundation of data

compression. Among them, methods originating from statistics exhibit desirable theoretical guarantees but

rely on specific assumptions about the distribution of data, resulting in poor performance in real-world

applications. Learning-based methods, which use information from training data, are adaptable in the real

world but often lack theoretical guarantees or explainability. In addition, a unified framework for estimating

these frequency-based estimators with machine learning is lacking. Given the aforementioned challenges,

it is natural to wonder if a unified framework with theoretical guarantees can be established for property

estimation. The recent literature has presented theoretical studies that propose estimation frameworks based

on polynomials. These studies also prove estimation errors with respect to the sample size. Motivated by the

above polynomial estimation framework, we propose a learning-based estimation framework with polynomial

approximation, which aims to learn the coefficients of the polynomial, providing theoretical guarantees to

the learning framework. Through comprehensive experiments on both synthetic and real-world datasets for

estimating various data properties like NDV, entropy, and power sum, our results show the superiority of our

algorithms over previous estimators.
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1 INTRODUCTION
Estimating the properties of a discrete distribution from its samples is a fundamental problem in

various fields. For example, estimating the number of distinct values (NDV), which is one of the

most representative properties in the database, helps improve the query efficiency in database

management [14]. Specifically, Table 4 in [42] demonstrates that improvements in cardinality

estimation, rooted in precise NDV assessments, can lead to a reduction in query execution time by

up to 50%. Additionally, systems like Spark and PostgreSQL (PG) directly relies on NDV to calculate

cardinality [5, 6]. Similarly, applications in Biology for estimating unseen species [16, 51], Network

studies for estimating virtualized network device cardinality [24], Linguistics for entropy evalua-

tion [11], and Statistics for discrete distribution support size assessment [38] continue to emerge.

Besides estimating NDV and entropy for the database, estimating properties like power sum [35],

normalized support coverage [7], and distance to uniformity [39] is also critical when applied to

practical scenarios including streaming and machine learning, demonstrating the importance of

property estimation.

To estimate property, given that these properties in discrete distributions can be deduced from

population frequency or the profile, samples are typically used to estimate the maximum likelihood

of the actual population. A technique termed profile maximum likelihood (PML) [45] is among the

pioneers in the domain of property estimation. Further advancements have seen the integration

of polynomial approximation in property estimation, as initiated by Acharya et al. [8]. This per-

spective is expanded by subsequent works, notably [53] and [54], which focused on entropy and

NDV estimation. As noted by [23], NDV estimation can be interpreted as a weighted polynomial

approximation, with other property estimation tasks following suit when considering sample

frequencies.

While traditional research largely explores statistical techniques, the growth of machine learning

has introduced new methodologies into property estimation, as evidenced by [52]. These learning-

based approaches offer enhanced adaptability to distributional shifts, presenting an advantage over

traditional counterparts. However, despite the practical efficacy of such methods, it is difficult to

design the learning models for different property estimations one by one. In addition, we should

ensure that the model can still have theoretical guarantees on the extreme data.

Motivation. Motivated by the limitation of existing studies, this paper aims to develop a learned

polynomial-based method to unify the property estimation with theoretical guarantees and ef-

fectiveness. Our solution mainly utilizes the polynomial approximation framework, recasting

property estimation as a weighted polynomial approximation problem. Our unified learning-based

framework is based on the following key insights:

(1) Different property estimations correspond to different weighted polynomial approximations.

We obtain a unified framework with the weighted polynomial approximation for estimating

properties that employ a finite data distribution. We can easily modify the loss function and

quickly solve a variety of weighted polynomial approximations with machine learning.

(2) We replace the polynomial method with a learning-based approach to derive weights for various

property approximations. This maintains the optimal sampling complexity since we only modify

the solving methods, not the theoretical framework of the polynomial approximation.

In summary, our methodology is guided by two core principles: leveraging polynomials for theo-

retical completeness and optimal sampling complexity and incorporating learning techniques to

enhance practical performance through data distribution insights.

Overview of our method. Figure 1 shows the overview of our learning-based polynomial ap-

proximation framework for property estimation using the sampling frequency histogram. Our
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Fig. 1. Overview of Our Method.

primary goal is to determine the properties of other target columns using corresponding samples.

Our learning process comprises two main components: (i) Training Phase: In this phase, we gather

information, including sample frequency, sample rate, and workload of the samples, from known

columns, which we use as features for training. These features are utilized to train a network

responsible for estimating the unseen part and constructing the polynomial approximation. We

design specific loss functions for different estimators and adjust polynomial weights based on

property estimations for unseen elements and the precise computation of seen elements. Upon

completing the training, we obtain stable training networks; (ii) Inference Phase: In this phase,

we collect samples and record their frequencies. With the trained networks, we then estimate the

property values of the target columns. This framework allows us to estimate properties efficiently

despite having limited access to the database’s columns for training.

Our contributions. This paper makes the following contributions.

• We integrate the problem of estimating properties of discrete distributions using samples by

polynomials.

• We introduce the learnable polynomial method, a novel approach that can effectively handle

diverse data distributions for property estimation of discrete distributions from samples.

• We provide a comprehensive theoretical analysis of the learnable polynomial approximation

technique, particularly in the context of property estimation.

• To validate the efficacy of our approach, we conduct extensive experiments, demonstrating its

validity and effectiveness

Paper organization. In Section 2, we formally define the problem of property estimation and

related preliminaries. In Section 3, we present our property estimation algorithm and its theoretical

analysis. We begin by establishing the connection between weighted polynomial approximation

and property estimation. Then, we present the algorithm, which leverages weighted polynomial

approximation in conjunction with machine learning for property estimation. In Section 4, we

show our experimental results with respect to the performance and interoperability of algorithms.

In Section 5, we review the related work of property estimation based on sampling. In Section 6,

we offer a summary and conclusion of the paper.
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Table 1. Table of notations.

Notation Description
𝑁 Size of the population in the raw data

𝐷 NDV of the raw data

𝐻 Shannon Entropy of the raw data

𝑞 Sample rate

𝑆 The size of the support set (abbreviated as the support size)

𝑘 The upper bound of the support size

𝑛 Size of the population in the sample

𝑛 𝑗 Element 𝑗 appear 𝑛 𝑗 times in the sample

𝑁 𝑗 Element 𝑗 appear 𝑁 𝑗 times in the population

𝑑 NDV of samples

𝐹1, . . . , 𝐹𝑖 Number of items appear 𝑖 times in population

𝑓0, 𝑓1, . . . , 𝑓𝑖 Number of items appear 𝑖 times in sample

𝑃𝐿 (𝑥) The polynomial with degree 𝐿

X0 The unseen part of X

2 PRELIMINARIES
This section reviews some related and basic concepts. We summarize the frequently used notations

in Table 1.

2.1 Problem Definition
When errors are allowed, sampling-based methods are extensively used to avoid incurring excessive

I/O costs. With the population size (e.g., the number of records in the table) denoted as 𝑁 and a

predetermined sample rate 𝑞, existing property estimation solutions begin by sampling a subset

of the data. Subsequently, they compute the frequency and the frequency of frequency, as defined

below, for the samples of the columns.

Frequency of frequency. The frequency of frequency of the raw data consists of 𝐹𝑖 , where 𝐹𝑖 is

the number of elements that occur 𝑖 times in the raw data. 𝐹𝑖 to compute the elements Given the

sampled subset, the frequency of frequency is denoted as 𝑓𝑖 , where 𝑓𝑖 is the number of elements

that occur 𝑖 times in the sampled data. In particular, 𝑓0 represents the number of elements that are

not present in the samples. We also define the frequency ratio for the elements that occur 𝑖 times as

𝑖
𝑁
.

Example 1 (frequency of frequency). Given input data 𝑋 = {1, 2, 1, 3, 2, 4}, the frequency of

𝑋 is {1 : 2, 2 : 2, 3 : 1, 4 : 1} and the frequency of frequency of 𝑋 is {2 : 2, 1 : 2}. As a result, we

have 𝐹1 = 2, 𝐹2 = 2. Using the frequency of frequency of 𝑋 , the distinct values of 𝑋 can be further

calculated as 𝐷 (𝑋 ) = 2 + 2 = 4. If we sample from 𝑋 obtaining the subset {1, 1, 3}, then the frequency

of frequency for the sampled subset is 𝑓0 = 2, 𝑓1 = 1, 𝑓2 = 1.

Sampling-based property estimation. The definition of property estimation in [36] can be

transferred to the field of the database. Given a column of the table, we focus on the property of

population, which can be computed utilizing the population’s frequency of frequency, expressed as

follows:

Ψ =
∑︁
𝑖=1

𝐹𝑖 ·𝜓
(
𝑖

𝑁

)
.
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Here, Ψ represents the desired property,𝜓 (·) is the function applied to the frequency ratio of each

element in the property calculation, and 𝐹𝑖 groups elements with the same frequency together. Our

primary focus is on these additive elements, which are solely influenced by frequency. In this paper,

we study three properties: NDV, entropy, and power sum, utilizing them as illustrative examples of

our learning-based framework.

