
The VLDB Journal
https://doi.org/10.1007/s00778-019-00576-7

REGULAR PAPER

Parallelizing approximate single-source personalized PageRank
queries on sharedmemory

Runhui Wang1 · Sibo Wang2 · Xiaofang Zhou1

Received: 23 February 2019 / Revised: 20 August 2019 / Accepted: 21 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Given a directed graph G, a source node s, and a target node t , the personalized PageRank (PPR) π(s, t) measures the
importance of node t with respect to node s. In this work, we study the single-source PPR query, which takes a source node
s as input and outputs the PPR values of all nodes in G with respect to s. The single-source PPR query finds many important
applications, e.g., community detection and recommendation. Deriving the exact answers for single-source PPR queries is
prohibitive, so most existing work focuses on approximate solutions. Nevertheless, existing approximate solutions are still
inefficient, and it is challenging to compute single-source PPR queries efficiently for online applications. This motivates
us to devise efficient parallel algorithms running on shared-memory multi-core systems. In this work, we present how to
efficiently parallelize the state-of-the-art index-based solution FORA, and theoretically analyze the complexity of the parallel
algorithms. Theoretically, we prove that our proposed algorithm achieves a time complexity of O(W/P + log2 n), where
W is the time complexity of sequential FORA algorithm, P is the number of processors used, and n is the number of nodes
in the graph. FORA includes a forward push phase and a random walk phase, and we present optimization techniques to
both phases, including effective maintenance of active nodes, improving the efficiency of memory access, and cache-aware
scheduling. Extensive experimental evaluation demonstrates that our solution achieves up to 37× speedup on 40 cores and
3.3× faster than alternatives on 40 cores. Moreover, the forward push alone can be used for local graph clustering, and our
parallel algorithm for forward push is 4.8× faster than existing parallel alternatives.

Keywords Social networks · Personalized PageRank · Parallelism

1 Introduction

Given a directed graph G, a source node s, and a target node
t , the personalized PageRank (PPR) of node t with respect
to s, denoted as π(s, t), is the probability that a random walk
from s stops at node t , and indicates the importance of node
t from the viewpoint of node s.

One important variant of PPR is the single-source PPR
(SSPPR) query, which takes as input a source node s,

B Runhui Wang
runhui.wang@uq.edu.au

Sibo Wang
swang@se.cuhk.edu.hk

Xiaofang Zhou
zxf@itee.uq.edu.au

1 University of Queensland, Brisbane, Australia

2 The Chinese University of Hong Kong, Sha Tin,
Hong Kong, China

and returns the PPR of each node with respect to s. The
single-source PPR query finds many important applications,
e.g., community detection [2,39,40] and recommendation
[27,29]. Despite the importance of SSPPR queries, it is still
challenging to process them efficiently for large graphs.

To derive the exact answer for an SSPPR query, it requires
O(n2.37) [28] computational cost, where n is the number
of nodes in the graph and is prohibitive for large graphs.
Meanwhile, it is expensive to pre-store all SSPPR query
answers since it requires O(n2) space, which is infeasible
for large graphs. Therefore, most existing solutions focus
on approximate version of the SSPPR queries, which pro-
vides a trade-off between the running time and result quality.
However, even under the approximate version, existing state-
of-the-art solutions, e.g., FORA [36], are still inefficient to
answer an SSPPR query for online applications. As shown by
Twitter [19] and Pinterest [25], despite the fact that they use
multiple machines to handle PPR queries, each machine will
maintain a copy of the underlying graph for the processing of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00576-7&domain=pdf
http://orcid.org/0000-0003-0823-5982

R. Wang et al.

PPR queries mainly due to the widely known efficiency issue
of distributed computation of graph problems. To explain,
distributed algorithms usually need to communicate with
other machines, which degrades the performance, and the
network bandwidth becomes the bottleneck for efficiency.
In contrast, the in-memory algorithms only need to access
the shared main memory and are far more efficient than the
distributed counterparts. Fortunately, in recent years, the fast
development of multi-core CPU architectures brings the per-
formance of single CPU chip to a new level. These motivate
us to devise efficient algorithms for SSPPRqueries by explor-
ing multi-core parallelization with shared memory to boost
the performance.

To the best of our knowledge, most research works of PPR
computation on shared memory, e.g., [1,2,26,34,36], focus
on sequential algorithms and do not consider the computing
power of multi-core systems. There are few research works
[17,33] on parallelizing PPR computation. Guo et al. [17]
propose a parallel solution for PPR computing on dynamic
graphs, focusing on updating PPRs when new edges are
added into the graph. However, their solution assumes that
all the forward push [2] results are available, and is imprac-
tical to support approximate SSPPR query answering. For
instance, if they pre-store all the forward push results for the
FORA algorithm, the space consumption is O(n2) as shown
in [36], which is impractical for large graphs. What’s more,
since they need all the forward push results as the input, our
parallel algorithm can be further used to help them reduce the
prohibitive computational cost to derive all the forward push
results. Shun et al. [33] extend their Ligra [31] framework
to parallelize the PPR computation. However, their solution
does not provide a theoretically linear speedup, and as shown
in their experiment, the scalability of their proposed solution
is still unsatisfactory and leavesmuch room for improvement.

In this paper, we present how to efficiently parallelize
FORA for SSPPR queries and theoretically analyze the com-
plexity of our proposed parallel algorithms. FORA consists
of two phases: the forward push phase and the random walk
phase [36]. The forward push phase traverses the graph from
the source, iteratively proceed subsets of the vertices visited,
and explore the out-neighbors of these vertices until the cer-
tain termination condition is satisfied. Next, the randomwalk
phase of FORA samples the randomwalks on different nodes
according to the outputs in the forward push phase and then
finally outputs the estimated PPR values with approximation
guarantees. However, it is non-trivial to provide theoretical
linear speedup while providing superior performance to par-
allelize FORA.

To explain, in the first phase, it is difficult to bound the
number of iterations of the forwardpush algorithm, and there-
fore challenging to provide linear speedup for this phase.
Besides, we need to maintain the active nodes, i.e., the
nodes to be processed in every iteration, and it is challeng-

ing to present an efficient data structure to support such an
operation. Several data structures, e.g., Bag [23] and sparse
set [32], are proposed to support the maintenance of the
active nodes in parallel. Nevertheless, such implementations
have poor cache localities since they include many random
accesses. For the second phase, memory accesses are ran-
domly issued and it is challenging to present an effective
approach to reducing such random accesses and memory
contentions caused by concurrent read/write. We present an
efficient framework for parallel FORA, named PAFO, and
make the following contributions:

– For the forward push phase, we present a hybrid approach
to effectively maintain the active nodes and also reduce
thememory access costs. Then,we present a cache-aware
scheduling to further improve query performance and
scalability.

– For the random walk phase, we propose an integer-
counting-based method to reduce the memory access
overhead and present techniques to reduce data con-
tention based on the integer-counting-based method.

– Theoretically,we showhow to bound the depth of parallel
forward push and prove that PAFO achieves asymptoti-
cally linear speedup on scale-free graphs.

– Extensive experimental results show that PAFO achieves
up to 37× speedup on 40 cores and 3.3× faster than
alternatives on 40 cores.

2 Preliminary

2.1 Personalized PageRank

Given a directed graph G = (V , E), a source node s ∈ V ,
and a stop probability α, a random walk from s is a traver-
sal on the graph that starts from s and at each step it either
stops at the current node with probability α, or proceeds to
a randomly chosen outgoing neighbor of the current node.
The personalized PageRank (PPR) of node t with respect to
s, denoted as π(s, t), is the probability that a random walk
from s stops at node t , indicating the importance of t with
respect to s. The single-source PPR (SSPPR) query takes a
source node s as input and returns the PPR value of each
node with respect to s. Solving the SSPPR query exactly is
rather expensive [28] and requires O(n2.37) computing cost.
This motivates a line of research work [26,34,36] to study
approximate SSPPR query, which is defined as follows.

Definition 1 (Approximate SSPPR) Given a source node s, a
threshold δ, a relative error bound ε with 0 < ε < 1, and
a failure probability pf , an approximate single-source PPR
(SSPPR) query returns an estimated PPR π̂(s, t) for each
vertex t ∈ V , such that for any π(s, t) > δ,

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

|π(s, t) − π̂(s, t)| ≤ ε · π(s, t) (1)

holds with at least 1 − pf probability.

Typically, δ and pf are set to be O(1/n) [26,36]. Also, we
assume that ε is no smaller than 1/n2, which is small enough
to provide almost exact results for PPR scores [30].

Besides, in most applications of personalized PageRank,
the underlying graphs are typically social graphs or web
graphs,which are generally scale-free. In particular, on scale-
free graphs, for any k ≥ 1, the fraction f (k) of nodes in G
that have k edges satisfies that:

f (k) ∝ k−β,

whereβ is a parameterwhose value is in the range2 < β < 3.
On scale-free graphs, the average degree m/n = O(log n).
We will explore the property of scale-free graphs to prove
the parallel time complexity of forward push phase.

2.2 Basics in parallel computing

Modeling parallel computation A popular parallel model for
shared-memory parallel algorithms is the work-depth model,
where the cost of an algorithm is determined by the total
number of operations that it performs and the dependencies
among these operations. Denote W as the total number of
operations of an algorithm, namely the workload, and D
as the longest chain of dependencies among its operations,
namely the depth. The (rephrased) Brent’s theorem [6] shows
that the running time of a parallel algorithm can be bounded
by W , D, and the number of processors P .

Theorem 1 (Brent’s theorem) For a computational task with
workload W and depth D, on P processors, a greedy sched-
uler, which steals works from other processors when it
becomes idle, achieves running time O(W/P + D).

A parallel algorithm is work efficient if it requires at
most a constant factor more work than its sequential ver-
sion. Another important factor is the depth of the parallel
algorithm. When designing a parallel algorithm, the goal is
to:

– Design work-efficient parallel algorithm.
– The depth of the algorithm should not be too large, typi-
cally within poly-logarithmic of the input size.

