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Abstract

This paper studies the profitability of market making strategies and the impact of
latency on electronic market makers’ profits for large–tick assets. By analyzing the
optimal market making problem using Markov Decision Processes, we provide simple
conditions to determine when a market maker earns zero or positive profits and discuss
economic implications. We also prove that higher latency leads to reduced profits for
market makers, and conduct numerical experiments to illustrate the effect of latency
and relative latency on the market maker’s expected profit. Finally, our work highlights
the importance of value of orders in optimal market making.

1 Introduction

A market maker in a security market provides liquidity to other investors by quoting bids
and offers, hoping to make a profit from the bid-ask spread while avoiding accumulating
a large net position in the assets traded. Market makers play a crucial role in financial
markets, as the liquidity they offer allows investors to obtain immediate executions of their
orders, and this flexibility facilitates market efficiency and functioning. Traditionally in
equity markets, there are “official” or designated market makers who have entered into
contractual agreements with exchanges and they are under certain affirmative obligations
to stand ready to supply liquidity. In recent decades, major financial markets have became
electronic, and a modern exchange is usually operated as an electronic limit order book
system where all the outstanding limit orders are aggregated for market participants to view
[23]. As a result, any professional trader can adopt market making as a trading strategy,
often through computer-based electronic trading decisions and automated computer-based
trade executions. Such traders are called electronic market makers as in [26]. They are
not obliged and can enter and exit market at will. This work focuses on such “unofficial”
electronic market makers.

This paper studies optimal market making in a limit order book and try to answer two
questions for large-tick assets: (1) when market making strategies are profitable? (2) how
does the latency affects the profitability of market making strategies? Large-tick assets are
those assets with large relative tick size (the dollar tick size, e.g. one cent, normalized by
the price of the asset) and their bid-ask spreads rarely exceed one tick [8, 9]. Empirically,
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Figure 1: Latency: the entire cycle A→ B → C → D → A

it has been found that electronic (high-frequency) market makers take on a prominent role
in liquidity provision for large-tick stocks [24]. This is because the revenue margins for
liquidity provision are higher for those low-price stocks with larger relative tick sizes [29].

The two research questions we focus on are clearly important for trading firms who
perform market making strategies. For example, the solutions to these questions may
serve as guidelines for high-level decisions such as market entrance as a liquidity provider
and investment in IT infrastructure to reduce latency. They are also potentially relevant
for regulators and policy makers to understand when these electronic market makers may
withdraw from liquidity provision, assuming negative profits cause these firms to exit.

There are many different definitions for the term “latency” in the literature. We follow
[15] to define the latency a market maker experiences and use Figure 1 to illustrate. The
total time delay for the cycle A→ B → C → D → A is defined as the latency in our study.
Here, from point A to B, updates of market information including asset prices and order
status are sent from the exchange to the market maker. From B to C, market analysis is
then performed by the trading algorithms, and decisions such as canceling old quotes and
sending new quotes are made. From Point C to D, the market maker’s actions are sent to the
exchange, and finally from D to A, the matching engine in the exchange accepts the orders,
processes them, confirms them and possibly executes them. This entire cycle can be as
low as several milliseconds for some high-frequency market makers. In general, the latency
an electronic market maker experiences depends on many factors including the physical
distance between the server running the market making algorithm and the matching engine
of the exchange, the mean of access by the trader to the exchange (e.g. direct market access
or via a retail platform), the complexity of the market making algorithm, and the trading
system used by each exchange. In this paper, as in [21, 28], we assume a constant latency
∆τ ≥ 0 for tractability purposes, though in practice the latency is random [18].

Low latency is important for market makers. It enables market makers to respond
rapidly to newly available price information and changing market conditions by placing or
canceling orders [21]. In fact, some high-frequency market makers spend millions each year
to place servers on which their trading algorithms run as close as possible to the exchange’s
matching engine. This co-location allows data to travel at a minimal distance (e.g., A→ B
in Figure 1) and allows market makers to get ultra low latency access to an exchange’s
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trading and information systems [16].

1.1 Contributions

In this paper, we study the profitability of electronic market making strategies for large-tick
assets in the presence of latency. We consider an “unofficial” market maker who can quote
a bid order for one unit and an ask order for one unit at any discrete prices periodically
with a deterministic period length ∆t > 0, with the goal of maximizing his expected profit
within a finite horizon. The market maker determines the optimal buy and sell prices at
each period, which is formalized as a finite-horizon Markov Decision Process (MDP) [4, 25].
By a delicate analysis of the MDP, we make the following contributions.

First, we provide explicit conditions to determine when a market maker earns zero or
positive expected profits3 (Theorem 3). Under our model, the main criteria is simply to
compare two rates: the rate of change in the asset price and the rate of “uninformed”
market order flows that hit the market maker’s limit orders at best quotes. The latter
depends on the relative latency of the market maker, i.e., how fast the market maker is
relative to others in the competition for front queue positions to obtain execution priority
at desired price points. Our result suggests that in certain scenarios such as the market is
volatile or the market maker is not fast enough in gaining good queue positions compared
with others, then electronic market making on the single asset is not profitable, regardless
of how low the absolute latency ∆τ the market maker experiences. This illustrates the
importance of relative latency for market makers and it implies the potential low-latency
arms race among market makers. It also implies that these unofficial market makers may
withdraw from liquidity provision during volatile and stressed market times.

Second, our study sheds light on how latency affects the profits of market makers.
We prove that, holding other parameters fixed, the expected profit of the market maker
decreases as the absolute latency ∆τ increases (Proposition 4). Latency is an additional
source of risk for market makers due to the possible price motion in the latency time
window. High latency increases the chances that the prices of market maker’s quotes are
crossed4 by the mid-price. It also increases the chances of one-sided5 fills of the market
maker’s bid-ask pair of orders, hence the inventory risk the market maker bears may
increase. We also conduct numerical experiments based on real data to show the significance
of low latency (both in absolute and relative terms) and its impact on the optimal quoting
strategy of a market maker.

3Fixed overhead costs related to market data feed, trading infrastructures etc, are not considered in the
profit calculation here.

4For example, the market maker observes the market best bid is currently at $10.00 and he sends a buy
limit order at $10.00. By the time this order reaches the exchange, the best offer (bid) has already become
$10.00 ($9.99), and this order is filled.

5For example, if the market price jumps up during the latency period, then the fill probability of the
market maker’s ask order increases and that of the bid order decreases.
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Third, our work highlights the importance of value of an order in optimal market
making. The value of an order measures the difference between the execution price of the
order and the ‘fundamental value’ of the asset. This quantity, often referred to as the
expected profit of an order, has been widely used in equilibrium models in the finance
and economics literature. For example, an endogenous bid-ask spread of an asset can
be produced by assuming perfectly competitive markets makers earning zero profits in
equilibrium, see e.g. [17, 27] and the references therein. However, the order value has not
been adequately explored in the literature on optimal market making. Our work bridges
this gap by showing that the value of bid and ask orders sent by the market maker in each
period essentially plays the role of one-period reward in the MDP model (Theorem 2). This
provides further insights into the optimal market making problem. It also facilitates our
analysis as whether market making is profitable hinges on whether the value of the orders
sent by the market maker is positive.

1.2 Literature review

In this section, we explain the differences between our work and the existing studies.
There has been a number of studies on optimal market making in the quantitative fi-

nance literature, see, e.g., [1, 2, 5, 6, 7, 10, 12, 13] and the references therein. These papers
mainly use continuous-time stochastic control approaches to determine optimal (contin-
uous) quoting strategies for market makers in an expected utility framework. Our work
complements these studies but differs from them in two main aspects: (1) we explicitly
take latency into account in optimal market making; and (2) our main focus is to under-
stand when market making leads to positive profits and the effect of latency on the market
maker’s profit.

The second line of literature that is related to our work is the study of latency, or
broadly speed, in algorithm and high frequency trading. In [21], the authors propose a
model to quantify the cost of latency on optimal trade execution of one share, but not
on market making. See also [28] for a similar related work. In addition, the work [20]
studies the latency inside the exchange, and they found speeding up the exchange does not
necessarily improve liquidity. Furthermore, the empirical study [3] finds that differences
in relative latency account for large differences in performances of high frequency trading
firms (not necessarily electronic market makers). Finally, a number of related studies have
investigated the relation between speed, trading and market quality. For a comprehensive
review of this literature, we refer the readers to [19]. Our work differs from these studies
in that we focus on electronic market making and the effect of latency on optimal market
making strategies.

The rest of the paper is organized as follows. In Section 2 we describe the model and
formulate the market maker’s optimization problem using Markov Decision Processes. In
Section 3, we present the main theoretical results on the profitability of market making
strategies and the effect of latency on the profit. In Section 4, we present numerical results
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based on parameters estimated from order book data for a representative stock. Finally,
Section 5 concludes. Some technical details of the model and all the proofs of the theoretical
results are given in the Appendix.

2 The MDP model for market making

In the section we formulate the market making problem as a finite-horizon and discrete-
time Markov Decision Process (MDP). We consider an electronic market maker maximizing
his expected terminal wealth (equivalently, net profit) within all admissible policies. All
stochastic processes and random variables are defined on a common probability space
(Ω,F ,P).

2.1 Market making process

We now discuss the process of market making in the presence of latency.
We first describe the dynamics of asset price and order flows. We assume that the

bid-ask spread of the asset is exogenously given at constant one tick, which is typical for
large-tick liquid stocks [8]. We also assume that the best bid price {p(t) : t ≥ 0} is a
compound Poisson process which jumps one tick (cent) at exponential times:

p(t) = p(0) +

N (t)∑
i=1

Xi, (2.1)

where {N (t) : t ≥ 0} is a Poisson process with a rate λ and (Xi)i=1,2,... are independent and
identically distributed random variables taking values +1 and −1 both with probability
0.5. See, e.g., [1, 14] for similar models. We use symmetric jump size Xi as market makers
typically have no directional opinion on the assets they trade.

Next, we describe the market maker’s periodic quoting process in the presence of la-
tency. Figure 1 gives a graphical illustration. During a finite horizon [0, T ], the market
maker takes actions N+1 times by canceling old/outstanding quotes and sending new bids
and offers at discrete prices every ∆t time units. The market maker’s orders experience
a constant absolute latency ∆τ ≥ 0, and for the tractability of the model, we assume
∆τ < ∆t. Starting from time zero, the exchange sends messages continuously to the mar-
ket maker. The messages contain the asset price, information of the trader’s wealth/cash,
the inventory in the asset and the trader’s outstanding orders (if any). Outstanding orders
refer to limit orders (sent by the trader) waiting to be filled in the limit order book. The
maker sends orders N + 1 times in equal time intervals. In each period, except for the last
one, the market maker sends a ask-bid quote pair and a cancellation instruction. The size
of the quote is fixed at one unit (e.g., 100 shares) and the trading amount is called unit
dollars. The cancellation instruction will automatically cancel the maker’s any outstand-
ing orders (if any). In our model, the cancellation instruction is required in each period
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Figure 2: An illustration for the trader’s market making process

to ensure the trader has at most one outstanding ask/bid order in the order book at any
time. For the last period, the maker unwinds all his inventory using a market order.

We define the N + 1 action times as the time when the message is sent by the exchange
on which the corresponding actions are made, i.e.,

ti := i ·∆t, for i = 0, 1, 2, ..., N. (2.2)

So the quoting duration ∆t also represents the life-time of the market maker’s limit order
if it is not executed. Due to latency, the time when the orders of i-th action enter into
the limit order book is ti.5 := ti + ∆τ. In particular, the time when the unwinding market
order arrives at the exchange is

tN.5 := N ·∆t+ ∆τ. (2.3)

In the round-trip latency ∆τ , the proportions of there three parts (message to the maker,
data processing, new quotes to exchange) do not matter in our model. Thus, for simplicity,
throughout paper we say an order is sent at time t to mean that the order is based on the
information at time t. We assume that the maker quotes as many times as possible. As
tN.5 ≤ T , we have N = bT−∆τ

∆t c, where bxc is the greatest integer that is smaller or equal
to x ∈ R.

As standard in the literature (see e.g. [12, 6]), to control the inventory risk, we assume
the market maker’s inventory (number of units of an asset held) is constrained by a lower
bound q and a upper bound q. Here q and q are two fixed integers with q < −1 and q > 1.

2.2 Order executions

We now describe the executions of the market maker’s (limit) orders in our model. For
illustrations, we consider an ask order. Considering a bid order is similar. In our setting,
when the market maker’s ask order arrives at the exchange, it can execute in one of the
following ways:
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1. If the limit price of an ask order is smaller or equal to the market best bid price, the
order will get executed immediately.

2. Otherwise, the ask order will enter into the order book and it will get executed at its
limit price if

(a) either when the order sits at the best ask price and the best bid price jumps up
by one tick, crossing its limit price;

(b) or the total time the order spends at the best ask price exceeds an exponential
random variable with rate λa.

Case (1) can occur, for example, when the maker sends a limit ask order and the mid-
price of the asset moves up during the latency period. The execution price of the ask order
is the market best bid price at the moment the ask order reaches the exchange.