NDV Estimation. NDV is the number of the distinct values of the given raw data, denoted by 𝐷 .

The number of the distinct values of the sample is denoted by 𝑑 . We give the definition of NDV in

a mathematical way:

𝐷 = 1𝐹𝑖 · 𝐹𝑖 ,
where 1𝑥 is an indicative function, which is 1 when 𝑥 ≠ 0 and otherwise 0. In the NDV estimate, Ψ
denotes 𝐷 and𝜓 ( 𝑖

𝑁
) B 1 𝑖

𝑁
.

Entropy Estimation. Entropy is a measure of uncertainty or information content in a random

variable or a probability distribution. The entropy of the population is defined as follows:

𝐻 = −
∑︁
𝑖=1

𝑖

𝑁
log

𝑖

𝑁
𝐹𝑖 .

In entropy estimation, Ψ denotes 𝐻 and𝜓
(
𝑖
𝑁

)
B − 𝑖

𝑁
log

(
𝑖
𝑁

)
.

Power Sum. Given the frequency of frequency of the raw data consisting of 𝐹𝑖 , the 𝛼-order power

sum of the raw data is:

𝑃𝑆 =
∑︁
𝑖=1

(
𝑖

𝑁

)𝛼
𝐹𝑖 .

In power sum, Ψ denotes 𝑃𝑆 and𝜓𝑝𝑠
(
𝑖
𝑁

)
B

(
𝑖
𝑁

)𝛼
.

Support Size Estimation. Support size estimation is an extension of the NDV estimation problem

and inspires the design of other estimators. Support size estimation, as known in statistics, involves

counting only unique elements whose sampled probability exceeds a certain threshold. These

elements form the support set and have a sampled probability greater than
1

𝑘
, where 𝑘 represents

a predetermined integer, also indicating the maximum number of elements the support set can

contain. Let 𝑆 denote the actual size of the support set and 𝑆 be the estimate of 𝑆 . The relative error

of statistical methods in estimating the support set is defined as:

E𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =| 𝑆 − 𝑆 | /𝑆.

In the context of databases, when we set 𝑘 equal to 𝐷 , the problem of support size estimation

becomes equivalent to NDV estimation.

Next, we revisit existing solutions for property estimation. Most existing solutions concentrate

on specific problems such as NDV or entropy estimation. Therefore, we discuss the solutions for

these two problems separately in Sections 2.2 and 2.3. Subsequently, we elaborate on existing

learning-based solutions in Section 2.4.

2.2 Existing Solution for Sampling-based NDV
Currently, two main approaches are employed to estimate NDV using estimators. The first involves

designing an estimator based on distribution hypotheses, while the second focuses on solving an

optimization problem to derive the estimator. In this section, we provide an in-depth exploration of

representative estimators. The process of designing an estimator begins with defining the error

settings. Typically, denote the estimator of 𝐷 as �̂� , the ratio error for estimators in database
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applications is:

E𝑟𝑎𝑡𝑖𝑜 = max{𝐷/�̂�, �̂�/𝐷}. (1)

Charikar et al. [19] gives a negative result for the ratio error. It claims that for any estimators,

counterexamples can be constructed such that the ratio error is at least

E(𝐷, �̂�) ≥
√︄

𝑁 − 𝑛
2𝑛

ln

1

𝛾
.

Here, 𝑛 is the population size of the sampled subset, and 𝛾 is the probability of failure with values

exceeding exp
−𝑞
, where 𝑞 denotes the sample rate. The authors emphasize the significance of

estimating unseen elements, i.e., 𝑓0, through a challenging scenario posed by previous estimators.

More precisely, this challenge involves distinguishing between the following two situations:

• 𝑁 same elements.

• (𝑁 − 𝑡) same elements and 𝑡 distinct elements.

In the second scenario, the distinct number of samples is a good estimator only when the 𝑡 distinct

elements are all sampled. Otherwise, the estimator is likely to fail unless 𝑓0 is well estimated. To

handle the hard case, it is necessary to take the estimate 𝑓0 into account. The authors analyze the

optimal ratio error and derive the following estimator:

�̂�𝐺𝐸𝐸 = 𝑑 +
(√︁

𝑁 /𝑛 − 1
)
𝑓1, (2)

where 𝑑 is the NDV of the sample. Based on �̂�𝐺𝐸𝐸 , Charikar et al. [19] propose a new estimator

Adaptive Estimator (AE) to handle the low-skew data with guaranteed error. Different from �̂�𝐺𝐸𝐸 ,

AE solving an equation about 𝑓𝑖 and dynamically obtains a solution:

�̂�𝐴𝐸 = 𝑑 +𝑚 − 𝑓1 − 𝑓2, (3)

where𝑚 is the solution to the following equation:

𝑚 − 𝑓1 − 𝑓2 = 𝑓1

∑
𝑖=3 𝑒

−𝑖 𝑓𝑖 +𝑚𝑒−(𝑓1+2𝑓2 )/𝑚∑
𝑖=3 𝑖𝑒

−𝑖 𝑓𝑖 + (𝑓1 + 2𝑓2)𝑒−(𝑓1+2𝑓2 )/𝑚
.

Another line of research work derives NDV estimators by solving optimization problems, with a

particular focus on estimators based on polynomial approximation. For instance, Wu et al. [54]

introduce the estimator for NDV as follows. For a given 𝐿, its estimator is

�̂�𝑊𝑌 =

𝐿∑︁
𝑗=1

𝑔𝐿 ( 𝑗) 𝑓𝑗 +
∑︁
𝑗>𝐿

𝑓𝑗 , (4)

where 𝑔𝐿 is defined as

𝑔𝐿 ( 𝑗) =
{
𝑎 𝑗 𝑗 ! + 1, 𝑖 𝑓 𝑗 ≤ 𝐿,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

Here, the authors set 𝐿 ≜ ⌊𝑐0 log𝑘⌋ with 𝑘 being the input integer of support size estimation,

𝑐0 ≈ 0.558 and 𝑎0 = −1 to ensure 𝑔𝐿 (0) = 0. Chien et al. [22] highlight that the problem can be

redefined as a regularization-based exponentially weighted Chebyshev approximation problem.

While these existing estimators yield a collection of theoretically interpretable estimators through

the sampling procedure, their practical performance often falls short of expectations.
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Table 2. Estimators and their property.

Property Estimator Expression Linear Estimator Unseen Using 𝑞 Distribution

NDV

�̂�𝑃𝑙𝑢𝑔−𝑖𝑛 𝑑 ! # # #

�̂�𝐺𝐸𝐸 [19] 𝑑 +
(√︁

𝑁 /𝑛 − 1
)
𝑓1 ! ! ! #

�̂�𝐶ℎ𝑎𝑜2 [18] 𝑑 + 𝑓1 (𝑓1−1)
2(𝑓2+1) # ! # #

�̂�𝐺𝑇 [32] 𝑑 +∑
𝑖=1 (−1)𝑖+1𝑡𝑖 𝑓𝑖 ! ! # #

�̂�𝐴𝐸 [19] 𝑑 +𝑚 − 𝑓1 − 𝑓2 # ! ! #

�̂�𝑊𝑌 [54]

∑𝐿
𝑗=1 𝑔𝐿 ( 𝑗) 𝑓𝑗 +

∑
𝑗>𝐿 𝑓𝑗 ! ! # #

�̂�𝑊𝐷 [52] exp(𝜎 (𝑊 (· · · log(𝑓𝑖
⊕

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) # # ! !

�̂�𝑜𝑢𝑟 𝑑 +∑𝐿
𝑗=1 𝑏 𝑗 𝑓𝑗 ! ! ! !

Entropy

�̂�𝑃𝑙𝑢𝑔−𝑖𝑛
∑
𝑖=1 𝑓𝑖

𝑖
𝑛
log

𝑛
𝑖

! # # #

�̂�𝑀𝑀 [44] �̂�𝑝𝑙𝑢𝑔−𝑖𝑛 + 𝑛−1
2𝑁

# ! ! #

�̂�𝑊𝑌 [53]

∑
𝑗>𝐿 𝑓𝑗 ( 𝑗𝑛 log

𝑛
𝑗
+ 1

2𝑛
) +∑𝐿

𝑗=1 𝑔
′
𝐿
( 𝑗) 𝑓𝑗 ! ! # #

Ours

∑
𝑗>𝐿 𝑓𝑗

𝑗

𝑛
log

𝑛
𝑗
+∑𝐿

𝑗=1 𝑏 𝑗 𝑓𝑗 ! ! ! !

Power sum Ours

∑
𝑗>𝐿 𝑓𝑗

(
𝑗

𝑛

)𝛼
+∑𝐿

𝑗=1 𝑏 𝑗 𝑓𝑗 ! ! ! !

Distance to

uniformity Ours

∑
𝑗>𝐿 𝑓𝑗

(
𝑗

𝑛
− 1

𝑘

)
+∑𝐿

𝑗=1 𝑏 𝑗 𝑓𝑗 ! ! ! !