In this paper, we will use the work-depth model to analyze
the parallel algorithms.

Atomic operations In parallel computing, concurrent reads
and writes are allowed, and existing modern multi-core
machines typically support atomic operations, which either

successfully change the data, or have no effect at all, leaving
no intermediate state. The most widely used atomic opera-
tion supported by modern CPUs is the Compare-and-Swap
operation, which takes three arguments: a memory address,
an expected value, and a new value. It compares the con-
tent of the input memory address with the expected value
and, only if they are the same, modifies the contents of that
memory location to the new value. If the update succeeds, it
returns true, and otherwise returns false. Other atomic opera-
tions, like Atomic-Add, can be easily implemented with the
Compare-and-Swap operation. In what follows, wewill use
Atomic-X to indicate that operation X is atomic.

2.3 State of the art

2.3.1 Sequential algorithm

The state-of-the-art sequential algorithm for approximate
SSPPR is the FORA algorithm proposed in [36]. FORA pro-
cesses an SSPPR query with two phases, a forward push
phase and a random walk phase, on the input graph. Next,
we explain the two phases of FORA and how to combine the
results of the two phases.

Forward push phase The forward push phase simulates the
random walk in a deterministic approach using the forward
push algorithm proposed in [2]. It starts from the source s and
simulates themessage passing using a unit mass. It maintains
two values for each node v ∈ V : a residue r(s, v) and a
reserve π◦(s, v). The reserve π◦(s, v) indicates the amount
of mass that stopped at node v, and r(s, v) indicates the
amount of the mass that currently stays at node v. Initially,
r(s, s) is 1 and all the other values are zero. Then, at each
step, the forward push algorithm selects a node v and does a
push operation to the message as follows: (i) it first converts
α portion of the residue r(s, v) to its reserve; (ii) then it
propagates the remaining message evenly to its neighbors.
If we continue this process until all residues are zero, then
the reserve values are exactly the PPR values. However, this
incurs enormous computational costs and in [2], they propose
to use a threshold rmax to control the computational cost. In
particular, a node v is selected to do a push operation only if
its residue satisfies that:

r(s, v)/|N out(v)| > rmax,

where N out(v) is the set of out-neighbors of node v.With this
strategy, the time complexity of the forward push algorithm

can be bounded with O
(

1
rmax

)
.

After any number of push operations, the following invari-
ant holds for an arbitrary target node t :

123

R. Wang et al.

π(s, t) = π◦(s, t) +
∑
v∈V

r(s, v) · π(v, t)

It is difficult to bound
∑

v∈V r(s, v) · π(v, t), so FORA
includes another randomwalk phase, which allows us to pro-
vide error bound for

∑
v∈V r(s, v) ·π(v, t)with significantly

smaller computational costs.

Random walk phase In the randomwalk phase, FORAmainly
samples randomwalks according to the residue of each node.
In particular, let

ω = 3 log (2/pf)

ε2 · δ
, (2)

where δ, ε, and pf are the threshold, the relative error bound,
and the failure probability as defined in Definition 1. Then,
for each node v, it samples �r(s, v) · ω� random walks from
node v. Let X be a random walk from node v, and u be the
ending node of random walk X , then we add r(s,v)

�r(s,v)·ω� to
the reserve of node u, i.e., π◦(s, u) for this random walk X .
Then, FORA repeats this process for all random walks and
returns π◦(s, v) for each v as the answer. The pseudo-code
of FORA is shown in Algorithm 1.

Algorithm 1: Sequential FORA
Input: Input graph G, source vertex s, probability α

Output: the estimated PPR π̂(s, v) for each v ∈ V

1 Let ω = 3 log (2/pf)

ε2 · δ
;

2 Run forward push with input graph G, source s, probability α,

and rmax =
√

1
m·ω ;

3 Let π◦(s, v), r(s, v) be the output of the reserve and residue of
each node v ∈ V ;

4 for each node v ∈ V with r(s, v) 	= 0 do
5 Let ωi = �ω · r(s, v)�;
6 for i = 1 to ωi do
7 Pick an unused destination from the index stored for v,

and let u be the destination.;

8 π◦(s, u)+ = r(s,v)
ωi

;

9 Return π◦(s, v) as the estimated PPR for each node;

FORA analysis Recall that the forward push phase has a
time complexity of O(1

rmax
). To consider the complexity of

the random walk phase, note that the residue of each node v

is at most �|N out(v)| · rmax�. Therefore, the total number of
random walks can be bounded by:

∑
v∈V

�|N out(v)| · rmax · ω� ≤ n + m · rmax · ω.

We assume that m ≥ n, which typically holds for real-world
graphs, then the time complexity of FORA is:

O

(
1

rmax
+ m · rmax · ω

)
.

By setting rmax =
√

1
m·ω , FORA achieves the best time com-

plexity, which is
√

m · ω. For each node v, FORA pre-stores
the destinations of the maximum number of random walks
required, i.e., �|N out(v)| · rmax · ω�, and the total space con-
sumption is O(

√
m · ω). When generating random walks

from v, it directly uses the first unused destinations in the
index and avoid the expensive online random walks. Since
pf = O(1/n), and on scale-free graphs m = O(n · log n),

the time complexity of FORA is O
(

n·log n
ε

)
.

2.3.2 Parallel algorithm

The state-of-the-art parallel algorithm for approximate
SSPPR is a combination of the state-of-the-art parallel algo-
rithm for forward push by Shun et al. [33] and a direct parallel
solution for the random walk phase, since the random walk
phase can be naturally parallelized with a parallel for loop
supported by many multi-thread frameworks, e.g., CilkPlus
[20], OpenMP [11]. Next, we explain the solution in [33] and
show how to parallelize the random walk phase.

Parallel forward push [33]. Shun et al. extend their Ligra
framework [31], a shared-memory parallel graph process-
ing framework, to parallelize the forward push algorithm.
The main intuition of Ligra is that in many graph traver-
sal algorithms, e.g., BFS, forward push can be implemented
in iterations. In each iteration, they process a subset of the
vertices and update along their out-neighbors, which can be
processed in parallel. In Ligra, there are two interfaces:

– VertexMapThis function takes as input a vertex set F and
an update function U F , which updates the data associ-
ated with each node in parallel.

– EdgeMap This function takes as an input graph G, a ver-
tex set F , and an update function U F , which applies to
the out-neighbors of the nodes in F and updates the data
associated with these out-neighbors in parallel.

These two interfaces are sufficient to parallelize the for-
ward push since in each iteration, it proceeds a set F of the
vertices and updates their own residue and reserve values,
which can be handled with VertexMap interface. Besides,
recall that these nodes in F will propagate the masses to
their out-neighbors with the push operation, which can be
handled with the EdgeMap interface. Algorithm 2 shows the
Ligra implementation for the forward push algorithm. In the
VertexMap function, it proceeds the nodes in F in parallel,
and for each node in F , it invokes the UpdateSelf procedure,
which adds α portion of the residue to its reserve and reset
its residue to zero (Algorithm 2 Lines 4–6). Then, it invokes

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

the EdgeMap function and handles the nodes in F in parallel.
In particular, for each out-neighbor of v ∈ F , it invokes the
UpdateNeighbor procedure, which propagates (1−α)

|Nout(v)| por-
tion of r(s, v) to each of its out-neighbor (Algorithm 2 Lines
1–2). Note that during the parallel processing of EdgeMap,
different nodes in F may write on the residue value of the
same node simultaneously. Therefore, anAtomic-Add is used
to avoid unexpected behaviors.

Algorithm 2: Parallel forward push with Ligra
Input: Graph G, source vertex s, probability α, threshold rmax
Output: πo(s, v), r(s, v) for all v ∈ V

1 Procedure UpdateNeighbor(v, u);

2 Atomic-Add(r ′(s, u),
(1−α)·r(s,v)

|Nout(v)|);

3

4 Procedure UpdateSelf(v);
5 π◦(s, v) = π◦(s, v) + α · r(s, v);
6 r ′(s, v) = 0;
7

8 r(s, s) ← 1; r(s, v) ← 0 for all v 	= s;
9 πo(s, v) ← 0 for all v ∈ V ;

10 Let F = {s};
11 while F is not empty do
12 r ′(s, v) = 0 for all v ∈ V ;
13 VertexMap(F , UpdateSelf);
14 EdgeMap(G, F , UpdateNeighbor);
15 r(s, v) = r ′(s, v) for all v ∈ V ;
16 F = {v|r(s, v)/N out(v) > rmax};

Parallel random walk As we can observe from Algorithm 1
Lines 4–7, the execution of the randomwalk of each node has
no dependency on the random walks of other nodes. There-
fore, the random walk phase can be naturally be parallelized
by replacing Line 4 of Algorithm 1 with a parallel for and
Line 8 of Algorithm 1 with an atomic operation.

Parallel cost analysis For the parallel forward push as pro-
posed by Shun et al. [33], the total workload can be bounded

by O
(

1
rmax

)
, which is the same as the sequential algorithm.

However, it is difficult to bound the depth D of the parallel
forward push algorithm, and to our knowledge, it is still an
open problem if the parallel forward push algorithm can fin-
ish in a poly-logarithmic depth of n. Therefore, theoretically,
the parallel forward push algorithm can be quite inefficient
due to the large depth D. For parallel random walks, it is
easy to verify that the task can be finished with a workload
the same as the sequential algorithm. For the depth of par-
allel random walks, the depth of the parallel for loop can
be bounded by O(log n) depth. Meanwhile, for each node,
the maximum number of random walks may reach poly-
nomial of n. Therefore, by parallelizing random walks on
such nodes, the depth of such nodes can also reach log n.
Combining them together, the depth can be bounded by
O(log2 n).

3 PAFO framework

In this section, wewill present the details of our PAFO frame-
work. In Sect. 3.1, we present the details of our parallel
solutions to the forward push phase, followed by the parallel
random walk phase in Sect. 3.2.