In Case 2(a), the ask order is filled when the market trades through its limit price, and
so the mid-price moves up one tick. This can happen if there is a large flow (e.g. a surge of
buy orders into best ask) against the ask order. In Case 2(b), the mid-price does not move
when the ask order is filled. We interpret λa as the rate of “uninformed” buy market order
flow that matches with this market maker’s ask order at the best ask, though we do not
explicitly model information asymmetry among market participants. We remark that λa

depends on both the rate of total “uninformed” buy market order arrivals and the relative
latency (i.e., speed advantage compared with other traders) of the market maker, where
the latter determines the queue position and execution priority of the order sent by the
market maker. Similarly, we use λb for the rate of “uninformed” sell market order flow that
matches with this market maker’s buy order at the best bid price. These “uninformed”
market order arrivals are assumed to be independent of the price process.

Mathematically, for period i = 0, 1, ..., N , we use two indicator functions 1aski and 1bidi
to specify whether the outstanding ask and bid orders (if any) at time ti− are filled (1 if
filled; 0 if not) before time ti.5. Note these outstanding orders will be canceled at time ti.5
by the market maker if they are not filled. Similarly, for i = 0, 1, 2, ...N − 1, we use two
indicator functions 1aski.5 and 1bidi.5 to specify whether the (new) ask and bid orders sent
by the market maker at time ti− are filled before ti+1. See Appendix A.4 for the formulas
of these indicator functions for order executions.

2.3 State space and admissible action space

We now describe the system state and the admissible action space for the MDP model.
We write the state of available information at t as s(t), and the set of extended integers

as Z := Z ∪ {±∞}. At any time t ∈ [0, T ], the exchange sends a message to the market

maker containing information s(t) := (w(t), p(t), q(t), a(t), b(t)) ∈ Z3 × Z2
, where w(t)

is the market maker’s wealth, p(t) is the best bid price of the asset, q(t) is the maker’s
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inventory. In addition, (a(t), b(t)) represents the outstanding ask-bid quote pair. More
precisely, p(t) + a(t) is the price of the marker’s outstanding ask order at time t with
a(t) =∞ meaning there is no outstanding ask order at time t. Similarly, p(t) + b(t) is the
price of the marker’s outstanding bid order at time t where b(t) = −∞ means there is no
bid order at time t. From the Poisson assumptions, it is easy to see that the sample paths
of s(t) are right-continuous with left limits. For i = 0, 1, 2, ..., N , denote

si = (wi, pi, qi, ai, bi) := s(ti−), (2.4)

and
si.5 = (wi.5, pi.5, qi.5, ai.5, bi.5) := s(ti.5−). (2.5)

The N + 1 states si, i = 0, 1, ..., N are corresponding to the maker’s N + 1 actions (quote,
cancellation or unwinding) and sN.5 is the final state that is just before the time to exit
market making. These N+2 states s0, s1, ..., sN , sN.5 are the system states for the discrete-
time MDP and si.5, i = 1, 2, ..., N − 1, are intermediates to compute dynamics of these
system states6, see Sections 2.4. The N + 1 times ti, i = 0, 1, .., N , can be called the
decision epochs in the discrete-time MDP (though at tN , there are no real decisions).

We can now write down the state space. Clearly we have a(t) ≥ 1 and b(t) ≤ 0.
Note that when the maker’s inventory reaches the lower/upper bound, he should not have
any outstanding ask/bid orders at each decision epoch, since otherwise the inventory may
exceed the two bounds due to possible execution of those outstanding orders. Hence, the
state space S is given as follows.

S := {(w, p, q, a, b) :(w, p, q) ∈ Z3, (a, b) ∈ Z× Z,
q ≤ q ≤ q, a ≥ 1, b ≤ 0,

if q = q, then a =∞,
if q = q, then b = −∞}.

(2.6)

Next, we describe the admissible action space. When the market maker receives the
system state s = (w, p, q, a, b), he quotes an ask-bid pair at price (p + δa, p + δb) together
with an instruction to cancel his previous outstanding orders. The maker is allowed to send
market orders, limit orders or not send any orders. Specifically, since the price is discrete,
we have (δa, δb) ∈ Z× Z, where δa = +∞ means no sell order is sent and δa = −∞ means
a sell market order is sent. Similarly, δb = −∞ means no buy order is sent and δb = +∞
means a buy market order. We use As to denote the set of admissible actions (δa, δb) such
that the inventory of the market maker always stays in the interval [q, q] at any time. For
the detailed mathematical expression of As, see Appendix A.2.

To set up the MDP, we still need to describe the dynamics for the system state. We
refer the readers to Appendix A.3 for details.

6We use the left limits of the underlying continuous-time state process for the discrete-time state, which
is a convention in the continuous-time stochastic control literature.
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2.4 Optimization problem for the market maker

In this section, we formulate the optimization problem for the market maker. The maker
quotes bid and ask orders at each period, and aims to maximize his expected terminal
wealth after he unwinds the position at the end of the trading horizon. Costs of trading
such as IT and compliance are not considered.

We first give the expression for the market maker’s terminal wealth, denoted as TW .
Suppose just before tN.5, the state sN.5 = s(tN.5−) is (wN.5, pN.5, qN.5, aN.5, bN.5). Then it
is easy to see that

TW := wN.5 + pN.5 · qN.5 + qN.5 · 1qN.5<0 = wN.5 + (pN.5 + 0.5)qN.5 − 0.5 |qN.5| . (2.7)

That is, if the market maker as positive inventory qN.5 > 0, then the maker unwinds the
position by sending a market sell order and the execution price is the best bid price pN.5.
Similarly, if qN.5 < 0, then the market maker sends a market buy order which will be filled
at the best ask price pN.5 + 1. We do not consider the price impact of such a clean-up
trade. This is reasonable as long as the market maker’s inventory bounds do not exceed
the market depth of best quotes in the order book. For large-tick assets, it is typical to
find that there are large volumes of limit orders sitting at best quotes.

Now we can formulate the optimization problem of the market maker as follows:

v0(s) = v0(w, p, q, a, b) := sup
π
Eπ[TW | s0 = (w, p, q, a, b)], (2.8)

where the supremum is taken over all Markovian admissible policies. Specifically, we
have each Markov policy π = (f0, f1, ..., fN ), where fi(·) is a mapping from S to Z ×
Z, such that for all s ∈ S, fi(s) ∈ As, the admissible action space. This function v0

is called the value function starting from the 0-th period. We can also define the value
function starting from i-th period, i = 1, 2, ..., N,N.5, as follows:

vi(w, p, q, a, b) := sup
π∈Π

Eπ[TW | si = (w, p, q, a, b)], i = 1, 2, ..., N,

vN.5(w, p, q, a, b) := w + pq + q1q<0 = w + (p+ 0.5)q − 0.5 |q| .
(2.9)

Mathematically, in Equations (2.8) and (2.9), the existence of expectations is not trivial
since the TW is not bounded. To address this issue, there is a standard method using an
integrable bounding function to bound value functions. For our MDP, one can use the
bounding function C(|w| + |p| + 1) which can be verified to be integrable, where C is a
constant that is independent of the state s. For simplicity, we omit the proof and refer
readers to [4] for this method. We also remark that we do not include rebate or fee for
orders in our model. However, our model can be readily generalized to include constant
rebate and fee structure (for providing and taking liquidity respectively), and we can obtain
similar results.
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2.5 The Bellman equation

As we have formulated the market making problem as MDP, standard arguments show the
following Bellman equation for the value functions:

vi(s) =


w + (p+ 0.5)q − 0.5 |q| , i = N.5,

E[vN.5(sN.5) | sN = s], i = N,

sup
(δa,δb)∈As

E(δa,δb)[vi+1(sN+1) | si = s], i = 0, 1, ...N − 1,
(2.10)

where the superscript (δa, δb) for vi means that the i-th action is (δa, δb). One can readily
prove using the theory of upper semi-continuous MDP that the supremum operators in
Equation (2.10) can be attained, which generates an optimal policy for the MDP. As the
argument is standard (see, e.g., [4]), we omit the proof.

3 Market maker profitability and effects of latency

In this section, we present the main theoretical results on determining when the market
making strategy is profitable and how latency affects the market maker’s performance.

To be specific, the performance we consider is the net profit NP of the market maker,
defined as

NP := v0(w, p, 0,∞,−∞)− w. (3.1)

That is, NP is the expected net wealth change over the horizon [0, T ], where the market
maker starts with cash w, zero inventory (q = 0) and no outstanding orders (a = ∞, b =
−∞) in the limit order book at time zero. Our goal is to understand when NP is positive
and how latency affects NP .

To this end, we first define the value of an order in Section 3.1. This quantity plays
a critical role in understanding the structure of value functions discussed in Section 3.2,
the profitability of market making strategies in Section 3.3 and the effect of latency in
Section 3.4.

3.1 Value of an order

The value (or the expected profit) of an order essentially measures the difference of its
execution price with the ‘fundamental value’ of the asset. For example, if there is no
latency and one uses the asset mid-price at the time of order execution as the fundamental
value, then the value of a market order is −0.5 ticks. That is, a trader pays half of the
bid-ask spread using a market order.

To define the value of a general limit order when there is latency, we note that the
market price might have moved between the moment an order sent by the market maker
and the confirmed placement of an order. With this observation, we now first define the
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value of an ask order. Suppose at time zero, the ask order quoted at the price p(0)+x with
relative price x ∈ Z is sent to the exchange. This order experiences a time delay t′1 ≥ 0
before its placement is confirmed by the exchange. We then compare the execution price
of this order with the mid-price at time t′1 + t′2 which is regarded as the fundamental value
of the asset. If the order is not executed, then the value of this order is zero.

Mathematically, for any t′1, t
′
2 ≥ 0, we can define the value of an ask order with relative

price x as follows:

Hask(t′1, t
′
2, x) := E[(max{x−∆p[0, t′1], 0} − 0.5−∆p[t′1, t

′
1 + t′2]) · 1askt′1,t′2,x ]. (3.2)

Here, ∆p[t′, t′′] := p(t′′) − p(t′) indicates the change of the best bid price over the time
interval [t′, t′′]. The execution price of this ask order is its limit price p(0) + x, or the
market best bid price at the time t′1, depending on whether the market best bid becomes
higher than the limit price of the ask order when the ask order reaches the exchange. In
addition, the mid-price at time t′1 +t′2 is given by p(0)+∆p[0, t′1]+∆p[t′1, t

′
1 +t′2]+0.5 as the

mid-price is half tick higher than the market best bid price. Finally, the indicator function
1askt′1,t

′
2,x

specifies whether the ask order (which enters into the order book or executed at

time t′1) is filled before time t′1 + t′2. See Appendix A.4 for its mathematical expression.
The value of a buy order can be defined similarly. Suppose the buy limit order is quoted

with price p(0) + y. Then for any t′1, t
′
2 ≥ 0 and y ∈ Z, define the value of such a bid order

sent at time 0 with relative price y with delay t′1 and comparison time t′1 + t′2 as:

Hbid(t′1, t
′
2, y) := E[(0.5 + ∆p[t′1, t

′
1 + t′2]−min{y −∆p[0, t′1], 1}) · 1bidt′1,t′2,y ], (3.3)

where 1bidt′1,t′2,y
indicates whether the bid order is filled before time t′1 + t′2.

Finally, if a market maker sends a pair of one bid and one ask orders, with relative

prices (x, y) ∈ Z2
, then the value of this pair of quotes can be defined as follows: for any

t′1, t
′
2 ≥ 0,

H(t′1, t
′
2, x, y) := Hask(t′1, t

′
2, x) +Hbid(t′1, t

′
2, y). (3.4)

These functions will be used in understanding the MDP and the value functions for market
making. Before we proceed, we first present a result to better understand these values of
orders in our problem.

Proposition 1. For any ∆τ ≥ 0, ∆t > 0 and (δa, δb) ∈ Z2
, we have

(a)

Hask(0,∆t, δa) =

 (
λa

λa + λ/2
− 0.5)E[1ask0,∆t,δa

], δa ≥ 1,

− 0.5, δa ≤ 0,

(3.5)

and

Hbid(0,∆t, δb) =

 (
λb

λb + λ/2
− 0.5)E[1bid

0,∆t,δb
], δb ≤ 0,

− 0.5, δb ≥ 1.

(3.6)
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(b)
Hask(∆τ,∆t, δa) = E[Hask(0,∆t, δa −∆p[0,∆τ ])],

and
Hbid(∆τ,∆t, δb) = E[Hbid(0,∆t, δb −∆p[0,∆τ ])].