Normalized

support coverage Ours

∑
𝑗>𝐿 𝑓𝑗

1−(1− 𝑗/𝑛)𝑁
𝑁

+∑𝐿
𝑗=1 𝑏 𝑗 𝑓𝑗 ! ! ! !

Remarks: "Linear Estimator" refers to whether the estimator is a linear estimator. "Unseen"

refers to whether the estimator is designed by considering the unsampled elements. "Using 𝑞"

refers to whether the estimator contains the sampling probability 𝑞. The "distribution" refers to

whether the estimator can adapt to different distributions.

2.3 Existing Solution for Sampling-based Entropy Estimation
Similar to NDV estimation, entropy estimation can be approached using both traditional and

optimization methods. In the case of entropy estimation, previous research typically employs

square error as a metric to assess the performance of estimators:

E𝑀𝑆𝐸 = (𝐻 − �̂� )2, (6)

where �̂� denotes the estimator of Shannon entropy. Aiming at the square error, Miller-Madow et

al. [44] design the estimator:

�̂�𝑀𝑀 =
∑︁
𝑖=1

𝑓𝑖
𝑖

𝑛
log

𝑛

𝑖
+ 𝑛 − 1

2𝑁
. (7)

In Equation 7, it replaces the true probability with empirical frequency ratio for the estimation of

entropy, while the term
𝑛−1
2𝑁

is used to correct for bias. In addition to traditional statistics, polynomial

estimation can also be applied to entropy estimation. Wu et al. [53] propose the entropy estimator

based on polynomial approximation. The authors also divide the entropy into two parts by a fixed

parameter 𝐿′ and use the following estimator:

�̂�𝑊𝑌 =
∑︁
𝑗>𝐿′

𝑓𝑗

(
𝑗

𝑛
log

𝑛

𝑗
+ 1

2𝑛

)
+

𝐿′∑︁
𝑗=1

𝑔′𝐿′ ( 𝑗) 𝑓𝑗 , (8)

where 𝐿′ is set to log𝑘 with 𝑘 being the input integer of support size estimation, and 𝑔′ represents
the approximate polynomial used in entropy estimation. The rationale behind this equation is that

the high-frequency part is estimated in the form of �̂�𝑀𝑀 , while the low-frequency part is estimated

using 𝑔′.
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2.4 Learning-based Estimation
The estimators listed above are designed with heuristics. Recently, learning-based strategies have

been developed to adapt flexibly to data distribution. Generally, 𝑓𝑖 is the main input of the property

estimation, therefore Wu et al. [52] use 𝑓𝑖 to learn the NDV estimator. We denote the learning-based

estimator in [52] by �̂�𝑊𝐷 . As an overview, we divide the learning process into feature selection,

model design, and the purpose of the loss function.

Training data and features. Learning-based methods require the inputs of fixed-dimensional

features. However, the frequency of frequency usually differs between samples. As a solution,

learning-based methods employ a cut-off in frequency of frequency as a remedy. For example, Wu

et al. [52] use 𝑓𝑖 with 𝑖 ≤ 100 as the input. To maintain efficiency, learning-based methods do not

sample the raw data every time during the training process. Instead, they save a portion of 𝐹𝑖 from

the raw data for training and use random numbers from the binomial distribution as sampling. By

changing the random number, a large amount of training data can be generated quickly.

Model design. The objective of learning-based models is to establish a connection between data

features and NDV. According to existing studies, [32], 𝐹𝑖 can be expressed as a linear combination

of 𝑓𝑖 . Wu et al. [52] employ a sequence of linear layers along with LeakyReLU as the activation

function to enhance themodel’s representational capacity. In contrast to polynomial approximations,

learning-based methods accommodate non-linear functions. While they preserve some linear

relationships, this approach can diminish the physical prior knowledge of the model. Conversely,

our goal is to design a more elegant and explainable model.

Loss function. The loss function in learning-based models controls the learning error. Wu et al.

[52] use the loss function to regularize the model. Chien et al. [22] design the loss function aiming

to minimize the bias and variance of estimation.

2.5 Summaries of Estimators
We list common property estimators in Table 2. A series of property estimators belong to the

family of linear estimators. The linear addition of property estimations based on the frequency

of frequency aligns with the interrelationship among elements. The key to property estimation

lies in accurately estimating elements that have not been sampled. The main idea of existing

property estimators is to (i) use the frequency ratio of the sampled portion to estimate the real

probability for property estimation; (ii) approximate the bias between the unseen portion and the

actual property. Different methods resolve these two from different perspectives. Building upon

this idea, we can combine polynomial and neural network approaches to approximate this bias

and address all properties collectively. It is noteworthy that most existing estimators do not take

data distribution into account. Although Charikar et al. [19] adapt low-skew and high-skew data to

design AE with guarantee error, AE still can not handle complex data distribution. Learning-based

methods leverage data distribution to achieve superior results but lack explainability. Among all the

estimators, our algorithm can be used flexibly to estimate different properties and enjoy desirable

theoretical guarantees while injecting the learning techniques.

3 ALGORITHM
In this section, we provide an in-depth exploration of our framework. We begin by introducing the

relationship between property estimation and polynomial approximation. Subsequently, we present

how to use weighted polynomials for NDV estimation. Following that, we present a learning-based

framework designed to estimate various additive properties, exemplified by entropy and power

sum. Lastly, we provide a brief analysis of our algorithm.
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3.1 Polynomials and Property estimation

NDV estimation.We begin by studying the relationship between polynomial and NDV estimation.

We denote 𝑁𝑖 as the number of occurrences of element 𝑖 in the data. We model the sampling process

as 𝑛 independent random events using the Binomial distribution. The expectation of the frequency

of frequency of sample, 𝑓𝑡 is then:

E [𝑓𝑡 ] =
𝐷∑︁
𝑖=1

(
𝑛

𝑡

) (
𝑁𝑖

𝑁

)𝑡 (
1 − 𝑁𝑖

𝑁

)𝑛−𝑡
, (9)

where
𝑁𝑖

𝑁
is the probability to sample element 𝑖 . Following the definition of linear estimators, the

coefficient of 𝑓𝑡 is set to 𝑎𝑡 , i.e.:

�̂� =

𝐿∑︁
𝑡=1

𝑎𝑡 𝑓𝑡 +
∑︁
𝑡>𝐿

𝑓𝑡 .

Here, we follow previous work and use 𝐿 as a parameter to control the order of the frequency of

frequency that we aim to learn for estimation. Note that 𝐿 can also be interpreted as the gap between

high-frequency and low-frequency elements. By inserting Equation (9) into linear estimator �̂� , we

obtain the expectation of the basic estimator:

E
[
�̂�
]
= 𝐸

[∑︁
𝑡=1

𝑎𝑡 𝑓𝑡

]
=

𝐿∑︁
𝑡≥1

𝑎𝑡

𝐷∑︁
𝑖=1

(
𝑛

𝑡

) (
𝑁𝑖

𝑁

)𝑡 (
1 − 𝑁𝑖

𝑁

)𝑛−𝑡
+

∑︁
𝑡>𝐿

𝑓𝑡 .

Here, when 𝑡 > 𝐿, we set 𝑎𝑡 = 1. To explain, when the frequency of an element is above a certain

threshold, we assume that it will be sampled when the sample size is sufficiently large and the

more challenging part is to estimate for elements with low frequency. The bias of the property

estimation comes mainly from the element that is not sampled, that is, 𝑓0. However, to estimate the

contribution of unsampled records in proper values, it is sufficient to use the sampled records. Next,

we focus on the part of unseen elements, which, in the case of the NDV, is the estimation of the

number of unseen elements, 𝑓0. To do this, we take 𝑓𝑡 as the input feature and aim to learn a linear

estimator
ˆ𝑓0 of 𝑓0 where the coefficient to be learned for 𝑓𝑡 is denoted as 𝑏𝑡 . Then, the estimator of

𝑓0 is

ˆ𝑓0 =

𝐿∑︁
𝑡=1

𝑏𝑡 𝑓𝑡 . (10)

By putting Equation (9) into Equation 10, we have that:

E [𝑓0] =
𝐿∑︁
𝑡=1

𝑏𝑡 𝑓𝑡 =

𝐿∑︁
𝑡=1

𝑏𝑡

𝐷∑︁
𝑖=1

(
𝑛

𝑡

) (
𝑁𝑖

𝑁

)𝑡 (
1 − 𝑁𝑖

𝑁

)𝑛−𝑡
.

Let E𝐷 and E𝑓0 denote the error of estimating NDV, 𝐷 and the number of unseen elements, 𝑓0,

respectively. According to the definition of 𝐷 and 𝑓𝑖 , we have 𝐷 =
∑
𝑖=1 1(𝑁𝑖 ) =

∑
𝑗=1 𝐹 𝑗 . Therefore,

the error of 𝐷 , E𝐷 can be determined as follows:

E𝐷 =

𝐷∑︁
𝑖=1

(
𝐿∑︁
𝑡=1

(
𝑛

𝑡

) (
𝑁𝑖

𝑁

)𝑡 (
1 − 𝑁𝑖

𝑁

)𝑛−𝑡
𝑎𝑡 − 1

)
.

