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Hawkes processes are a class of simple point processes that are self-exciting and have clustering effect,
with wide applications in finance, social networks and many other fields. This paper considers a self-
exciting Hawkes process where the baseline intensity is time-dependent, the exciting function is a general
function and the jump sizes of the intensity process are independent and identically distributed non-
negative random variables. This Hawkes model is non-Markovian in general. We obtain closed-form
formulas for the Laplace transform, moments and the distribution of the Hawkes process. To illustrate
the applications of our results, we use the Hawkes process to model the clustered arrival of trades in a
dark pool and analyze various performance metrics including time-to-first-fill, time-to-complete-fill and
the expected fill rate of a resting dark order.
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1. Introduction

Consider a positive sequence of event arrival times 7 < 75 < ---, that are defined on a complete
probability space (€2, F,P) with right-continuous and complete information filtration (F3)¢>0. We
define a counting process N and an associated point process L as

o0 o0
Ny = Z 1<t and L; = an 1r,<t,
n=1

n=1

where {¢,, : n > 1} is a sequence of independent and identically distributed (i.i.d.) non-negative
random variables, and /,, is F, -measurable for each n € N.

We consider {NV; : t > 0} to be a Hawkes process with random jump sizes in the intensity, that
is a simple point process N with a stochastic intensity given by

A= plt) + /0 Ch(t— )Ly = p)+ S h(t—m) -6, (1.1)

O<Ti <t
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where p(-) > 0 is the time-dependent baseline intensity and h(-) : R>p — Rxg is the exciting
function encoding the influence of past events on the intensity and we always assume that ||h||z: =
fooo h(t)dt < oo and h is locally bounded. In the theory of point processes (Daley and Vere-Jones
2003), the random jump sizes ¢; are sometimes referred to as the random marks associated with
the point process, and the point process with intensity (1.1) is a marked Hawkes process.

Two special cases of this Hawkes model have been well studied in the literature. First, when
£; = 1 for each i, the counting process N is the classical linear Hawkes process introduced by A.G.
Hawkes in 1971 (Hawkes 1971a,b). Hawkes process exhibits both self-exciting (i.e., the occurrence
of an event increases the probabilities of future events) and clustering properties. It generalizes the
standard Poisson process. Hence Hawkes process is very appealing in point process modeling and
it has wide applications in finance. This includes modeling of clustering behavior in stock trade
arrivals, default clustering in portfolio credit risk and financial contagion, high-frequency stock
prices, etc. See, e.g., Zhu (2013), Bacry et al. (2015), Jaisson and Rosenbaum (2015) and references
therein for details.

Second, when the exciting function h is exponential, i.e., h(t) = de="t for t > 0, where &,k > 0,
Errais et al. (2010) studied the transforms and distributions of this Hawkes process with i.i.d. jumps
{¢;} and a special time-dependent baseline intensity in the form of u(t) = u+ e (Ao — u). In this
case, the two-dimensional process (A, N) is Markovian. Errais et al. (2010) used this Markovian
Hawkes process to model the clustering of corporate defaults, where the random jump times 7;
represent default times, and the intensity jump magnitudes ¢; represent the random losses at
default. In particular, the intensity model (1.1) captures the empirical feature that the larger the
financial loss of a defaulted firm, the larger the impact of such a event on the other firms, and the
bigger the increase of the default intensity at an event. Relying on the Dynkin formula, the authors
of Errais et al. (2010) characterized the Fourier transform and the distribution of the Hawkes
process using ODEs, and they apply these results in a range of applications in portfolio credit risk,
including the valuation, hedging and calibration of portfolio credit derivatives.

This paper considers a Hawkes process with intensity in (1.1) where the exciting function h is a
general function, the baseline intensity is time-dependent, and the random jump sizes {¢, : n > 1}
are i.i.d. nonnegative random variables. We pursue this extended Hawkes model for two reasons:
first, we would like to extend the transform analysis of Markovian Hawkes processes in Errais et al.
(2010) to the general setting which allows a general time-dependent baseline intensity to account
for non—stationarity such as intraday seasonalities in trading activities and non-exponential exciting
functions to account for possibly non-Markovian dynamics; second, our motivating application in
dark pool trading, which will be illustrated later, naturally fits this general Hawkes model.