We first discuss the economic interpretations of Part (a) of this result. For illustrations,
we take Hask(0,∆t, δa) as an example. For δa ≤ 0, the ask order is effectively a market
order, and will be filled instantly at the current best bid price as there is no latency. So its
execution price is 0.5 tick less than the mid price at the time of execution. As the best bid
price and the mid-price is a martingale with independent increments, it follows that the
expected profit or the value of such an order on [0,∆t] is −0.5 ticks. On the other hand,
for δa ≥ 1, the limit sell order enters into the order book at time zero, and by (3.5) its
value equals to a constant λa

λa+λ/2 − 0.5 multiplied by the fill probability of the ask order

E[1ask0,∆t,δa
] on [0,∆t]. This constant λa

λa+λ/2 − 0.5 represents the conditional expected
profit of the ask order given that the order is filled. To see this, we note that when such
an ask order is filled, there are two scenarios: first, the ask order sits at the best ask price,
and eventually transacts with an “uninformed” buy order, gaining 0.5 tick as the mid-price
does not move at the time of execution (‘spread capture’); second, the best bid price of the
asset jumps up and crosses the quoted price of the ask order, in which case, the ask order
loses 0.5 tick as the mid price immediately moves up one tick at the time of execution of
the order (‘adverse selection’). The rate of the first scenario occurs is λa, while the rate
of the second scenario occurs is λ/2. Hence, the conditional expected profit the limit sell
order is λa

λa+λ/2 · 0.5 + λ
λa+λ/2 · (−0.5) = λa

λa+λ/2 − 0.5. While our model does not feature

information asymmetry, the result here is generally consistent with the study [22] where
they also find that one can informally interpret the order value as follows:

Value of an order = fill probability× (spread capture − adverse selection cost).

We next discuss Part (b). It suggests that the value of orders with latency ∆τ is
the expected value of orders with zero latency where the quotes (δa, δb) are perturbed by
random fluctuations of the market price during the latency window.

3.2 Structure of value functions

With the definitions of the value of orders H in (3.4), we now present the result on the
structure of value functions. Recall that 1ask0 , 1bid0 indicate whether the outstanding ask
and bid orders are filled during [0, ∆τ ].

Theorem 2. For any s = (w, p, q, a, b) ∈ S, we have vN.5(s) = w+ (p+ 0.5)q − 0.5|q| and

vi(s) = w + (p+ 0.5)q +H(0,∆τ, a, b) + gi(q, a, b), i = 0, 1, 2, ..., N, (3.7)
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where

gi(q, a, b) :=

 − 0.5E[ |q − 1ask0 + 1bid0 |
∣∣(a0, b0) = (a, b)], i = N,

max
(δa,δb)∈As

Gi(q, a, b, δ
a, δb), i = 0, 1, ..., N − 1, (3.8)

and

Gi(q, a, b, δ
a, δb) := H(∆τ,∆t, δa, δb) + E[gi+1(q1, a1, b1)

| (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)], i = 0, 1, ..., N − 1.

(3.9)

Theorem 2 reduces the computation of value functions from five state-variables to three
state-variables (q, a, b) in the backward recursion (3.8). As suggested by (3.7), the value
function vi(w, p, q, a, b) can be decomposed into four parts: (1) w represents the market
maker’s current wealth or cash; (2) (p+ 0.5)q is the value of the inventory marked to the
market at the mid-price; (3) H(0,∆τ, a, b) is the value of the outstanding ask and bid
orders as they will be canceled after ∆τ units of time; and (4) gi(q, a, b) represents the
extra value from following the optimal market making strategy. The backward recursion
and maximization problem in (3.8) specifies the trade off between the value of the current
actions/quotes (δa, δb) which depends on latency ∆τ , and the expected extra value gi+1 at
the next period.

We also explain the similarities and differences between the structure of the value
functions here and that in the existing literature on optimal market making with zero
latency (under different models). When there is zero latency, i.e. ∆τ = 0, one can readily
show that the value function does not depend on the prices of outstanding orders (a, b).
This is because when ∆τ = 0, the outstanding orders at time ti− will be canceled at time
ti instantly and hence they are not filled. In this case, the decomposition structure of value
functions in (3.7) is similar as in [5]. Due to the presence of latency in our model, we
can observe two main differences between our result and those in the literature (see e.g.,
[5]). First, our value functions include the value of the outstanding orders H(0,∆τ, a, b),
where these outstanding orders will be canceled ∆τ time units after the market maker
receives the message from the exchange. Second, the extra value gi depends on the prices
of outstanding orders. This is because due to the existence of latency, these outstanding
orders may be executed before the market maker can cancel them, and this will affect the
future actions and the inventory of the market maker.

One can readily verify from Theorem 2 and (3.1) that for any ∆τ ≥ 0, the market
maker’s net profit is given by

NP = g0(0,∞,−∞). (3.10)

The next section is devoted to the analysis of NP .
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3.3 Profitability of market making strategies

We now consider the profitability of the market making problem with ∆τ ≥ 0. In particular,
we provide explicit conditions under which the market maker can earn positive net profit
in the following result.

Theorem 3. Fix the parameters λ, λa, λb,∆τ,∆t, q, q.

(1) NP is a non-decreasing function of N .

(2) If λa ≤ λ/2 and λb ≤ λ/2 , then NP = 0 for any ∆τ ≥ 0.

(3) If λa > λ/2 and λb > λ/2, then there exists a finite positive integer Nmin depending
on the fixed parameters such that

NP

{
= 0, for N < Nmin,

> 0, for N ≥ Nmin.

We now discuss the implications of Theorem 3. Part (1) of this results suggests that
with quoting duration ∆t and other parameters fixed, the net profit the market maker
can earn is non-decreasing with more quoting opportunities, or equivalently, with a longer
trading horizon T as we have N = bT−∆τ

∆t c.
Part (2) of this result says that under the conditions the rates of “uninformed” market

orders that transact with market maker’s limit orders λa, λb are smaller than equal to λ/2,
then the market maker earns zero profit. These conditions are likely to hold when (i) the
market is highly volatile with a large rate of price change λ, (ii) there are not sufficient
“uninformed” market order flows, or (iii) there are sufficient “uninformed” market order
flows, but the market maker is not fast enough compared with other participants and hence
can not gain good queue positions in the order book. Both (ii) and (iii) lead to low values
of λa, λb. Part (2) then suggests that in these scenarios, electronic market making on the
single asset is not profitable, regardless of how low the absolute latency ∆τ the market
maker experiences (and how many times the market maker quotes). This also illustrates
the importance of relative latency for market makers and is consistent with the arms race
for speed for high frequency market makers in practice.

Part (3) of this result suggests that the market making strategy can be profitable if the
market conditions are good in the sense of λa, λb > λ/2 , and market maker can quote a
large number of times or have a long trading horizon . This is consistent with the empirical
study [26] where they found electronic market makers with longer trading horizons are less
susceptible to withdrawing from liquidity provisions. We also remark that one can obtain
explicit upper bounds for the threshold Nmin using model parameters. For details, see the
proof of this result in Section B.3 in the appendix.

The comparisons of the rates λa, λb with λ/2 in Theorem 3 are closely related to the
value of orders we discuss in Section 3.1. In fact, in view of Proposition 1, one can actually
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show that even with possible latency, we have λa ≤ λ/2 is equivalent to the value of ask
orders Hask(∆τ,∆t, δa) ≤ 0 for any quotes δa, and λb ≤ λ/2 is equivalent to the value
of bid orders Hask(∆τ,∆t, δb) ≤ 0 for any quotes δb. The proof of Theorem 3 relies on
this observation, Theorem 2, and explicit constructions of profitable quoting policies. See
Section B.3 for details.

3.4 The effect of latency on market maker’s profit

We next present the result on how latency impacts the market maker’s net profit.

Proposition 4. With parameters λ, λa, λb,∆t, T, q, q fixed, NP is a non-increasing func-
tion of latency ∆τ .

This proposition shows that for market makers, lower latency leads to higher profits.
Figure 5 in Section 4.3 gives a graphical illustration. From the point of view of order values,
high latency will increase the chance that the prices of the maker’s quotes are crossed by
the mid-price which leads to negative order values. This is consistent with [17] which
finds that low latency allows market makers to reduce their adverse selection cost. From
the point view of inventory risk, high latency will increase the chances of one-sided fills
of market maker’s bid-ask pair quotes, yielding high inventory cost. For example, if the
market price jumps up during the latency period, then the fill probability of maker’s ask
order increases and that of the bid order decreases, hence the inventory risk may increase.
This is consistent with [1] which shows that fast traders can benefit from speed by reducing
inventory cost.

4 Numerical experiments

In this section, we present numerical results. Section 4.1 discusses estimations of model
parameters using NASDAQ data. In Section 4.2 we present a representative example of
the optimal quoting policy of the market maker and the associated inventory process.
Section 4.3 is devoted to the analysis of how latency affects the market maker’s profit
and optimal quoting strategies. Finally, in Section 4.4 we discuss the effect of quoting
frequency on the profit. The numerical results are based on the backward recursion in
Theorem 2, where we can compute the functions gi, i = 0, 1, ..., N , and find the optimal
quotes by truncations of the infinite state and action spaces and using exhaustive search
for the maximization problem in (3.8).

4.1 Estimations

We discuss the estimations of model parameters λ, λa, λb in this section. Other parameters
such as the quote duration ∆t, the trading horizon T , the inventory bounds q, q, are all
chosen by the market maker.
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Bid-ask spread 1 tick 2 ticks ≥ 3 ticks

Percentage 88.236 11.757 0.007

Table 1: Percentages of observations with different bid-ask spreads for GE on Oct 3, 2016

4.1.1 Data description

We use NASDAQ’s TotalView-ITCH data, which contains message data of order events.7

The database documents all the order activities causing an update of the limit order book
up to the requested number of levels and thus includes visible orders’ submissions, cancel-
lations and executions with order reference numbers. Each visible limit order is identified
with a unique order reference number which is assigned immediately after the submission.
The timestamp of these events is measured in seconds with decimal precision of at least
milliseconds and up to nanoseconds depending on the requested number of levels.

We conduct the empirical analysis using one representative stock, General Electric
Company (GE), with data from 10:00 a.m. to 4:00 p.m. on a randomly selected day - Oct
3, 2016. Table 1 shows the observations of the bid-ask spreads on that day. As one can
see, the spread of GE is 1 tick for the most of the time and the spread is rarely larger than
2 ticks. We also report that the average sizes of limit order queues on best ask and best
bid is 9366 and 7811 shares respectively.

4.1.2 Estimations

We first discuss how to estimate λ, the intensity of market price change in our model. As
we assume in the model that the bid-ask spread is always 1 tick, we first delete the data
when the bid-ask spread is more than 1 tick. Then, we can estimate the intensity of price
change using the average number of jumps of mid price per minute during the day. This
yields λ = λGE = 1.56 per minute.

We then discuss how to estimate λa, λb, the rates of “uninformed” market orders that
transacts with the market maker’s limit orders at best quotes. It is clear that these rates
depend on the speed advantage or “relative latency” of the particular market maker com-
pared with other market participants. Our data does not contain information on who
submits orders, so we provide an estimate which provides an upper bound on these rates.
To this end, we count a market order as an “uninformed” market order if the mid price
does not change after the market order arrives and generates trades, and then we esti-
mate the intensity of arrivals of the total “uninformed” market orders by computing the
average numbers of arrivals per minute. For the simplicity in numerical analysis, we use
half of the total intensity for buy and sell “uninformed” market orders, which leads to
λaGE = λbGE = 1.25 per minute. Note that λaGE and λbGE correspond to the case in which
the market maker’s orders are always on the top of the queue at the best quotes. For a

7Data is provided by LOBSTER website (https://lobsterdata.com/).
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particular market maker, the rate of “ uninformed” market orders (λa and λb) transacting
with his limit orders could be less than λaGE and λbGE . The extent of the reduction de-
pends on the relative latency or speed advantage of this particular market maker. In the
following numerical studies, we will show that this relative latency is very important for
the market maker to earn profits. We also remark that it is possible to estimate λa and λb

relying on our theoretical analysis and proprietary trading data of a given market maker.
See Appendix C for a short discussion.

4.2 Optimal quotes and inventory processes

Based on the parameters estimated above, we present a representative example of optimal
quotes and the associated inventory process in one simulation. See Figure 3.

In this sample path, the market maker quotes every one second in an 100-minute
window. The latency is fixed at 0.02 seconds. In total, the market maker sends 4975 ask
orders and 5547 bid orders. Among all these orders, 180 ask orders and 179 bid orders
are executed. Thus, the order-to-trade ratio, defined as the ratio between the number of
orders submitted and that of orders executed, is 29.31. This is typical in high frequency
market making where the trader may cancel most of the orders sent and the order-to-trade
ratio is usually high.

The left panel of Figure 3 records the optimal quotes. We note that the ask quote with
the relative price 14 means there is no ask order sent (due to truncations of the state space
in our numerical method). This occurs when the inventory attains the lower bound −4
or when the inventory is −3 and there is an outstanding ask order, see the right panel of
Figure 3. It similar for the bid side. We also observe that in this simulation, when the
remaining trading time is short, the relative price of the ask quote becomes higher and
higher while that of the bid quote does not change. The reason is that the market maker’s
inventory is negative close to the end of the horizon and the maker needs to unwind it using
a market order at the end which is costly. Hence, the market maker sells less aggressively
and quotes at the best bid to possibly increase the inventory.