Merging elements with the same frequency, we have:

E𝐷 =
∑︁
𝑗=1

(
𝐿∑︁
𝑡=1

(
𝑛

𝑡

) (
𝑗

𝑁

)𝑡 (
1 − 𝑗

𝑁

)𝑛−𝑡
𝑎𝑡 − 1

)
𝐹 𝑗 . (11)
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For NDV estimation, the bias essentially arises from the unsampled elements, namely E𝐷 = E𝑓0 .
Note that �̂� =

∑𝐿
𝑡=1 𝑎𝑡 𝑓𝑡 +

∑
𝑡>𝐿 𝑓𝑡 ,

ˆ𝑓0 =
∑𝐿
𝑡=1 𝑏𝑡 𝑓𝑡 , and �̂� − ˆ𝑓0 =

∑
𝑡≥1 𝑓𝑡 , we have that 𝑎𝑡 = 𝑏𝑡 + 1.

Also, for 𝑡 > 𝐿 since 𝑎𝑡 = 1, we have that 𝑏𝑡 = 0 for 𝑡 > 𝐿. Thus, the above equation can also be

expressed with the coefficient of 𝑏𝑡 . The relationship between 𝑎𝑡 and 𝑏𝑡 indicates that the tasks

of estimating unseen elements and NDV estimation are equivalent. For 𝑓0, using the Binomial

distribution, we can also derive its expected value:

E[𝑓0] =
∑︁
𝑗=1

(
1 − 𝑗

𝑁

)𝑛
𝐹 𝑗 . (12)

Using Equation (12) and following the same technique in the analysis of E𝐷 , we have the

following:

E𝑓0 =
∑︁
𝑗=1

(
𝐿∑︁
𝑡=1

(
𝑛

𝑡

) (
𝑗

𝑁

)𝑡 (
1 − 𝑗

𝑁

)𝑛−𝑡
𝑏𝑡 −

(
1 − 𝑗

𝑁

)𝑛)
𝐹 𝑗 .

Obtaining an 𝐿-order polynomial approximation formula by simplifying the equation above by

merging the elements with the same frequency, we have the following formula:

E𝑓0 =
∑︁
𝑗=1

[(
𝐿∑︁
𝑡=1

𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡)𝑏𝑡 − 1
)
𝐹 𝑗

(
1 − 𝑗

𝑁

)𝑛]
, (13)

where 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡) =
(
𝑛
𝑡

) (
𝑗

𝑁− 𝑗

)𝑡
. When 𝑁 , 𝑛 is fixed, the value of 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡) can be directly

calculated. Since both E𝐷 and E𝑓0 can be expressed with polynomials using 𝑏𝑡 , the problem is hence

how to determine the value of 𝑏𝑡 .

Since we can only get experimental values (integers) for 𝑓𝑖 but not the exact expected value

(decimals), the relationship between 𝑏𝑡 and 𝑓𝑡 is not exactly a simple linear relationship. To increase

the interpretability of 𝑏𝑡 , we treat 𝑏𝑡 as the function of 𝑓𝑡 . In concrete terms, we compute 𝑏𝑡 by

a machine learning model with 𝑓𝑡 as input. With this adjustment, we can preserve the linear

correlation of 𝑓𝑡 and NDV. At the same time, we can introduce more interpretive possibilities in 𝑏𝑡
for the estimator. According to Equation (13), the problem of estimating the NDV is also amenable

to approximation by polynomials. Following the same process of deduction, we can obtain the

other estimators for different properties.

Entropy estimation. We next present how to extend to entropy estimation. We use the frequency

ratio of samples to replace the frequency ratio of the population to estimate the entropy of the

sampled elements. Also, because we have parameterized 𝑏𝑡 with 𝑓𝑡 , a learning-based neural network

can then learn the coefficient 𝑏𝑡 of 𝑓𝑡 that is required for the calculation of entropy. The bias of the

entropy estimator will be:

E𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =
∑︁
𝑗=1

[(
𝐿∑︁
𝑡=1

𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡)𝑏𝑡 −
𝑗

𝑁
log

𝑁

𝑗

)
𝐹 𝑗

(
1 − 𝑗

𝑁

)𝑛]
. (14)

We also need to solve the polynomial approximation problem for entropy estimation. We first

propose to use machine learning to unify the problem of property estimation. With the parameteri-

zation of 𝑏𝑡 , we can use gradient descent to solve the polynomial approximation more conveniently

and stably.
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Drawing from the analyses above, the general form of bias in estimating the properties of other

unseen elements can be summarized in the following:

EΦ =
∑︁
𝑗=1

[(
𝐿∑︁
𝑡=1

𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡)𝑏𝑡 −𝜓
(
𝑗

𝑁

))
𝐹 𝑗

(
1 − 𝑗

𝑁

)𝑛]
. (15)

Following the same processes, we can deduce the bias of 𝛼-order power sum as:

E𝑃𝑆 =
∑︁
𝑗=1

[(
𝐿∑︁
𝑡=1

𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡)𝑏𝑡 −
(
𝑗

𝑁

)𝛼 )
𝐹 𝑗

(
1 − 𝑗

𝑁

)𝑛]
. (16)

From Equation (15), we see that for different data distributions, 𝐹 𝑗 varies with the distribution.

When multiplied by (1 − 𝑗

𝑁
)𝑛 , the result is also an uncertain value. For each 𝑗 , this represents a

polynomial approximation problem. In essence, it is a weighted polynomial approximation problem

where the weight is given by 𝐹 𝑗 (1 − 𝑗

𝑁
)𝑛 . 𝐹 𝑗 (1 − 𝑗/𝑁 )𝑛 represents the expected number of times of

an element that appears 𝑗 times in population but is not sampled. In [54], they turn 𝐹 𝑗 (1 − 𝑗/𝑁 )𝑛
into 𝑃𝐿 · exp(−𝑛𝑝𝑖 ) with the Poissonization technique, where 𝑝𝑖 is the expectation probability of

the elements being sampled and 𝑃𝐿 is the polynomials.

3.2 Learning-based NDV Estimation with Weighted Polynomial Approximation
In this part, we describe the details of the learning-based polynomial approximation algorithm.

We introduce the algorithm to learn the NDV as an example. The NDV estimation of weighted

polynomials is actually the case of themost basic property estimation. The other property estimation

can follow the same algorithm with Equation (13) with tiny modifications.

Based on Equation (13), we consider the coefficient 𝑏𝑡 as the function with respect to 𝑓𝑖 . Then, the

coefficients 𝑏𝑡 for 𝑡 ≤ 𝐿 is a set of values that can be learned according to different distributions and

parameters rather than a fixed set of values. However, for the previous polynomial approximation

methods [22, 54], the authors solve a fixed coefficient 𝑏𝑡 . Hence, these previous solutions do

not generalize to different distributions. For the previous learning-based NDV estimation [52],

the authors rarely explore the relationship between property and 𝑓𝑖 , and thus lack theoretical

guarantees.

Algorithm 1 shows the pseudo-code of our proposed learning-based NVD estimation algorithm.

We explain our algorithm in three parts: preparation, training, and loss.

• Preparation. According to Equation (13), we pre-compute and save the value of polynomials,

𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡) for training and estimation. In the previous learning-based NDV estimation [52],

the authors take the logarithm of the input 𝑓𝑖 directly to make features, log𝐷 and log �̂� at the

same scale and introduce the non-linearity. The different scales of features and NDV are due to

the mismatch between the data scales of the binomial coefficients and frequencies. We provide a

clearer physical interpretation by pre-computing the value of polynomials and adjusting the scale

of the data in advance. We initialize weights as an all-one vector. When the training data has

varied inputs, the weights will be as close to the definition, namely 𝐹 𝑗

(
1 − 𝑗

𝑁

)𝑛
. This is reflected

in the numerical values that have a numerical value for the high frequencies and 0 for the low

frequencies. We also verify this in our experiments.

• Training. We use a simple two-layer linear activation network. Compared to the complex multi-

layer neural network structure in [52], our network is simpler and requires fewer parameters. The

introduction of the polynomial minimizes unnecessary assumptions and improves the training

efficiency.
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Algorithm 1: NDV Estimation with Polynomials

Input: 𝑓𝑗 : The frequency of frequency of samples.

𝑁 : The size of the population in the raw data.

𝑛: The size of the sample.

𝐿: The order of polynomial approximation.

𝜆: Hyperparameters for the weighted sum of the loss function.

𝑊 : The weight of polynomials.

Output: The estimation of NDV.

1 Initialize the weight of the polynomials as 1.
2 Initialize the two-layer neural network N𝑒𝑡 of the NDV estimation.

3 Pre-compute 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡).
4 while Training do
5 𝑏𝑡 ← N𝑒𝑡 (𝑓𝑗 ).
6 bias_loss← ∑

𝑗=1

∑
𝑡=1 (𝑏𝑡 · 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡) − 1) ·𝑤 𝑗 .

