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ABSTRACT
Personalized PageRank (PPR) is a classic metric that measures the rel-

evance of graph nodes with respect to a source node. Given a graph

G, a source node s , and a parameter k , a top-k PPR query returns a

set of k nodes with the highest PPR values with respect to s . This
type of queries serves as an important building block for numerous

applications in web search and social networks, such as Twitter’s

Who-To-Follow recommendation service. Existing techniques for

top-k PPR, however, suffer from two major deficiencies. First, they

either incur prohibitive space and time overheads on large graphs,

or fail to provide any guarantee on the precision of top-k results

(i.e., the results returned might miss a number of actual top-k an-

swers). Second, most of them require significant pre-computation

on the input graph G, which renders them unsuitable for graphs

with frequent updates (e.g., Twitter’s social graph).

To address the deficiencies of existing solutions, we propose

TopPPR, an algorithm for top-k PPR queries that ensure at least

ρ precision (i.e., at least ρ fraction of the actual top-k results are

returned) with at least 1−1/n probability, where ρ ∈ (0, 1] is a user-

specified parameter and n is the number of nodes in G . In addition,

TopPPR offers non-trivial guarantees on query time in terms of ρ,
and it can easily handle dynamic graphs as it does not require any

preprocessing. We experimentally evaluate TopPPR using a variety

of benchmark datasets, and demonstrate that TopPPR outperforms

the state-of-the-art solutions in terms of both efficiency and preci-

sion, even when we set ρ = 1 (i.e., when TopPPR returns the exact
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top-k results). Notably, on a billion-edge Twitter graph, TopPPR

only requires 15 seconds to answer a top-500 PPR query with ρ = 1.
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1 INTRODUCTION
Given a graphG and a source node s inG , the Personalized PageRank
(PPR) of any node v in G is a topology-based measure of v’s rele-
vance with respect to s [34]. PPR has been an important building

block of numerousweb search and social network applications, such

as Twitter’s Who-To-Follow [23], LinkedIn’s connection recommen-

dation [1], and Pinterest’s Related Pins [28]. For these applications,
the overheads incurred PPR queries are of significant concerns, due

to the large sizes of the underlying graphs. This motivates a plethora

of solutions [7, 8, 10–13, 15–22, 26, 27, 29–33, 35–37, 40–45] that

aim to improve the efficiency of PPR queries.

Existing methods for PPR mainly utilize three types of tech-

niques: matrix optimizations, local updates, and Monte-Carlo (MC)

simulations. In particular, matrix-based methods [13, 15, 27, 32, 37,

45] formulate PPR as the solution to a linear system, and they apply

matrix optimization approaches to reduce query costs. Local update

methods [7, 8, 17–20, 26, 41], on the other hand, utilize graph traver-

sals instead of matrix operations for PPR computation. Meanwhile,

MC-based methods [10, 16, 29–31, 36, 39, 40] use random walks

to derive approximate PPR values with probabilistic guarantees.

Among these methods, matrix-based solutions are unfavorable as

they incur significant space or time overheads on large graphs;

because of this, the state-of-the-art techniques for PPR queries

[30, 39–41] only incorporate local updates and MC simulations.
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Motivation. Existing work mostly considers three types of PPR

queries:

• Point-to-point queries, which ask for the PPR of a given node

v with respect to the source node s;
• Single-source queries, which ask for the PPR value of every

node with respect to s;
• Top-k queries, which ask for the k nodes whose PPR with

respect to s are the largest.

Among these query types, top-k PPR queries are particularly useful

for recommendation applications (e.g., [23, 28]), in which only

the nodes most relevant to s are of interests. For such queries,

the precision of query answers (i.e., the fraction of answers that

are among the actual top-k) is highly important, as false positive

may considerably degrade the quality of recommendations. Most

existing PPR techniques, however, do not provide any guarantees

on the precision of top-k results. In particular, the state-of-the-art

top-k PPR algorithms [30, 39–41] only ensure that the i-th node

returned has a PPR that is at least 1 − ϵr times that of the i-th node

in the actual top-k results (e.g., ϵr = 1/2 [39, 40]); nevertheless, this

does not guarantee high precisions since there may exist a large

number of non-top-k nodes with PPR values above the 1 − ϵr bar.
To our knowledge, there exist only a few methods [15, 17–20,

41, 42] that offer precision assurance for top-k PPR queries. Unfor-

tunately, these methods either are matrix-based or rely on (less-

optimized) local update techniques, due to which they are unable to

handle massive graphs efficiently. Specifically, as we show in Sec-

tion 7, even the most advanced method [15] among them requires

50 seconds on average to answer an exact top-500 PPR query on

a medium-size LiveJournal graph, which is far from sufficient for

real-time applications.

Contributions. To remedy the deficiencies of existing techniques,

this paper presents TopPPR, a top-k PPR algorithm that provides

both practical efficiency and strong theoretical guarantees. Given

a precision parameter ρ ∈ (0, 1], TopPPR answers any top-k PPR

query while ensuring at least ρ precision with at least 1−1/n proba-

bility, where n is the number of nodes in the input graphG . (That is,
no less than ρ fraction of the results returned are among the actual

top-k .) The expected time complexity of TopPPR is O

(
m+n logn
√
дapρ

)
on worst case graphs and O

(
k

1

4 n
3

4 logn
√дapρ

)
on power law graphs,

wherem is the number of edges inG and дapρ is a value that quan-

tifies the difference between the top-k and non-top-k PPR values

(see Section 4 for details). In particular, when ρ = 1, дapρ equals

the k-th largest PPR value minus the (k + 1)-th.

The basic idea of TopPPR is to adopt the filter-refinement para-

digm for top-k processing. In the filter step, it computes a rough

estimation of each node’s PPR, based on which it identifies a candi-

date node set C . Then, in the refinement step, it iteratively refines

the PPR estimation for each node in C , until it derives the top-k
results with high confidence. The main challenge in this filter-

refinement approach is that we need accurate PPR estimations to

avoid missing actual top-k results, and yet, we cannot afford to pay

high computation cost in PPR derivation. TopPPR addresses this

challenge with an adaptive approach that enables it to focus only

on a small set of nodes whose PPR estimations really matter for

top-k precision, while omitting those nodes that have no chance to

be part of the top-k results. Furthermore, TopPPR incorporates an

advanced sample approach that helps it reduce computation cost

without sacrificing accuracy.

We experimentally evaluate TopPPR on a variety of benchmark

datasets with up to 40 million nodes and 1 billion edges. Our results

demonstrate that TopPPR outperforms state-of-the-art methods for

both exact and approximate top-k queries. Notably, on a billion-

edge Twitter graph, TopPPR only requires 15 seconds to answer a

top-500 PPR query with ρ = 1.

2 PRELIMINARIES
2.1 Problem Definition
LetG = (V ,E) be a directed graph with n nodes andm edges. Given

a source node s ∈ V and a decay factor α , a random walk from

s is a traversal of G that starts from s and, at each step, either (i)

terminates at the current node with α probability, or (ii) proceeds to

a randomly selected out-neighbor of the current node. For any node

v ∈ V , the personalized PageRank (PPR) π (s,v ) of v with respect to

s is the probability that a random walk from s terminates at v [34].

We define the i-th node with respect to s as the node whose

PPR with respect to s is the i-th largest, and we denote it as tk .
Accordingly, we refer toVk = {t1, . . . , tk } as the top-k node set with
respect to s . We consider the following type of top-k PPR queries.

Definition 2.1 (ρ-precise Top-k PPR Queries). Given a source node

s and ρ ∈ (0, 1], a ρ-precise top-k PPR query returns a set S of k
nodes, such that at least ρ · k nodes in S are in Vk .

Note that for fixed ρ, there existn2
possible top-k PPR queries (for

different choices of s and k). We say that a top-k PPR algorithm is ρ-
precise with at least 1−x probability, if there is at most x probability

that the algorithm answers one of the n2
top-k PPR queries with

a precision lower than ρ. Our objective is to develop a top-k PPR

method that (i) is ρ-precise with at least 1 − 1/n probability, (ii)

does not require preprocessing, and (iii) is computationally efficient.

Table 1 lists notations frequently used in our paper.

Remark. Note that Definition 2.1 imposes a requirement on the

top-k results’ precision, but does not consider the order of the

results returned. This is because, in practical applications, top-k
PPR queries are often used only to identify a candidate set of k
nodes, which are then re-ranked using other algorithms for rec-

ommendation; as a consequence, the order of the top-k answers

are irrelevant. For example, when Twitter’s Who-To-Follow service

[23] attempts to recommend other users to a given user s , it first
performs a top-500 PPR queries to derive a candidate set of 500

users, and then re-score those users using a different approach for

recommendation. Pinterest’s Related Pins service [28] also adopts a

similar mechanism. Nonetheless, as we show in Section 7, the order

of the top-k answers produced by our algorithm is still comparable

to the state of the art.

2.2 Basic Techniques and State of the Art
In what follows, we introduce three basic techniques for PPR com-

putation: random walk sampling [16], forward search [8], and back-

ward search [7]. We then discuss how these techniques have been

adopted in the state-of-the-art solutions [30, 39–41].
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Table 1: Frequently used notations.

Notation Description
G=(V , E ) The input graph G with node set V and edge set E

n,m The number of nodes and edges in G , respectively

N out (v ),
N in (v )

The set of out-neighbors and in-neighbors of node v

dout (v ),
din (v )

The out-degree and in-degree of node v

π (s, t ) The exact PPR value of t with respect to s

α The termination probability

rb (s, t ),
πb (s, t )

The reserve and residue of t from s in the backward

search

r f (s, t ),
π f (s, t )

The reserve and residue of t from s in the forward

search

r fsum The sum of all nodes’ residues during in the forward

search from s

дapρ the gap between the ⌈ρk ⌉-th and (k + 1)-th node,

дapρ = π (s, t⌈ρk⌉ ) − π (s, tk+1
)

Algorithm 1: Forward Search

Input: Graph G , source node s , decay factor α , threshold r fmax
Output: Forward residue r f (s, v ) and reserve π f (s, v ) for all v ∈ V

1 r f (s, s ) ← 1 and r f (s, v ) ← 0 for all v , s ;
2 π f (s, v ) ← 0 for all v ;

3 while ∃u ∈ V such that r f (s, u )/dout (u ) ≥ r fmax do
4 for each v ∈ N out (u ) do

5 r f (s, v ) ← r f (s, v ) + (1 − α ) · r
f (s,u )

dout (u )
;

6 π f (s, u ) ← π f (s, u ) + α · r f (s, u );
7 r f (s, u ) ← 0;

RandomWalk Sampling [16]. Given two nodes s andv , the sim-

plest approach to estimate π (s,v ) is to generate a number ω of

random walks from s , and then use the fraction of walks that termi-

nate at v as an approximation of π (s,v ). To obtain an estimation

of π (s,v ) with at most ε absolute error with probability at least

1 − 1/n , the number of random walks required is O
(

logn
ε2

)
, which

is significant when ε is small.