In our setting, the Hawkes process can be non-Markovian as a result of the general exciting
function h(-). Relying on the immigration-birth representation of linear Hawkes processes given in
Hawkes and Oakes (1974), and in particular Karabash and Zhu (2015) for marked linear Hawkes
processes, we obtain closed-form formulas for the Laplace transform, moments and the distribution
of the Hawkes process (IV, L) via integral equations. In the special case of an exponential exciting
function, we recover the results obtained in Errais et al. (2010).

The closed-form formulas of transforms and the probability distribution of Hawkes processes
generate computational tractability, and they provide insights into the behavior of Hawkes pro-
cesses. They could be useful in applications in finance and other fields where event occurrences
exhibit self-exciting and clustering. In this paper, we apply our theoretical results to analyze the
performance of dark pools.

Dark pools are automated trading facilities which do not display bid and ask quotes to the public,
hence they can be used to reduce the market impact of trading big orders. There are around 40
active dark pools in the U.S. for equity trading. Dark pools now account for about 15% of the
trading volume in the U.S. equity market and about 7% in Europe. See, e.g., Mittal (2008), Zhu
(2014) for an overview. We focus on a typical “midpoint” dark pool using a continuous matching
mechanism, where participants submit buy or sell orders with specified quantities for a particular
security. Trades can occur at any time if there is liquidity on both sides of the market, and the
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matching price is the midpoint of the best bid and offer on transparent exchanges. If an investor
rests an order in a pool for some time and the order is not completely filled, then the remaining
quantity may be cancelled and submitted to a different dark pool or an exchange to seek liquidity.

Several theoretical and empirical studies have suggested that the liquidity in dark pool is clus-
tered, i.e., “liquidity begets liquidity”. This means that once a trade has occurred in a dark pool,
the probability of observing another one increases. See, e.g., Buti et al. (2011), Chapter 3 in Lehalle
and Laruelle (2013) and Markov and Ingargiola (2013) for details. Various market events can lead
to trade clustering in dark pools. For example, an institutional investor who trades and gets a fill
from a particular pool can re-route his orders from another venue back to this pool. In addition,
high frequency traders in the market who are fishing in the dark pool may also notice the existence
of a big order from a trade occurrence and they may also come to trade in this pool (Mittal 2008).
The clustering of liquidity suggests that strategic traders form liquidity expectations from either
their own trades or post-trade information even in the absence of pre-trade market transparency,
and this allows them to design liquidity seeking algorithms that exploit the clustered arrivals of
liquidity to maximize the fill rate of their orders. It also suggests that in fragmented markets,
orders can migrate quickly from one venue to another. A natural model to capture the clustering
behavior of trade arrivals in dark pools is the Hawkes process. Indeed, the classical Hawkes process
with £, = 1 has been widely used to model clustering of trade arrivals on transparent exchanges
in the literature. See, e.g., Bowsher (2007), Bacry and Muzy (2014), Cartea et al. (2014), Abergel
and Jedidi (2015), Bacry et al. (2015) and references therein.

We consider an investor who rests a large midpoint peg (buy) order in a given dark venue, where
the execution price of the order floats with the market at the mid-quote derived from transparent
exchanges. As in previous studies (Afeche et al. 2014, Kratz and Schéneborn 2015), we consider a
time-priority rule where orders from counterparties are matched on a first-come-first-served basis!.
We model the execution process of the investor’s resting midpoint order by a Hawkes process (N, L)
where {7;} represent the arrival times of the consolidated trades (eligible-to-match sell orders) from
other players in the pool and the random variables {¢;} represent the sizes of arriving trades which
may not be a constant. Empirically, it has been observed that the distribution of resting liquidity
in dark pools has fatter tails than exponential distributions. See, e.g., Ganchev et al. (2010). This
implies that the larger the size of a trade, the more likely it is that there is more quantity remaining
in the pool. Hence, liquidity seekers or high frequency traders may be attracted to put more dark
orders to the pool after a trade’s occurrence, leading to a bigger increase of the trading intensity
at a trade’s occurrence. Such a feature of positive liquidity feedback could be captured by the self-
exciting intensity model (1.1). In the special case when h = 0, the self-exciting behavior disappears
and the point process L modeling the cumulative arriving volume of dark trades reduces to a
compound Poisson process. For tractability purposes, in this paper we do not consider other order
attributes such as limit price or minimum execution size which can be attached to a midpoint order
as anti-gaming and risk management tools.