7 ˆ𝑓0 ← 𝑅𝑒𝑙𝑢 (∑𝑡=1 𝑏𝑡 · 𝑓𝑡 ).
8 loss = lossfun(

ˆ𝑓0, 𝐷, 𝑑)+𝜆·bias_loss.
9 Backward Push.

10 Update N𝑒𝑡 and weight𝑊 .

11 while Evaluating do
12 𝑏𝑡 ← N𝑒𝑡 (𝑓𝑗 ).
13 ˆ𝑓0 ← 𝑅𝑒𝑙𝑢 (∑𝑡=1 𝑏𝑡 · 𝑓𝑡 ).
14 Return

ˆ𝑓0 +
∑
𝑡=1 𝑓𝑡 .

• Loss. We divide the loss into two parts and balance them with adjustable penalty parameters,

which are the actual estimation error and the bias loss as in Equation (13). For the actual estimation

error of NDV, we adopt the loss given in [52]. An advantage of our framework is that it is easier

to combine different losses. We do not need to define specific loss functions for different property

estimation tasks.

3.3 Learning-based Property Estimation with Weighted Polynomial Approximation
In this part, we describe how the framework for NDV estimation with polynomials can be adapted

to estimate different properties. We take the two most representative properties: entropy and power

sum, as examples following [8, 36].

We provide the algorithm for estimating property using polynomials in Algorithm 2. In the

following part, we discuss the similarities and dissimilarities when estimating different properties

with detailed explanations.

• Similarities. The general framework of training follows the previous pattern. The property

estimates for those elements in the seen part use the sampled frequency as probabilities to estimate

their property values, which is equivalent to maximum likelihood estimation. The unseen parts

are estimated with the machine learning model, which still uses a two-layer activation network.

We use the activation networks and polynomials to construct a compound loss, which consists

of estimated loss and bias loss, to get an estimator of the property of the unseen part. Typically,

the function𝜓 used for property estimation is non-negative. This is consistent with activation

networks where the final result only needs to be fed into the ReLU function.
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Algorithm 2: Property Estimation with Polynomials

Input: 𝑓𝑗 : The frequency of frequency of samples.

𝑁 : The size of the population in the raw data.

𝑛: The size of the sample.

𝐿: The order of polynomial approximation.

𝜆: Hyperparameters for the weighted sum of the loss function.

𝑊 : The weight of Polynomials .

Output: The estimation of entropy.

1 Initialize the weight of the polynomials as 1.
2 Initialize the two-layer linear activation layer Network N𝑒𝑡 of the property estimation.

3 Pre-compute 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡).
4 while Training do
5 𝑏𝑡 ← N𝑒𝑡 (𝑓𝑗 ).
6 bias_loss← ∑

𝑗=1

∑
𝑡=1

(
𝑏𝑡 · 𝑃𝑜𝑙𝑦 (𝑁,𝑛, 𝑗, 𝑡) −𝜓

(
𝑡
𝑁

) )
·𝑤 𝑗 .

7 Ψ̂0 ← 𝑅𝑒𝑙𝑢 (∑𝑡=1 𝑏𝑡 · 𝑓𝑡 ).
8 loss = lossfun(Ψ̂0, 𝑓𝑡 ,Ψ) + 𝜆·bias_loss.
9 Backward Push.

10 Update N𝑒𝑡 and weight𝑊 .

11 while Evaluating do
12 𝑏𝑡 ← N𝑒𝑡 (𝑓𝑗 ).
13 Ψ̂0 ← 𝑅𝑒𝑙𝑢 (∑𝑡=1 𝑏𝑡 · 𝑓𝑡 ).
14 Return Ψ̂0 +

∑
𝑡=1 𝑓𝑡𝜓 ( 𝑡𝑛 ).

• Dissimilarities. Compared to counting values like NDV, when the features and property Ψ’s
scale is mismatched, we can also take logarithm like [52]. For example, entropy is a function of

probability, which is inconsistent with the scale of input 𝑓𝑖 . Therefore, we can take the logarithm

of the input for entropy estimation. We adapt the function of bias loss based on polynomial

approximation theory, namely Equation (15). As we introduce in previous sections, different

standards of error will be used for different properties. For the different properties and evaluation

errors, we can use different estimated loss functions. In particular, we directly use the square

error for the estimation loss of entropy and the absolute error for the power sum. Since we

are directly adding estimated errors and the polynomial approximation bias, we are detecting

whether the scale is matched. If not, we need to consider which of them needs to be processed to

match the scale.

After summarizing our above framework, we next present a theoretical analysis of our learning-

based solutions.

3.4 Theoretical Analysis
In this section, we give some theoretical analysis of our algorithm. We follow the setting of most

property estimation research works. For the unknown distribution with frequency of frequency 𝐹𝑖

and property Ψ, the mean squared error (MSE) for the estimator Ψ̂(𝑓𝑖 ), where 𝑓𝑖 is the frequency of

frequency of samples with 𝑛 samples, is

E𝑛
(
Ψ̂,Ψ, 𝑓𝑖

)
B E𝑓𝑖

(
Ψ − Ψ̂ (𝑓𝑖 )

)
2

,
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Table 3. Error bounds on smallest sample complexity for studied properties.

Property Lower bound Upper bound

NDV
𝐷

log𝐷
log

2 1

𝜀
𝐷

log𝐷
log

2 1

𝜀

Entropy
𝐷

𝜀 log𝐷
+ log

2 𝐷

𝜀2
log

1

𝛿
𝐷

𝜀 log𝐷
+

(
1

𝜀2
log

1

𝛿

)
1+𝛽

𝛼 Power sum
𝐷

1

𝛼

𝜀
1

𝛼 log𝐷
+ 𝐷2−2𝛼

𝜀2
log

1

𝛿
𝐷

1

𝛼

𝜀
1

𝛼 log𝐷
+

(
1

𝜀2
log

1

𝛿

) 1+𝛽
2𝛼−1

Remarks: 𝛽 can be an fixed absolute constant in (0, 1). The lower and upper bounds for power

sum hold for 𝛼 ∈ (1/2, 1).

where E𝑛 denotes the errors over 𝑛 samples.

We aim to obtain the estimator Ψ̂ of Ψ with the accuracy 𝜀, confidence 1 − 𝛿 and smallest

sample complexity 𝐶 (Ψ̂, 𝜀, 𝛿). Hao et al. [36] have given an analysis of the different properties. We

are essentially using machine learning methods to compute the polynomial approximations, still

adhering to the conclusions of [36]. However, the conclusion in [36] assumes an infinite distribution

while we focus on the setting of a table with a limited size. Next, we show how to extend their

conclusion to our setting.

High-level description. At a high level, the polynomial approximation methods replace the

underlying function𝜓 with a polynomial and use the empirical frequency as input [36]. The bias

mainly comes from the polynomial approximation for the elements unsampled. The ability to

control the bias becomes crucial for the accuracy of the estimation. As [36] states, when we need to

consider whether the main errors come from the empirical plug-in estimation or from the unbiased

polynomial approximation, we have to analyze case-by-case which seriously affects the efficiency.

Machine learning makes it easier to generate polynomial approximations of different properties.

Besides, we do not have to balance the errors case-by-case by controlling the ratio of the loss

function.

Following the settings of the property function, the condition for 𝐿-Lipschitz property estimation

in [36] (Theorem 1 therein) is also satisfied in the case of polynomial approximations based on

learning. In the context of databases, 𝐷 is the value of the upper bound on the support size, 𝑘 . We

replace the 𝑘 in [36] Table 2 with 𝐷 and obtain the sample complexity bounds for the properties in

the databases in Table 3.

Analysis for the parameters. We analyze the values of the parameters, especially the range

of polynomial approximations. First, we determine the complexity of the dimension of weights.

When the expectation of sampled times about an element with frequency 𝑗 is sufficiently small, we

do not use it to estimate 𝑓0. Concretely, when the expectation threshold is 𝛿1, the upper bound of

summation of 𝑗 is 𝑂 ( 1
𝑞
log

𝑁𝑞

𝛿1
). In the experiment, we can reduce the dimension of approximate

weight according to the specific distribution when the weights with large indexes are all 0. To

maintain the 𝐿−Lipschitz property, we keep the polynomial order settings the same as the previous

polynomial approximation [36, 54], namely 𝐿 = 𝑂 (log𝐷). The main bottleneck in our learning

process is the process of computing the bias loss, related to the dimension of the matrix formed by

the pre-computed polynomials, i.e., the product of the upper bound of the two summations of the

bias, 𝑂 ( log𝐷
𝑞

log
𝑁𝑞

𝛿1
).