3.1 Parallel forward push phase

Our parallel forward push phase includes several techniques
to improve the practical performance and bound the parallel
time complexity. In this section, we present the optimiza-
tions and postpone the theoretical analysis to Sect. 4. Firstly,
we demonstrate how to effectively maintain the active nodes
in Sect. 3.1.1. Then, we demonstrate how to process push
operations in a cache-friendlymanner through a cache-aware
scheduling in Sect. 3.1.2. At the end of Sect. 3.1.2, we further
discuss underwhat scenarios our cache-aware scheduling can
be potentially applied.

3.1.1 Hybrid approach

We first explain our hybrid approach to improve the mem-
ory efficiency when accessing active nodes in parallel. Our
parallel algorithm shares the similar spirit as Algorithm 2 in
that it also processes nodes by iterations. In each iteration,
our forward push algorithm also proceeds the nodes

F = {v|r(s, v)/N out(v) > rmax},

in parallel and repeats this process until F becomes empty.
We denote the nodes in F as active nodes.

In our parallel algorithm, we include two different mod-
els to maintain the active nodes. This is motivated by the
observations as shown in Fig. 1a. In particular, in the first
few iterations of the forward push algorithm, the number of
nodes to be pushed, or simply say active nodes, is relatively
small, but the size is growing sharply. When the forward
push continues, e.g., when the number of iterations reaches
5, the number of active nodes in an iterationwill be very large
and reach O(n). Then, with the further process of iterations,

10-9

10-7

10-5

10-3

10-1

 10 20 30 40

(# of active nodes)/n

number of iterations

Twitter
Friendster

 0

 1.5

 3

 4.5

 6

10-510-410-310-210-1100

Running time (s)

c

Twitter
Friendster

(a) ratio of active nodes ton (b) tuning c

Fig. 1 Motivation for hybrid method (average on 20 sampled nodes)

123

R. Wang et al.

the number of active nodes decreases sharply and size again
becomes very small, and this process repeats until the size
becomes zero. Moreover, as we can observe, the majority
of the workload is processed in middle iterations when the
number of active nodes is in the order of O(n).

Main idea Motivated by the observation, we use two differ-
ent maintaining mechanisms to the active nodes for the case
when the number of active nodes reaches O(n), denoted as
heavy workload iterations, and when the number of active
nodes is small, denoted as light workload iterations. In the
lightworkload iterations,we use the bag structure,whichwill
be explained in details shortly. However, themajor deficiency
of the bag structure is that it needs to synchronize the bag
structure frequently, and the memory access in the bag struc-
tures is not very efficient since it maintains the active nodes
in a relatively random fashion. Therefore, this motivates us
to explore a direct scan of the entire node set when the work-
load shifts from the light workload to the heavy workload.
With this strategy,we avoid the expensive cost tomaintain the
bag structure and make the memory access cache-friendly.
Figure 1b shows how the parameter affects the performance,
and we can see that when we choose n/100 as the bound-
ary, it achieves the best practical performance. Therefore,
we set c = 1/100 as the default value in our experiment.
Also, the major computational cost of this hybrid forward
push algorithm actually mainly comes from the heavy work-
load iterations, and by splitting these two cases, we can focus
the optimization to the heavy workload iterations, as will be
explained in Sect. 3.1.2.

Light workload iterations For the light workload iterations,
we use the bag structure, which is initially proposed in [23]
for parallel BFS and has the following property:

Property 1 (Bag) The bag data structure provides two effi-
cient operations to support high parallelism.

– Insert The insert operation takes O(1) amortized time.
– Split The split operation, which divides elements in the

bag into two bags with roughly equal size, takes O(log x)

time, where x is the number of elements in the bag.

Next, we explain how we use the bag structure in our hybrid
approach. As shown inAlgorithm 3, initially, the source node
is added into the bag structure B. Then, when the number of
active nodes is smaller than c · |V |, where c is a small con-
stant to split the heavy workload and light workload, we use
the bag structure to handle the nodes in parallel. In particu-
lar, it first recursively divides the Bag B into smaller bags of
which the sizes are under the specified threshold grainsize1

(Algorithm 3 Line 4), and then process the bags in parallel

1 The grainsize is set to 128 according to Leiserson et al. [23].

Algorithm 3: PAFO hybrid forward push
Input: Graph G, source vertex s, probability α, threshold rmax
Output: π◦(v, t), r(v, t) for all v ∈ V

1 r(s, v), π◦(s, v) ← 0 for all v ∈ V ; r(s, s) ← 1;
2 Bag-create(B, {s}); Bag-create(B ′,∅); F ← |B|;
3 while F < c · |V | do
4 recursively split B into small bags with constant size; denote

B be the set of the small bags;
5 Parallel for each X ∈ B do
6 for each v ∈ X do
7 rv = r(s, v); π◦(s, v) ← π◦(s, v) + rv · α;
8 for each i ∈ N out(v) do
9 ri ← r(s, i);

10 Atomic-Add(r(s, i), (1−α)·rv

|Nout(V)|);
11 if r(s, i) ≥ rmax

∣∣N out(i)
∣∣ > ri then

12 Bag-insert(B ′, i);

13 Atomic-Add(r(s, v),−rv);

14 B ← B ′, B ′ ← ∅; F ← |B|;
15 while F ≥ c · |V | do
16 F ← 0 ;
17 Parallel for each v ∈ V do
18 if r(s, v) ≥ rmax · |N out(v)| then
19 repeat Lines 7–10 and 13;
20 F ← F + 1;

21 B ← ∅;
22 Parallel for each v ∈ V do
23 if r(s, v) ≥ rmax · |N out(v)| then
24 Bag-insert(B, v);

25 Repeat Lines 3–24 until F becomes zero;
26 return π◦(s, v), r(s, v) for each v ∈ V ;

(Lines 5–13). This helps to balance the workload on differ-
ent processors and guarantee that each processor will have
sufficient work to do. As we can see, to use the bag structure,
it needs to insert the active nodes in the next iteration into the
bag structure. Also, since a node may be touched by multiple
active nodes in this iteration, duplicates may be inserted into
the bag structure, which should be avoided. To handle this
case, a condition checking is added to identify whether the
node should be added into the bag or not (Algorithm 3 Lines
11–12). To explain, since residues are added with atomic
operations, it behaves like sequential operations, and in a
sequence of additions to r(s, i), only one addition will make
r(s, i) satisfy the condition in Line 11. As we can see, to
maintain the bag structure, we need to do synchronization on
the bag structure,which brings additional costs. This costwill
be unnecessarily high when the number of nodes in the bag
reaches O(n). Therefore, for heavy workload iterations, we
use a mechanism with far less synchronization cost, which
is more effective without increasing the time complexity.

Heavy workload iterations In the heavy workload iterations,
we directly scan the entire node set in the graph to find the
active nodes (Algorithm 3 Lines 15–20). Since the number of

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

active nodes is O(n), the scan cost does not increase the time
complexity. In the heavyworkload iterations, all the nodes are
processed in parallel in away that if this node is active, a push
operation is processed on this node, and otherwise ignored.
Notice that to verify if a node v is active or not,we can directly
check if r(s, v)/N out(v) > rmax or not (Algorithm 3 Lines
18). This direct parallel scan avoids the synchronization cost
to maintain the active nodes and also processes the nodes
in a cache-friendly manner since the nodes are processed
sequentially in parallel. Also, instead of counting the num-
ber of active nodes in the next iteration, we count the number
of active nodes in the current iteration (Algorithm 3 Line 20),
which helps avoid the checking cost as shown in Algorithm 3
Lines 11–12. With this strategy, we may do one light work-
load iteration using the parallel scan. However, this cost will
be still O(n) and can be bounded by previous scanning iter-
ations. Finally, when the workload becomes light workload,
it rebuilds the bag structure as shown in Algorithm 3 Lines
22–24 and repeats the above two phases until the algorithm
stops. Also, we note that for Algorithm 3 Line 20, a local
copy of F is maintained in each thread and aggregated when
the parallel for loop finishes. This avoids the contention on
F and at the same time preserves the correctness.

In terms of the choice of c, we set c to be 1/100 accord-
ing to the experimental results as shown in Fig. 1. Besides,
according to our evaluation, around 90% of the time is spent
on heavy workload iterations in the forward push phase.
Therefore, we propose several optimizations for the heavy
workload iterations, which will be explained shortly.

Remark Beamer et al. [5] also propose a hybrid solution for
breadth-first search (BFS) on scale-free graphs, which can
reduce the number of edges examined by a large scale. How-
ever, our hybrid solution differs from the ones in [5] in two
aspects. First, our solution works on the forward push algo-
rithm,whose time complexity does not depend on the number
of edges. Therefore, the hybrid approach proposed in [5] will
not help on the forward push algorithm. Second, our hybrid
solution does not maintain the active nodes in heavy work-
load iterations in order to improve memory efficiency, while
the hybrid solution proposed in [5]maintains the active nodes
all the time.

3.1.2 Cache-aware scheduling

Rationale In our heavy workload iterations, it applies a direct
scan of all the nodes and proceeds a push operation to a node
if it is active. Such a process is handled in parallel, and which
core will handle which part of the task entirely depends on
the default schedule, which may not be cache-friendly at
all. For instance, assume that a processor px is processing
a node vi , then all the out-neighbors of vi and the residue
array of the out-neighbors are also loaded into the L1 or L2

cache of core px . Then, suppose after the processing of vi ,
another node v j is immediately dispatched to px to process.
In this case, if v j shares no common out-neighbors with vi at
all, then the cache stored on px becomes utterly useless and
another load process is required. However, if v j shares most
of the out-neighbors of v j , then most of the content will be
already in the L1 or L2 cache of px , and the processing can
benefit a lot from the existing cache content. Besides, when
two processors are concurrently updating the residue of the
nodes on the same cache line, cache contention happens,
resulting in L1 cache stalls, which incurs additional costs.
This motivates us to propose a cache-aware scheduling for
heavy workload iterations.