Using the transform formulas we obtain for the Hawkes model (N, L), we can efficiently compute
performance quantities including time-to-first-fill, time-to-complete-fill, and the expected fill rate
in a given time window for a midpoint peg order placed at an empty dark pool. We also analyze
the probability of obtaining another fill and the expected fill size conditioned on there is an initial
fill of the midpoint order, to understand liquidity expectations after an occurrence of a trade.
Furthermore, we extend our analysis to study non-empty dark pools. The performance quantities
we compute represent major performance characteristics of dark pools around liquidity (Mittal
and Taur 2007, Afeche et al. 2014). They could help give investors a guide to maximize fills and
liquidity opportunities from dark pools, and indicate whether and where to trade in a fragmented

IMatching rules or allocation mechanisms of dark pools are typically complex, partly confidential and frequently updated (Ye
2011). Time-priority matching rule is used by, e.g., BATS Europe Dark Book, see LiquidMetrix (2016). Besides time-priority
matching, many dark pools use some form of pro-rata matching (Zhu 2014). This matching rule is different from the model we
consider here and we leave the study of it for future research.
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financial market with multiple dark pools. Hence, such performance quantities are important for
smart order routing and allocation of liquidity among different pools to reduce market impact
and execution costs in portfolio trading. See, e.g., Mittal and Taur (2007), Ganchev et al. (2010),
Laruelle et al. (2011) for detailed discussions.

Related literature. Two streams of research that are closely related to our work are Hawkes
processes and dark pools. We now explain the difference between our study and the existing liter-
ature in these two areas.

Hawkes processes. The majority of the works on Hawkes processes in the literature assume a con-
stant baseline intensity p(-) = p. The case when the baseline intensity and/or the exciting function
are time-dependent is much less studied. In a recent work, Euch and Rosenbaum (2016) obtained
the characteristic function of a multivariate Hawkes process N with a time-dependent baseline
intensity. They did not consider random jump sizes in the intensity. Roueff et al. (2016) studied
the properties of a locally stationary Hawkes process with both the baseline intensity and exciting
function being time-dependent. See also Muni Toke and Pomponio (2012) for the estimations of
Hawkes processes with time-dependent baseline intensities and Kobayashi and Lambiotte (2016)
with time-dependent exciting function and zero baseline intensity for various applications. Both
Muni Toke and Pomponio (2012) and Roueff et al. (2016) also used constant jump sizes, while
Kobayashi and Lambiotte (2016) considered random jump sizes.

Several papers have considered the Hawkes process where the intensity process has random
jump sizes as our paper. Almost all of them remain in the Markovian framework. In Dassios
and Zhao (2011), the authors studied a dynamic contagion process by combining the Markovian
Hawkes model with i.i.d. intensity jump sizes with externally-excited jumps. They characterized
distributional properties of this new process. Errais et al. (2010) and Zhang et al. (2015) studied
generalized Markovian Hawkes processes, or affine point processes, where the intensity is an affine
function of an affine jump-diffusion. These models belong to the class of affine processes studied
in Duffie et al. (2000). In all these works, the (generalized) Hawkes models are still Markovian.
One work that deviates from the Markovian framework, with time-dependent baseline intensity
and random jump sizes, similar as this paper, is Lee et al. (2016), where the jump size of the
intensity is modulated by a stochastic process described by a stochastic differential equation. They
proposed new simulation and model fitting algorithms for the Hawkes model, but they did not
obtain distributional properties. The special case p(t) = p of our model also belongs to the class
of the Hawkes process with random marks, see. e.g. Brémaud and Massoulié¢ (2002) who studied
the power spectrum, and Karabash and Zhu (2015) who studied the limit theorems and we refer
to Section 2.1.1 of Bacry et al. (2015) for more references.