Analysis for Algorithm 2. Compared with the previous polynomial approximation research

works [36, 53, 54], we follow the previous parameter settings and assumptions, the difference is
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Fig. 2. The result of NDV estimation vs sample rate 𝑞 on synthetic datasets. (a) Uniform distribution. (b,c)
Zipf distribution with skewness factors 𝛾 1.2 and 1.5 respectively.

only that the method of approximating the optimal polynomial coefficients is different. Although

the result learned from the neural network may not be an exact optimal polynomial approximation,

it is still a bounded function over [0, 1], so it still satisfies Theorem 4 and 5 in [36].

4 EXPERIMENT
In this section, we experimentally evaluate our methods. They are compared to other baselines in

three aspects:

• Performance. How precise are our learning-based estimators in both synthetic and real-world

datasets?

• Interpretability. What parameters do we really learn?

• Ablation study. How does the introduction of polynomials influence the performance?

4.1 Experiment Setup

Hardware. All our experiments are performed on a Linux machine with 40 Intel(R) Xeon(R) Silver

4114 CPU at 2.20GHz, an NVIDIA RTX A6000 GPU (48GB memory), and 512 GB of RAM.

Datasets. We evaluate our experiments on both synthetic and real-world datasets. To ensure

fairness, we use the same training data in [52]. The data generation process is provided in [3] To

be fair, we re-train the model of �̂�𝑊𝐷 according to the source code with the newly generated data.

For the synthetic data, we consider data independently sampled from certain distributions under

the same conditions as in [54], which are:

• Uniform distribution. 𝑝𝑖 =
1

𝑘
, where 𝑘 is equal to 10

6
with the population size, 𝑁 = 10

8
.

• Zipfian distribution. In the database, the size of the column is finite, so we fixed 𝑁 = 10
8
items

from Zipfian distribution belonging to 𝐷 = 10
6
elements, whose 𝑝𝑖 ∝ 𝑖−𝛾 . We set the skewness

factor 𝛾 as 1.2 and 1.5.

We also include four datasets from [52] for comparison, which are:

• Airline [1]: Summary statistics of airline departures from 1987 to 2013 with 10.0M rows and 10

columns.

• Kasandr [49]: Collection for recommendation systems that record the behavior of customers of

the European leader in e-commerce advertising with 15.8M rows and 7 columns.

• NCVR [2]: North Carolina voter registration data with 8.3M rows and 71 columns.

• SSB [47]: The star schema benchmark. We use the fact table with a scaling factor of 50, resulting

in 300M rows and 17 columns.
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Methods evaluated. We compare two stable methods derived from traditional estimators. The

remaining estimators are intended for certain distributions. Besides, referring to the experiments

of [52], GEE and Chao’s estimators outperform other classic methods. We therefore focus our

comparisons on these statistics. We include NDV estimation with Chebyshev polynomial approxi-

mation as a baseline, namely �̂�𝑊𝑌 . We compare with the public version of the learning-based NDV

estimation [4, 52]. We list the summary of the methods in the experiment in the following:

• NDV

– GEE [19]. [19] provide a theoretical lower bound of ratio error within a constant factor. This

estimator uses the geometric mean to handle the hard case of NDV estimation.

– Chao [46]. Chao’s estimator is derived by approximating the coverage as 1− 𝑓1/𝑛 and assuming

the population size is infinity. To avoid it blowing up when 𝑓2 = 0, we use the expression in

Equation (18).

– Shlosser [48]. Shlosser’s estimator is derived from the assumption: E[𝑓𝑖 ]/E[𝑓1] ≈ 𝐹𝑖/𝐹1 when
the population is large. The method is constructed for language dictionaries and performs well

when most elements appear once on average.

– GT [33]. We use the expression in Equation (20). We set the parameter 𝜃 of Equation (20) as 0.1.

– AE [19]. AE estimator is an upgraded version of the GEE estimator. It has guaranteed error and

can handle low- and high-skew data.We follow the setting in [52] by using the classic Brent’s

method [15] to find the non-linear equation of AE estimator.

– WY [54]. Following the name in [27], we abbreviate the estimator using the Chebyshev poly-

nomial approximation asWY. The parameters of the estimator follow the settings in [54].

– WD [52]. The learning estimator for NDV is designed by [52]. We abbreviate its name as

Learning. We use the public version[4] using the same training datasets provided by itself.

– Ours. Our learning-based NDV estimation method with polynomials in Algorithm 1.

• Entropy

– Plug-in. Plug-in estimator [29] directly uses the sampling frequency as the true probability for

estimation. Plug-in estimator performs well in practice when most elements are sampled and

is also a good baseline with sufficient interpretability.

– MM [44]. Miller-Madow’s estimator reduces the bias of the plug-in estimator. TheMiller-Madow

estimator is also a frequently used method in entropy estimation.

– WY [53]. [53] gives the way of using polynomials approximation to estimate entropy. We

directly use the code provided by [53]
1
.

– Ours. Our learning-base entropy estimation method with polynomials approximation in Algo-

rithm 2.

• 𝛼-order Power Sum. We fix the order 𝛼 of the power sum to 0.5.

– Plug-in. We use the frequency of the samples replacing the true probability to estimate the

𝛼-order power sum. This estimator is a lower bound of the power sum and a basic baseline.

– Ours. Our learning-base power sum estimation method with polynomials approximation in

Algorithm 2.

Setup for estimators. According to [19, 20], low sample rates result in the failure of all estimators.

So we set the sample rates ranging from 0.001 to 0.01. To deal with randomness coming from

sampling, we repeat experiments 10 times and report the median of results. For the parameters of

baselines, we carefully follow the setting of the original papers. For WY’s estimator [54]. We set

𝑐0 = 0.45, 𝑐1 = 0.5, which is optimized to yield the best convergence rate in Proposition 3 in [54].

We apply a degree-7 polynomial in all experiments for our methods. The initial values of weight

1
https://github.com/Albuso0/entropy.git
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are set to 1. We use ReLU as the activation function and the learning rate to be 0.001. All of our

methods are implemented with PyTorch.

Performance metric. As mentioned above, due to different background needs, different estimators

utilize different errors for evaluation. We use different performance metrics for different estimators.

For NDV estimation and power sum, we use the ratio error as the performance metric, which is

defined in Equation (1). We use the absolute error for entropy estimation:

E𝑎𝑏𝑠 = |𝐻 − �̂� |.
We do not use the square error since this error is small on all compared methods. We hence use the

absolute error, which tends to be larger and can signify the difference.

4.2 Performance
In this section, we report the performance of our learning-based estimators with polynomials

varying on different properties estimation and datasets. In all tables, boldface indicates the best

results.

Table 4. The performance of different NDV estimators (Ratio Error).

Methods Kasandr Airline SSB NCVR Average
0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s)

GEE 2.455 1.480 1.335 1.0 2.754 1.388 1.205 0.3 2.770 1.825 1.578 2.3 5.589 2.385 1.906 4.4 2.223

Chao 3.828 2.219 1.855 0.9 1.452 1.238 1.195 0.3 1.069 1.053 1.046 2.2 11.450 3.983 7.640 4.2 3.169

WY 4.143 1.642 1.370 8.4 1.269 1.345 1.323 3.0 4.019 1.538 1.268 20.5 8.641 2.774 2.401 37.6 2.645

GT 30.515 7.768 4.672 2.4 1.604 1.328 1.262 0.7 35.945 7.866 4.360 5.8 67.466 15.980 9.106 9.7 15.656

Shlosser 7.618 4.348 3.321 48.0 5.524 1.155 1.074 12.7 25.570 8.335 5.461 118.4 14.555 1.608 1.274 187.5 6.654

AE 33.231 7.494 4.427 109.8 1.293 1.156 1.133 12.2 39.452 8.575 4.710 295.8 59.450 12.617 6.979 221.8 15.043

WD 2.342 1.883 1.730 0.2 1.608 1.249 1.279 0.2 1.574 1.478 1.293 0.4 4.125 1.984 1.745 1.8 1.857

Ours 2.085 1.297 1.395 3.0 1.343 1.102 1.084 2.9 2.447 1.646 1.781 6.7 2.796 1.478 1.310 25.3 1.647

Table 5. The performance of different entropy estimators (Absolute Error).