Forward Search [8]. Roughly speaking, forward search can be

regarded as a deterministic counterpart of random walk sampling.

(See Algorithm 1 for a pseudo-code.) It first assigns a forward residue
r f (s,v ) and a forward reserve π f (s,v ) = 0 for each node v , such

that r f (s, s ) = 1 and r f (s,v ) = 0 for any v , s (Lines 1-2). After
that, it starts a traversal ofG from s and updates the forward residue
and reserve of each node that it visits (Lines 3-7). In particular, there

is a node u whose forward residue r f (s,u) is larger than its out-

degree dout (u) times a threshold r
f
max (Line 3), then it increases

u’s forward reserve π f (s,u) by α ×r f (s,u) (Line 6), and it increases

each of u’s out-neighbors’ forward residue by
(1−α )
dout (u )

× r f (s,u)

(Lines 4-5), after which it sets r f (s,u) = 0 (Line 7). In other words,

it converts α fraction ofu’s forward residue into its forward reserve,
and the divide the other 1−α fraction among the out-neighbors ofu.

Algorithm 2: Backward Search

Input: Graph G , target node t , decay factor α , threshold rbmax
Output: Backward residue r f (s, v ) and reserve π f (s, v ) for all

v ∈ V
1 rb (t, t ) ← 1 and rb (v, t ) ← 0 for all v , t and i = 1, . . . , j ;
2 πb (v, t ) ← 0 for all v ;
3 while ∃v such that rb (v, t ) > rbmax do
4 for each u ∈ N in (v ) do

5 rb (u, t ) ← rb (u, t ) + (1 − α ) · r
b (v,t )

dout (u )

6 πb (v, t ) ← πb (v, t ) + α · rb (v, t );
7 rb (s, v ) ← 0;

The algorithm terminates when no such node u exists. It is shown

in [8] that the algorithm runs in O (1/r
f
max ) time, and that when

r
f
max approaches 0, π f (s,v ) converges to π (s,v ). However, for fixed

r
f
max > 0, there is no known result regarding the approximation

guarantee of π f (s,v ) with respect to π (s,v ).

Backward Search [7]. Backward search is a reversed version of

forward search that traverses the incoming edges of G to derive

PPR. (See Algorithm 2 for a pseudo-code.) In particular, given a

destination node t , it employs a traversal from t to compute t ’s PPR
value π (v, t ) with respect to any other nodev . It starts by assigning

a backward residue rb (v, t ) and a backward reserve πb (v, t ) = 0

to each node v , and setting rb (t , t ) = 1 and rb (v, t ) = 0 for any

v , t (Lines 1-2). Subsequently, it traverses from t , following the

incoming edges of each node. For any nodev that it visits, it checks

if v’s backward residue rb (v, t ) is larger than a given threshold

rbmax . If so, then it increases v’s backward reserve by α × rb (v, t )
and, for each in-neighbor u of v , increases the backward residue of

u by (1 − α ) ·
rb (v,t )
dout (u )

(Lines 4-6). After that, it reset v’s backward

residue rb (v, t ) to 0 (Line 7). Lofgren et al. [30] prove that the

algorithm has an amortized time complexity of O
(

m
n ·rbmax

)
. When

the algorithm terminates, it ensures that |πb (v, t )−π (v, t ) | < rbmax
for any v . Backward search requires the destination node t instead
of the source node s to be fixed.

State of the Art. Although each of the above basic techniques has

its limitations, recent work [30, 39–41] shows that they can be inte-

grated to construct advanced solutions with enhanced guarantees.

In particular, Lofgren et al. [31] propose to answer point-to-point

PPR queries by combining random walks from the source node s
with a backward search from the destination node t , and show that

the combination leads to improved time complexity. This approach

is further improved in [30, 39]. Wang et al. propose to process

single-source PPR queries by first performing a forward search

from the source node s , and then generating random walks from

those nodes with non-zero residues. They demonstrate that this

method provides even better efficiency (for single-source and top-k
PPR queries) than the solutions in [30, 31, 39] do. However, none of

these methods leverage the combined strengths of random walks,

forward search, and backward search simultaneously. In contrast,
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our top-k PPR algorithm carefully integrates all three basic tech-

niques in a non-trivial manner that enables us to maximize the

efficiency of top-k PPR queries, as we will elaborate in Section 3.

3 TOPPPR ALGORITHM
In this section, we present TopPPR, an index-free algorithm for

ρ-precise top-k PPR queries on large graphs. Before diving into the

details, we give some high-level ideas of the algorithm.

3.1 Challenges and Main Ideas
Challenges. The main challenge for ρ-precise top-k PPR query

lies in the case when ρ = 1, i.e., when the algorithm is required

to return the exact top-k node set. Previous work on exact top-k
PPR queries, such as FLoS [41] and Chopper [15], rely on matrix

optimizations or local updates to compute the exact values of the

personalized PageRanks, which makes them inefficient on large

graphs. On the other hand, sampling-based PPR algorithms, such

as FastPPR [31], BiPPR [30], HubPPR [39], and FORA [40], focus on

relative error guarantees and are unable to obtain accurate top-k
results if the the gap between the k-th and (k + 1)-th largest PPR

values is small. For example, in a typical exact top-500 PPR query

on the Twitter data, the k-th largest PPR value is at the order of

10
−5
, while the gap between the k-largest and (k + 1)-th largest

PPR values ranges from 10
−7

to 10
−10

. To ensure 100% precision for

such top-k queries, the relative error allowed ranges from 10
−5

to

10
−2
, which leads to tremendous computation costs. In particular,

our experiments show that previous approaches require at least

1000 seconds to answer a top-500 PPR query exactly on Twitter.

High Level Ideas. Our TopPPR algorithm for top-k PPR queries

utilizes the three basic techniques introduced in Section 2.2, namely,

random walk sampling, forward search, and backward search. Fig-

ure 1 illustrates the high level idea of TopPPR. In a nutshell, TopPPR

first performs forward search from the source node s , and then

conducts random walks from those nodes with non-zero forward

residues; after that, it applies backward search from some target

nodes and combines the results with the random walks to estimate

PPR values for top-k derivation.

Compared with FORA [40] (which utilizes only forward search

and random walk sampling), TopPPR leverages backward search to

significantly reduce the variances of PPR estimators and achieve

much higher efficiency, as we explain in Section 4. In addition,

TopPPR’s application of backward search is adaptive, in the sense

that it varies the depth of the backward search from each node

to avoid unnecessary computation. Specifically, for any node v , if
TopPPR can easily decide whether v is a top-k or non-top-k node,

then the backward search fromv would be shallow (or even empty),

so as to reduce computation overheads; on the other hand, if it

is difficult to identify whether v is among the top-k results, then

TopPPR would perform a deep backward search from v , so as to

obtain a more accuracy estimation of v’s PPR. This paradigm is

made possible by maintaining a setC that consists of possible top-k
nodes, and by adaptively pruning the nodes in C using confidence

bounds. To guarantee a precision of at least ρ, TopPPR maintains

a set Vk of nodes that are bound to be among the true top-k , and
stops when |Vk | ≥ ρk .

Candidate set CTop-k set Vk Non-top-k nodes

Forward Search

Random Walk Sampling

Group Backward Search

Alias Structure

Shallow or empty backward search

Deep backward search

Figure 1: Illustration of three phase estimation

3.2 Techniques
We now present several key techniques used in the TopPPR algo-

rithm.

Estimation Formula.Weuse an estimation formula that combines

the forward search, backward search, and random walk sampling.

It is proven in [8] that a forward search from node s gives the

following formula:

π (s, t ) = π f (s, t ) +
∑
u ∈V

r f (s,u)π (u, t ).

Similarly, a backward search [7] from node t gives

π (s, t ) = πb (s, t ) +
∑
v ∈V

π (s,v )rb (v, t ).

Combining the above two equations leads to

π (s, t ) = π f (s, t ) +
∑
u ∈V

r f (s,u)π (u, t )

= π f (s, t ) +
∑
u ∈V

r f (s,u) *
,
πb (u, t ) +

∑
v ∈V

π (u,v )rb (v, t )+
-

= π f (s, t ) +
∑
u ∈V

r f (s,u)πb (u, t ) +
∑

u,v ∈V
r f (s,u)π (u,v )rb (v, t ).

Note that once the forward and backward search stops, π f (s, t ) +∑
u ∈V r f (s,u)πb (u, t ) is determined. We then use random walk

samples to obtain an estimation π̂ (u,v ) of π (u,v ), after which we

apply the following formula to estimate π (s, t ):

π̂ (s, t ) = π f (s, t )+
∑
u ∈V

r f (s,u)πb (u, t )+
∑

u,v ∈V
r f (s,u)π̂ (u,v )rb (v, t ).

(1)

Forward Push and Alias Method. As mentioned in Section 1, we

perform forward search to compute the forward residues r f (s,u)

and reserves π f (s,u) for each u ∈ V . We then construct an Alias

structure [38] (see Section B for a description) on the forward

residues r f (s,u), so that a nodeu can be sampled according to proba-

bility r f (s,u)/r
f
sum in constant time, where r

f
sum =

∑
u ∈V r f (s,u).
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Algorithm 3: Group Backward Search

Input: Graph G , candidate set C , decay factor α , threshold rbmax ,

estimators π̂b
Output: Inverted lists of backward residues rb and reserves πb

1 for each t ∈ C do
2 rb (t, t ) ← 1 and rb (v, t ) ← 0 for all v , t and i = 1, . . . , j ;
3 πb (v, t ) ← 0 for all v , π̂ (s, t ) ← 1

n if π̂ (s, t ) = 0;

4 while ∃v such that rb (v, t ) > rbmax

√
din (v )
π̂b (s,v ) do

5 for each u ∈ N in (v ) do

6 rb (u, t ) ← rb (u, t ) + (1 − α ) · r
b (v,t )

dout (u )

7 πb (v, t ) ← πb (v, t ) + α · rb (v, t );
8 rb (s, v ) ← 0;

9 for each v ∈ V with non-zero rb (v, t ) do
10 Append (t, rb (v, t )) to inverted list rb at node v ;

11 for each v ∈ V with non-zero πb (v, t ) do
12 Append (t, πb (v, t )) to inverted list πb at node v ;

Bernstein Inequalities and Confidence Bounds. We compute

confidence bounds using Berstein inequality and its empirical ver-

sion, as shown in the following lemma.