Quantify cache misses and cache contentions In most
scheduling, e.g., CilkPlus default scheduling, tasks are
divided into smaller tasks of small grain sizes. We follow
this paradigm and group g nodes with consecutive IDs into a
task. Then, the goal of the schedule is to provide a schedule
such that some grain-size tasks g1,1, g1,2, . . . are assigned
to core 1, some grain-size tasks g2,1, g2,2, . . . are assigned
to core 2, . . ., and some grain-size tasks gP,1, gP,2, . . . are
assigned to core P that are aware of the cache contention and
cache misses. Let cm be the penalty of a cache miss and cc be
the penalty of cache contention. Let x be the total number of
cache misses and y be the total number of cache contentions
during the processing of all these grain-size tasks. Then, the
goal of the scheduling is to minimize cm ·x +cc · y. However,
it is rather challenging to track the execution time of each task
since it highly depends on the source node, and it is actually
difficult to quantify the cache contention and cache misses.
Next, we first explain how to quantify the cache contention
and cache misses between two grain-size tasks.

Denote B as the number of update data that can be fitted
into a cache line. For instance, in forward push, the update
will touch the residue array of the out-neighbors. Therefore,
the size is 8 bytes and assume that a cache line is 64 bytes,
we can put 8 residue data into a cache line and B is therefore
8. We map the nodes in V to numbers from 0 to |V | − 1
and then divide the residue array into �n/B� disjoint sets:
R1, R2, . . . , R�n/B�, such that each set includes nodes with
ids in [B · i, B(i + 1)). We denote each such Ri as a cache
line base, using i for the ease of exposition. Then, every time
to load part of the residue array into the cache line, we load
some set Ri 0 ≤ i < �n/B�. Then, for each task gi , we can
get the set C(gi) of cache line bases that will be loaded into
cache, which is:

C(gi) = {Ri |N out(v j) ∈ Ri where v j is in task gi }.

Then, the number of cache lines that gi will occupy is |C(gi)|.
For two tasks gi and g j , we define the cache overlap score
of two tasks gi and g j as

123

R. Wang et al.

O(gi , g j) = |C(gi) ∩ C(g j)|.

The cache overlap score is then a good indicator of the cache
contention of the tasks among different cores, and the cache
misses of the tasks in the same core. In particular, if two
tasks gi and g j are processed in parallel, then the smaller
the cache overlap score it is, the less cache contention will
be caused by these two tasks. In the meantime, if gi and g j

are processed consecutively in the same core, the higher the
cache overlap score is, the more cache line can be reused,
and the less number of cache misses it will cause.

Now assume that each grain-size task takes the same

amount time to finish, and each core i has h = � n

g · P
� grain-

size tasks denoted as gi,1, gi,2, . . . , gi,h . Then, we denote the
cache miss score of core i as:

C M(i) =
h∑

β=2

(|C(gi,β)| − O(gi,β , gi,β−1)).

We further define the contention score of the j th parallel
tasks g1, j , g2, j . . . , gP, j as:

CC(i, j) =
∑

1≤β<i≤P

O(gβ, j , gi, j).

Then, we formalize our cache-aware scheduling as the
following optimization problem.

Definition 2 (Cache-aware scheduling) The cache-aware
scheduling aims to find a schedule that minimizes

cm ·
P∑

i=1

C M(i) + cc

P∑
i=1

h∑
j=1

CC(i, j),

i.e., the total penalty of the cache misses and cache con-
tentions during the task processing.

However, the number of possible scheduling options is
exponential, which will incur prohibitive processing time to
derive the optimal solution. Therefore, we present a greedy
approach, which aims to minimize the contention and maxi-
mize the cache locality in each iteration. In particular, we first
assign a task g1, j to core 1 such that its cache miss penalty
over the previous task of core 1 is minimum. Then, we assign
a task g2, j for the second core such that

cm · (C(g1, j) − O(g2, j−1, g2, j)) + cc · CC(2, j)

is minimized among all possible tasks. Note that the first
part cm · (C(g1, j) − O(g2, j−1, g2, j)) is the total cache miss
penalty and the second part cc · CC(2, j) is the total cache
contention penalty. For the i th core, we assign a task that:

cm · (C(gi, j) − O(gi, j−1, gi, j)) + cc · C(i, j)

is minimized. After assigning a grain-size task to each core,
we start from core 1 again and repeat this process until all
tasks are assigned. In the above greedy approach, one expen-
sive process is to calculate the cache overlap score O(gi , g j)

for two different grain-size tasks gi and g j , since we need to
examine the out-neighbors of all nodes in gi and g j , which
can be quite huge. We next present an efficient k-min sketch-
based solution to approximate the cache overlap scores and
significantly reduce the cache overlap score calculation cost
to O(k), where k is the input of k-min sketch.

Cache overlap score computation We use the k-min sketch
[8] to improve the efficiency of computing cache overlap
scores. Recall that we divide the whole residue array into
{R1, R2, . . . , R�n/B�}. For each Ri , we generate k indepen-
dent random variable li,1, li,2, . . . , li,k ∈ [0, 1] in uniform.
Then, for each task gi , let l

i, j
min = minRx ∈C(gi) lx, j . According

to [8], we have that:

β(gi) = k∑k
j=1 li, j

min

− 1

is an unbiased estimation of |C(gi)|.
Also, given any two tasks gi and gw, we can also use the

k-min sketch to provide an unbiased estimation γ (gi , gw) of
|C(gi) ∪ C(gw)|, which is:

γ (gi , gw) = k∑k
j=1 min{li, j

min, lw, j
min }

− 1.

Recall that the cache overlap score of gi and g j is defined
as O(gi , g j) = |C(gi) ∩ C(g j)| and satisfies that:

O(gi , g j) = |Ci | + |C j | − |Ci ∪ C j |.

Therefore, we use

β(gi) + β(g j) − γ (gi , g j)

as the estimation of the cache overlap score. Since β(gi),
β(g j), and γ (gi , g j) all can be computed with O(k) time,
we can calculate the approximation of the cache overlap score
with O(k) cost.

Total schedule cost analysis Now, we consider the cost of
the greedy approach for cache-aware scheduling. We have
�n/g� tasks to do the schedule, and in the greedy approach,
we need to choose from the remaining node whose penalty is
minimal. Such a greedy strategy takes quadratic time in terms
of the number of tasks. Also, to compute CC(i, j) it takes
O(P) time. Therefore, the total cost is O(c2 · k · P · n2/g2).
In our scheduling, we set cc and cm to be the same. Also,

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

Algorithm 4: PAFO random walk phase
Input: Graph G, source vertex s, probability α

Output: the estimated PPR π̂(s, v) for each v ∈ V

1 Let ω = 3 log (2/pf)

ε2 · δ
;

2 Let π◦(s, v), r(s, v) be the reserve and residue of each node
v ∈ V after the forward push phase;

3 Let c(v) = 0 for all v ∈ V ;
4 Parallel for each node v ∈ V with r(s, v) 	= 0 do
5 Let ωv = �ω · r(s, v)�;
6 for i = 1 to ωv do
7 Pick an unused destination from the index stored for v,

and let u be the destination;
8 Atomic-Add(c(u), 1);

9 Parallel for each node v ∈ V do
10 π◦(s, v) ← π◦(s, v) + c(v)/ω;

11 Parallel for each node v ∈ V do
12 if r(s, v) · ω > ωv then
13 Pick an unused destination from the index stored for v,

and let u be the destination;
14 Atomic-Add(π◦(s, u), r(s, v) − ωv/ω);

15 Return π◦(s, v) as the estimated PPR for each node;

when the tasks scheduled to a core i are all finished, core i
will steal tasks from other cores to make each core busy and
balance the workload.

Discussion on cache-aware scheduling on more graph algo-
rithms Intuitively, our cache-aware scheduling can be gener-
alized to more graph algorithms instead of just the forward
push algorithm. However, it should be observed that the
proposed cache-aware scheduling would only be effective
when there are heavy iterations that are frequently visiting a
large portion of the nodes to traverse its out-neighbors or in-
neighbors; also, in different iterations, the set of visited nodes
has quite large overlaps. Therefore, some graph algorithms
may not be well fitted for the cache-aware scheduling. For
instance, the BFS or DFS traversal algorithms will not visit
the same node twice due to its traversal natural. The power
iteration [28] method to calculate PageRank scores tends to
benefit from our scheduling algorithm since on the one hand
it will involve several heavy iterations; on the other hand, the
set of visited nodes in heavy iterations typically overlaps by
a large margin.

3.2 Parallel randomwalk phase

Next, we elaborate in detail on how to parallelize the random
walk phase. In the random walk phase, given a node v, it
samples �r(s, v) ·ω� random walks. Let u be the destination

of a random walk, it then adds
r(s, v)

�ω · r(s, v)� to π◦(s, u). It is

expected that the update to π◦ will be very cache-unfriendly
since the destination accessed is typically not following any
order. To alleviate such a situation, one possible way is to

try to put as much of the data to be updated into the cache
as possible. Therefore, it is important to reduce the size of
the update data array. Besides, since multiple processors are
updating the data array, by maintaining multiple copies of
the update data array, chances are that we can alleviate the
data contention and improve the performance. Motivated
by these intuitions, we first present an integer-based ran-
dom walk counting approach, which stands as the backbone
for reducing the size of the update array. Then, we present
our techniques to alleviate the data contentions in random
walk phase by maintaining multiple copies of the data array.
Notably, with our technique to reduce the array size, even if
wemaintainmultiple copies, the total size of the update array
is still no more than the reserve array. Next, we first explain
the integer-based random walk counting method.