Dark pools. In the dark pool literature, our work is closely related to studies including Markov
and Ingargiola (2013) and Afeche et al. (2014). The paper Markov and Ingargiola (2013) from the
industry explicitly modeled the clustering of trade arrivals in a dark pool using the classical Hawkes
process with ¢, = 1. They discussed estimation of this classical Hawkes model using exponential
exciting functions. Afeche et al. (2014) used a double-sided queueing model to study the operational
characteristics of dark pools. They considered Poisson order arrivals and obtained closed-form
results for system-level and order-level performances such as fill rates and system times. Our work
focuses on the order-level performance, i.e., the experience of a single resting midpoint order placed
at a dark venue. We consider more general Hawkes arrival process to capture the clustering behavior
of order arrivals. Incorporating Hawkes processes to study system-level performance of dark pools
is left for future work. Our work also complements other studies on dark pools, see, e.g. Ganchev
et al. (2010), Laruelle et al. (2011), Almgren and Harts (2017) for order routing algorithms among
multiple pools, Klock et al. (2011), Gatheral and Schied (2013), Kratz and Schéneborn (2014, 2015)
for optimal portfolio trading strategies and price manipulation issues in the presence of a dark pool
and a lit exchange, Hendershott and Mendelson (2000) for the conditions under which investors
should use a dark pool versus a traditional trading venue, and Buti et al. (2011), Zhu (2014), Iyer
et al. (2015) for effects of dark pool trading on the market quality and welfare analysis.
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Organization of this paper. The rest of the paper is organized as follows. In Section 2, we
state the main result on the joint Laplace transform of the Hawkes model (Np, Ly) for a fixed
T > 0. Relying on this result, we obtain explicit formulas for the first two moments of N and
L. We also compute analytically the probability mass function of Ny and also that of Ly when
the jump sizes {¢;} are lattice distributed. In Section 3, we apply the main results to analyze
performance problems arising from trading in dark pools. Section 4 concludes. Some technical
proofs are collected in the Appendix.

2. Main results

In this section we present the main results. Throughout this section, we use C to denote the set of
complex numbers, R(f) to denote the real part of a complex number 6 € C, and |f| to denote its
modulus.

The key mathematical result is the following joint Laplace transform of the Hawkes process
(NT, LT) for fixed T > 0.

THEOREM 1 For any 01,02 € C with R(61) > 0, R(62) > 0,

E[6—91NT—92LT] — efoT H(T_s)(F(S)_l)dS, (21)
where the function F is the unique solution to the integral equation
F(t) = e [0+ 41h<s>(F(t—s>—1)ds] ’ (2.2)

with |F(t)] <1 fort € [0,T).

The Equation (2.2) is a Hammerstein—type Volterra integral equation, and it can be quickly solved
numerically using, for example, piecewise polynomial collocation methods. See e.g. Chapter 2 in
Brunner (2004) for further details.

REMARK 2 We show in this remark that we recover the transform of Hawkes processes in Errais et
al. (2010) for an exponential exciting function. Note when h(x) = de™"* with 0,k > 0, Errais et al.
(2010) derived that (Proposition 2.2 in their paper) with a baseline intensity u(t) = p+e " (Ng—pu)
where Ao > pu > 0,

E[e” 1 Nr=0:L] — exp (B(T) 4 Ao - A(T)),
where the functions A(-) and B(-) satisfy the ODEs

Al(t) = —kA(t) — 1+ F(BA(t) — O5)e ™, (2.3)
B'(t) = rpA(t), (2.4)

with A(0) = B(0) =0, and f is defined by f(w) := E[e*"] for w € C. Thus using (2.4) we obtain

E[e~0Nr=0:L1] = exp <,u /OT kA(t)dt + Ao - A(T)) . (2.5)