Lemma 3.1 (Bernstein ineqality and empirical Bernstein

ineqality [9]). Let X1, . . . ,Xℓ be real-valued i.i.d. random vari-
ables, such that Xi ∈ [0, r ], E[Xi ] = µ and Var [Xi ] = σ 2. Let X̄ℓ =
1

ℓ

∑ℓ
i=1

Xi denote the empirical mean, and σ̄ 2 = 1

ℓ

∑ℓ
i=1

(Xi − X̄ℓ )
2

denote the empirical variance. With probability 1 − pf , we have

|X̄ℓ − µ | ≤

√
σ 2

log
2

pf

ℓ
+

2r log
1

pf

ℓ
,

and

|X̄ℓ − µ | ≤

√
2σ̄ 2

log
3

pf

ℓ
+

3r log
3

pf

ℓ
.

Compared with the Chernoff bounds, Bernstein inequalities are

able to provide much tighter estimation when the variances of

the random variables are small. In TopPPR, we use the empirical

Bernstein inequality since the upper bound on the actual variance

is hard to obtain.

Based on the empirical Bernstein inequality, we use the following

confidence bounds to estimate the range of π (s, t ). Afternr samples,

let π̂ (s, t ) be the estimator of π (s, t ), and σ̄ 2 (s, t ) be the empirical

variance. We define the confidence bound of estimator π̂ (s, t ) to
be [π̂ (s, t ) − β (s, t ), π̂ (s, t ) + β (s, t )], where β (s, t ) is a parameter

calculated by the Bernstein inequality and union bound. As we

shall see in Section 4, if we set

β (s, t ) =

√
2σ̄ 2 (s, t ) ln (3n3

log
2 nr )

nr
+

3r
f
sum ln (3n3

log
2 nr )

nr
,

then our algorithm guarantees that with high probability, for any

t ∈ V , π (s, t ) ∈ [π̂ (s, t ) − β (s, t ), π̂ (s, t ) + β (s, t )]. Note that here
we set pf lower than 1/n3

, so that we can apply union bounds over

O (n2) events in our algorithm. We use the confidence bounds for

pruning candidate nodes and designing stopping rule of TopPPR.

Group Backward Search. Backward search is an effective tool for

reducing the variances of the estimators provided by the random

walk sampling process. However, if we naively apply backward

search to all target nodes t ∈ V with the same maximum residue

threshold rbmax , it will incur significant cost due to the massive

number of nodes in V . Intuitively, we should spend less time on

nodes with PPR values that are far away from the k-largest PPR
value π (s, tk ), and spend more time on nodes with PPR values that

are close to π (s, tk ). Based on this intuition, we propose the group
backward search algorithm. Group backward search takes a subset

C ∈ V , referred to as the candidate set, and performs backward

search on each node inC . The TopPPR algorithm adaptively shrinks

the size ofC using confidence bounds, such that it can apply deeper

backward search to nodes in C for more accurate estimations.

The key idea of the group backward search algorithm is to al-

low each node to have a different threshold rbmax on its backward

residue. Recall that given a target node t , the original backward
search pushes the residue of a node v to its in-neighbours when-

ever the residue rb (v, t ) > rbmax . This ensures that the residue

rb (v, t ) ≤ rbmax for any node v ∈ V at the end of the backward

search. Setting a unified threshold rbmax for each internal node

v ∈ V is crucial to apply the Chernoff inequality, as it gives an

upper bound for the range of the random variables. In the group

backward search, however, Bernstein inequality allows us to set

rbmax for different v ∈ V , as long as we can bound the variance of

the estimation. In particular, let rbmax (v, t ) denote the maximum

backward residue allowed for nodev and target node t in the group

backward search, we propose to set rbmax (v, t ) = r
b
max (t ) ·

√
din (v )
π̂b (s,v )

wheredin (v ) is the indegree ofv , r
b
max (t ) is the threshold for target

node t , and π̂b (s,v ) is constant approximation of the actual PPR

value π (s, t ). Intuitively, a backward push on node v is expensive

if its indegree din (v ) is large, and thus we should avoid backward

push on v unless it significantly reduces the residue of v . To see

why the PPR value π (s,v ) takes a part in the threshold function,

recall that the goal of the group backward search is to minimize

the variance σ̄ 2 (s, t ). Since σ̄ 2 (s, t ) ≤
∑
v ∈V rb (v, t )2π (s,v ), the

contribution of rb (v, t )2π (s,v ) to σ̄ 2 (s, t ) depends on the quantity

of π (s,v ): if π (s,v ) is very small, then rb (v, t )2π (s,v ) is ignorable,

an thus spending time to reduce rb (v, t ) is meaningless; if π (s,v )

is large, reducing rb (v, t ) can significantly reduce the variance and

therefore lead to better estimation.

Algorithm 3 shows the pseudocode of group backward search.

For each t ∈ C , we first set rb (v, t ) = 0 for v , t and rb (v, t ) = 0

for v = t (Line 1). We also set π (v, t ) = 0 for v ∈ V and estimator

π̂b (s,v ) =
1

n if π̂b (s,v ) = 0 (Line 2). Then, for each v with residue

rb (v, t ) > rbmax

√
din (v )
π̂b (s,v )

, we transfer (1 − α ) fraction of rb (v, t )

to its in-neighbours (Lines 4-6), and α-fraction of rb (v, t ) to the

reserve πb (s,v ) (Lines 7-8). Finally, we append (t , rb (v, t )) and

(t ,πb (v, t )) to inverted lists rb and πb , so that given v , we can find

each t with non-zero rb (v, t ) or πb (v, t ) in linear time (Line 12).

3.3 Main Algorithm
Algorithm 4 shows the pseudocode of TopPPR. Given a graph G,
a source node s , a decay factor α , a parameter k , and a precision
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Algorithm 4: TopPPR

Input: Graph G , source node s , decay factor α , precision ρ ,
parameter k

Output: Tk (s ) = {t1, . . . , tk }, the exact top-k node set of s
1 Vk ← ∅, C ← V ;

2 nr ← 4

√
mn logn, r fmax ←

4√
mn logn

;

3 [r f , π f ]← ForwardSearch(r fmax );

4 [π̂b, Vk , C]← CandidateUpdate(r f , π f , Vk , C );

5 nr ←
n logn
|C | , rbmax ←

1√
m
, r fmax ←

1

m ;

6 while |Vk | < ρk do
7 [rb, πb ]← GroupBackwardSearch(rbmax , π̂b );

8 [r f , π f ]← ForwardSearch(r fmax );

9 [π̂ , Vk , C]← CandidateUpdate(r f , π f , rb, πb, Vk , C );

10 rbmax ←
rbmax

2
, r fmax ←

r fmax
2

, nr ← 2nr ;

11 return Vk ;

parameter ρ, TopPPR finds the top-k node set of s with precision at

least ρ. We divide the node set V into three categories:

(1) Top-k nodes set Vk , which consists of nodes that the algo-

rithm is confident to classify as top-k nodes;

(2) Candidate set C , which consists of nodes that the algorithm

is unable to classify based on current confidence bounds;

(3) Non-top-k node set V \ (Vk ∪ C ), which consists of nodes

that the algorithm is confident to classify as not in the top-k
node set.

Initially, we set Vk = ∅ and C = V (Line 1 in Algorithm 4).

In the first phase of the algorithm, we perform forward search

and random walks to obtain a rough estimation of PPR value π (s, t )
for each t ∈ V . More precisely, we first perform forward search to

construct Alias structure r f and forward reserve array π f (Line

3). Then, we invoke CandidateUpdate to compute π̂b (s, t ), t ∈ V
and update top-k node set Vk and candidate set C (Line 4). Note

that we do not have backward residues rb and reserves πb yet,

so by default, we set rb (v, t ) = 1 for v = t and rb (v, t ) = 0 for

v , t , and π (s,v ) = 0 for v ∈ V . We set the number of random

walks nr and the forward threshold r
f
max such that with probability

1−1/n, we obtain an estimator π̂b (s, t ) for π (s, t ) with error at most

π (s, t )/4 for any π (s, t ) > 1/n (Line 2). There are two purposes of

this phase: (i) we can prune most nodes in the candidate set C with

CandidateUpdate; (ii) we will use the estimators π̂b (s, t ), t ∈ V in

the group backward search to set the threshold rbmax (v, t ).
In the next phase, we adaptively perform forward search, ran-

dom walk sampling, and group backward search to refine C and to

construct Vk . We first set nr =
n logn
|C | , rbmax =

1√
m
, and r

f
max =

1

m
(Line 5). In each iteration, we perform group backward search for

C with threshold rbmax to construct rb , the inverted list of the back-

ward residues, and πb , the inverted list of backward reserves (Line

7). We also perform forward search with r
f
max , and we construct r

f
,

an Alias structure of forward residue, and π f , an array of forward

reserves (Line 8). Then, we call the CandidateUpdate algorithm
to perform random walk sampling and update candidate set C and

top-k set Vk (Line 9). If the number of nodes in Vk exceeds ρk , it

Algorithm 5: CandidateUpdate

Input: Graph G , source node s , decay factor α , forward reserves π f ,

Alias structure of forward residues r f , inverted lists of

backward reserves πb and residues rb , candidate set C , top-k
set Vk , number of random samples nr

Output: Updated candidate set C and top-k set Vk
1 for j from 1 to nr do
2 Sample a node u from Alias structure r f with probability

r f (s, u )/r fsum and set v ← u ;
3 while rand () > 1 − α do
4 Uniformly pick w from N out (v ) and set v ← w ;

5 for each t with non-zero rb (v, t ) do
6 π̂ (s, t ) ← j−1

j π̂ (s, t ) + 1

j r
f
sum · rb (v, t );

7 σ̄ 2 (s, t ) ← j−1

j σ̄ 2 (s, t ) + 1

j r
f
sum

2

· rb (v, t )2;

8 for each node t ∈ C do
9 π̂ (s, t ) ← π̂ (s, t ) + π f (s, t ) +

∑
u∈V r f (s, u )πb (u, t );

10 β (s, t ) =

√
2σ̄ 2 (s,t ) ln (3n3

log
2 nr )

nr +
3r fsum ln (3n3

log
2 nr )

nr ;

11 if Number of t ′ ∈ C such that
π̂ (s, t ′) + β (s, t ′) < π̂ (s, t ) − β (s, t ) exceeds |C | + |Vk | − k
then

12 Vk ← Vk ∩ {t }, C ← C \ {t };

13 else if Number of t ′ ∈ C such that
π̂ (s, t ′) − β (s, t ′) > π̂ (s, t ) + β (s, t ) exceeds k − |Vk | then

14 C ← C \ {t };

implies that the algorithm has found at least ρk top-k nodes, in

which case we can return Vk as the results. Note that if |Vk | < ρk
(Line 6), we can report some nodes inC as the top-k nodes (Line 11).