Methods Kasandr Airline SSB NCVR Average
0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s) 0.001 0.005 0.01 Time(s)

Plug-in 1.151 0.651 0.475 0.046 0.025 0.007 0.004 0.077 1.502 0.901 0.679 0.033 0.529 0.358 0.301 0.315 0.549

MM 0.972 0.505 0.346 0.045 0.008 0.003 0.002 0.077 1.293 0.723 0.518 0.031 0.463 0.314 0.261 0.307 0.451

WY 19.040 3.774 1.887 0.108 20.467 4.087 2.044 0.169 17.266 3.367 1.678 0.178 21.782 4.220 2.068 0.836 8.473

Ours 0.499 0.250 0.204 2.589 0.025 0.007 0.004 1.971 0.191 0.045 0.037 6.355 0.268 0.177 0.173 17.115 0.157

NDV estimation performance. Figure 2 (a,b,c) displays the curve of the estimated values of NDV

as the sample rate increases from the different estimators on synthetic datasets. The performance

of Shlosser’s estimator in this experiment is not shown in Figure 2 due to its extremely poor

performance. According to Figure 2 (a), both traditional and our estimator perform well in uniform

distribution. They both converge to the ground-truth NDV as the sampling rate increases. However,

when dealing with the Skew distribution and Zipf distribution, the performance of traditional

methods is not satisfactory. With the skewness factor increase, traditional estimators become

difficult to converge. Since they are related to the assumption of distribution at the beginning of

their design, their estimation accuracy becomes worse as the distribution becomes diverse. For

example, Shlosser’s estimator is effective when each data item occurs very few times (satisfying

E[ 𝑓𝑖 ]
E[ 𝑓1 ] =

𝐹𝑖
𝐹1
), but it is particularly ineffective in the uniform distribution. The estimate of learning-

based methods are not strictly linear about the sampling rate 𝑞 during evaluation, but oscillate

above and below around the true value with sample rate changing. In Figure 2 (b), our curve initially

rises, falls, and finally approaches the true value. This is due to the generalization error arising
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Table 6. The performance of power sum estimation (𝛼 = 0.5 Ratio Error).

Datasets 𝑞 Plug-in Time(s) Ours Times(s)

0.001 3.182 2.222
Kasandr 0.005 1.886 0.273 1.371 1.965

0.01 1.584 1.206
0.001 1.041 1.027

Airlines 0.005 1.015 0.415 1.016 1.720

0.01 1.009 1.017

0.001 3.843 2.281
SSB 0.005 2.092 0.082 1.203 4.818

0.01 1.693 1.057
0.001 3.100 2.219

NCVR 0.005 1.965 1.277 1.456 14.161

0.01 1.679 1.296

from the inconsistency between the sampling rates chosen during the generation of training data

and those of the test data. When generating training data, the proportion is relatively high in the

0.001-0.01 sampling rate range, leading to a slight overfitting. The weights may not be suitable for

the same data at higher sampling rates. A new model could be retrained with higher 𝑞, for data at

higher sampling rates. In database applications, a fixed sampling rate is often preset. We can focus

on this sampling rate range and generate training data accordingly.

In the real-world datasets, we set the evaluation standard to be ratio error in Equation (1). We

conduct experiments at the sample rate 0.01, 0.005, and 0.001. We repeat the experiments 10 times to

avoid outliers and take the median values. We display the performance of different NDV estimators

on real-world datasets in Table 4. On average, our method achieves the best results in the four

datasets. WY’s estimator has a good theoretical guarantee in the support size estimation for infinite

discrete distributions. However, in real database applications, WY’s estimator performs the worst.

Using the method of learning can effectively avoid the manual adjustment of the distribution and

better apply the theory to reality. It is quite difficult to surpass some traditional methods on certain

datasets, especially when we do not train for a specific distribution, because they could be the

optimal solution for certain specific distributions at the beginning of the design. However, the

learning-based method is relatively more stable. Besides, in practical use, traditional estimators may

face unacceptably large errors. For example, Chao’s estimator performs very well on SSB datasets,

but in NCVR, with the sampling rate being 0.001, the ratio error of Chao’s estimator is unacceptable.

While the AE estimator aims to mitigate the effects of both high and low skewness inherent in data

distributions through optimization methods, its performance is suboptimal with real-world data.

Designing estimators tailored to specific data distributions might enhance estimation accuracy for

those particular distributions. However, this approach often results in limited generalizability. In

contrast, our method does not rely on pre-existing assumptions about the data distribution. Instead,

it adapts to variations in the data distribution by learning directly from the data itself.

Compared to traditional methods, learning-based methods have smaller estimation errors and

fewer extreme cases, making them the preferred choice in practical applications. Our method is

superior to the results of the learning-based method by Wu et al. [52] in performance and has a

clear advantage in training time (as we will see later) and interpretability. Through NDV estimation,

we mainly show that by introducing polynomial approximation, we can achieve similar or better

results than learning NDV with a more complex design.
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Fig. 3. Weights in different training data.

Performance of entropy and power sum estimation. We only evaluate the entropy estimation

on the four real-world datasets. Compared to the previous learning-based methods [52], our design

is free of complex network design. Table 5 shows the performance of different entropy estimators.

Our algorithm is superior to other methods in most cases, except for the Airline dataset. The

results also show that traditional estimators are still competitive on some real-world data. Learning

algorithms perform well overall and are the most stable and robust in real-world datasets. WY’s

estimator uses a fixed coefficient, and it is difficult to deal with real-world data. By combining

polynomial approximation and learning techniques, we can better apply the theory of polynomial

property estimation to practical applications. Through entropy estimation, we can see that a

learning-based polynomial estimator is more stable in practice than traditional estimators based on

fixed distribution assumptions.

We further show that learning-based polynomial approximation methods can be easily applied to

power sum estimation. Table 6 shows the performance of our algorithm on power sum estimation.

We use the ratio error as the evaluation criterion. To our knowledge, none of the previous solutions

for power sum estimation [36] can deal with an arbitrary choice of 𝛼 , say 𝛼 = 0.5. Hence, we only

compare our learning-based solution against the plug-in estimator with 𝛼 = 0.5. In power sum

estimation, we add the logarithm of the absolute error loss and bias loss from polynomials as a loss

function. Compared to the complex loss function design in [52], our simple loss function design

can be quickly applied to different property estimations and obtain good results. We evaluate the

power sum estimation for sample rates of 0.001 and 0.005. As shown in Table 6, even at a small

sample rate, our method brings certain improvements and is very stable.

4.3 Interpretability and Ablation Study
In this section, we experimentally explain what our model is actually learning. Compared to the

original polynomial method, we can give the reasonwhy ourmethod can achieve better performance

than the original polynomial approximation methods.

Training on different distribution. Different from simply stacking multiple linear activation

layers in [52], the parameters learned from our algorithm can reflect part of the information of the

training data. As Figure 3 (a) shows, when our training data is fixed on some single peak data ( for

example, 𝐹 𝑗 =
𝑁
𝑗
, 𝑁 = 100000,

𝑗 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(50, 55)), the weights will have a set of abnormal valley values to reduce the bias

loss of data. Figure 3 (b) shows the weight distribution of the NDV estimation model obtained

by our algorithm. It can be roughly seen that the weight of the part with greater influence on
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Fig. 5. The bias loss of polynomial approximation helps the model converge.

𝑓0 is concentrated on the part with lower frequency, which also satisfies Equation (13). Setting

the weight of the high-frequency part to 0 is the best choice, which also explains why the weight

dimension 𝐿 does not need to be very large.

Dynamically adjusted linear estimator. According to the linear estimator mentioned in [54],

the polynomial approximation theory is indeed very significant in the specific data distribution.

In essence, property estimation can be transformed into a weighted polynomial approximation

problem. However, what function is the property estimation essentially approximating, apart from

the property value estimated? Can it also capture the initial distribution? Figure 4 (b) shows the

linear coefficients 𝑏𝑡 of WY’s estimator. For any input, the coefficients of WY’s estimator are fixed,

which is not adaptable to distributional changes. Figure 4 (a) shows the coefficients of Kasandr

dynamically learned by our algorithm. Each line corresponds to a different column of final learned

approximations. WY’s estimator only uses a fixed set of approximate coefficients for different tasks

unless each data is manually adjusted. In most cases, Chebyshev polynomial approximation is not

the best approximation to real-world data. We automatically and dynamically adjust, according to

different observed data, learn the data distribution information, and get different linear parameters

to estimate 𝑏𝑡 , which has a high ability to express information and higher application value.

Ablation study.We also explore the performance of the learning model like [52], which simply

stacks two linear activation layers only. By removing the bias part of the loss function, we can

see that the gradient update does not optimize the polynomial approximation parts. In this way,

we are able to control the influence of polynomial approximation. When we eliminate the bias

loss part of the loss function, the weights change to a set of horizontal straight lines with a value

of 1. Undoubtedly, the effect of such a model makes it difficult to satisfy the demand. We draw

the change in its loss function value in Figure 5 (a). It can be seen that such a model is difficult

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 148. Publication date: June 2024.



Learning-based Property Estimation with Polynomials 148:21

to converge. Figure 5 (b) illustrates the variation of the loss function for our model utilizing the

polynomial approximation. Our method reaches convergence after a certain epoch.

Training time. In terms of model structure design, �̂�𝑊𝐷 [52] use seven linear activation layers,

while we only use two. In terms of input features, �̂�𝑊𝐷 [52] use 𝑓1 to 𝑓100 as input features, while we

only use 𝑓1 to 𝑓70 by default. Due to the simplicity of our model structure, convergence is relatively

faster. Our estimator obtains a lower error with a shorter training time under a relatively simple

network, which is precisely caused by the fact that the model implies more physical knowledge.

Additionally, our model is streamlined and does not require a GPU for training. Using a CPU

for training is adequate and does not notably extend the training time. In the final performance

experiment, the training time of the �̂�𝑊𝐷 is 6037s. In comparison, the preparation time of our

method (Pre-compute in the third line of the Algorithm 1) is 392s and the training time is only 341

seconds on a GPU or 371 seconds on a CPU. Compared to previously learned methods, the training

time of our method improves by an order of magnitude.