3.2.1 Integer-based randomwalk counting

In a Monte Carlo approach, we can simply count the number
c(v) of random walks that stopped at v and then use c(v)/ω

as the estimation ofπ(s, v), whereω is the number of random
walks sampled with s as the source node. Therefore, most of
the calculations can be handled by integer additions. How-
ever, in FORA, as we can see fromAlgorithm 1 Line 8, when
we sample a random walk from a node v, if it terminates at

node t , let ai = r(s, v)

�ω · r(s, v)� , then we add ai to π◦(s, t).

Since ai is different for different node v, we cannot simply
record the number of random walks that stopped at t and
divide them by the total number of random samples as the
estimation. Thus, it needs to use float-point values instead of
integer values, which brings additionalmemory overhead. To
overcome the deficiency, we propose an integer-based ran-
dom walk solution, which updates on integer arrays instead
on float-point arrays and thus is more likely to reduce cache
misses.

Recall from Sect. 2.3.1 that, after the forward push from s,
for an arbitrary node v, it samples ωv = �r(s, v) ·ω� random
walks from v. For a sampled random walk from v, let X j

be a Bernoulli variable depending on the random walk from
v such that if t is the destination, X j = 1 , and otherwise
X j = 0. Then, in expectation, given ωv random walks, the
total number of random walks to terminate at node t is:

E

⎡
⎣

ωv∑
j=1

r(s, v)

ωv

X j

⎤
⎦ = r(s, v) · π(v, t). (3)

Here, for any X j (0 < j < ωv), it multiplies the same
coefficient ai = r(s,v)

ωv
in FORA, which is used to guaran-

tee that its expectation is r(s, v) · π(v, t). Then, by adding
all the random walks from different nodes, the sum of the
expectation of the random walks is exactly

123

R. Wang et al.

∑
v∈V

r(s, v)π(v, t),

and then concentration bound can be applied according to
[36] to provide an approximation guarantee.

Denote av, j as the coefficient of X j regarding node v as
the source of random walks, and replace it within Eq. 4. We
have that:

E

⎡
⎣

ωv∑
j=1

av, j · X j

⎤
⎦ =

ωv∑
j=1

av, j · π(v, t).

That is to say, we need to guarantee the following:

ωv∑
j=1

av, j = r(s, v). (4)

to provide approximation guarantees.

Clearly, when we set av, j = r(s, v)

ωv

, the above equa-

tion holds. However, in such a setting av, j will be highly
dependent on r(s, v), and may differ when the node changes.
Therefore, we aim to find an assignment for av, j that depends
on vi as less as possible. To achieve this, our settings are as
follows:

av, j =
{
1/ω if j ≤ �r(s, v) · ω�
r(s, v) − �r(s, v) · ω�/ω otherwise

.

Aswe can observe, for all j ≤ �r(s, v)·ω�, the coefficient
does not depend on r(s, v) and, at most one case, i.e., j =
�r(s, v) · ω�, will depend on r(s, v) and this happens only if
r(s, v) · ω > �r(s, v) · ω�. Also,
ωv∑
j=1

av, j = r(s, v),

which means Eq. 4 holds for such an assignment. There-
fore, we can still provide an approximation guarantee for
the answers. Algorithm 4 shows our parallel random walk
phase with the integer-counting-based method. In particular,
when a random walk is sampled with v as the source, most
likely, we will increment the counter c(u) of the destination
u (Algorithm 4 Lines 5–8). Therefore, most of the update
will access the count array c(v), and this further motivates
us to control the size of the count array to improve memory
access efficiency in a multi-core setting.

3.2.2 Improving parallel memory access efficiency

Recall from the last section that, in the random walk phase,
the major overhead now is to count the number c(v) of ran-
dom walks that terminates at node v. In our implementation,

we observe that for themost of the indexed randomwalk des-
tinations, the number c(v)will be less than 28−1 = 255, and
will always be smaller than 216 − 1. Therefore, for the count
array, instead of using 4 bytes for each node, we choose the
size of each entry according to the statistics in the indexed
random walks.

Given a significantly reduced size of update arrays, we can
afford tomakemultiple copies of the count array and alleviate
the update costs. Firstly, we reorder the nodes in the count
array such that the nodes with 1 byte are stored sequentially
and then come to the nodes with 2 bytes. Then, for each
node, we make M multiple copies of the count array. When a
processor updates the count of the arrays, it uses the (i +1)th
copy for the update if its id is in the range [i · P/M, (i +
1) · P/M) (0 ≤ i < M). As we will see in Sect. 6, when 4
copies of the count array are maintained, the random walk
phase achieves the best query efficiency and improves over
the alternative solution by up to 2×.

4 Analysis of PAFO

4.1 Forward push phase

In the forward push phase, we first analyze the workload
of the hybrid approach. Note that the memory-contention-
aware scheduling only needs one pass preprocessing and can
reuse the scheduling repeatedly. Then, the schedulingwill not
affect the complexity and therefore we omit its discussion in
parallel time complexity analysis.

Workload Consider the workload in the light workload iter-
ations. In each light workload iteration, the cost mainly
includes two parts. The first part is the push operation to
each node; the second part is the maintenance of the bag
structure for the next iteration. We charge the cost of the bag
maintenance to the next iteration for the ease of cost analy-
sis. Let b be the number of active nodes in a light workload
iteration. Then, the total cost to insert these nodes to the bag
structure is O(b) since it takes O(1) amortized time to insert
an element into the bag structure. Then, to divide the bag
into many small constant size bag structures, we analyze as
follows. Let T (b) be the cost to divide b elements into two
(roughly) equal size parts. Then, the total cost of the dividing
part is:

T (b) = log b + 2T (b/2),

According to [9], it is not difficult to find that the total cost
T (b) can be bounded by O(b). Therefore, the total cost of
the bag maintenance can be bounded by O(b). Considering
the push cost of each node, it does the same work as the

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

sequential version, and therefore the total workload in this
iteration has the same complexity as sequential algorithms.

Next, consider the heavy workload iterations. Since the
number of nodes is O(n), the scanning cost is also O(n).
Therefore, the maintenance cost for the active nodes does not
increase the complexity. The push cost is also the same as the
sequential algorithms. Hence, the workload in the iteration
has the same complexity as sequential ones.

Recall from Sect. 2.3.1 that the workload of sequential

forward push is O
(

1
rmax

)
; therefore, the workload of the

hybrid approach is also O
(

1
rmax

)
.

Depth As we mentioned in Sect. 2.3.2, it is still an open
problem that whether the depth of the forward push algo-
rithm proposed in [2] can be bounded in poly-logarithmic of
n. Denote rsum = ∑

v∈V r(s, v), we notice that in our prob-
lem, it suffices to guarantee that rsum ≤ m · rmax to preserve
the time complexity of FORA in the random walk phase if
the time complexity of the forward push phase can be still

bounded by O
(

1
rmax

)
, with rmax =

√
1

m·ω . Our main obser-

vation is that due to the small choice of rmax, the cost of the

forward push is O(
n · log n

ε
). On scale-free graphs, such cost

is also O(
m

ε
). Also, notice that by doing a batched forward

push on each node in an iterationwith a cost of O(m), the sum
of the residues after this iterationwill be atmost (1−α)·rsum,
where rsum is the sum of residues in this iteration. Then, we
can apply the following strategy to achieve bounded depth.
We apply the hybrid approach with O(log n) rounds, and
if the algorithm still does not stop. Let rh

sum be the sum of
the residues after the last iteration of the hybrid approach.
Then, we do batched forward push with O(log1−α (ε/rh

sum))

rounds if rh
sum > ε. We denote this solution as the batch-push

strategy.

Lemma 1 On scale-free graphs, with batch-push strategy,
the depth of the parallel forward push can be bounded by
O(log2 n), and the workload is still the same as the sequen-
tial FORA.

Proof We first note that

m · rmax =
√

m

ω
=

√
ε2m

3n log n
= ε

√
m

3n log n
.

Onscale-free graphs, sincem/n = log n,when the sequential
forward push terminates, it actually only requires that rsum =
O(ε) to preserve the workload of the random walk phase.
With the batch-push strategy, we have that the sum of the
residue after each iteration reduces by α portion. Therefore,
after log1−α (ε/rh

sum) iterations, where rh
sum is the sum of

residues after the last iteration of the hybrid approach after

O(log n) round, the sum of residue rsum after the batch-push
satisfies that:

rsum ≤ rh
sum · (1 − α)log1−α (ε/rh

sum) = ε.

Hence, with O(log1−α (ε/rh
sum)) iterations, we guarantee

that rsum = O(ε), which indicates the workload of the ran-
domwalk phase is the same as sequential FORA.Also, notice
that the number of iterations in batch-push is bounded by
O(log 1

ε
). Recall that we assume ε ≥ n−2. Therefore, the

total number of iterations in forward push can be bounded by
O(log n + log 1

ε
) = O(log n) iterations. Consider the work-

load of batch-push. Theworkload is bounded by O(m log 1
ε
),

while the workload of the forward push is bounded by
O(m/ε). Hence, the cost can be still bounded by O(m/ε),
which does not increase the workload of the forward push
phase. Hence, the workload is still the same as sequential
FORA.

Consider the depth of parallel forward push. Since the
number of iterations can be bounded by O(log n). In each
iteration, themaximumworkloadmay reach polynomial of n,
and therefore the depth in each iteration may reach O(log n).
The depth can then be bounded by O(log2 n). ��

According to Lemma 1, we revise our hybrid approach
such that when the total number of iterations exceeds c2 ·
log n, we apply the batch-push strategy. Nevertheless, we
observe that in practice, the number of iterations is typically
small, e.g., as shown in Fig. 1. Also, when applying a batch-
push, the overhead is actually quite large since it strictly does
a push operation on each node with nonzero residue, while in
our heavy workload iterations or light workload iterations,
only out-degree of the nodes whose residue is above rmax

times need to do push operations. Therefore, in our evalu-
ation, we set c2 = 10 to avoid unexpected large iterations
in the hybrid parallel forward push algorithm, and in most
cases, it will avoid the expensive batch-push costs.