If after this iteration, the number of nodes inVk is still smaller than

ρk , we halve r
f
max and rbmax , and double the number of random

walks nr (Line 10), such that the forward search, group backward

search, and random walk sampling take approximately twice as

much time in the next iteration.

Updating the Candidate Set. The CandidateUpdate algorithm
uses random walk samples to updates the candidate set C and

top-k set Vk . The algorithm starts by performing nr random walk

samples. For each random walk, we sample a node u from the

Alias structure r f according to probability r f (s,u)/r
f
sum (Line 2),

and perform random walk with termination probability α from u
(Lines 3-4). If the random walk terminates at node v , we update
the estimator π̂ (v, t ) and empirical variance σ̄ 2 (s, t ) for each node

t ∈ C with non-zero backward residue rb (v, t ) (Lines 6-7). Note
that rb is maintained as an inverted list, so we can retrieve the

nodes with non-zero backward residue rb (v, t ) in linear time.

After all random walks are processed, we compute the estimator

π̂ (s, t ) (Line 9) and confidence bound β (s, t ) for each t ∈ C (Line

10). Note that to compute

∑
u ∈V r f (s,u)πb (u, t ), we do not have to

go through all u ∈ V , as the algorithm maintains an inverted list for

πb (u, t ) that allows us to find all non-zero πb (u, t ) in linear time for

a givenu. Finally, we update the top-k node setVk and the candidate

setC as follows. For each node t ∈ C , we count the number of nodes

t ′ inC with upper confidence bounds π̂ (s, t ′)+β (t ′) that are less or
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equal to the lower confidence bound π̂ (s, t ) − β (t ) of node t (Line
11). If this number exceeds |C | + |Vk | − k , it implies that with high

probability, there are more thann−k nodes with PPR values that are

lower than π (s, t ), and thus t is a true top-k node. Note that there

already are n− ( |C |+ |Vk |) nodes that were evicted fromC , which all
have PPR values smaller than π (s, t ). In this case, we move t from
C to top-k node set Vk (Line 12). On the other hand, we also count

the number of nodes nodes t ′ in C with lower confidence bounds

π̂ (s, t ′) − β (t ′) that are higher or equal to the upper confidence

bound π̂ (s, t ) + β (t ) of node t (Line 13). If this number exceeds

k − |Vk |, it implies that with high probability, there are more than

k nodes with PPR values that are higher than π (s, t ), and thus t is
a true non-top-k node. Note that there already are |Vk | nodes inVk
with PPR values that are larger than π (s, t ). In this case, we evict t
from C (Line 14).

4 ANALYSIS
In this section, we analyze the correctness and time complexity of

the TopPPR algorithm. The proofs of all theorems and lemmas are

included in the appendix.

4.1 Correctness
We first prove that with high probability, TopPPR answers a ρ-
precise top-k PPR query correctly. The following Lemma shows

that the estimators of TopPPR are unbiased.

Lemma 4.1. Consider an iteration of TopPPR. For any t ∈ C , we
have E[π̂ (s, t )] = π (s, t ).

Using Lemma 4.1 and the empirical Bernstein inequality, we can

prove the the following lemma, which states that TopPPR computes

all confidence bounds correctly with high probability.

Lemma 4.2. With probability 1 − 1/n3, at any iteration of the
TopPPR, we have π (s, t ) ∈ [π̂ (s, t ) − β (s, t ), π̂ (s, t ) + β (s, t )] for any
t ∈ V .

From Lemma 4.2, we can derive the following lemma, which

states that with high probability, the nodes in Vk are true top-k
nodes and the nodes evicted from C are true non-top-k nodes.

Lemma 4.3. With probability 1 − 1/n3, at any iteration of the
TopPPR, if a node t is moved fromC toVk , then there are at least n−k
nodes with PPR values less or equal to π (s, t ). If a node t is evicted
fromC , then there are at least k nodes with PPR values larger or equal
to π (s, t ).

By Lemma 4.3, at the end of TopPPR, with high probability, there

are at least |Vk | ≥ ρk true top-k nodes inVk , and thus the precision
of TopPPR is at least ρ.

Theorem 4.4. Given a source node s , parameter k and precision ρ,
TopPPR returns the top-k node set of s with precision at least ρ, with
probability at least 1 − 1/n3.

By applying union bound over all possible source nodes inV and

all possible choices of k , we have with probability at least 1 − 1/n,
the TopPPR algorithm returns the top-k node set with precision at

least ρ for any source node s and any choice of k .

4.2 Time Complexity
We first analyze the worst-case time complexity of group backward

search and forward search. Then, we bound the number of random

walk samples needed for the algorithm to stop. Finally, we combine

the cost of group backward search, forward search, and random

walk sampling in worst case model and in power law graph model.

Group Backward Search. The following lemma bounds the total

cost of the group backward search.

Lemma 4.5. Let rbmax be the threshold of the group backward
search in the last iteration of TopPPR. The total cost of the group

backward search of TopPPR is bounded by O
( √

m
rbmax

)
.

Forward Search. The following lemma bounds the cost of the

forward search.

Lemma 4.6. Let r fmax be the forward residue threshold used in
the last iteration of TopPPR. The total cost of the forward search is

bounded by O
(
1/r

f
max

)
.

RandomWalk Sampling. To bound the number of random walk

samples, we need Lemma 4.7, which gives the stopping condition

of the TopPPR algorithm based on a constant дapρ . The lemma

uses a constant дapρ , which is defined as the difference between

the ⌈ρk⌉-th and (k + 1)-th largest PPR with respect to s , i.e.,

дapρ = π (s, t ⌈ρk ⌉ ) − π (s, tk+1
).

Lemma 4.7. Consider an iteration of TopPPR. If β (s, t ) ≤ 1

4
дapρ

for any t ∈ C , then the TopPPR algorithm will stop at the end of the
iteration.

Lemma 4.7 suggests that TopPPR stops if it is able to approximate

π (s, t ) with additive error дapρ for any t ∈ C . Intuitively, for any

tj with j ≤ ρk , β (s, tj ) ≤
1

4
дapρ implies that TopPPR can estimate

π (s, tj ) with additive error at most
1

4
дapρ . This suggests that the

algorithm should be able to distinguish π (s, tj ) from π (s, tk+1
) and

move tj to Vk at the end of the iteration. Therefore, the top-ρk
nodes are in Vk , and the algorithm will stop. The following lemma

bounds the number of random walks needed for the algorithm to

stop.

Lemma 4.8. Consider an iteration of TopPPR and assume rbmax ≥√
дapρ
m . If the number of walks nr exceeds Ω *

,

m ·r fsum ·
(
rbmax

)
2

дap2

ρ
logn+

-
,

then for any t ∈ C , β (s, t ) ≤ 1

4
дapρ .

Total Query Cost on Worst-Case Graphs. To bound the worst

case query cost of TopPPR, we note that for each random walk, it

visits at most |C | = O (n) nodes with non-zero backward residues.

Therefore the cost for random walk sampling can be bounded as

O *
,

nm ·r fsum ·
(
rbmax

)
2

дap2

ρ
logn+

-
. Accordingly, we have the following the-

orem.

Theorem 4.9. The expected cost of TopPPR on worse-case graphs

is O
(
m+n logn
√дapρ

)
.
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Total Query Cost on Power-Law Graphs.We note that in order

for the worst-case to happen, the candidate C must remain Θ(n)
after the initial pruning phase. This is rarely the case in practice,

as the first phase is usually able to prune most nodes from C . To
capture this essence, we analyze the cost of TopPPR under the

power-law graph model. It is observed in [12] that the PPR values

on power-law graphs also follow a power-law distribution. Formally,

for any source node s , one can assume that π (s, tk ) = Θ
(
k−γ
n1−γ

)
,

where 0 < γ < 1 is the extent of the power law. This assumption

has been adapt in previous work on top-k PPR queries [12, 30]. In

our analysis, we only need the following assumption.

Assumption 1 (Power-Law graph). Givenv a source node s , the
number of nodes with PPR values in

[
1

4
π (s, tk ), 4π (s, tk )

]
is O (k ).

Note that Assumption 1 is weaker than assuming a power-law

distribution of the PPR values, as π (s, tk ) = Θ
(
k−γ
n1−γ

)
for k =

1, . . . ,n directly implies Assumption 1. We have the following theo-

rem that bounds the total query cost of TopPPR given the power-law

assumption.

Theorem 4.10. The expected cost of TopPPR algorithm on power-

law graphs is O
(
k

1

4 n
3

4 logn
√дapρ

)
.

Remark. Notice that Theorems 4.9 and 4.10 implicitly assume

дapρ > 0. When дapρ = 0 (i.e., when the ⌈ρk⌉-th and (k + 1)-th

largest PPR are identical), TopPPR does not terminate, since it can

never distinguish the ⌈ρk⌉-th node from the (k + 1)-th one. To

tackle this pathological case of дapρ = 0, we introduce a constant

дapmin = 10
−10

, and we let TopPPR terminates whenever β (s, t ) ≤
1

4
дapmin for all t ∈ C . This, by Lemma 4.3, ensures that дapmin

is an upper bound of the absolute errors in the PPR estimations

that TopPPR makes on the candidate set C . In other words, by

setting дapmin = 10
−10

, TopPPR achieves an absolute error of

at most 10
−10

for the top-k results. This is in accordance with

the standard practice in the literature [27, 40] that considers PPR

estimations with at most 10
−10

absolute error as ground truths.

When incorporating дapmin , the query time of TopPPR is bounded

by O
(
m+n logn
√
дapmin

)
on worst-case graphs and by O

(
k

1

4 n
3

4 logn
√
дapmin

)
on

power law graphs.

5 (
√

1 − α )-WALKS
In this section, we propose a technique called (

√
1 − α )-walk. This

technique is used to improve the real-world performance of TopPPR,

and is potentially of independent interest.