For references, we also plot in Figure 4 the distribution of the profit in 10000 simulations
using the same set of parameters. The average profit is 38.21 dollars and the sample
standard deviation is 29.94 dollars.

4.3 Effect of Latency on the profit and optimal quotes

In this section we study numerically how latency affects the market maker’s profit and
optimal quoting policies based on the estimated parameters in Section 4.1.2.

4.3.1 Effect of latency on the net profit

In Figure 5, we show using several representative examples, the market maker’s net profit
NP as a function of latency ∆τ for various λa (= λb). We can make several observations.
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Figure 3: The optimal quotes and the inventory process in the simulation. The model
parameters are: q = −4, q = 4,∆τ = 0.02 seconds, ∆t = 1 second, T = 6000 seconds,

λ = λGE and λa = λb = λaGE .

First, NP is a non-increasing function of ∆τ , which is consistent with Proposition 4.
In particular, when the latency ∆τ is large, then NP becomes zero. This is because the
number of quotes N = 5999 is fixed in this example, while numerically the threshold Nmin

for earning positive profit in Theorem 3 increases with ∆τ . So when the latency is large,
we have N < Nmin and the net profit of the market maker is zero by Part (3) of Theorem 3.

Second, as indicated by the black line in the figure, when λa = λb = 0.624λaGE = λGE
2 ,

NP are always zero for any ∆τ . This is also consistent with our Theorem 3 in Section 3.
Third, low (absolute) latency is economically important for market makers. For exam-

ple, consider the case λa = λb = 0.8λGE . If the market maker can reduce the latency ∆τ
from 20 millisecond to 10 millisecond, then the market maker’s net profit NP will increase
from 0.372 to 0.949 dollars by 190% in a 10-minute trading horizon for this single stock.

Finally, relative latency, as indicated by the values of λa and λb, is also significant for
market makers. We find from Figure 5 that for a fixed ∆τ , NP decreases as λa (= λb)
decreases. This is because decreasing λa and λb will decrease the chance that the orders
sent by the maker meet the “uninformed” market orders.

4.3.2 Effect of latency on the optimal quotes

In this section, we illustrate how (absolute) latency affects the optimal action of the market
maker for a fixed decision epoch and system state.

Figure 6 shows the optimal quote (δa, δb) as a function of ∆τ , where the decision epoch
is time zero and the market maker has no initial inventory nor outstanding orders. We can
observe that the market maker quotes wider when the latency increases. This is because the
market price may move during the latency period, and high latency increases the chances
that the prices of the market maker’s limit orders are crossed by the mid price, leading
to undesirable order executions. Hence, the market maker sends wider quotes to mitigate
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Figure 4: The histogram of the market maker’s profit using 10000 simulations. The model
parameters are: q = −4, q = 4,∆τ = 0.02 seconds, ∆t = 1 second, T = 6000 seconds,

λ = λGE and λa = λb = λaGE .

this increasing risk caused by latency.
We remark that the pattern of optimal quotes in Figure 6 holds for the majority of

our extensive experiments with different parameters, system states and decision epochs.
However, it does not always hold. When the relative prices of current outstanding orders
are asymmetric around mid-price (i.e., a 6= 1−b) and the decision epoch is close to the end
of the trading horizon, one can find instances that the optimal quotes do not necessarily
become wider when ∆τ increases. The reason is that the latency affects not only the quotes
sent by the market maker, but also affects the current outstanding orders as the maximum
lifetime of the current outstanding orders is ∆τ .

4.4 Effect of number of quotes on the profit

In this section, we briefly discuss the effect of number of quoting times N on the profit.
Corresponding to Theorem 3, we fix all other model parameters and study how NP changes
when the quoting times N varies. See Figure 7 for an illustration. Note here the quoting
duration ∆t = 1 second is fixed, but the trading horizon T = N∆t+∆τ varies. The latency
∆τ = 0.2 seconds. We can find from Figure 7 that NP is a non-decreasing function N .
In addition, when N > 44, the profit becomes greater than zero in this example. These
two observations are consistent with our Theorem 3. In particular, we can see that enough
number of quotes is required for the market maker to make positive profits.
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Figure 5: NP as a function of ∆τ for various λa (= λb). The remaining model parameters
are: q = −2, q = 2,∆t = 0.1 seconds, T = 600 seconds, and λ = λGE .
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Figure 6: The optimal quote as a function of ∆τ at time 0 for the state s =
(w, p, 0,∞,−∞). The remaining model parameters are: q = −2, q = 2,∆t = 0.1 seconds,

T = 120 seconds, λ = λGE and λa = λb = 0.8λaGE .
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Figure 7: Profit as a function of N (fixed ∆t and variable T ). The remaining model
parameters are q = −2, q = 2,∆τ = 0.2 seconds, ∆t = 1 second, λ = λGE and λa = λb =
λaGE .

5 Conclusion and future research

This work investigates the profitability of electronic market making strategies and the
impact of latency on market makers’ profits for large–tick assets. By formulating the
optimal trading problem in discrete time using Markov decision processes and analyzing
the value of orders, we provide an explicit criteria to theoretically determine when an
electronic market maker can earn positive profit. We also prove that higher latency leads
to reduced profits for market makers, as the asset price may move during the latency
period. Numerical experiments are conducted to illustrate the significance of low absolute
latency and relative latency for electronic market makers.

A number of simplifying assumptions are made to make our analysis tractable. For
example, the market maker studied here is risk neutral in the sense that he maximizes
the expected net profit. If the market maker’s expected profit is risk-adjusted, then the
condition we provide in this paper becomes a necessary condition for such a market maker
to earn a positive risk-adjusted profit. In addition, our model captures the relative latency
of a market maker in a parsimonious way by directly modeling the “uninformed” market
order flows’ hitting the market maker’s limit orders at best quotes. The rates of these
flows generally depend on microstructure information such as recent trades, the state of
the order book and the queue positions of the market maker’s limit orders. Quantifying
this dependence and adding these microstructure features to our model are important
extensions that merit further investigation.
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A Further details of the Model in Section 2

A.1 Preliminaries

We adopt the following conventions related to the operations for ±∞: (1) −∞ < x <∞ for
any x ∈ Z; (2)∞+x =∞ for any x ∈ Z∪{∞}; (3) −∞+x = −∞ for any x ∈ Z∪{−∞};
and (4) for any x ∈ Z ∪ {±∞},

±∞× x =


±∞, x > 0,

∓∞, x < 0,

0, x = 0.

A.2 The expression of the admissible action space

In this section we give the expression of the market maker’s admissible action space As
for state s = (w, p, q, a, b) ∈ S. We discuss the zero latency case and positive latency case
separately, since the outstanding orders at time ti will get canceled instantly if latency
∆τ = 0.

If ∆τ = 0, the admissible action space for state s = (w, p, q, a, b) ∈ S, denoted as A0
s,

is given by

A0
s ={(δa, δb) ∈ Z× Z :

if q = q, then δa =∞ or δb =∞;

if q = q, then δa = −∞ or δb = −∞}.
(A1)

To write down the expression of As when latency ∆τ > 0, we first define two disjoint
subsets of the state space S as follows. Write

S := {(w, p, q, a, b) :(w, p, q) ∈ Z3, (a, b) ∈ Z× Z,
q = q, a =∞, b ≤ 0

or q = q + 1, a <∞, b ≤ 0},
(A2)

and

S := {(w, p, q, a, b) :(w, p, q) ∈ Z3, (a, b) ∈ Z× Z,
q = q, a ≥ 1, b = −∞
or q = q − 1, a ≥ 1, b > −∞}.

(A3)

The set S contains the states in which the market maker’s inventory has either reached the
lower bound q or will reach the lower bound if the outstanding ask order gets filled and the
bid order does not get filled. In these cases, the market maker should not quote ask orders
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or he should use a buy market order in order for the inventory to stay in the bound. The
set S can be interpreted similarly.

Hence, if latency ∆τ > 0, the admissible action space for state s = (w, p, q, a, b) ∈ S,
denoted as A+

s , is given by

A+
s ={(δa, δb) ∈ Z× Z :

if s ∈ S, then δa =∞ or δb =∞;

if s ∈ S, then δa = −∞ or δb = −∞}.
(A4)

To summarize, we can combine (A1) and (A4) to deduce that the admissible action
space for state s is given by

As =


{∞} × Z ∪ Z× {∞}, ∆τ = 0, q = q, or ∆τ > 0, s ∈ S,
{−∞} × Z ∪ Z× {−∞}, ∆τ = 0, q = q, or ∆τ > 0, s ∈ S,

Z2
, otherwise.

(A5)

A.3 System dynamics for our MDP model

We now describe the dynamics of the discrete system states of the MDP, i.e., si, i =
0, 1, 2, ..., N,N.5. For i = 0, 1, ..., N − 1, denote the i-th action/decision of the maker
by (δai , δ

b
i ), i.e, the maker sends an (ask,bid) order pair at price (pi + δai , pi + δbi ) where

pi = p(ti−) is the market best bid price at time ti− = (i ·∆t)−. For consistency, we also
use the notation δaN , δ

b
N for the last period though there is no decision to make for the

maker. Recall that we use 1aski and 1bidi to indicate whether the outstanding ask and bid
orders (which exist at ti− if any) are filled in the time interval [ti, ti.5) respectively; we use
1aski.5 and 1bidi.5 to indicate whether the ask and bid orders sent in the i-th action of the
maker are filled in the time interval [ti.5, ti+1) respectively.

We now describe the dynamics of system states (w, p, q, a, b) from ti− to ti+1− for
i = 0, 1, .., N − 1. To begin with, we define the price changes ∆pi := p(ti.5) − p(ti) =
N (ti.5)∑

j=N (ti)+1

Xj and ∆pi.5 := p(ti+1) − p(ti.5) =
N (ti+1)∑

j=N (ti.5)+1

Xj . Then we can readily obtain

that

wi+1 = wi + (pi + ai)1aski − (pi + bi)1bidi
+ max{pi + ∆pi, pi + δai }1aski.5 −min{pi + ∆pi + 1, pi + δbi }1bidi.5 , (A6)

pi+1 = pi + ∆pi + ∆pi.5, (A7)

qi+1 = qi − 1aski + 1bidi − 1aski.5 + 1bidi.5 , (A8)

ai+1 = 1aski.5 · ∞+ (1− 1aski.5)(δai −∆pi −∆pi.5), (A9)

bi+1 = 1bidi.5 · (−∞) + (1− 1bidi.5)(δbi −∆pi −∆pi.5). (A10)
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The usual conventions for ±∞ apply, see Section A.1. We briefly explain the dynamics of
wealth and outstanding orders as others are straightforward to see. In the wealth dynamics,
the market maker earns an amount equal to the execution price if an ask order is filled, and
pays an amount equals to the execution price if a bid order is filled. For the outstanding
orders, we note that these outstanding orders for the i-th period will be canceled (if not
filled) at ti.5 < ti+1, hence the possible outstanding orders for the i+ 1-th period are from
“new” orders sent in the i-th action. Taking the ask side as an example, if such a new ask
order is filled in the time interval [ti.5, ti+1), i.e., 1aski.5 = 1, then at time ti+1−, there will
be no outstanding ask orders, i.e., ai+1 =∞. Otherwise, there will be an outstanding ask
order at time ti+1− at price pi + δai and ai+1 is given by pi + δai − pi+1 = δai −∆pi−∆pi.5,
which is always greater than or equal to 1 if 1aski.5 = 0. It is similar for the bid side.

We next describe the dynamics from tN− to tN.5−. The dynamics of the market maker’
wealth, market best bid price, the maker’s inventory, the maker’s ask and bid outstanding
orders are given as follows:

wN.5 = wN + (pN + aN )1askN − (pN + bN )1bidN , (A11)

pN.5 = pN + ∆pN , (A12)

qN.5 = q − 1askN + 1bidN , (A13)

aN.5 = 1askN · ∞+ (1− 1askN )(aN −∆pN ), (A14)

bN.5 = 1bidN · (−∞) + (1− 1bidN )(bN −∆pN ), (A15)

The main difference compared with the dynamics from ti to ti+1, i = 0, 1, .., N − 1 is due
to the fact that the market maker only unwinds his inventory position at time tN without
posting new quotes. To see (A14), note that if the ask outstanding order is filled, then there
will be no outstanding ask orders at time tN−. Otherwise, there will be an outstanding
ask order at price pN + aN − (pN + ∆pN ) = aN −∆pN . It is similar for the bid side.

A.4 Formulas of the indicator functions for order executions

In this section, we give the formulas for the indicator functions indicating whether orders
are filled. We write {N a(t) : t ≥ 0} and {N b(t) : t ≥ 0} with intensities λa and λb

respectively to denote the “uninformed” buy and sell market order flows that match this
particular market maker’s limit orders at the best quotes. These two processes are mutually
independent and independent with the price process p(·). These two flows model (small)
market orders sent by “uninformed” traders such that they do not move price, see, e.g.,
[10].