4.2 Combining two phases

Next, we first analyze the workload and depth of the random
walk phase. Then, we combine the two phases together and
analyze the total cost of PAFO.

Lemma 2 In the random walk phase of PAFO, the depth of
Algorithm 4 can be bounded by O(log2 n), and the workload
is still the same as the sequential FORA.

Proof Recall from the analysis of the forward push phase,
when the algorithm terminates, it assures that the total num-
ber of randomwalks is still the same as the sequential FORA.
In our PAFO, we maintain multiple copies of the update
array, but each random walk will update exactly one copy
of the array. In our parallel random walk algorithm, we have

123

R. Wang et al.

an additional aggregation phase as shown in Algorithm 4
Lines 9–14. However, since we maintain a constant num-
ber of update arrays, such aggregation cost can be bounded
by O(n), while the update cost is O(n · log n/ε) on scale-
free graphs. Therefore, the cost can be still bounded by

O
(

n·log n
ε

)
, which is the same as the sequential random

walk phase. The depth of the random walk phase can also
be bounded by O(log2 n) since we process n nodes in par-
allel, and for each node, the number of random walks can
reach polynomial of n. ��

Combining Lemmas 1, 2 and Theorem 1, we have Theo-
rem 2 on the parallel time complexity of our PAFO.

Theorem 2 PAFO achieves a time complexity of O(W/P +
log2 n), where W is the workload of the sequential FORA
and P is the number of used processors. When W � log2 n,
PAFO achieves linear speedup with respect to the number P
of used processors.

In our problem, the time complexity of our sequential
FORA is higher than O(log2 n), and therefore, asymptoti-
cally PAFO achieves linear speedup.

5 Related work

In the literature, there exists a plethora of research work on
PPR computation [1–4,10,12–18,21,22,26,28,30,33–35,38,
42]. Among them, considerable efforts [2–4,12,15–17,21,22,
28,30,33,36,42] have been made to improve the query effi-
ciency of the single-source PPR queries. To provide exact or
approximate answers with theoretical guarantees for single-
source PPR queries, there exist mainly two categories of
solutions.

The first category relies on matrix-based definition of
PPR:

πs = (1 − α) · ATD−1πs + α · es, (5)

where πs is the PPR vector where the i th entry stores the
PPR π(s, i) of the node with i th id with respect to s, es is
a unit vector where only the sth entry is 1 and other entries
are zero, α is the stopping probability as defined in Sect. 2.1,
A is the adjacent matrix of the input graph, and D is a diag-
onal matrix where the i th entry is the out-degree of node i .
The solutions in this category are mainly based on the power
method as proposed in [28], which makes an initial guess to
the PPR vector and then repeatedly uses the estimated PPR
score as the input of theRHSofEq. 5 and derives the newesti-
mation of πs. The solutions in this category mainly explore
how to accelerate the calculation of Eq. 5, and the state of
the art in this category is the BePI algorithm proposed in
[22]. However, the solutions in this category typically incur

thousands of seconds to handle large graphs, e.g., on theTwit-
ter, and is too slow to support real-world applications. There
is another line of local update-based approach [1,2,17,41]
which is also based on the matrix-based definition. However,
such solutions either provide no approximation guarantee to
the SSPPR queries or cannot be directly applied to answer
SSPPR queries.

Another category relies on the random walk-based defi-
nition of personalized PageRank and explores Monte Carlo
simulation to provide an approximation for the PPR values
[3,4,12,26,34,36,38]. The state-of-the-art solution in this cat-
egory is FORA. However, even under approximation, the
state-of-the-art FORA still needs tens of seconds to finish
an SSPPR query processing, which motivates us to devise
parallel algorithms to reduce the SSPPR query time. Among
existing work on PPR, there exist only two research works
that focus on parallelizing PPR computation on shared-
memory multi-core setting. The first is the state-of-the-art
parallel solution for PPR as we mentioned in Sect. 2.3.2. The
solution proposed by Guo et al. [17], however, provides no
approximation guarantee to the SSPPR query, and the space
consumption to pre-store all the forward push result is pro-
hibitive for large graphs, e.g., Twitter.

Distributed systems are also considered for computing
PPR in parallel. Bahmani et al. [3] utilize MapReduce to
calculate single-source PPR queries on distributed computer
systems, aiming to handle the graphs that are too large to fit
in the memory on a single machine. They provide distributed
algorithms for the Monte Carlo approach, which is orders of
magnitude slower than FORA [36] when providing the same
accuracy, not to mention our parallel algorithms. Guo et al.
[16] propose algorithms to achieve bounded communication
cost and balanced work load on each machine for answering
exact PPR. Recently, Lin [24] propose several optimizations
for theMonte Carlo approach to (i) alleviate the issue of large
node for random walk sampling, (ii) pre-compute short ran-
domwalks, and (iii) optimize the number of randomwalks to
compute in each pipeline to reduce the overhead. However,
these solutions trade scalability with efficiency by exploring
different nodes to store the graph and requires prohibitive
communication costs. These distributed algorithms are typi-
cally the preferred choice when graphs cannot be fitted into
the memory, which is not the main focus of this work.

6 Experimental evaluations

In this section,we evaluate our proposed solutions against the
states of the art. All experiments are conducted on a Linux
machinewith 4 CPUs, eachwith 10 cores clocked at 2.2GHz,
and 1TBmemory.All the implementations arewritten inC++
and compiled with full optimization. For all methods, we
use the CilkPlus [20] as the framework for multi-thread pro-

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

Table 1 Datasets

Name n m Type

LiveJournal (LJ) 4.8M 69.0M Directed

Orkut 3.1M 117.2M Undirected

Twitter 41.7M 1.4B Directed

Friendster 65.6M 3.6B Undirected

RMAT27 128M 8.6B Directed

RMAT28 256M 20.8B Directed

M = 106, B = 109

gramming, which is shown in [17,31] to be the most efficient
framework on parallel graph processing.

Datasets and query sets To compare the performance and
show the effectiveness of our proposed solution, we test on
4 public datasets: Livejournal, Orkut, Twitter, and Friend-
ster. All these datasets are social networks that are widely
used to evaluate PPR query efficiency [26,33,34,36,38]. The
statistics are shown in Table 1. To evaluate the scalability
of our proposed solutions, we further generate 2 synthetic
large-scale datasets RMAT27 and RMAT28, which include
8.6 billion edges and 20.8 billion edges, respectively, using
the RMAT graph generator [7]. For these 6 datasets, we gen-
erate two query sets each with 100 queries where the source
nodes are sampled uniformly at random in one query set and
sampled with probability proportional to their out-degrees in
the other query set.We denote the two datasets as UNIFORM
and POWER-LAW, respectively. We use the average query
time as the measure of query performance. For each experi-
ment, we repeat 5 times and show the average performance.
Methods To compare the performance of parallel forward
push algorithm, we include the state-of-the-art solution pro-
posed in [33], denoted as Ligra. For our methods, we include
two versions of the forward push algorithm. The first one
is the hybrid approach, dubbed as hybrid, which does not
include the cache-aware scheduling optimization as men-
tioned in Sect. 3.1.2. The second one is the solution that
includes the cache-aware scheduling optimization, dubbed
as hybrid-cs. For random walks, we use the straightfor-
ward solution (as mentioned in Sect. 2.3.2) as the baseline
and compare with our optimized random walk algorithms.
Finally, when comparing the total query performance, we
use Ligra to denote the combination of the parallel forward
push algorithm in [33] and the straightforward parallel ran-
dom walk algorithm as mentioned in Sect. 2.3.2. Besides,
since the Monte Carlo approach can be embarrassingly par-
allelized, we include the parallel version as our baseline and
denote this approach as Parallel MC for the comparison of
total query performance. To compare the scalability, we test
all the solutions with different numbers of threads varying in
{1, 4, 8, 12, 16, 20, . . . 36, 40}.

Parameter setting Following previous work [26,34,36], we
set δ = 1/n, pf = 1/n, and ε = 0.5. For the cache schedul-
ing, recall that we use k-min sketch to calculate the cache
overlap score. In our preprocessing, we set k = 32 to derive
the cache overlap scores and derive the scheduling. Besides,
we tune the rmax for sequential FORA and find that when

rmax = 3ε ·
√

1

3m · n · ln (2/n)
, it achieves the best trade-

off between the query performance and space consumption.
Therefore, we set rmax to this value in all experiments.

6.1 Scalability: overall performance

We first examine the overall performance of PAFO against
Ligra. For PAFO,we include all the optimizationsmentioned
in Sect. 3 and postpone the evaluation of the effectiveness of
each optimization to Sects. 6.2–6.3.

Figure 2 shows the experimental results that evaluate the
scalability of PAFO and Ligra with different numbers of
threads using the UNIFORM query set on 4 large datasets:
Twitter, Friendster, RMAT27, and RMAT28. The results
show that our PAFO achieves significantly better speedup
on all the tested datasets. For instance, on Friendster, our
PAFO achieves a speedup of 35 with 40 cores, while the
speedup of Ligra is only around 17 with 40 cores. When
the size of the graph increases, the speedup of PAFO gener-
ally increases. For instance, on the Twitter graph, our PAFO
achieves a speedup of 23 with 40 cores, and on RMAT28, the
speedup becomes 37 with 40 cores. In contrast, the speedup
of Ligra with 40 cores is 15 and 16 on Twitter and RMAT28,
respectively. Figure 3 shows the results of PAFO and Ligra
with the POWER-LAW query set. The experimental result
shows a similar trend for both PAFO and Ligra when the
number of threads increases and the dataset size grows. In the
remaining paper, we omit the result for POWER-LAW query
set and use theUNIFORMquery set to report the results since
the results are similar.