Recall that a random walk with restart from s is a traversal of
G that starts from s and, at each step, either (i) terminates at the

current node with α probability, or (ii) proceeds to a randomly

selected out-neighbor of the current node. For any node t ∈ V ,
the personalized PageRank (PPR) π (s, t ) of t with respect to s is
then the probability that a random walk from s terminates at t .
For a single random walk sample, suppose we set π̂ (s, t ) = 1 if the

random walk terminates at node t and π̂ (s, t ) = 0 otherwise, then

E[π̂ (s, t )] = π (s, t ).
A (
√

1 − α )-walk from s is a traversal ofG that starts from s and,
at each step, either (i) terminates at the current node with 1−

√
1 − α

+1 +α +α +α +α

+α +α
√
1− α +α(

√
1− α)2 +α(

√
1− α)3

Two interpretations of random walk with restart
Termination probability: α

√
1− α walk

Termination probability: 1 −
√
1− α

s

s

st t

t

Figure 2: Random walk with restart and
√

1 − α walks

probability, or (ii) proceeds to a randomly selected out-neighbor of

the current node. Fix a node t ∈ V , if the (
√

1 − α )-walk visits t at
the i-th step, we add α (

√
1 − α )i to π̂ (s, t ). The following Lemma

states that the expected value of π̂ (s, t ) is the PPR value π (s, t ).

Lemma 5.1. Let π̂ (s, t ) denote the random variable computed by a
single (

√
1 − α )-walk from s . The expected value of π̂ (s, t ) is π (s, t ).

Intuitions of (
√

1 − α )-Walk. There are two intuitions for using

the (
√

1 − α )-walk instead of the normal random walk with restart.

First of all, a sample in random walk with restart only updates the

estimator of the termination node, which means the other nodes in

the walk are “wasted”. On the other hand, a (
√

1 − α )-walk is able

to update the estimator of each node visited.

Secondly, we note that in random walk with restart, each sample

will add a score of 1 to π̂ (s, t ) where t is the termination node. On

the other hand, the (
√

1 − α )-walk add a score of (
√

1 − α )iα to

the i-th node on the walk. On real-world graphs, a (
√

1 − α ) walk
rarely visit the same node twice, which means the variance of the

estimator provided by (
√

1 − α )-walk is usually α2
smaller than

that of random walk with restart.

Finally, we note that there is another possible interpretation for

the personalized pagerank: we still use random walk with termi-

nation probability α , but for each visited node t , we add a score

of α to π̂ (s, t ). See Figure 2 for an illustration. Using arguments

similar to the proof of Lemma 5.1, we can prove that π̂ (s, t ) is also
an unbiased estimator of π (s, t ). This approach will also reduce the

variance of the estimator by a factor of α2
. However, the drawback

of this interpretation is that it may lead to unbounded estimators.

More precisely, consider a graph with a single node s and a self

loop from s to s . If the random walk from s takes unbounded num-

ber of steps, then the score added to π̂ (s, s ) in a single sample is

unbounded. This will violate the conditions for applying concentra-

tion inequalities such as Chernoff bounds or Bernstein inequalities.

On the other hand, in (
√

1 − α )-walk, the scored added to π̂ (s, s ) is
bounded by

∑∞
i=0

α (
√

1 − α )i = 1 +
√

1 − α ≤ 2, and thus we are

able to use Chernoff inequality or Bernstein inequality to analyze

its concentration behavior.

6 OTHER RELATEDWORK
Among the large number of existing studies on PPR [7, 8, 10–13, 15–

22, 26, 27, 29–33, 35–37, 40–45], the ones most related to ours focus

on algorithms for exact top-k PPR queries [15, 17–20, 41, 42]. Almost

all of these algorithms [17–20, 41, 42] are based on local updates,

and their basic idea is to (i) traverse the input graph G from the
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source node s while maintaining lower and upper bounds of each

node’s PPR, and (ii) terminate the traversal once the lower and upper

bounds can pinpoint the exact top-k results. The only exception

is Chopper [15], which is a matrix-based technique that utilizes

Chebyshev polynomials for acceleration. As with TopPPR for ρ = 1,

these methods implicitly require that дapρ > 0; to address the

pathological case ofдapρ = 0, they also allow a (very) small amount

дapmin of absolute error in PPR estimations. In our experiments, we

compare the state of the art among these methods [15, 41] against

TopPPR with ρ = 1.

There are also several methods [29–32, 39, 40, 45] for approxi-

mate top-k PPR queries. Among them, BiPPR [30], HubPPR [39] and

FORA [40] are the state-of-the-art approximate PPR algorithms. In

our setting, the three algorithms ensure a relative error of at most ϵr
for any PPR value larger than 1/n, with probability at least 1 − 1/n.
It is shown in [40] that the query cost of these three algorithms

is O ( 1

ϵr n logn). We note that this bound is not comparable to the

query cost of TopPPR, as none of the above approximate algorithms

are able to provide non-trivial guarantees on the precision of the

results. Our experiments in Section 7 show that these methods

[30, 39, 40] are inferior to TopPPR in terms of the trade-off between

precision and efficiency.

In addition, considerable efforts [13, 27, 32, 34, 37, 45] have been

made to investigate algorithms for single-source PPR queries. The

methods proposed are mostly built upon the power method [34],

which is a matrix-based iterative algorithm that can answer single-

source PPR queries with any given threshold ϵa on the absolute

errors of PPR estimations. Observe that if we set ϵa to a sufficient

small value, then we can obtain very accurate PPR estimations

from a single-source method, based on which we can derive precise

results for top-k PPR queries. Therefore, we include the state-of-

the-art single-source PPR algorithm [27] in our experiments on

exact top-k PPR queries.

Finally, it is worth mentioning that existing work has studied

other variants of PPR queries, such as point-to-point PPR queries

[16, 29–31, 39], PPR queries on dynamic graphs [12, 13, 33, 35, 43,

44], distributed algorithms for PPR [11, 21]. These studies, however,

are orthogonal to our work.

7 EXPERIMENTS
This section experimentally evaluates the proposed solutions against

the states of the art. All experiments are conducted on a machine

with a Xeon(R) CPU E5-2620@2.10GHz CPU and 96GB memory.

7.1 Experimental Settings
Methods. Table 2 summarizes the methods evaluated in our ex-

periments. We compare TopPPR with six algorithms: FLoS_RWR,

Chopper, FORA, FORA+, HubPPR, and BiPPR. As mentioned in

Section 1, FLoS_RWR and Chopper are the state-of-the-art algo-

rithms for exact top-k PPR queries. We also include BePI, the most

advanced index-based algorithm for single-source PPR queries, as a

baseline solution for exact top-k queries. Note that BePI computes

the PPR value π (s, t ) with a tiny error for each t ∈ V , and thus,

is able to return the exact top-k nodes in correct order. For exper-

iments on approximate top-k PPR queries, we compare TopPPR

against FORA and BiPPR, the state-of-the-art index-free algorithms

Table 2: Methods.

Methods Exactness Preprocessing? Reference

TopPPR Exact & Approximate No Our method

FLoS_RWR Exact No [41]

Chopper Exact No [15]

BePI Exact Yes [27]

FORA+ Approximate Yes [40]

FORA Approximate No [40]

HubPPR Approximate Yes [39]

BiPPR Approximate No [30]

Table 3: Datasets.

Dataset Type n m

DBLP undirected 317,080 1,049,866

LiveJournal undirected 3,997,962 34,681,189

Orkut undirected 3,072,441 117,185,083

Twitter directed 41,652,230 1,468,365,182

for approximate top-k PPR queries.We also include two index-based

algorithms, FORA+ and HubPPR. We obtain the codes of Chopper

from [2], FLoS_RWR from [3], BePI from [4], and we implement

all other algorithms in C++.

Datasets and Metrics.We use 4 benchmark datasets that are ob-

tained from public sources [5, 6] and are frequently used in previous

work, as shown in Table 3. On each dataset, we randomly select 100

query nodes, and apply the power method [34] with 100 iterations

to compute the ground-truth PPR values. This ensures that each

ground-truth value has at most 10
−10

absolute error. For each query

node, we use the top-k nodes computed by the power method as

the ground truth node set. We set k = 1, 2, 4, 8, . . . , 1024, which is

the typical setting for top-k PPR queries [40]. Following previous

work [30, 31, 39, 40], we set the decay factor α of PPR to 0.2.

We evaluate the accuracy of each method using two classic met-

rics for evaluating ranking results: precision and Normalized Dis-
counted Cumulative Gain (NDCG) [25]. Specifically, given a query

node s , letVk = {t1, . . . , tk } denote the ground-truth top-k node set,

andV ′k = {t
′
1
, . . . , t ′k } denote the top-k node set returned by the algo-

rithm to be evaluated. The precision ofV ′k is defined as

|Vk∩V ′k |
k . The

NDCG of V ′k , on the other hand, evaluates whether V ′k orders the

important nodes correctly, and it is defined as
1

Zk
∑k
i=1

2
π (s,t ′i )−1

log(i+1) ,

where Zk =
∑k
i=1

2
π (s,ti )−1

log(i+1) .

7.2 Exact Top-k PPR Queries
In our first set of experiments, we evaluate the efficiency of each

method for exact top-k PPR queries. We compare TopPPR with

FLoS_RWR and Chopper, two state-of-the-art algorithms for exact

top-k PPR, and with BePI, the most advanced method for single-

source PPR. We set ρ = 1 for TopPPR to guarantee the exactness

of the top-k results with high probability. FLoS_RWR has two

internal parameters τ and u, where τ is the error allowed for the

iterative method used by FLoS_RWR as a subroutine, and u is the

absolute error allowed for the PPR estimators. In accordance with

the settings in [41], we set τ = u = 10
−5
. BePI has a internal

parameter ε , which is the error allowed for the iterative methods

used in BePI. We set ε = 10
−10

, following the experiments in [27].
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Figure 3: Query time v.s. k for exact top-k PPR queries
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Figure 4: NDCG for exact top-k PPR queries

Table 4: Average precision for exact top-k queries.

Methods DBLP LiveJournal Orkut Twitter
TopPPR 1 1 1 1

BePI 1 1 1 1

Chopper 1 1 1 1

FLoS_RWR 0.99994 N/A N/A N/A

Query Time. Figure 3 reports the average query time of each

method on all four datasets. Note that both the x-axis and y-axis
are in log-scale. FLoS_RWR requires more than 3600 seconds per

query on datasets larger than DBLP, and is thus excluded from the

experiments on LiveJournal,Orkut and Twitter. We first observe that

TopPPR outperforms the competitors by 2 to 3 orders of magnitude.