5 RELATEDWORKS
Property estimation is typically addressed separately for each specific sub-problem, with tailored

solutions designed to tackle these unique challenges. Common properties of interest in the context

of discrete data distributions include NDV (Number of Distinct Values), entropy, coverage, power

sum, and more. Among them, the exploration of property estimation first commences with the

focus on NDV estimation [30, 32]. Notably, Valiant et al. [51] identify a critical connection between

NDV and entropy. This pivotal insight not only propels their work on solving systems of linear

equations specifically for NDV [50] but also catalyzes its extension to entropy estimation [51].

Acharya et al.[8] and Hao et al.[36] provide further consolidation by summarizing methods for

property estimation [53, 54] that rely on polynomial approximations. In the following sections,

we delve into related works, examining them from the specific perspectives of NDV and entropy

estimation.

5.1 NDV Estimation
The problem of estimating the number of distinct values (NDV) has beenwidely discussed. Sampling-

based NDV estimation can be classified into two primary categories: statistics and database. From

the statistical perspective, the data is assumed to come from an infinite discrete distribution. The

problem then becomes the support size estimation. For support size estimation, we seek to use as

few samples as possible. Valiant and Valiant [51] have shown that the sample complexity could

be reduced to
𝑘

𝜀2 log𝑘
, where 𝜀 is the relative error. Later, polynomial-based methods for support

size estimation appear. Based on the Chebyshev polynomial approximation, Wu et al. [54] expand

the result to
𝑘

log𝑘
log

2 1

2𝜀
, to obtain a min-max lower bound. Based on [54], several works try to

improve the precision [22, 27] of support size estimation. Chien et al. [22] use both the variance

and bias and the traditional optimal methods to solve the problem. According to [54], the problem

of estimating the support size can be solved by Chebyshev polynomial approximation with the

Poissonization technique.

On the contrary to the statistical methods, the amount of data is finite when utilized in the

databases. Part of the methods [12, 31] maintain a small data structure and scan the whole table

to obtain the NDV of data. However, when the amount of data is large, scanning all the elements

requires a high computation cost and I/O expenses [41]. Therefore, using sampling to solve the

NDV estimation becomes an appealing solution.
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Early studies on classical estimators [17, 32, 48] focus on the estimation of 𝑓0. These estimators

can be formally defined as:

�̂� = 𝑑 + F (𝑓1, 𝑓2, ..., 𝑓𝑖 ), (17)

where 𝑑 is the NDV of sample and F (𝑓1, 𝑓2, ..., 𝑓𝑖 ) is a function of frequency of frequency 𝑓𝑖 .

A typical representative for estimating 𝑓0 is Chao’s Estimator [17], �̂�𝐶ℎ𝑎𝑜 = 𝑑 + 𝑓 2
1

2𝑓2
. Ozsoyoglu et

al. [46] use it to estimate the NDV in the database. The original version of Chao’s estimator blows

up when 𝑓2 = 0. A bias-corrected version of Chao’s Estimator is proposed in [18]:

�̂�𝐶ℎ𝑎𝑜2 = 𝑑 + 𝑓1 (𝑓1 − 1)
2(𝑓2 + 1)

. (18)

GEE and Chao’s estimators estimate NDV using an approximation of 𝑓0. High-frequency elements

are counted by 𝑑 . Low-frequency partial elements account for the unseen elements in the sample.

The remaining low-frequency elements are counted using low frequency of frequency such as 𝑓1, 𝑓2.

The family of linear estimators. Following the research of Good [32], a series of works focuses

on the linear estimator family. These estimators utilize a linear combination of 𝑓𝑖 ’s functions, which

can be written as follows:

�̂� =
∑︁
𝑖

𝑔(𝑖) 𝑓𝑖 . (19)

We provide three examples of linear estimators in the following:

• Plug-in Estimator: �̂� =
∑

𝑓𝑖 = 𝑑 .

• Good-Toulmin Estimator [33]: For some 𝜃 > 0,

�̂�𝐺𝑇 = 𝑑 +
∑︁
𝑖

(−1)𝑖+1𝜃 𝑖 𝑓𝑖 . (20)

• Efron-Thisted Estimator [29]: For some 𝜃 > 0 and 𝐽 ∈ N,

�̂�𝐸𝑇 = 𝑑 +
𝐽∑︁
𝑗=1

(−1) 𝑗+1𝜃 𝑗𝑏 𝑗 𝑓𝑗 ,

where 𝑏 𝑗 = Pr[𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐽 , 1/(𝜃 + 1)) ≥ 𝑗].
The utilization of the linear structure can effectively ensure the interpretability of estimators.

Therefore, linear estimators are favored in both NDV estimation and entropy estimation. Note that

polynomial approximation methods are also linear estimators.

Besides the exploration of traditional methods, many database methods seek to enhance the

performance of NDV estimators in practice via learning [52]. Since the columns of a database are

data-dependent, learning the distribution of input helps the algorithm to adapt to different data

distributions. However, learning-based methods generally lack theoretical guarantee. It is desirable

if traditional methods could be combined with learning-based methods to work in practice with

theoretical guarantees.

Cardinality estimation.Recently, A series of works usemachine learning to estimate cardinality [9,

25, 26, 42, 43, 55]. These studies vary in their methodologies: some utilize query words as features

to estimate query cardinality [25], while others employ the joint distribution of queries for the

same purpose [37, 55]. The outcomes of these cardinality estimations are predominantly used to

enhance query optimization processes [55].

Our approach also incorporates learning methods for estimating NDV. Furthermore, NDV

estimation plays a crucial role in facilitating more intricate forms of cardinality estimation. For

instance, Spark and PostgreSQL (PG) leverages NDV to appraise the cardinalities of queries [5, 6].
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5.2 Entropy Estimation
From the perspective of computer science, estimating entropy is the basis for information theory [13,

34]. In natural language processing, the entropy of context is used to measure the amount of

information in a text.

For the fixed distribution, the maximum likelihood entropy estimators are given by Antos et

al. [10] and Strong et al. [40]. To reduce the bias due to convergence rate, Miller et al. [44] provide a

bias correction estimator. The use of re-sampling to reduce variance is relatively common in statistics,

where it is represented by jackknife and boosting. Efron et al. [28] provide the jackknife version of

the entropy estimator. Next, we give a mathematical expression of these classical estimators.

• Plug-in Estimator [10]: Using the frequency ratio of the samples to replace the frequency ratio of

the population,

�̂�𝑝𝑙𝑢𝑔−𝑖𝑛 = −
∑︁
𝑖=1

𝑝𝑖 log𝑝𝑖 =
∑︁
𝑖=1

𝑓𝑖
𝑖

𝑛
log

𝑛

𝑖
. (21)

• The jackknifed Estimator [28]: Reducing the variance of estimators using resampling techniques,

�̂� 𝐽 𝐾 = 𝑁�̂�𝑝𝑙𝑢𝑔−𝑖𝑛 −
𝑁 − 1
𝑁

𝑁∑︁
𝑗=1

�̂�𝑝𝑙𝑢𝑔−𝑖𝑛\𝑗 , (22)

where �̂�𝑝𝑙𝑢𝑔−𝑖𝑛\𝑗 represent the plug-in estimators removing the 𝑗th element.

Valiant et al. [50] estimate the entropy by solving the linear programming, which proves that the

minimal sample size for consistent entropy estimation is Θ( 𝑘
log𝑘
), where 𝑘 is the upper bound of the

support size. Wu et al. [53] use polynomial approximation to achieve optimal minimax mean square

error rate ( 𝑘
𝑛 log𝑘

)2 + log
2 𝑘

𝑛
, where 𝑛 is the sample size. Hao et al. [36] unify the sample-optimal

property estimation in Near-Linear time and give the lower and upper bound of different property

estimations.

While the previous methods enjoy desirable theoretical guarantees [21], their performance

in real-world applications is questionable. Methods [36, 53] that use the polynomial to estimate

properties are not generalizable to different data distributions. The nonlinear estimators [36] use

Remez algorithm to fit in varied distributions, but it is still unstable and difficult to optimize.

Introducing learning into entropy estimation seems to be a promising solution to address the

above difficulties, yet to the best of our knowledge, there is no existing work addressing entropy

estimation through the application of machine learning techniques.

6 CONCLUSION
In this paper, we focus on how to obtain a property estimator that is learnable with theoretical

design. We propose a framework utilizing learning techniques and polynomial approximation to

estimate different properties. Unlike previous learning-based methods, our method contains the

physical explanation of parameters and has theoretical guarantees about the error. Experiments

on various synthetic and real-world datasets demonstrate the effectiveness of our estimator. In

future work, we try to enhance the expressiveness of our estimators and extend our algorithm to

incorporate other estimators. Besides, an interesting direction is how to incrementally learn new

models as the distribution shifts.
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