Next, we examine the performance of PAFO and Ligra.
We first compare the performance of PAFO and Ligra against
the state-of-the-art sequential FORA algorithm. As we can
see fromTable 2, both parallel implementations incur consid-
erable overhead over the sequential solution. However, since
Ligra follows their previous design paradigm, which uses
the VertexMap and EdgeMap interface, it brings additional
overheads. For instance, it needs to maintain two copies of
the residue array. In our solution, only one residue array is
required. Besides, our solution includes optimizations that
are tailored for the SSPPR query, which further reduces the
overhead of our forward push algorithm. Comparing the per-
formance of PAFO and Ligra with 40 cores, as shown in
Table 3, our PAFO is up to 3.3 faster than Ligra and is always
at least 2.4x faster than Ligra. Notice that it is different from

123

R. Wang et al.

PAFOLigra

 0

 7

 14

 21

 28

 0 7 14 21 28 35

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(a) Twitter (b) Friendster (c) RMAT27 (d) RMAT28

Fig. 2 Scalability: overall performance on UNIFORM query set

PAFOLigra

 0

 7

 14

 21

 28

 0 7 14 21 28 35

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(a) Twitter (b) Friendster (c) RMAT27 (d) RMAT28

Fig. 3 Scalability: overall performance on POWER-LAW query set

Table 2 Overall performance on a single-core

Dataset FORA (s) Ligra (s) PAFO (s)

LJ 1.8 7.1 2.9

Orkut 2.4 6.1 3.0

Twitter 35.3 109.4 63.6

Friendster 115.9 259.5 169.9

RMAT27 385 712 496

RMAT28 792 1364 1057

Table 3 Overall performance on 40 threads

Dataset Parallel MC (s) Ligra (s) PAFO (s)

LJ 8.4 0.61 0.18

Orkut 5.8 0.57 0.23

Twitter 110 7.4 2.7

Friendster 216 17 5.6

RMAT27 472 44 13

RMAT28 1004 87 29

the numbers in Fig. 2 since the parallel implementation incurs
additional overheads.

Besides, as we can observe, even under parallelization, the
MonteCarlo approach is slower than the sequential version of
FORA running on a single core. With 40 threads, our PAFO
can finish an SSPPR query with 5.6 s on the 3.6 billion edge
Friendster network, and 29s on 20 billion edge RMAT28

network. Compared to the sequential FORA algorithm, our
PAFO achieves up to 30× speedup (Table 2, 3).

In summary, our PAFO framework achieves superb scal-
ability and efficient query processing and is the preferred
choice when parallelizing the SSPPR queries.

6.2 Forward push phase

In this set of experiments, we evaluate the scalability of our
parallel forward push algorithm and the effectiveness of the
proposed optimization techniques mentioned in Sect. 3.1.

We first examine the scalability of our parallel forward
push algorithm against Ligra on four large datasets: Twitter,
Friendster, RMAT27, andRMAT28. The results are as shown
in Fig. 4. In the forward push phase, our PAFO achieves 35×
(resp. 39×) speedup over its single-core counterparts on 40
cores on Friendster (resp. RMAT27) dataset. The improved
scalability is mainly due to the optimizations applied.

Next, we examine the benefit of each optimization.Wefirst
examine the effectiveness of the proposed hybrid strategy.
As shown in Fig. 5, with our hybrid strategy, our solution
(dubbed as hybrid) can be 3× faster than the Ligra base-
line solution. When the number of threads increases, the
speedupof the hybrid approachoverLigra actually decreases.
However, with our cache-aware scheduling, our approach
(dubbed as hybrid-cs) further gains improved speedup with
the increase in the number of threads. This demonstrates
the effectiveness of the scheduling method. We note that the
scheduling-basedmethod improves over the hybrid approach

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

PAFOLigra

0

10

20

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Fig. 4 Forward push scalability

Hybrid-csHybrid

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

(a)Twitter (b) Friendster

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

 0

 1

 2

 3

 4

 5

4 8 16 24 32 40

speedup vs Ligra

number of threads

(c) RMAT27 (d) RMAT28

Fig. 5 Forward push speedup over Ligra

by up to 100% with 40 cores. Besides, our parallel forward
push algorithm is up to 4.8× faster than Ligra.

Finally, we compare our cache-aware scheduling with the
state-of-the-art cache-aware ordering method, Gorder [37],
which orders the nodes so as to reduce the cache miss rate.
We combine the Gorder method with our hybrid method to
make it our competitor. Tables 4 and 5 report the query per-
formance with a single thread and 40 threads, respectively.

Table 4 Forward push performance on a single thread

Dataset Gorder (s) PAFO (s)

Twitter 14.0 19.4

Friendster 46.4 63.1

RMAT27 98 164

RMAT28 177 284

Table 5 Forward push performance on 40 threads

Dataset Gorder (s) PAFO (s)

Twitter 1.51 1.14

Friendster 2.19 1.81

RMAT27 8.97 4.21

RMAT28 15.53 7.73

The experimental result on a single thread verifies the effec-
tiveness of Gorder for reducing cachemiss rate, and it is up to
67% faster than PAFO.However, when the number of threads
increases to 40, PAFO is (up to 2×) faster than Gorder. The
main reason is that Gorder only considers the cache miss but
discards the cache contention in multi-core processing. In
contrast, our scheduling method considers both cache miss
and cache contention and therefore can achieve better prac-
tical performance than Gorder. Figure 6 further shows the
scalability of the hybrid method with Gorder and the hybrid
method with our cache-aware scheduling. The experimental
result shows that PAFO achieves much better scalability than
Gorder when increasing the number of threads.

As a summary, our proposed parallel forward push algo-
rithm provides more efficient query processing and is more
scalable with the growth of the number of threads than alter-
native methods. Since the forward push algorithm alone is
also widely used in local graph clustering [2], our parallel
forward push algorithm can be further used in a wider scope
besides the approximate SSPPR queries.

6.3 Randomwalk phase

In this set of experiment, we examine the scalability of the
randomwalk phase and effectiveness of the integer-counting-
based optimization.

Firstly, we examine the impact of the number of update
array copies to the efficiency of the random walk phase.
The results are shown in Fig. 7. Our main observation is
that when the number of update array copies increases, the
efficiency can be improved since it alleviates the cache con-
tention. When 4 copies are maintained, it actually achieves
the best practical performance. However, when the number
of copies further increases to 8, the query performance actu-
ally degrades compared to the performance when 4 copies

123

R. Wang et al.

PAFOGorder

 0

 5

 10

 15

 20

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(a) Twitter (b) Friendster

(c) RMAT27 (d) RMAT28

Fig. 6 Gorder versus PAFO

2 copies 8 copies4 copies

 0

 0.5

 1

 1.5

 2

4 8 16 24 32 40

speedup vs 1 copy

number of threads

 0

 0.5

 1

 1.5

 2

4 8 16 24 32 40

speedup vs 1 copy

number of threads

 0

 0.5

 1

 1.5

 2

4 8 16 24 32 40

speedup vs 1 copy

number of threads

 0

 0.5

 1

 1.5

 2

4 8 16 24 32 40

speedup vs 1 copy

number of threads

(a) Twitter (b) Friendster

(c) RMAT27 (d) RMAT28

Fig. 7 Impact of the number of update array copies

are maintained. To explain, the increased number of copies
will incur more space consumption, which further results in
inferior cache performance. According to the result, in all
other sets of experiment, we use 4 copies of the update array
since it achieves the best practical query performance.

As shown in Fig. 8, the randomwalk phase for both PAFO
and Ligra achieves better scalability than the forward push
phase. This is expected since the forward push phase is more
complicated,which includesmultiple iterations and hasmore

PAFOLigra

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

 0

 10

 20

 30

 40

 0 10 20 30 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Fig. 8 Random walk scalability

 0

 0.5

 1

 1.5

 2

1 8 16 32 40

speedup

number of threads

 0

 0.5

 1

 1.5

 2

1 8 16 32 40

speedup

number of threads

(a) Twitter (b) Friendster

 0

 0.5

 1

 1.5

 2

 2.5

1 8 16 32 40

speedup

number of threads

 0

 0.5

 1

 1.5

 2

 2.5

1 8 16 32 40

speedup

number of threads

(c) RMAT27 (d) RMAT28

Fig. 9 Integer-based update speedup

dependencies. In contrast, the randomwalk phase is naturally
parallelizable with a straightforward parallel for loop (as we
mentioned inSect. 2.3.2).Nevertheless, if the straightforward
approach is applied, the scalability is still unsatisfactory. As
we mentioned, the random walk phase includes a lot of ran-
dommemory accesses, which is not cache-friendly.With our
integer-counting-basedmethod, we can reduce the size of the
update array to as small as 1/8 of the original update residue
array, which is more cache-friendly. As shown in Fig. 9, with
the increasing number of threads, the contention is signifi-
cantly reduced by maintaining multiple copies of the update
array.With our optimizations for the randomwalk phase, our

123

Parallelizing approximate single-source personalized PageRank queries on shared memory

Table 6 Preprocessing time

Dataset PAFO (s) Gorder

Twitter 37.8 s (k = 32, g = 2048) 2h

Friendster 158 s (k = 32, g = 2048) 10h

RMAT27 275 s (k = 32, g = 4096) 5 days

RMAT28 840 s (k = 32, g = 4096) 10 days

parallel random walk is up to 2.5× faster than the straight-
forward parallel update algorithm, which demonstrates the
effectiveness of our optimization techniques to the random
walk phase.

6.4 Preprocessing cost

In this set of experiments, we examine the preprocessing cost
of our PAFO and the competitor Gorder. Notice that we par-
allelize the greedy solution mentioned in Sect. 3.1.2 with full
usage of the cores, while Gorder is preprocessed with a sin-
gle core and it is unclear if it can be processed in parallel.
As shown in Table 6, even on the largest real-world Friend-
ster dataset with 65.6 million nodes, our off-line scheduling
calculation can be finished in less than 160s. For synthetic
dataset with 20 billion edges, the calculation finishes in 840s
with k = 32 and g = 4096,which is about the time of a single
query on FORA. As the scheduling can be calculated once
and reused for the subsequent queries, the moderate prepro-
cessing overhead is compensated by the query performance
improvement with the cache-aware scheduling. The prepro-
cessing cost of Gorder, on the other hand, is very prohibitive
and requires 10 days to finish the processing. Even if it can
be processed in parallel with 40 cores, it still needs more than
6h and is still far more expensive than our PAFO in terms of
preprocessing time.