Notably, TopPPR is able to answer an exact top-512 query on Twitter
in 15 seconds, while the closest competitor, Chopper, takes 1500

seconds to answer a query. The reason is that (i) BePI and Chopper

use matrix-based methods to compute PPR values, which leads to

significant query cost, and (ii) FLoS_RWR uses a less-optimized

version of local search, such that when the decay factor α = 0.2, it

requires traversing a large number of edges in each of its iterations,

which results in inferior efficiency.

Precision andNDCG.Table 4 reports the precision of eachmethod

on the four datasets. For each graph, we perform 100 top-k queries

for k = 1, 2, 4, 8, . . . , 1024, and take the average precision over these

queries. We observe that by setting ρ = 1, TopPPR indeed achieves

precision 1. In addition, Chopper, and BePI are also able to answer

all queries exactly. Meanwhile, FLoS_RWR achieves a precision

slightly less than 1 on DBLP. This is because it allows an absolute

error of 10
−5

in PPR estimations, which is larger than the difference

between the k-th and (k + 1)-th largest PPR values on DBLP when

k is large.

Figure 4 illustrates theNDCGof eachmethod. Notice that TopPPR

achieves near-perfect NDCG on all four graphs, even though it does

not provide formal guarantees on the order of the top-k results.

The other three methods also offer high NDCG.

7.3 Approximate Top-k PPR Queries
In our second set of experiments, we evaluate the efficiency and

accuracy of each method for approximate top-k PPR queries. We

compare TopPPR against FORA, FORA+, HubPPR, and BiPPR,

which are the state of the art for approximate top-k PPR. We set

ρ = 0.99 for TopPPR to guarantee a precision of at least 0.99.

Following [30, 31, 39], we set δ = 1/n,pf = 1/n, and εr = 0.5 for

FORA, FORA+, HubPPR, and BiPPR.

Query Time. Figure 5 reports the average query time of each

method. Note that both the x- and y-axis are in log-scale. We first

observe that TopPPR outperforms all competitors in terms of query

time. In particular, TopPPR processes a top-512 PPR query on Twitter
in 2 seconds on average, while the closest index-free competitor

FORA uses 30 seconds. Furthermore, TopPPR also outperforms

FORA+, which requires hours of preprocessing time on Twitter and
index size several times of the original dataset (See Table 5).

Precision. Figure 6 shows the precision of each method on each

dataset. In general, all approximate methods achieve high precision.

In particular, the precision of TopPPR is always higher than the

required ρ = 0.99. Meanwhile, the precisions of FORA, FORA+, and

BiPPR are dominated by that of TopPPR, while HubPPR achieves

lower precision than TopPPR does on all datasets but Orkut. This
makes TopPPR a more preferable method than FORA, FORA+,
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Figure 5: Query time for approximate top-k PPR queries
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Figure 6: Precision for approximate top-k PPR queries
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Figure 7: NDCG for approximate top-k PPR queries

BiPPR, and HubPPR, since it outperforms the latter in terms of

efficiency, accuracy, and space consumption.

NDCG. Figure 7 illustrates the NDCG of each method. Observe that

TopPPR offers high NDCGs on all graphs. In contrast, the NDCGs

of BiPPR and HubPPR are notably worse than that of TopPPR on all

datasets but DBLP, while FORA and FORA+ are inferior to TopPPR

on Orkut and Twitter.

7.4 Exact Top-k PPR by Approximate Methods
From Figure 6, we observe that BiPPR, HubPPR, FORA, and FORA+

all achieve relatively high precisions for top-k queries. As such, a

natural question is: if we allow these methods to spend more query

time, can they achieve a precision of 1 and therefore be able to

answer exact top-k queries? To answer this question, we design

the following experiment that evaluates the time needed for each

approximate method to improve its precision to 1. For each method,

we repeatedly double the query time by resetting its error parameter

εr , and report the first query time for which the method’s precision
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Figure 8: Query time for approximate methods to achieve
precision 1.

reaches 1. Figure 8 reports the query time needed for FORA, FORA+,

HubPPR, and BiPPR on DBLP and Twitter under this setting. For
comparison, we also include TopPPR with ρ = 1. We omit BiPPR,

HubPPR and FORA from the experiments on Twitter, as they are

unable to achieve 100% precision when their query time is within

1000 seconds. We observe that TopPPR outperforms the closest
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Table 5: Space overheads and preprocessing costs for index-based algorithms.

Dataset
Preprocessing Time (seconds) Space Overhead (GBs)

Graph Size
FORA+ HubPPR BePI FORA+ HubPPR BePI

DBLP 6.4 30.2 2.95 0.074 GB 0.22GB 0.014 GB 0.036 GB

LiveJournal 100.2 323.8 10574.3 1.87 GB 5.4 GB 61.6GB 0.5 GB

Orkut 234.1 606.7 3578.2 2.9 GB 13.8GB 34.0 GB 1.2 GB

Twitter 3572.4 5498.5 13528.4 21.2 GB 40.0 GB 81.5 GB 12.6 GB
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Figure 9: Absolute error v.s. Rank.

competitor by at least two orders of magnitude. This indicates that

existing approximate methods are not suitable for exact queries.

7.5 Absolute Error Analysis
In our next set of experiments, we analyze the absolute error of

individual PPR estimates of TopPPR. We compare TopPPR with

FORA, the state-of-the-art index-free approximate PPR algorithm.

We also include Monte Carlo algorithm (MC) and Monte Carlo algo-

rithm with (
√

1 − α )-walks (MC*), for evaluating the effectiveness

of (
√

1 − α )-walks. For each method, we issue 100 different top-k
queries for k = 500, and report the average absolute error of the es-

timator for the j-th largest PPR, for 1 ≤ j ≤ 500.Following previous

settings, we set δ = 1/n,pf = 1/n, and εr = 0.5 for FORA. We set

the number of random walks nr for MC and MC* to be the same

as FORA, so that we can evaluate the effectiveness of the forward

search by FORA. For a fair comparison, we set ρ = 1 for TopPPR so

that the query time of TopPPR is close to that of FORA.

Figure 9 shows the average absolute error as well as the average

query time of each method on DBLP and Twitter. We make the

following observations from Figure 9: (i) By employing forward

search, FORA significantly outperforms MC in terms of accuracy;

(ii) (
√

1 − α )-walks improves the original Monte Carlo algorithm

by a factor of 2 to 4 times, which concurs with our theoretical

analysis. (iii) By employing (
√

1 − α )-walks and group backward

search, TopPPR outperforms FORA for all top-500 nodes, with less

query time. (iv) The gap between TopPPR and FORA becomes

larger as rank i approach 500, which proves the effectiveness of the

group backward search algorithm. In general, forward search and

(
√

1 − α )-walks are two useful techniques for improving accuracy

for ALL top-k nodes, while group backward search significantly

reduces the absolute error for nodes that are close to top-500, which

is crucial for achieving a precision of 1.

7.6 Effects of parameter ρ
Figure 10 shows the how the query time and precision of TopPPR

change when we vary the parameter ρ. We perform 100 top-500
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Figure 10: Varying ρ.

PPR queries with TopPPR for ρ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1

on Twitter, and report the average query time and precision in

Figure 10. We observe that for ρ = 0.5, TopPPR achieves a precision

of 0.56 using a query time of 0.09 seconds. As we increase ρ, TopPPR
provides provides more accurate top-k results with longer query

time. For ρ = 1, TopPPR is able to return the exact top-500 nodes

with a query time of 15 seconds.

7.7 Preprocessing Time and Space Overhead.
Table 5 shows the preprocessing time and space overhead for each

index-based algorithm. Note that TopPPR completely avoids pre-

processing and space overheads, which makes it more preferable

for large graphs that are subject to frequent updates.

8 CONCLUSIONS
This paper presents TopPPR, an algorithm that enables fast re-

sponses for exact top-k PPR queries on large graphs, and naturally

supports dynamic graphs as it does not require any index. TopPPR

answers any top-k PPR query inO
(
(m + n logn)/

√
дapρ

)
expected

time, and it ensures that, with 1 − 1/n probability, a top-k node set

is returned with precision at least ρ. Our experiments show that the

algorithm significantly outperforms the existing methods in terms

of query efficiency, accuracy, and scalability. For future work, we

plan to investigate how TopPPR can be applied on massive graphs

that do not fit in the main memory of a single machine.
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A CHERNOFF BOUND
Lemma A.1 (Chernoff Bound [14]). Consider a set {xi } (i ∈

[1,nr ]) of i.i.d. random variables with mean µ and xi ∈ [0, r ],

Pr



������

1

nr

nr∑
i=1

xi − µ
������
≥ ε


≤ exp

*
,
−

nr · ε
2

r ( 2

3
ε + 2µ )

+
-
.

B WALKER’S ALIAS METHOD
Walker’s alias method [38] is an optimal data structure for the

weighted sampling problem. In this problem, the input is a set of

non-negative real numbers w1, . . . ,wn , and the goal is to build a

data structure, such that we can extract an index i with probability

pi = wi/
∑n
j=1

w j . Consider n bottles, where bottle i contains some

(probability) mass ri . Initially, ri is equal topi . During the algorithm,

we iteratively modify the values vi ’s in the following way. In each

iteration, we pick a bottle i with ri > 1/n and another bottle j with
r j < 1/n of mass, and pour 1/n − r j probability mass of bottle i
to bottle j. This makes the probability mass in bottle j equal to
1/n. After at most n such iterations, each bottle contains 1/n mass

that comes from at most two bottles. To draw a sample, we first

uniformly sample a bottle k ∈ {1, . . . ,n}. Assume that the bottle k
contains a probability mass p from pi and a probability mass 1/n−p
from pj . We then draw a random number z ∈ [0, 1/n], and return i
as the final sample if z < p, and j as the final sample otherwise. It

is easy to see that drawing a sample takes O (1) time.

C PROOFS
C.1 Proof of Lemma 4.1

Proof. Recall that TopPPR uses the following formula to esti-

mate π (s, t ):

π (s, t ) = π f (s, t )+
∑
u ∈V

r f (s,u)πb (u, t )+
∑

u,v ∈V
r f (s,u)π (u,v )rb (v, t ).
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The first two terms π f (s, t ) and
∑
u ∈V r f (s,u)πb (u, t ) are determin-

istically provided by the forward and backward search algorithms.