We first give a formula for a general definition indicating whether an order is filled. All
other indicator functions for order fills we use in this paper are just special cases. Suppose
an ask order is sent at time t ≥ 0 and at relative price x ∈ Z. After a delay t′1 ≥ 0, it
arrives at the order book. We use the indicator function 1askt,t′1,t

′
2,x

to indicate whether the

ask order is filled before time t+ t′1 + t′2, i.e, t′ time units after it arrives at the exchange.
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Assume that none of N (t),N a(t),N b(t) jumps at time t+ t′1 or t+ t′1 + t′2. To determine
whether the ask order is filled, we need to know whether the maximum best bid price in
the time interval [t+ t′1, t+ t′1 + t′2) is larger than the ask order’s price p(t) + x, called by
case 1 (this includes the case that the ask order is filled instantly when it arrives at the
order book), or it encounters an “uninformed” buy market order, called by case 2. Thus,
for any 0 ≤ t′ ≤ t′′, we define

∆pMt′,t′′ := max {p(t)− p(t′) | t′ ≤ t ≤ t′′}

= max {
n∑

j=N (t′)+1

Xj | n = N (t′) + 1, ...,N (t′′)} ∪ {0}, (A16)

which is the maximum price change in the time interval [t′1, t
′
2]. Recall that for any 0 ≤ t′ ≤

t′′, ∆p[t′, t′′] = p(t′′)−p(t′). Then, case 1 is equivalent to p(t+t′1)+∆pMt+t′1,t+t′1+t′2
≥ p(t)+x,

i.e., ∆pMt+t′1,t+t′1+t′2
≥ x−∆p[t, t+t′1]. For case 2, for any 0 ≤ t′ ≤ t′′, we denote by MI[t′, t′′]

the random set of time, when the best bid price attains the maximum best bid price for
the time interval [t′, t′′] as follows:

MI[t′, t′′] := {t ∈ [t′, t′′] | p(t) = p(t′) + ∆pM [t′, t′′]}. (A17)

For any set of time I, denote by N a(I) the number of jumps of N a(t) in the time set I.
Then, case 2 occurs if the maximum bid price in the time interval [t+ t′1, t+ t′1 + t′2] is one
tick less than the ask order’s price, i.e., ∆pMt+t′1,t+t′1+t′2

≥ x−∆p[t, t+ t′1]−1, and there is at

least one “uninformed” buy market order that matches the ask order when the ask order
stays at the best ask, i.e., N a(MI[t+ t′1, t+ t′1 + t′2]) ≥ 1. Therefore, the indicate function
for this ask order (whether it is filled or not) is given by

1askt,t′1,t
′
2,x

:= 1∆pM
t+t′1,t+t

′
1+t′2

≥x−∆p[t,t+t′1]+1∆pM
t+t′1,t+t

′
1+t′2

=x−∆p[t,t+t′1]−11Na(MI[t+t′1,t+t
′
1+t′2])≥1.

(A18)
Then, using the above general definition, we get the indicator functions for ask orders

in different cases. For the ask quote sent by the maker at time ti, i = 0, 1, ..., N − 1, we
have

1aski.5 = 1askti,∆τ,∆t−∆τ,δa
i
. (A19)

Note that an outstanding ask order acts the same as an ask quote sent at the same price
without latency. Thus, for the ask outstanding order at time ti, i = 0, 1, ..., N , we have

1aski = 1askti,0,∆τ,ai
. (A20)

Recall in Equation (3.2), for the definition of the general order value, we have the indicator
function 1askt′1,t

′
2,x

for an ask quote sent at time 0. Hence we have

1askt′1,t
′
2,x

= 1ask0,t′1,t
′
2,x
. (A21)

For the bid side, the formulas of the indicator functions are similar and hence omitted.
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B Proofs of results in Section 3

In this section, we give the proofs for the results in Section 3. We first state a lemma
on the value of orders. The lemma will be used to establish Theorem 3. In the proof of
this lemma, we only need the result in Proposition 1 and the proof of the lemma will be
deferred to the end of this section.

Lemma 5. For any ∆τ ≥ 0, ∆t > 0,

(a) if λa ≤ λ/2, then for any δa ∈ Z, Hask(∆τ,∆t, δa) ≤ 0; if λb ≤ λ/2, then for any
δb ∈ Z, Hbid(∆τ,∆t, δb) ≤ 0.

(b) if λa > λ/2, then there exists δa ∈ Z, such that Hask(∆τ,∆t, δa) > 0; if λb > λ/2,
then there exists δb ∈ Z, such that Hbid(∆τ,∆t, δb) > 0.

Lemma 5 says if λa ≤ λ/2, then there are no ask orders whose value is positive and if
λa > λ/2, there is at least one ask order whose value is positive. It is similar for the bid
side. We now present the proofs of our main results.

B.1 Proof of Proposition 1

Proof. We first prove part (a). We only prove it for the ask side. For any δa ≤ 0, by
the definition of indicator functions in Section A.4, we have 1ask0,∆t,δa

≡ 1. Thus, for any
δa ≤ 0, by Equation (3.2), we have

Hask(0,∆t, δa) = E[0− 0.5−∆p[0,∆t]] = −0.5.

For δa ≥ 1, we only need to prove that

E[δa −∆p[0,∆t] | 1ask0,∆t,δa
= 1] =

λa

λa + λ/2
.

Denote the jump times of N (t) and N a(t) by τ1, τ2, ... and τa1 , τ
a
2 , ... respectively. Define

two continuous-time Markov chains (CTMC), UA(t) and UAsk(t) as follows.
For t ≥ 0,

UA(t) :=

{
1, if {n ∈ N : τN (t) < τan ≤ t} 6= ∅,
0, otherwise,

and
UAsk(t) := (p(t), UA(t)).

UA(t), short for “uninformed” orders at the best ask, indicates if there is any “uninformed”
buy market orders (N a(t)) arrives at the best ask since the last jump time of market price
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τN (t). It is easy to see that Uask(t) is a CTMC with state space Z×{0, 1} and the following
transition rates:

(p, 0) −→


(p+ 1, 0), with rate λ/2,

(p− 1, 0), with rate λ/2,

(p, 1), with rate λa,

and

(p, 1) −→

{
(p+ 1, 0), with rate λ/2,

(p− 1, 0), with rate λ/2,

for any p ∈ Z.
Define the following hitting times:

τfill1 := inf{t ≥ 0 : UAsk(t) = (p(0) + δa − 1, 1)},
τfill2 := inf{t ≥ 0 : UAsk(t) = (p(0) + δa, 0)},
τfill := min{τfill1 , τfill2 ,∆t}.

If τfill1 < min{τfill2 ,∆t}, then the ask order sent at time 0 with relative price δa and with-
out latency will be filled by an “uninformed” order before time ∆t; if τfill2 < min{τfill1 ,∆t},
then the mid price will cross the price the price of ask order before time ∆t. The ask order
will be filled before time ∆t if and only if τfill < ∆t. Using these hitting times, we can
decompose δa −∆p[0,∆t] as follows:

E[δa −∆p[0,∆t] | 1ask0,∆t,δa
= 1]

=E[p(0) + δa − p(τfill) | τfill < ∆t]− E[p(∆t)− p(τfill) | τfill < ∆t],

where the second term is zero due to optional sampling theorem, noting that the event
{τfill < ∆t} ∈ Fτfill , τfill and ∆t are two bounded stopping times, and p(t) is a martingale.
Furthermore, if τfill = τfill1 , then p(τfill) = p(0) + δa − 1; if τfill = τfill2 , then p(τfill) =
p(0) + δa. Therefore, the fist term of the above formula, which is the quantity we need
to prove equal to λa

λa+λ/2 , can be represented by the conditional probability of two events
related to the hitting times as follows:

E[p(0) + δa − p(τfill) | τfill < ∆t] = P(τfill = τfill1 | τfill < ∆t).

Denote the jump times of UAsk(t) by τUAskn , n ≥ 1, then

UAskn :=

{
(p(0), 0), n = 0,

UAsk(τUAskn ), n ≥ 1,
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is the embedded discrete-time Markov chain (DTMC) of UAsk(t) with the following tran-
sition probability,

(p, 0) −→



(p+ 1, 0), with probability
λ/2

λa + λ
,

(p− 1, 0), with probability
λ/2

λa + λ
,

(p, 1), with probability
λa

λa + λ
,

and

(p, 0) −→

{
(p+ 1, 0), with probability 1/2,

(p− 1, 0), with probability 1/2.

Using the embedded DTMC, we can decompose the two events in the above conditional
probability as follows:

{τfill = τfill1} =

∞⋃
n=1

An,

where

An :={UAskn = (p(0) + δa − 1, 1), UAski /∈ {(p(0) + δa − 1, 1), (p(0) + δa, 0)},

i = 1, 2, ..., n− 1,
n∑
i

τUAski < ∆t},

stands for the event that after n transitions, the state of the DTMC first hits (p(0)+δa−1, 1)
while it never hit the (p(0) + δa, 0) before, and moreover the time for the n transitions of
the CTMC UAsk(t) is less than ∆t (recall that we assume all the Poisson processes do not
jump at time ∆t). Similarly,

{τfill < ∆t} =

∞⋃
n=1

Bn,

where

Bn :={UAskn ∈ {(p(0) + δa − 1, 1), (p(0) + δa, 0)}

UAski /∈ {(p(0) + δa − 1, 1), (p(0) + δa, 0)}, i = 1, 2, ..., n− 1,

n∑
i

τUAski < ∆t},

stands for the event that after n transitions, the state of the DTMC first hits {(p(0) + δa−
1, 1), (p(0) + δa, 0)} and the time for the n transitions of the CTMC UAsk(t) is less than
∆t. Note that An ⊆ Bn, n ≥ 1, and the two series of sets are both pairwise disjoint, i.e.,
for any n 6= m, An ∩Am = ∅ and Bn ∩Bm = ∅.
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Without loss of any generality, we can assume p(0) = 0 for simplicity. Then, we obtain
that

P(An)

P(Bn)
=

P(An ∩Bn)

P(Bn)
= P(An | Bn)

=P(UAskn = (δa − 1, 1), UAski /∈ {(δa − 1, 1), (δa, 0)}, i = 1, 2, ..., n− 1,
n∑
i

τUAski < ∆t

| UAskn ∈ {(δa − 1, 1), (δa, 0)}, UAski /∈ {(δa − 1, 1), (δa, 0)}, i = 1, 2, ..., n− 1,
n∑
i

τUAski < ∆t)

=P(UAskn = (δa − 1, 1) | UAskn ∈ {(δa − 1, 1), (δa, 0)}, UAski /∈ {(δa − 1, 1), (δa, 0)},

i = 1, 2, ..., n− 1,
n∑
i

τUAski < ∆t)

=P(UAskn = (δa − 1, 1)

| UAskn ∈ {(δa − 1, 1), (δa, 0)}, UAski /∈ {(δa − 1, 1), (δa, 0)}, i = 1, 2, ..., n− 1)

=P(UAskn = (δa − 1, 1) | UAskn ∈ {(δa − 1, 1), (δa, 0)}, UAskn−1 = (δa − 1, 0))

=
P(UAskn = (δa − 1, 1) | UAskn−1 = (δa − 1, 0))

P(UAskn ∈ {(δa − 1, 1), (δa, 0)} | UAskn−1 = (δa − 1, 0))

=
λa

λa + λ/2
.

The forth equality from the end holds because {UAski, i = 1, 2, ..., n} and {τUAski , i =
1, 2, ...} are independent. The third equality from the end holds because of Markov property
of {UAskn} and UAskn ∈ {(δa − 1, 1), (δa, 0)} only if UAskn−1 = (δa − 1, 0). Since the
ratio between each component pair (P(An),P(Bn)) is the same, we obtain that, for any
δa ≥ 1,

E[δa −∆p[0,∆t] | 1ask0,∆t,δa
= 1]

=P(τfill = τfill1 | τfill < ∆t)

=

∑
n=1

P(An)∑
n=1

P(Bn)
=

λa

λa + λ/2
.

Hence the proof of part (a) is complete for the ask side. The proof for the bid side is similar
and hence omitted.

Then, we prove part (b). We prove it for the ask side. By Equation (3.2), we have, for
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any ∆τ ≥ 0, ∆t > 0 and δa ∈ Z,

Hask(∆τ,∆t, δa)

=E[(max{δa −∆p[0,∆τ ], 0} − 0.5−∆p[∆τ,∆τ + ∆t])1ask∆τ,∆t,δa
]

=
∞∑

k=−∞
E[(max{δa − k, 0} − 0.5−∆p[∆τ,∆τ + ∆t])1ask∆τ,∆t,δa

| ∆p[0,∆τ ] = k]P(∆p[0,∆τ ] = k).

Given that ∆p[0,∆τ ] = k, by the formulas of indicator functions in Section A.4, we obtain
that

1ask∆τ,∆t,δa
=1∆pM∆τ,∆τ+∆t≥δa−∆p[0,∆τ ] + 1∆pM∆τ,∆τ+∆t=δ

a−∆p[0,∆τ ]−11Na(MI([∆τ,∆τ+∆t]))≥1

=1∆pM∆τ,∆τ+∆t≥δa−k
+ 1∆pM∆τ,∆τ+∆t=δ

a−k−11Na(MI([∆τ,∆τ+∆t]))≥1.