6.5 Accuracy

Finally, we evaluate the accuracy of PAFO and FORA with
two datasets: Livejournal and Orkut. We first calculate the
ground truth of the PPR scores using power iteration by set-
ting the number of iterations to be 100. For each query, we
calculate the maximum absolute error of all the estimated
PPRs compared to their ground truth. Then, we report the
average of 100 queries. As shown in Table 7, both methods
achieve highly accurate results, and the maximum absolute
error of both PAFO and FORA falls into the same order of
magnitude on both datasets. We further report the maximum
relative error, where for each query, we calculate the max-
imum relative error of all the estimated PPRs compared to
their ground truth and then report the average on 100 queries.
Recall that we set ε = 0.5, which means in the worst case,

Table 7 Accuracy: max absolute error

Dataset FORA PAFO

Livejournal 2.07 × 10−3 5.59 × 10−3

Orkut 5.73 × 10−7 3.74 × 10−7

Table 8 Accuracy: max relative error

Dataset FORA (%) PAFO (%)

Livejournal 1.09 3.06

Orkut 0.42 0.39

the relative error can reach 0.5. From Table 8, we can see
that the maximum relative errors of both PAFO and FORA
are actually far smaller than the worst-case guarantee. The
conclusion is that by parallelizing the FORA algorithm, the
impact to the accuracy is sufficiently small and the parallel
algorithm can still provide highly accurate result. The results
on Ligra show a similar trend, and we omit the results for
simplicity.

7 Conclusion

We present PAFO, an efficient parallel framework, which
parallelizes the state-of-the-art index-based solution FORA,
for approximate SSPPR query processing. Theoretically, we
prove that our proposed PAFO achieves asymptotically lin-
ear speedup. For practical performance, we present several
optimization techniques, including effective maintenance of
active nodes in forward push phase, improving the efficiency
of memory access and cache-aware scheduling. Extensive
experimental evaluation on datasets with up to 20.6 billion
edges shows that our solution achieves up to 37× speedup on
40 cores, is 3.4× faster than alternatives on 40 cores, and is
scalable to super-large graphs with 20.6 billion edges. More-
over, our parallel forward push algorithm improves over the
state of the art by 4.8×. Since the forward push algorithm has
been extensively used for local graph clustering, our parallel
forward push algorithm can be further used to improve the
efficiency of these local graph clustering algorithms.

References

1. Andersen, R., Borgs, C., Chayes, J., Hopcraft, J., Mirrokni, V.,
Teng, S.-H.: Local computation of pagerank contributions. In:
WAW, pp. 150–165 (2007)

2. Andersen, R., Chung, F.R.K., Lang, K.J.: Local graph partitioning
using pagerank vectors. In: FOCS, pp. 475–486 (2006)

3. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank
on mapreduce. In: SIGMOD, pp. 973–984 (2011)

123

R. Wang et al.

4. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and per-
sonalized pagerank. PVLDB 4(3), 173–184 (2010)

5. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing
breadth-first search. Sci. Program. 21(3–4), 137–148 (2013)

6. Brent, R.P.: The parallel evaluation of general arithmetic expres-
sions. J. ACM 21(2), 201–206 (1974)

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model
for graph mining. In: Proceedings of the 2004 SIAM International
Conference on Data Mining, pp. 442–446. SIAM (2004)

8. Cohen, E.: Size-estimation framework with applications to transi-
tive closure and reachability. J. Comput. Syst. Sci. 55(3), 441–453
(1997)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

10. Coskun, M., Grama, A., Koyutürk, M.: Efficient processing of net-
work proximity queries via chebyshev acceleration. In: SIGKDD,
pp. 1515–1524 (2016)

11. Dagum, L., Menon, R.: Openmp: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–
55 (1998)

12. Fogaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards scaling
fully personalized pagerank: algorithms, lower bounds, and exper-
iments. Internet Math. 2(3), 333–358 (2005)

13. Fujiwara, Y., Nakatsuji, M., Onizuka, M., Kitsuregawa, M.: Fast
and exact top-k search for random walk with restart. PVLDB 5(5),
442–453 (2012)

14. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka,
M.: Efficient ad-hoc search for personalized pagerank. In: SIG-
MOD, pp. 445–456 (2013)

15. Fujiwara,Y.,Nakatsuji,M.,Yamamuro, T., Shiokawa,H.,Onizuka,
M.: Efficient personalized pagerank with accuracy assurance. In:
SIGKDD, pp. 15–23 (2012)

16. Guo, T., Cao, X., Cong, G., Lu, J., Lin, X.: Distributed algorithms
on exact personalized pagerank. In: SIGMOD, pp. 479–494 (2017)

17. Guo,W., Li, Y., Sha,M., Tan, K.-L.: Parallel personalized pagerank
on dynamic graphs. PVLDB 11(1), 93–106 (2017)

18. Gupta, M., Pathak, A., Chakrabarti, S.: Fast algorithms for topk
personalized pagerank queries. In: WWW, pp. 1225–1226 (2008)

19. Gupta, P., Goel, A., Lin, J.J., Sharma, A., Wang, D., Zadeh, R.:
WTF: the who to follow service at twitter. In: WWW, pp. 505–514
(2013)

20. https://www.cilkplus.org/ (2018)
21. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW,

pp. 271–279 (2003)
22. Jung, J., Park, N., Sael, L., Kang, U.: Bepi: fast and memory-

efficient method for billion-scale random walk with restart. In:
SIGMOD, pp 789–804 (2017)

23. Leiserson, C.E., Schardl, T.B.: A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers). In: SPAA, pp. 303–314 (2010)

24. Lin, W.: Distributed algorithms for fully personalized pagerank on
large graphs. In: WWW, pp. 1084–1094 (2019)

25. Liu, D.C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K.C., Zhong,
Z., Liu, J., Jing, Y.: Related pins at pinterest: the evolution of a
real-world recommender system. In: WWW, pp. 583–592 (2017)

26. Lofgren, P., Banerjee, S., Goel, A.: Personalized pagerank estima-
tion and search: a bidirectional approach. In: WSDM, pp. 163–172
(2016)

27. Nguyen, P., Tomeo, P., Noia, T.D., Sciascio, E.D.: An evaluation of
simrank and personalized pagerank to build a recommender system
for the web of data. In: WWW, pp. 1477–1482 (2015)

28. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank cita-
tion ranking: bringing order to the web. Technical report, Stanford
InfoLab (1999)

29. Park, H., Jung, J., Kang, U.: A comparative study of matrix factor-
ization and random walk with restart in recommender systems. In:
BigData, pp. 756–765 (2017)

30. Shin, K., Jung, J., Sael, L., Kang, U.: BEAR: block elimination
approach for random walk with restart on large graphs. In: SIG-
MOD, pp. 1571–1585 (2015)

31. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing
framework for shared memory. In: PPoPP, pp. 135–146 (2013)

32. Shun, J., Blelloch, G.E.: Phase-concurrent hash tables for deter-
minism. In: SPAA, pp. 96–107 (2014)

33. Shun, J., Roosta-Khorasani, F., Fountoulakis, K., Mahoney, M.W.:
Parallel local graph clustering. PVLDB 9(12), 1041–1052 (2016)

34. Wang, S., Tang, Y., Xiao, X., Yang, Y., Li, Z.: Hubppr: effec-
tive indexing for approximate personalized pagerank. Proc. VLDB
Endow. 10(3), 205–216 (2016)

35. Wang, S., Tao, Y.: Efficient algorithms for finding approximate
heavy hitters in personalized pageranks. In: SIGMOD, pp. 1113–
1127 (2018)

36. Wang, S., Yang, R., Xiao, X., Wei, Z., Yang, Y.: FORA: simple
and effective approximate single-source personalized pagerank. In:
SIGKDD, pp. 505–514 (2017)

37. Wei, H., Yu, J.X., Lu, C., Lin, X.: Speedup graph processing by
graph ordering. In: SIGMOD, pp. 1813–1828 (2016)

38. Wei, Z., He, X., Xiao, X., Wang, S., Shang, S., Wen, J.-R.: Topppr:
top-k personalized pagerank queries with precision guarantees on
large graphs. In: SIGMOD, pp. 441–456 (2018)

39. Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community
detectionusingneighborhood-inflated seed expansion. IEEETrans.
Knowl. Data Eng. 28(5), 1272–1284 (2016)

40. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-
order graph clustering. In: SIGKDD, pp. 555–564 (2017)

41. Zhang, H., Lofgren, P., Goel, A.: Approximate personalized pager-
ank on dynamic graphs. In: SIGKDD, pp. 1315–1324 (2016)

42. Zhu, F., Fang, Y., Chang, K.C., Ying, J.: Incremental and accuracy-
aware personalized pagerank through scheduled approximation.
PVLDB 6(6), 481–492 (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.cilkplus.org/

	Parallelizing approximate single-source personalized PageRank queries on shared memory
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Personalized PageRank
	2.2 Basics in parallel computing
	2.3 State of the art
	2.3.1 Sequential algorithm
	2.3.2 Parallel algorithm

	3 PAFO framework
	3.1 Parallel forward push phase
	3.1.1 Hybrid approach
	3.1.2 Cache-aware scheduling

	3.2 Parallel random walk phase
	3.2.1 Integer-based random walk counting
	3.2.2 Improving parallel memory access efficiency

	4 Analysis of PAFO
	4.1 Forward push phase
	4.2 Combining two phases

	5 Related work
	6 Experimental evaluations
	6.1 Scalability: overall performance
	6.2 Forward push phase
	6.3 Random walk phase
	6.4 Preprocessing cost
	6.5 Accuracy

	7 Conclusion
	References