Let µ =
∑
u,v ∈V r f (s,u)π (u,v )rb (v, t ), we only need to show that

a random walk sample gives an unbiased estimation for µ. Fix the
termination node t . Let Xi denote the estimator of the i-th random

walk, and X = 1

nr
∑nr
i=1

Xi denote the estimator for µ. Recall that

the Xi ’s are i.i.d. random variables computed as follow: during the

i-th random walk, each node u is sampled from the Alias structure

r f with probability r f (s,u)/r
f
sum to be the start node, and if the

random walk terminates at a node v , we set Xi = r
f
sumrb (v, t ). By

the definition of personalized pageranks, we have that the prob-

ability that this random walk terminates at v is π (u,v ). We can

compute the expectation of Xi as follows:

E[Xi ] =
∑
u ∈V

∑
v ∈V

r f (s,u)

r
f
sum

· π (u,v ) · r
f
sumrb (u,v )

=
∑
u ∈V

∑
v ∈V

r f (s,u)π (u,v )rb (v, t ) = µ .

Therefore, E[X ] = 1

nr
∑nr
i=1

E[Xi ] = µ, and TopPPR gives an unbi-

ased estimator for each π (s, t ), t ∈ V . □

C.2 Proof of Lemma 4.2
Proof. Recall that the TopPPR starts with n0 =

n logn
|C | random

walk samples, and at each iteration, doubles the number of samples.

Therefore, at iteration i of TopPPR, the number of random walk

samples in this iteration nr is 2
in0, and thus the total number of

samples Nr is at most 2
i+1n0. Fix a target node t , recall that

β (s, t ) =

√
2σ̄ 2 (s, t ) ln (3n3

log
2 nr )

nr
+

3r
f
sum ln (3n3

log
2 nr )

nr
.

By the Empirical Bernstein inequality, we have |π (s, t ) − π̂ (s, t ) | ≥
β (s, t )with probability atmost

1

n3
log

2 nr
= 1

n3
log

2
2
in0

= 1

n3 (logn0+i )2
.

By union bound over i = 1, . . . ,∞, it follows that the proba-

bility that there exists a target node t in an iteration such that

|π (s, t ) − π̂ (s, t ) | ≥ β (s, t ) is at most

∑∞
i=0

1

2n3 (logn0+i )2
≤ 1

n3
, and

the Lemma follows. □

C.3 Proof of Lemma 4.4
Proof. We prove the lemma by induction. Assume that at the

end of the (i−1)-th iteration, all nodes inVk are top-k nodes, and all

nodes inV \ (C∪Vk ) are non-top-k nodes. At the i-th iteration, recall
that TopPPR moves a node t from C to Vk if the number of t ′ ∈ C
such that π̂ (s, t ′) + β (s, t ′) ≤ π̂ (s, t ) − β (s, t ) exceeds |C | + |Vk | −k .
By Lemma 4.2, all confidence bounds are correctly computed by

TopPPR, and thus the number t ′ ∈ C such that π (s, t ′) ≤ π (s, t )
exceeds |C |+ |Vk | −k . This prove that there are less than k nodes in

Vk andC with PPR values larger than π (s, t ). Since by the induction
hyperthesis, nodes outsideC andVl are non-top-k nodes, it follows

that the top-k nodes are either inC orVk , and thus t is also a top-k
node. Similarly, we can prove that if the TopPPR algorithm removes

a node t from C , then there are at least k nodes with PPR values

larger or equal to π (s, t ) and thus t is a non-top-k node. Therefore

the induction holds and the Lemma follows. □

C.4 Proof of Lemma 4.5
We need the following lemma that bounds the relative error of the

first pruning phase.

Lemma C.1 ([40]). Let π̂b (s, t ) denote the estimator for π (s, t )
obtained by the first phase of TopPPR. With probability 1 − 1/n3, we
have 1

4
π (s, t ) ≤ π̂b (s, t ) ≤ 4π (s, t ) for any t ∈ V with π (s, t ) ≥ 1

n ,
and π̂b (s, t ) ≤

4

n for any t ∈ V with π (s, t ) ≤ 1

n .

Proof. We sketch the proof for completeness. By the property of

forward search, we have π (s, t ) = π f (s, t ) +
∑
u ∈V r f (s,u)π (u, t ).

Recall that π f (s, t ) is deterministically computed by the forward

search, and µ =
∑
u ∈V r f (s,u)π (u, t ) is estimated by the following

random walk process: for each walk, we set sample each node u

according to probability r f (s,u)/r
f
sum , and set Xi = r

f
sum if the

walk terminates at t and Xi = 0 otherwise. Let X =
∑nr
i=1

Xi , we

have E[Xi ] =
∑
u ∈V

r f (s,u )
r fsum

π (u, t )r
f
sum =

∑
u ∈V r f (s,u)π (u, t ) =

µ .We also note that by the property of the forward search,

r
f
sum =

∑
u ∈V

r f (s,u) ≤
∑
u ∈V

r
f
maxdout (u) =mr

f
max =

√
m

16n logn
.

Therefore, we have nr = 4

√
mn logn ≥ 16r

f
sumn logn, and thus by

the Chernoff inequality

Pr

[
|E[X ] − µ | ≥

3

4

max

{
µ,

1

n

}]
≤ e

−nr max{µ, 1

n }

4r fsum ≤ 1/n3,

and the Lemma follows. □

Proof of Lemma 4.5. Consider the i-iteration of TopPPR, and

let rbmax (i ) denote the r
b
max value that is used by the group back-

ward search in this iteration.We use rbmax (v, t ) = r
b
max (i )·

√
din (v )
π̂b (s,v )

to denote the customized threshold for node v and target node

t ∈ C . By Lemma C.1 we have
1

4
π (s,v ) ≤ π̂b (s,v ) ≤ 4π (s,v )) for

π (s,v ) ≥ 1/n, and π̂b (s,v ) = 1/n for π (s,v ) < 1/n with probability

at least 1 − 1/n3
. Therefore, we have π̂ (s, t ) ≤ 4π (s, t ) + 1

n for any

t ∈ V , and thus∑
v ∈V

π̂b (s, t ) ≤
∑
v ∈V

(
4π (s, t ) +

1

n

)
= 5. (2)

Fix a target node t ∈ C and an internal node v . Since each

backward push on v transfers at least αrbmax (v, t ) portion from its

residue to its reserve, the number of time that backward pushes

is performed on v is at most
π (v,t )

αrbmax (v,t )
. Each backward push on

v visits all its in-neighbours, so the cost for v and t is at most

π (v,t )
αrbmax (v,t )

din (v ). Summing over all t ∈ C and v ∈ V , and we have

cost (backward ) ≤
∑
t ∈C

∑
v ∈V

π (v,t )
αrbmax (v,t )

din (v ). Since r
b
max (v, t ) =

rbmax (i ) ·
√

din (v )
π̂b (s,v )

, we have

cost (backward ) ≤
∑
t ∈C

∑
v ∈V

π (v, t )
√
π̂b (s,v )din (v )

rbmax (i )

=
∑
v ∈V

√
π̂b (s,v )din (v )

rbmax (i )

∑
t ∈C

π (v, t ) ≤
1

rbmax (i )

∑
v ∈V

√
π̂b (s,v )din (v ).
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The last equation is due to the fact that

∑
t ∈C π (v, t ) ≤

∑
t ∈V π (v, t ) =

1. By the Cauchy-Schwarz inequality, we have

*
,

∑
v ∈V

√
π̂b (s,v )din (v )+

-

2

≤ *
,

∑
v ∈V

(√
π̂b (s,v )

)2

+
-
· *
,

∑
v ∈V

(√
din (v )

)
2+
-

=
∑
v ∈V

π̂b (s,v )
∑
v ∈V

din (v ) ≤ 5m.

The last equation is due to the fact that

∑
v ∈V din (v ) = m and

equation (2). Therefore, we have

∑
v ∈V

√
π (s,v )din (v ) ≤

√
5m,

and thus cost (backward ) ≤
√

5m
rbmax (i )

in this iteration. Finally, recall

that at each iteration, we halve the value of rbmax , it follows that the

total cost of the group backward search is dominated by O
( √

m
rbmax

)
,

where rbmax is the threshold used in the last iteration. □

C.5 Proof of Lemma 4.6
Proof. This lemma is proved in [40], and we sketch the proof

here for completeness. Consider the i-th iteration, and let r
f
max (i )

denote the forward residue threshold . For eachu ∈ V , let r
f
max (s,u) =

r
f
max (i )dout (u) denote the maximum forward residue threshold of

u. Since each forward push on u transfers at least αr
f
max (s,u) por-

tion from its residue to its reserve, it follows that the total number of

forward pushes onu is bounded by
π (s,u )

αr fmax (s,u )
. Note that each push

visits all out-neighbours of u, and thus the total cost of the forward

pushes on node u is bounded by
π (s,u )

αr fmax (s,u )
dout (u). Summing up

over all u ∈ V and we have cost ( f orward ) ≤
∑
u ∈V

π (s,u ) ·dout (u )
αr fmax (s,u )

.

Combining with r
f
max (s,u) = r

f
maxdout (u) follows that

cost ( f orward ) ≤
∑
u ∈V

π (s,u) · dout (u)

αr
f
max · dout (u)

=
∑
u ∈V

π (s,u)

αr
f
max (i )

=

∑
u ∈V π (s,u)

αr
f
max (i )

=
1

αr
f
max (i )

.

The last equation uses the fact that

∑
u ∈V π (s,u) = 1. Finally, recall

that at each iteration, the algorithm halves the value of r
f
max , it

follows that the total cost of the forward search is dominated by the

O

(
1

r fmax

)
, where r

f
max is the threshold used in the last iteration. □

C.6 Proof of Lemma 4.7
Proof. For simplicity, we assume ρk is an integer. First, we

claim that if for any ti ∈ C with i ≤ ρk and any tj ∈ C with

k + 1 ≤ j ≤ n, we have π̂ (s, ti ) − β (s, ti ) ≥ π̂ (s, tj ) + β (s, tj ), then
the lemma follows. To see why this is true, note that this implies

that there are at least n − k nodes with upper confidence bounds

higher or equal to the lower confidence bound of ti , and ti will be
moved toVk at the end of this iteration. On the other hand, if a node

ti with i ≤ ρk was already removed from C in previous iterations,

it must be moved toVk , sinceV \ (C ∪Vk ) only contains non-top-k
nodes. Therefore, all top-ρk nodes will be in Vk at the end of this

iteration, and the algorithm stops.