Note that {(p(t),N a(t)) | t ≥ 0} is a 2-dimensional process with stationary and independent
increments. Changing the time interval from [∆τ,∆τ + ∆t] to [0,∆t], we obtain that the
following 3-dimensional random vector

(∆p[∆τ,∆τ + ∆t],∆pM∆τ,∆τ+∆t,N a(MI([∆τ,∆τ + ∆t])))

is independent with ∆p[0,∆τ ] and has the same joint distribution as

(∆p[0,∆t],∆pM0,∆t,N a(MI([0,∆t]))).

Therefore, for any k ∈ Z, by the definition of 1ask0,∆t,δa−k , we have

E[(max{δa − k, 0} − 0.5−∆p[∆τ,∆τ + ∆t])1ask∆τ,∆t,δa
| ∆p[0,∆τ ] = k]

=E[(max{δa − k, 0} − 0.5−∆p[0,∆t])1ask0,∆t,δa−k ]

=Hask(0,∆t, δa − k).

Hence,

Hask(∆τ,∆t, δa − k) =
∞∑

k=−∞
Hask(0,∆t, δa − k)P(∆p[0,∆τ ] = k)

=E[Hask(0,∆t, δa −∆p[0,∆τ ])].

Now the proof of part (b) is complete for the ask side. The proof for the bid side is similar
and hence omitted.
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B.2 Proof of Theorem 2

Proof. We prove it by backward induction. For i = N , by the Bellman equation, for any
s = (w, p, q, a, b) ∈ S,

vN (s) =E[wN.5 + (pN.5 + 0.5)qN.5 − 0.5|qN.5|
∣∣sN = s]

=E[w + (p+ a)1askN − (p+ b)1bidN + (p+ ∆pN + 0.5)(q − 1askN + 1bidN )

− 0.5|q − 1askN + 1bidN |
∣∣sN = s]

=w + (p+ 0.5)q + E[(a− 0.5−∆pN )1askN | aN = a]

+ E[(∆pN + 0.5− b)1bidN | bN = b]− 0.5E[ |q − 1askN + 1bidN |
∣∣(aN , bN ) = (a, b)]

=w + (p+ 0.5)q + E[(a− 0.5−∆p0)1ask0 | a0 = a] + E[(∆p0 + 0.5− b)1bid0 | b0 = b]

− 0.5E[ |q − 1ask0 + 1bid0 |
∣∣(a0, b0) = (a, b)]

=w + (p+ 0.5)q +H(0,∆τ, a, b) + gN (q, a, b),

where the second equality comes from Equations (A11)-(A13), the forth one comes from
the stationarity of the MDP, and the fifth one comes from the definitions of functions H,
gN and the indicator functions.

For i = 0, 1, ..., N − 1, assume vi+1(s) = w + (p + 0.5)q + H(0,∆τ, a, b) + gi+1(q, a, b)
for any s = (w, p, q, a, b) ∈ S, then by the Bellman equation, for any s = (w, p, q, a, b) ∈ S,

vi(s) = max
(δa,δb)∈As

E[vi+1(si+1) | si = s, (δai , δ
b
i ) = (δa, δb)]

= max
(δa,δb)∈As

E[vi+1(s1) | s0 = s, (δa0 , δ
b
0) = (δa, δb)]

= max
(δa,δb)∈As

E[w1 + (p1 + 0.5)q1 +H(0,∆τ, a1, b1) + gi+1(q1, a1, b1)

| s0 = s, (δa0 , δ
b
0) = (δa, δb)]

= max
(δa,δb)∈As

E[w + (p+ a)1ask0 − (p+ b)1bid0

+ max{p+ ∆p0, p+ δa}1ask0.5 −min{p+ ∆p0 + 1, p+ δb}1bid0.5

+ (p+ ∆p0 + ∆p0.5 + 0.5)(q − 1ask0 + 1bid0 − 1ask0.5 + 1bid0.5)

+H(0,∆τ, a1, b1) + gi+1(q1, a1, b1) | s0 = s, (δa0 , δ
b
0) = (δa, δb)],

where the second equality comes from the stationarity of the MDP, the third one comes
from the assumption for vi+1 and the forth one comes from Equations (A6)-(A8).

31



Reorganizing the terms, we obtain that

vi(s) = max
(δa,δb)∈As

{
w + pq +Hask(0,∆τ, a)− E[∆p0.51ask0 | a0 = a] +Hbid(0,∆τ, b)

+ E[∆p0.51bid0 | b0 = b] + 0.5q +Hask(∆τ,∆t−∆τ, δa) +Hbid(∆τ,∆t−∆τ, δb)

+ E[H(0,∆τ, a1, b1) + gi+1(q1, a1, b1) | (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)]

}
=w + (p+ 0.5)q +H(0,∆τ, a, b)− E[∆p0.5]E[1ask0 | a0 = a]

+ E[∆p0.5]E[1bid0 | b0 = b] + max
(δa,δb)∈As

{
H(∆τ,∆t−∆τ, δa, δb)

+ E[H(0,∆τ, a1, b1) + gi+1(q1, a1, b1) | (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)]

}
=w + (p+ 0.5)q +H(0,∆τ, a, b) + max

(δa,δb)∈As

{
H(∆τ,∆t−∆τ, δa, δb)

+ E[H(0,∆τ, a1, b1) + gi+1(q1, a1, b1) | (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)]

}
where the first equality comes from the definitions of functionH and the indicator functions,
the second equality holds because given that (a0, b0) = (a, b), ∆p0.5 is independent with

1ask0 and 1bid0 , noting that 1ask0 and 1bid0 depend on {(
N (t)∑
i=1

Xi,N a(t),N b(t)) : t ∈ [0, t0.5)}

while ∆p0.5 =
N (t1)∑

i=N (t0.5)+1

Xi, and the third one holds because {p(t) | t ≥ 0} is a martingale.

By the definition of the function Gi, it remains to prove

H(∆τ,∆t, δa, δb) =H(∆τ,∆t−∆τ, δa, δb) + E[H(0,∆τ, a1, b1)

| (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)].

(B1)

Recall that H(∆τ,∆t, δa, δb) is the value of a quote pair (δa, δb) sent by the maker at time
0, in which the mid price for comparison is p(∆τ +∆t)+0.5 = p(t1.5)+0.5, called by value
before time t1.5; H(∆τ,∆t − ∆τ, δa, δb) is the value of this quote pair, in which the mid
price for comparison is p(∆τ + ∆t−∆τ) + 0.5 = p(∆t) + 0.5 = p(t1) + 0.5, called by value
before time t1; E[H(0,∆τ, a1, b1) | (q0, a0, b0) = (q, a, b), (δa0 , δ

b
0) = (δa, δb)] is the expected

value of the outstanding orders at time t1 if any. By the definition of value of quote pairs,
Equation (B1) can be divided into the ask part and the bid part. We prove the ask part
for by discussing whether the ask order is filled in the time interval [τ, t1) or in [t1, t1.5) or
not filled. Denote by pexe th execution price of the ask order in this quote pair if the ask
order is filled before canceled. First, suppose the ask order is filled before time t1. Then,
the conditional expectation of pexe− p(t1)− 0.5 is equal to that of pexe− p(t1.5)− 0.5. This
is because the mid price is a martingale with independent increments and is independent
with the “uninformed” buy order process N a(t) (hence p(t1.5)− p(t1) is independent with
the execution of the ask order before time t1). Meanwhile, there will be no outstanding

32



ask orders at time t1, hence the expected value of outstanding ask orders at time t1 is zero.
Second, suppose the ask order is filled before in the time interval [t1, t1.5). Then, the value
of the ask order before time t1 is zero since it is not filled before time t1. Moreover, the
execution price of the ask order pexe is the same as that of the outstanding ask order at
time t1 (they are the same order). Thus, the value of the ask order before time t1.5 is the
same as that of the outstanding ask order at time t1. Third, suppose the ask order is not
filled. Then all the value we mentioned for this order is zero. Therefore, the ask part of
Equation (B1) holds. The discussion for the bid part is similar and hence omitted. The
proof is thus complete.

B.3 Proof of Theorem 3

Proof. We first prove part (1). The main idea is given as follows. Comparing two MDP
problems with N and N + 1 periods respectively, the value function at time t1 in the latter
is the same as the value function at t0 (i.e., the initial one) in the former, because they can
be computed by the same backward induction (Bellman equation) from the same terminal
value function. For s = (w, p, 0,∞,−∞), the value function at t0 in the N + 1 period
problem is greater than or equal to that at t1 in the same problem, because the maker can
choose to post no orders in the initial action. Thus, NP with N +1 periods is greater than
or equal to that with N periods.

Mathematically, by Theorem 2 and Equation (3.10), NP = g0(0,∞,−∞) is a function
of N . Denote this function by fNP (N). Clearly we have fNP (0) = 0. For the two MDP
problems with N = n ≥ 1 and N = n+ 1, denote the value functions and corresponding g
function by vni (s), gni (s), i = 0, 1, ..., n and vn+1

i (s), gn+1
i (s), i = 0, 1, ..., n + 1 respectively.

By Theorem 2, functions vn0 (s) and vn+1
1 (s) are given from the same backward induction

process starting from the same function

vnn(s) = vn+1
n+1(s) =w + (p+ 0.5)q +H(0,∆τ, a, b)− 0.5E[ |q − 1ask0 + 1bid0 |

∣∣(a0, b0) = (a, b)],

for any s = (w, p, q, a, b) ∈ S. Therefore, for any s ∈ S, vn0 (s) = vn+1
1 (s). By Theorem 2,

we have for any w, p ∈ Z

vn+1
0 (w, p, 0,∞,−∞)

=w + p ∗ 0 +H(0,∆τ,∞,−∞) + max
(δa,δb)∈As

{
H(∆τ,∆t, δa, δb) + E[gn+1

1 (q1, a1, b1)

| (q0, a0, b0) = (0,∞,−∞), (δa0 , δ
b
0) = (δa, δb)]

}
≥w +H(∆τ,∆t,∞,−∞) + E[gn+1

1 (q1, a1, b1) | (q0, a0, b0) = (0,∞,−∞), (δa0 , δ
b
0) = (∞,−∞)]

=w + gn+1
1 (0,∞,−∞) = vn+1

1 (w, p, 0,∞,−∞),
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where the second equality comes from Equation (A8). Thus, we obtain that

fNP (n+ 1) = vn+1
0 (w, p, 0,∞,−∞)− w

≥ vn+1
1 (w, p, 0,∞,−∞)− w = vn0 (w, p, 0,∞,−∞) = fNP (n).

Then we prove part (2). By Lemma 5, if λa ≤ λ/2 and λb ≤ λ/2, then for any

(δa, δb) ∈ Z2
,

H(∆τ,∆t, δa, δb) = Hask(∆τ,∆t, δa) +Hbid(∆τ,∆t, δb) ≤ 0.

We prove gi(q, a, b) ≤ 0, for i = 0, 1, ..., N and any admissible (q, a, b) by the backward
induction in Theorem 2. For i = N , it holds directly from Equation (3.8). Suppose for
some i (1 ≤ i ≤ N), gi(q, a, b) ≤ 0 for any admissible (q, a, b). Then from Equations (3.8)
and (3.9), we obtain that for any admissible (q, a, b).

gi(q, a, b) = max
(δa,δb)∈As

{
H(∆τ,∆t, δa, δb) + E[gi+1(q1, a1, b1)

| (q0, a0, b0) = (q, a, b), (δa0 , δ
b
0) = (δa, δb)]

}
≤ 0.

Therefore, gi(q, a, b) ≤ 0, for i = 0, 1, ..., N and any admissible (q, a, b). It follows from
Equation (3.10), that

NP = g0(0,∞,−∞) ≤ 0.

Hence, NP = 0.
Next, we prove part (3). Suppose λa > λ/2 and λb > λ/2. We prove for the existence

of Nmin. By Lemma 5, there exists an order pair, denoted by (δaM , δ
b
M ) ∈ Z2, such that

Hask(∆τ,∆t, δaM ) > 0 and Hbid(∆τ,∆t, δbM ) > 0. The main idea is that we construct an
admissible policy using this order pair (δaM , δ

b
M ), under which the expected profit is positive

if N is a sufficiently large even number. Thus, Nmin exists since fNP (N) is a non-increasing
function of N . We also give an upper bound of Nmin that is an N which is sufficient to
make the profit under the admissible policy is positive.

First, we define the admissible policy. Denote by vπi (s) the expected TW under
any admissible policy π = {fi : i = 0, 1, ...N} starting at time ti with initial state
s = (w, p, q, a, b) ∈ S. We consider an admissible policy π̃ = {f̃i : i = 0, 1, ...N} in
any of our MDP problem with an even N ≥ 4, i.e., N = 2K for some 2 ≤ K ∈ N. Starting
at time 0 with an initial state (w, p, 0,∞,−∞) for any w, p ∈ Z, π̃ is defined as follows.
For i = 1, 3, 5, ..., N − 1, i.e., i is odd, for any w, p ∈ Z, a, b ∈ Z, q ∈ {−1, 0, 1} such that
(w, p, q, a, b) ∈ S, define

f̃i(w, p, q, a, b) := (∞,−∞).