Next, we prove that if at the end of an iteration, we have β (s, t ) ≤
1

4
дapρ for any t ∈ C , then for any tj ∈ C,k + 1 ≤ j ≤ n and any

ti ∈ C, i ≤ ρk , we have π̂ (s, ti ) − β (s, ti ) ≥ π̂ (s, tj ) + β (s, tj ). We

observe that

β (s, ti ) ≤
1

4

дapρ =
1

4

(
π (s, tρk ) − π (s, tk+1

)
)
≤

1

4

(
π (s, ti ) − π (s, tj )

)
,

and similarly β (s, tj ) ≤
1

4

(
π (s, ti ) − π (s, tj )

)
. Therefore, β (s, ti ) +

β (s, tj ) ≤
1

2

(
π (s, ti ) − π (s, tj )

)
, and thus

β (s, ti ) + β (s, tj ) ≤
(
π (s, ti ) − π (s, tj )

)
−

(
β (s, ti ) + β (s, tj )

)
= (π (s, ti ) − β (s, ti )) −

(
π (s, tj ) + β (s, tj )

)
≤ π̂ (s, ti ) − π̂ (s, tj ).

The last inequality uses the fact that π (s, ti )−β (s, ti ) ≤ π̂ (s, ti ) and
π (s, tj ) + β (s, tj ) ≥ π̂ (s, tj ). Therefore we have π̂ (s, ti ) − β (s, ti ) ≥
π̂ (s, tj ) + β (s, tj ) for any ti , tj ∈ C and i ≤ ρk , j ≥ k + 1, and the

Lemma follows. □

C.7 Proof of Lemma 4.8
We need the following lemma that bounds the empirical variance

of the estimators in the candidate set C .

Lemma C.2. Consider an iteration of TopPPR, and let rbmax , r
f
sum

and nr denote the backward residue threshold, forward residue sum-
mation and the number of random walks in this iteration. For any

t ∈ C , we have σ̄ 2 (s, t ) ≤ 4m · r
f
sum · (r

b
max )

2 +
3

(
r fsum

)2

logn
nr with

probability at least 1 − 1/n3.

Proof. Following the same notation as in the proof of Lemma 4.1,

we let Xi be the estimator provided by the i-th random walk. Recall

that the Xi ’s are i.i.d. random variables computed as follow: during

the i-th random walk, each node u is sampled from the Alias struc-

ture r f with probability r f (s,u)/r
f
sum to be the start node, and if

the random walk terminates at a node v , we set Xi = r
f
sumrb (v, t ).

By the definition of personalized pageranks, we have that the prob-

ability that this random walk terminates at v is π (u,v ).
To bound the empirical variance σ̄ 2 (s, t ), we first note that σ̄ 2 (s, t ) ≤

1

nr
∑nr
i=1

X 2

i . Let Y =
1

nr
∑nr
i=1

X 2

i , it is easy to see that X 2

i , i =

1, . . . ,nr are also i.i.d. random variables. We can bound the expec-

tation of X 2

i as follows

E[X 2

i ] ≤
∑
u ∈V

∑
v ∈V

r f (s,u)

r
f
sum

· π (u,v ) · (r
f
sumrb (u,v ))2

= r
f
sum

∑
u,v ∈V

r f (s,u)π (u,v )rb (v, t )2.

Recall that TopPPR set rb (v, t ) ≤ rbmax (v, t ) = r
b
max

√
din (v )
π̂b (s,v )

, and

by Lemma C.1 we have π̂b (s,v ) ≥ π (s, t )/4, it follows that

E[X 2

i ] ≤ 2r
f
sum

∑
u,v ∈V

r f (s,u)π (u,v ) *.
,
rbmax ·

√
4din (v )

π (s,v )
+/
-

2

≤ 2r
f
sum

(
rbmax

)
2

∑
u,v ∈V

r f (s,u)π (u,v ) ·
din (v )

π (s,v )

= 2r
f
sum

(
rbmax

)
2

∑
v ∈V

*
,

din (v )

π (s,v )

∑
u ∈V

r f (s,u)π (u,v )+
-
.
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By forward search, π (s,v ) = π f (s,v ) +
∑
u ∈V r f (s,u)π (u,v ), it

follows that

∑
u ∈V r f (s,u)π (u,v ) ≤ π (s,v ), and thus

E[X 2

i ] ≤ 2r
f
sum

(
rbmax

)
2

∑
v ∈V

(
din (v )

π (s,v )
· π (s,v )

)
= 2r

f
sum

(
rbmax

)
2

∑
v ∈V

din (v ) = 2r
f
sum

(
rbmax

)
2

·m.

Therefore, we have E[Y ] ≤ 2mr
f
sum

(
rbmax

)
2

. Let z =
8

(
r fsum

)2

logn
nr ,

since each X 2

i ≤
(
r
f
sum

)
2

, by Chernoff inequality, the probability

that Y ≤ 2E[Y ] + z ≤ 4mr
f
sum

(
rbmax

)
2

+
8

(
r fsum

)2

logn
nr is at most

exp

(
−nr (E[Y ] + z)2

/ (
r
f
sum

)
2

·

(
8

3

E[Y ] +
2

3

z
))

≤ exp

(
−

3

8

nr · (E[Y ] + z)
/ (

r
f
sum

)
2

)
≤ exp

(
−

3nr logn

nr

)
≤

1

n3
,

and the lemma follows. □

Proof of Lemma 4.8. By Lemma 4.7, we need to show that if at

some iteration, the number of randomwalksnr =
cmr fsum

(
rbmax

)
2

дap2

ρ
logn

for constant c , we have β (s, t ) ≤ дapρ/4 for any t ∈ C . Recall that

β (s, t ) =

√
2σ̄ 2 (s, t ) ln (3n3

log
2 nr )

nr
+

3r
f
sum ln (3n3

log
2 nr )

nr
. (3)

By the assumption that rbmax ≥

√
дapρ
m , we have

nr ≥
cmr

f
sum

(
rbmax

)
2

дap2

ρ
logn ≥

cmr
f
sum ·

дapρ
m

дap2

ρ
logn ≥

cr
f
sum logn

дapρ
,

and thus we can bound the the second term of equation (3) as

6r
f
sum ln (3n3

log
2 nr )

nr
≤ дapρ

6 log (3n3
log

2 nr )

c logn
≤ дapρ/8. (4)

For c sufficiently large. The last inequality is due to n ≥ log
m

дapρ .

To bound the first term of equation (3), we observe that by

Lemma 4.1, the empirical variance σ̄ 2 (s, t ) ≤ 2mr
f
sum

(
rbmax

)
2

+

8

(
r fsum

)2

logn
nr with probability at least 1−1/n3

. If 2mr
f
sum

(
rbmax

)
2

≤

8

(
r fsum

)2

logn
nr , we have σ̄ 2 (s, t ) ≤

16

(
r fsum

)2

logn
nr and the first term

of equation (3) can be bounded by

√
2σ̄ 2 (s, t ) ln 3n3

log
2 nr

nr
≤

√√√√√
16

(
r fsum

)2

logn
nr ln 3n3

log
2 nr

nr
≤

1

8

дapρ .

The last inequality is due to inequality (4). On the other hand, if

2mr
f
sum

(
rbmax

)
2

≥
8

(
r fsum

)2

logn
nr , we have σ̄ 2 (s, t ) ≤ 4mr

f
sum

(
rbmax

)
2

,

and thus√
2σ̄ 2 (s, t ) ln (3n3

log
2 nr )

nr
≤

√√
8mr

f
sum

(
rbmax

)
2

ln (3n3
log

2 nr )

nr

=

√√√√√√√√√8mr
f
sum

(
rbmax

)
2

ln 3n3
log

2 nr

cmr fsum
(
rbmax

)
2

дap2

ρ
logn

≤ дapρ

√
24 logn lognr

c logn
≤

дapρ

8

for c sufficiently large. Thus we have β (s, t ) ≤ дapρ/4 for c suffi-

ciently large, and the Lemma follows. □

C.8 Proof of Theorem 4.9 and Theorem 4.10
Proof. Recall that at the i-th iteration, we have r

f
max =

1

2
im

and rbmax = 1/2i
√
m and walk number nr = c2

in logn/|C |. The
total query cost is cost ( f orward ) + cost (backward ) + cost (walk ),
which can be bounded by

O *
,

1

r
f
max

+
-
+O *

,

√
m

rbmax

+
-
+ nr |C | = O

(
2
im + c2

in logn
)
. (5)

For worst-case graph, if we can prove that TopPPR stops before

iteration when 2
i = 1/

√
дapρ , then the total query cost is bounded

by O

(
m+n logn
√
дapρ

)
and Theorem 4.9 follows. More precisely, we

have r
f
max =

√
дapρ/m, rbmax =

√
дapρ/m. By Lemma 4.8 and

rbmax =
√
дapρ/m, we have nr ≥

c2
in logn
|C | ≥

cn logn
√
дapρ · |C |

≥

c logn
√
дapρ

. The last inequality uses the fact that |C | ≤ n. There-

fore, we have r
f
max

(
rbmax

)
2

=

(√
дapρ

)
3

m2
and nr ≥

c logn
√
дapρ

≥

cm2

(√
дapρ

)
3

m2

дap2

ρ
logn ≥

cmr fsum
(
rbmax

)
2

дap2

ρ
logn. This proves that the

number of walks nr = Ω *
,

cmr fsum
(
rbmax

)
2

дap2

ρ
logn+

-
, and by Lemma 4.7,

the algorithm stops at this iteration.

Similarly, for power law graph, we can prove that TopPPR stops

before iteration when 2
i = 1√

дapρ
· k

1

4

n
1

4

, under Assumption 1. Thus

Theorem 4.10 follows from equation 5. □

C.9 Proof of Lemma 5.1
Proof. We define two types of random walks. A non-stop ran-

dom walk from s is a traversal of G that starts from s and, at each
step, proceeds to a randomly selected out-neighbor of the current

node. An (1 − α )-walk is a random walk in which at each step the

random walk proceeds to the next node with probability 1 − α and

terminates with probability α .
Let pi (s, t ) denote the probability that a non-stop random walk

from s visits t in the i step. We have π (s, t ) =
∑∞
i=0

α (1−α )ipi (s, t ).

To see this, note that α (1−α )ipi (s, t ) is the probability that a (1−α )-
walk starts at s and terminates at t using i steps. Summing i over

0 to ∞ and the equation follows. For (
√

1 − α )-walk, recall that

(
√

1 − α )ipi (s, t ) is the probability that the

√
1 − α-walk visits t at

the i-th step, and (
√

1 − α )i is the value added to π̂ (s, t ), we have

E[π̂ (s, t )] =
∞∑
i=0

α (
√

1 − α )i · (
√

1 − α )ipi (s, t ) = π (s, t ),

and the Lemma follows. □
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