For i = 2, 4, 6, ..., N − 2, i.e., i is even except 0, for any w, p ∈ Z, q ∈ {−1, 0, 1}, define

f̃i(w, p, q,∞,−∞) :=


(δaM ,−∞), q = 1,

(∞,−∞), q = 0,

(∞, δbM ), q = −1.
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For any w, p ∈ Z, define f̃0(w, p, 0,∞,∞) := (δaM , δ
b
M ). Recall that (δaM , δ

b
M ) is an action

attaining the maximum value of actions. Under this policy, at time ti, i = 2, 4, 6, ...., N −2,
the maker will post no orders if his inventory is 0, sell one unit at the relative price δaM if his
inventory is 1, and buy one unit at δbM if his inventory is -1. At time ti, i = 1, 3, 5, ...., N1,
the maker does not post any orders. At time tN , the maker unwinds his inventory if any. At
time t0 = 0, there are no inventory or outstanding orders and the maker quotes at (δaM , δ

b
M ).

Therefore, at time ti, i = 0, 2, 4, 6, ..., N − 2, there are no outstanding orders. Moreover,
the inventory of the maker always belongs to {−1, 0, 1}. Hence, the above definition is
enough for π̃.

Then, we give the backward induction for this policy. Like Bellman equation, standard
arguments in MDP theory show that for i = 2, 4, 6, ..., N−2, for any w, p ∈ Z, q ∈ {−1, 0, 1},

vπ̃i (w, p, q,∞,−∞) =E[vπ̃i+2(wi+2, pi+2, qi+2,∞,−∞) | (wi, pi, qi, ai, bi) = (w, p, q,∞,−∞),

(δai , δ
b
i ) = f̃i(w, p, q,∞,−∞), (δai+1, δ

b
i+1) = (∞,−∞)],

and

vπ̃0 (w, p, 0,∞,−∞) =E[vπ̃2 (w2, p2, q2,∞,−∞) | (w0, p0, q0, a0, b0) = (w, p, 0,∞,−∞),

(δa0 , δ
b
0) = (δaM , δ

b
M ), (δa1 , δ

b
1) = (∞,−∞)].

Then, using a similar argument as the proof of Theorem 2, we obtain that, for i =
2, 4, 6, ..., N , for any w, p ∈ Z, q ∈ {−1, 0, 1},

vπ̃i (w, p, q,∞,−∞) =w + (p+ 0.5)q +H(0,∆τ,∞,−∞) + gπ̃i (q)

=w + (p+ 0.5)q + gπ̃i (q),

where

gπ̃N (q) = −0.5|q|,

which is because there are no outstanding orders or new quotes sent by the maker at time
tN , and

gπ̃i (q) =H(∆τ,∆t, f̃i(w, p, q,∞,−∞)) + E[gπ̃i+2(q2) | (q0, a0, b0) = (q,∞,−∞),

(δa0 , δ
b
0) = f̃i(w, p, q,∞,−∞), (δa1 , δ

b
1) = (∞,−∞)], for i = 2, 4, 6, ..., N − 2.

(B2)

Similarly, for any w, p ∈ Z, we have

vπ̃0 (w, p, 0,∞,−∞)

=w + (p+ 0.5) · 0 +H(0,∆τ,∞,−∞) + gπ̃0 (0)

=w + gπ̃0 (0),
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where
gπ̃0 (0) =H(∆τ,∆t, δaM , δ

b
M ) + E[gπ̃2 (q2) | (q0, a0, b0) = (0,∞,−∞),

(δa0 , δ
b
0) = (δaM , δ

b
M ), (δa1 , δ

b
1) = (∞,−∞)].

(B3)

Next, we prove that if N is sufficiently large, then gπ̃0 (0) > 0. To do this, by Equation
(B3), we only need to prove gπ̃2 (q) ≥ 0 for q = −1, 0, 1, since H(∆τ,∆t, δaM , δ

b
M ) > 0. First,

we prove gπ̃2 (0) = 0. By Equation (B2), we obtain that, for i = 2, 4, 6, ..., N − 2,

gπ̃i (0) =H(∆τ,∆t,∞,−∞) + E[gπ̃i+2(q2) | (q0, a0, b0) = (0,∞,−∞),

(δa0 , δ
b
0) = (∞,−∞), (δa1 , δ

b
1) = (∞,−∞)]

=E[gπ̃i+2(0) | (q0, a0, b0) = (0,∞,−∞),

(δa0 , δ
b
0) = (∞,−∞), (δa1 , δ

b
1) = (∞,−∞)]

=gπ̃i+2(0).

Hence, for i = 2, 4, 6, ..., N − 2, gπ̃i (0) = gπ̃N (0) = 0. Then, we prove that if N is sufficiently
large, then gπ̃2 (±1) > 0. Recall that 1ask∆τ,∆t,δa

M
indicates whether the ask order sent at

time 0 and the relative price δaM with latency ∆τ is filled in the time interval [∆τ,∆τ+∆t).
It can be readily verified that when δa0 = δaM we have

1ask∆τ,∆t,δa
M

= 1ask0.5 + 1ask1 .

Intuitively, the ask order is filled if and only if either it is filled in the time interval [∆τ,∆t],
which is represented by 1ask0.5 = 1, or it stays as an outstanding order at time t1 = ∆t, and
then filled in the time interval [∆t,∆τ + ∆t], which is represented by 1ask1 = 1. Denote
the fill probability of this ask order δaM by pa := P(1ask∆τ,∆t,δa

M
= 1). By Equation (B2),

for i = 2, 4, 6, ..., N − 2, we have

gπ̃i (1) =H(∆τ,∆t, δaM ,−∞) + E[gπ̃i+2(q2) | (q0, a0, b0) = (1,∞,−∞),

(δa0 , δ
b
0) = (δaM ,−∞), (δa1 , δ

b
1) = (∞,−∞)]

=Hask(∆τ,∆t, δaM ) + E[gπ̃i+2(1− 1ask0.5 − 1ask1) | (q0, a0, b0) = (1,∞,−∞),

(δa0 , δ
b
0) = (δaM ,−∞), (δa1 , δ

b
1) = (∞,−∞)]

=Hask(∆τ,∆t, δaM ) + E[gπ̃i+2(1− 1ask∆τ,∆t,δa
M

) | (q0, a0, b0) = (1,∞,−∞),

(δa0 , δ
b
0) = (δaM ,−∞), (δa1 , δ

b
1) = (∞,−∞)]

=Hask(∆τ,∆t, δaM ) + E[gπ̃i+2(1− 1ask∆τ,∆t,δa
M

)]

=Hask(∆τ,∆t, δaM ) + pagπ̃i+2(0) + (1− pa)gπ̃i+2(1)

=Hask(∆τ,∆t, δaM ) + (1− pa)gπ̃i+2(1),
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where the second equality comes from Equation (A8), and the forth equality holds because
the random variable 1ask∆τ,∆t,δa

M
does not depend on q0, a0, b0, δ

a
0 , δ

b
0, δ

a
1 and δb1. It is similar

for the bid side. Define pb := P(1bid
∆τ,∆t,δb

M

= 1). For i = 2, 4, 6, ..., N − 2, we have

gπ̃i (−1) =Hbid(∆τ,∆t, δbM ) + (1− pb)gπ̃i+2(−1),

Recall N = 2K. Solving the above recursive equations for gπ̃i (±1) with gπ̃N (1) = gπ̃N (−1) =
−0.5, we obtain that

gπ̃2 (1) = (−0.5−
Hask(∆τ,∆t, δaM )

pa
)(1− pa)K−1 +

Hask(∆τ,∆t, δaM )

pa
, (B4)

and

gπ̃2 (−1) = (−0.5−
Hbid(∆τ,∆t, δbM )

pb
)(1− pb)K−1 +

Hbid(∆τ,∆t, δbM )

pb
. (B5)

Note that 0 < pa, pb < 1 because (δaM , δ
b) ∈ Z2. Thus, if N is sufficiently large, then

gπ̃2 (±1) > 0.
Finally, since π̃ is an admissible policy, by Equation (3.1), we obtain that

NP ≥ vπ̃0 (w, p, 0,∞,−∞)− w = gπ̃0 (0) > 0.

Note that the backward induction for value functions in each period depends on the model
parameters λ, λa, λb,∆τ,∆t, q and q. It follows from the monotonicity of fNP (N) and the
fact fNP (N) > 0 when N is even and sufficiently large that there exists a constant integer
Nmin ≥ 1 depending on λ, λa, λb,∆τ,∆t, q and q, such that fNP (N) > 0 if and only if
N ≥ Nmin. For an upper bound of Nmin, define

N̄min := 2 max




ln
Hask(∆τ,∆t,δaM )

Hask(∆τ,∆t,δaM )+0.5pa

ln (1− pa)

 ,


ln
Hbid(∆τ,∆t,δbM )

Hbid(∆τ,∆t,δbM )+0.5pb

ln (1− pb)


+ 2.

It can be readily verified that when N ≥ N̄min, gπ̃2 (±1) > 0 and hence gπ̃0 (0) > 0. Therefore,
N̄min ≥ Nmin. Now the proof for part (2) is complete.

B.4 Proof of Proposition 4

Proof. Our purpose is to prove that the net profit of an MDP problem with absolute
latency ∆τ1 is larger than or equal to that of another problem with latency ∆τ2, for
any 0 ≤ ∆τ1 < ∆τ2 < ∆t, while the model parameters λ, λa, λb,∆t, T, q and q are the
same. The main idea of the proof is given as follows. We first modify the two problems
to equivalent versions, i.e., the value functions remain unchanged after the modifications.
Then we prove that for any admissible policy in the modified problem with latency ∆τ2, one
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can replicate an equivalent policy with the same expected terminal wealth in the modified
problem with latency ∆τ1. The modifications include change of time intervals, additional
decision epochs at which the maker cannot post any orders or cancellation instructions, i.e.,
he can do nothing, and replacing (non-randomized) Markov policies by history-dependent
policies. All these modifications will not change the essence of our MDP problems. In a
Markov policy, the decision is a function of the current state (as in our model defined in
section 2), while in a history-dependent policy the decision is a function of all states in
history (including the current one). We describe these modifications more specifically as
follows.

Define the difference of latency dτ := ∆τ2−∆τ1 > 0. Define the number of quote pairs
N1 := bT−∆τ1

∆t c and N2 := bT−∆τ2
∆t c. Clearly, we have either N1 = N2 or N1 = N2 + 1.

By Theorem 3 part (2), we only need to prove for the case N1 = N2. Denote the number
of quote pairs by N := N1 = N2. If N = 0, then the profit for both latency is zero and
the result we need to prove is true. Now suppose N ≥ 1. Define the action space set
Anull := {actnull}, where actnull stands for posting no orders or cancellation instructions,
i.e., doing nothing. We will add some additional decision epochs with this admissible action
space. We call those decision epochs dummy epochs because they contribute nothing. We
call the decision epochs with admissible action spaces defined in Section 2 real epochs.

First, we define a problem P1 with latency ∆τ1 as our standard model in Section 2,
except that we add an additional time interval [−dτ, 0) and a dummy epoch at time −dτ .
The initial real epoch is still at time 0. The underlying continuous-time system state process
is denoted by sP1(t),−dτ ≤ t ≤ N∆t+∆τ1. sP1(t) is defined as in Section 2 where the initial
time of p(t),N a(t) and N b(t) is −dτ . Denote the value function at time t (t can be time of
any decision epoch), by vP1,MD(t, s), s ∈ S, where MD standards for Markov deterministic
polices.. Due to the stationarity of p(t),N a(t) and N b(t), vP1,MD(0−, s), s ∈ S is the initial
value function for an MDP problem with standard definition. Then we define another
problem P ′1 with latency ∆τ2 by modifying P1 as follows. Define the underlying continuous-
time state process sP

′
1(t) := sP1(t− dτ), 0 ≤ t ≤ N∆t+ ∆τ2. The real epochs are defined

at times (i∆t+ dτ)−, i = 0, 1..., N − 1, which come from the real epochs in problem P1 by
a dτ time translation. The dummy epochs are defined at times i∆t−, i = 0, 1..., N − 1, N ,
which are the times of decisions in our standard model and (i∆t + dτ + ∆τ1)− = (i∆t +
∆τ2)−, i = 0, 1..., N − 1, which are the arriving times of the maker’s order sent in the
i − th real epoch. At times (N∆t + dτ)−, the maker needs to unwind and the time of
terminal state is (N∆t+ dτ + ∆τ1)− = (N∆t+ ∆τ2)−. The admissible policy set is either
Markovian or history-dependent. Denote the value functions at time t by vP

′
1,MD(t, s) and

vP
′
1,HD(t, s), s ∈ S respectively, where HD standards for history-dependent deterministic

polices.
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Figure 8: An illustration for proof of Theorem 4

Comparing P1 and P ′1, we obtain that for any s = (w, p, 0,∞,−∞) ∈ S,

vP
′
1,HD(0−, s) = vP

′
1,MD(0−, s) = vP1,MD(−dτ, s)

=EP1,MD[vP1,MD(0−, sP1(0−)) | sP1(−dτ) = s]

=EP1,MD[wP1(0−) + pP1(0−)qP1(0−) + gP1
0 (qP1(0−), aP1(0−), bP1(0−)) | sP1(−dτ) = s]

=EP1,MD[w + pP1(0−)0 + gP1
0 (q,∞,−∞) | sP1(−dτ) = s]

=w + gP1
0 (0,∞,−∞)

=vP1,MD(0−, s).

Here, the first equality comes from Theorem 4.4.1 and 4.4.2 in [25]. The second one holds
because of the translation of time and because the dummy epochs contribute nothing. The
third one comes from the Bellman equation from time −dτ to 0− in problem P1. The forth
one comes from the structure of value function (given in Theorem 2) at time 0− in problem
P1, where (wP1(t), pP1(t), qP1(t), aP1(t), bP1(t)) is system state at time t and gP1

0 is the g0

function defined in Theorem 2 for problem P1. The fifth one holds because, in problem
P1, starting without any outstanding orders or inventory and doing nothing at time −dτ ,
the maker’s wealth will remain unchanged during [−dτ, 0) and there will be no inventory
or outstanding order at time 0−. The sixth one holds because the marker best bid price is
a martingale. The seventh one comes from the structure of value function at time 0− in
problem P1.

Next we define a standard MDP (as in Section 2) problem P2 with latency ∆τ2. Denote
by the underlying continuous-time system state process by sP2(t), 0 ≤ t ≤ N∆t+ ∆τ2 and
the value function at time t by vP2,MD(t, s), s ∈ S. Then we define a MDP problem P ′2
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with latency ∆τ2 by adding some dummy epochs in P2. We add dummy epochs at times
(i∆t+ dτ)−, i = 0, 1..., N − 1, which are times of the real epochs in problem P ′1 and times
(i∆t + ∆τ2)−, i = 0, 1..., N − 1, which are arriving times of the maker’s orders and the
same as that in P ′1. The admissible policy set is also either Markovian or history-dependent.
Denote the value function at time t by vP

′
2,MD(t, s) and vP

′
2,HD(t, s), s ∈ S respectively.

Similarly as in the comparison between P1 and P ′1, we have for any s = (w, p, 0,∞,−∞) ∈
S,

vP
′
2,HD(0−, s) = vP

′
2,MD(0−, s) = vP2,MD(0−, s).

To prove Theorem 4, we need to prove that vP1,MD(0−, s) ≥ vP2,MD(0−, s), for any
s = (w, p, 0,∞,−∞) ∈ S. Due to the relationships among the value functions in problems
P1, P

′
1, P2 and P ′2, we only need to prove vP

′
1,HD(0−, s) ≥ vP

′
2,HD(0−, s) for any s =

(w, p, 0,∞,−∞) ∈ S. In problem P ′2, for any history-dependent policy and for each real
epoch at time i∆t, i = 0, 1..., N − 1, the action is a function of the corresponding history

states, denoted by History
P ′2
i . Meanwhile, in problem P ′1, for any history-dependent policy,

for each real epoch at time i∆t + dτ, i = 0, 1..., N − 1, the action is a function of the

corresponding history states, denoted by History
P ′1
i . Note that History

P ′2
i is a subset of

History
P ′1
i , i = 0, 1, ...N − 1, i.e., the information available at the i-th real epoch in P ′2 is

also available at the i-th real epoch in P ′1. This is because the time of the i-th real epoch
in P ′1 is later than that in P ′2. See Figure 8 for an illustration. In Figure 8, red points
stand for dummy epochs and blue points stand for real epochs (and the time to unwind
as well as the terminal time). Therefore, for any admissible history-dependent policy in
P ′2, we can replicate it in P ′1 as follows. In P ′1, for each real epoch, the decision is only
based on the information which is available in the corresponding real epoch in P ′2, and the
decision function is the same as the history-dependent policy in P ′2. Note that, in both
problems, the orders sent in the i-th real epoch arrive the order book at the same time
i∆t+∆τ2. Therefore, starting with the same initial state, using the replicated policy in P ′1,
the maker will have the same expected terminal wealth as in P ′2. Thus, we conclude that
vP
′
1,HD(0, s) ≥ vP ′2,HD(0, s) for any s = (w, p, 0,∞,−∞) ∈ S. The proof is complete.

B.5 Proofs of Lemma 5

This section collects the proof of Lemma 5.

Proof of Lemma 5. We first prove part (a). We prove it for the ask side. Suppose λa ≤ λ/2.
When ∆τ = 0, by part (a) of Proposition 1, for any 1 ≤ δa ∈ Z,

Hask(0,∆t, δa) = (
λa

λa + λ/2
− 0.5)E[1ask0.5 | δa0 = δa] ≤ 0,

and for any 0 ≥ δa ∈ Z,
Hask(0,∆t, δa) = −0.5 ≤ 0.
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Thus, when τ > 0, by part (b) of Proposition 1, for any δa ∈ Z,

Hask(τ,∆t, δa) = E[Hask(0,∆t, δa −∆p[0, τ ])] ≤ 0.

The proof of part (a) is complete for the ask side. The proof for the bid side is similar and
hence omitted.

Then we prove part (b). We prove it for the ask side. Suppose λa > λ/2. When τ = 0,
by part (a) of Proposition 1, when δa = 1,

Hask(0,∆t, 1) = (
λa

λa + λ/2
− 0.5)E[1ask0.5 | δa0 = 1] > 0.

Now suppose τ > 0. By part (b) of Proposition 1, for any δa ∈ Z, we have

Hask(τ,∆t, δa)

=E[Hask(0,∆t, δa −∆p[0, τ ])]

=
∞∑

k=−∞
Hask(0,∆t, δa − k)P(∆p[0, τ ] = k)

=− 0.5P(∆p[0, τ ] ≥ δa) + (
λa

λa + λ/2
− 0.5)

δa−1∑
k=−∞

E[1ask0,∆t,δa−k ]P(∆p[0, τ ] = k)

≥− 0.5P(∆p[0, τ ] ≥ δa) + (
λa

λa + λ/2
− 0.5)E[1ask0,∆t,1

]P(∆p[0, τ ] = δa − 1),

where the third equality comes from part (a) of Proposition 1. We claim that

lim
δa→∞

P(∆p[0, τ ] ≥ δa)
P(∆p[0, τ ] = δa − 1)

= 0, (B6)

and hence Hask(τ,∆t, δa) > 0 if δa is sufficiently large.
To prove Equation (B6), we first note that we only need to prove

lim
δa→∞

P(∆p[0, τ ] = δa)

P(∆p[0, τ ] = δa − 1)
= 0. (B7)

This is because, if Equation (B7) holds, then there exists a constant c ∈ (0, 1), such that

for δa sufficiently large, P(∆p[0,τ ]=δa)
P(∆p[0,τ ]=δa−1) < c. Thus, as δa →∞,

P(∆p[0, τ ] ≥ δa)
P(∆p[0, τ ] = δa − 1)

≤(1 + c+ c2 + ...)P(∆p[0, τ ] = δa)

P(∆p[0, τ ] = δa − 1)
=

1
1−cP(∆p[0, τ ] = δa)

P(∆p[0, τ ] = δa − 1)
→ 0.
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Next, we prove Equation (B7). For any 1 ≤ δa ∈ Z, we have

P(∆p[0, τ ] = δa)

P(∆p[0, τ ] = δa − 1)
=

∞∑
k=δa

P(∆p[0, τ ] = δa | N (τ) = k)P(N (τ) = k)

∞∑
k=δa

P(∆p[0, τ ] = δa − 1 | N (τ) = k − 1)P(N (τ) = k − 1)

, (B8)

noting that if k < δa, then P(∆p[0, τ ] = δa | N (τ) = k) = 0. For any 0 ≤ δa ≤ k, because
given that N (τ) = k, {p(t)|0 ≤ t ≤ τ} is a simple random walk, we have

P(∆p[0, τ ] = δa | N (τ) = k) =


(

k
k+δa

2

)
1

2k
, if k and δa have the same parity,

0, if k and δa have different parities.

Thus, for any 1 ≤ δa ≤ k, if δa and k have the same parity, then

P(∆p[0, τ ] = δa | N (τ) = k)P(N (τ) = k)

P(∆p[0, τ ] = δa − 1 | N (τ) = k − 1)P(N (τ) = k − 1)

=

( k
k+δa

2

)
1
2k
e−λτ (λτ)k/k!( k−1

k−1+δa−1
2

)
1

2k−1 e−λτ (λτ)k−1/(k − 1)!

=
λτ

k + δa
≤ λτ

2δa
.

Therefore, by Equation (B8), we obtain that

P(∆p[0, τ ] = δa)

P(∆p[0, τ ] = δa − 1)
≤ λτ

2δa
→ 0,

as δa → ∞. Thus, Equation (B7) holds and the proof of part (b) is complete for the ask
side. The proof for the bid side is similar and hence omitted.

C Estimations of λa and λb

We briefly discuss how a particular market maker can estimate λa and λb, relying on our
theoretical analysis and his own trading data. Taking λa as an example as λb can be
estimated similarly. We first present the following equation, which is derived at the end of
this section.

E[(1−∆p[0,∆τ + ∆t]− 0.5)1ask∆τ,∆t,1
| ∆p[0,∆τ ] = 0]

=(
λa

λa + λ/2
− 0.5) · E[1ask∆τ,∆t,1

| ∆p[0,∆τ ] = 0].
(C1)
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The left hand side of Equation (C1) is the conditional value of the best ask order given
that the mid price does not move in the period of latency. The right hand side is a constant
multiplied by the conditional fill probability of the best ask order given that the mid price
does not move in the period of latency.

The maker can first estimate the conditional value and fill probability mentioned above
as well as λ, and then put the estimated quantities into Equation (C1) to compute λa.
The parameter λ can be estimated by the average number of mid-price jumps. For the
conditional value and fill probability, the maker can send multiple best ask orders with
the quoting duration ∆t (one best ask order every ∆t time units). Suppose, there are n
ask orders, for which the mid price does not move in the latency period. Among the n
orders, suppose there are n1 orders filled. Then we estimate the conditional fill probability
E[1ask∆τ,∆t,1

| ∆p[0,∆τ ] = 0] by n1
n . Moreover, one can record the differences between the

execution prices of the n1 orders and the mid prices ∆t units of time after they enter into
the order book. These differences are the realized order value of the n1 executed orders.
Write Vreal for the sum of these realized order values of the n1 orders. Note the un-executed
(n − n1) orders are not filled and canceled, which lead to realized order value being zero.
Hence, the estimated value of E[(1 − ∆p[0,∆τ + ∆t] − 0.5)1ask∆τ,∆t,1

| ∆p[0,∆τ ] = 0] is
Vreal
n . Then, by Equation (C1), we estimate λa by λ n1+2Vreal

2n1−4Vreal
.

Proof of Equation (C1). One can directly compute that

E[(1−∆p[0,∆τ + ∆t]− 0.5)1ask∆τ,∆t,1
| ∆p[0,∆τ ] = 0]

=E[(1−∆p[0,∆τ + ∆t]− 0.5)(1∆pM∆τ,∆τ+∆t≥1−∆p[0,τ ]

+ 1∆pM∆τ,∆τ+∆t=1−∆p[0,∆τ ]−11Na(MI[∆τ,∆τ+∆t])≥1) | ∆p[0,∆τ ] = 0]

=E[(1−∆p[∆τ,∆τ + ∆t]− 0.5)(1∆pM∆τ,∆τ+∆t≥1

+ 1∆pM∆τ,∆τ+∆t=01Na(MI[∆τ,∆τ+∆t])≥1) | ∆p[0,∆τ ] = 0]

=E[(1−∆p[∆τ,∆τ + ∆t]− 0.5)(1∆pM∆τ,∆τ+∆t≥1 + 1∆pM∆τ,∆τ+∆t=01Na(MI[∆τ,∆τ+∆t])≥1)]

=E[(1−∆p[0,∆t]− 0.5)(1∆pM0,∆t≥1 + 1∆pM0,∆t=01Na(MI[0,∆t])≥1)]

=E[(1−∆p[0,∆t]− 0.5)1ask0,∆t,1
]

=
λa

λa + λ/2
E[1ask0,∆t,1

]

=
λa

λa + λ/2
E[1ask∆τ,∆t,1

| ∆p[0,∆τ ] = 0].

Here, the first and fifth equalities are from the formulas of indicator functions in Section A.4,
the third equality holds because p(t) has independent increments and is independent with
N a(t), the forth equality comes from the stationarity of (p(t),N a(t)), the sixth equality
comes from part (b) of Proposition 1, and the last equality can be derived through a similar
argument as the first five equalities.
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[5] Cartea, Á., and Jaimungal, S. (2015). Risk metrics and fine tuning of high-frequency
trading strategies, Mathematical Finance, 25(3), 576-611.
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