We prove that our result is consistent with the result (2.5) from Errais et al. (2010). To see this,
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we first note that when h(x) = de™"*, we obtain from Theorem 1 that the function F is given by

F(t) = O [ttt 0070 (1]

—eif (92 + /0 t Se =) (F(s) — 1)ds> : (2.6)

In view of (2.1), (2.5) and the expression of the baseline intensity u(t), it suffices to show that

T T
" / KAt + N - A(T) = / (1 + ST (g — ) (F(s) — 1)ds. (2.7)
0 0

To this end, we first prove that for t € [0,T],
F(t)—1=rA(t)+ A(t) = =1+ f(GA(t) — )", (2.8)
where the second equality above is due to (2.3). That is, we need to show fort € [0,T],
F(t) = f(A(t) — 03)e . (2.9)

In view of (2.2) and the fact that A(0) = 0, this equation clearly holds when t = 0. Let us verify
that (2.9) is indeed the unique solution for (2.6). We write for t € [0,T],

(1) = /0 =R (F(5) — 1)ds. (2.10)

Taking derivative at both sides, we find that
2/ (t) = —ka(t) + F(t) — 1.
Now Equation (2.6) implies that
F(t) = e % f(=0y + 6x(t)). (2.11)
Hence x solves the ODE
2/ (t) = —ka(t) — 1L+ e " f(—0y + 6x(2)).

As one can see from (2.3), this is exactly the ODE that A satisfies. Since A(0) = x(0) = 0, we
obtain

A(t) = z(t), fortel0,T]. (2.12)

Then (2.9) readily follows from (2.11). In addition, we infer from (2.12) and (2.10) that

T
(o — 1) - A(T) = (ho — 1) - /0 e~HT=9)(F(5) — 1)ds. (2.13)

Furthermore, Equation (2.8) implies that

T T
i /0 RA(L)dE + - AT) = /O W(F(s) — 1)ds. (2.14)
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On combining (2.13) and (2.14), we obtain (2.7). Therefore, we have recovered the result in Errais
et al. (2010).

Proof of Theorem 1. Hawkes and Oakes (1974) first discovered that a linear Hawkes process
has an immigration-birth representation. The immigrants (roots) arrive according to a time-
inhomogeneous Poisson process N with intensity u(t) > 0 at time ¢. Each immigrant generates
children according to a Galton-Watson tree, that is, the number of children of each immigrant
follows a Poisson distribution with parameter ||h||z:, and each child will independently generate
children according to the same Poisson distribution, and so on and so forth. In addition, when the
children are born, they are born at independent random times with the probability density func-
tion HZ\(\ ) for being born at time t. In other words, they are born according to an inhomogeneous

Poisson process with intensity h(t). Consider an immigrant arrive at time 0. Note that in the later
computations, we will consider an immigrant that arrives at a positive time ¢, but the computation
is the same as shifting the time backwards by ¢ to consider the immigrant that arrives at time 0.
Let K be the number of children of this immigrant and ¢; be the associated jump size. Let S; ;
be the number of the total descendants of the j-th child of the immigrant that were born before
time ¢, including the j-th child, and L;; be the sum of all of jump sizes associated with all the
descendants of the j-th child, including j-th child, where 1 < j < K. Let S; be the total number
of all the descendants of this immigrant that arrives at time 0 including the immigrant, and let Ly
be the associated sum of jump sizes, that is Sy =1+ Zszl Sy and LY = €1 + Zngl L ;. Then, we
have

F(t):=E [e—elst—eﬂf} (2.15)

=Y B[ SR K = k| P(K = k)

B oo k
[0t 3O [ [ttt P = Wl)]

k=01i=1

_ _—91—9241 - —0,S,1-02L01 ] )" _
B om0t 3 (om0 b = )|

L k=0

| CF||RlIEs
— *91*9251 _ *él‘thLl heSliadI Vg
Bl (/ This F S“) z

— e R { —02bs+ [} L1h(s)(F(t—s)— 1)ds}

Y

where the third and fourth equalities above use the tower property of the conditional expectation,
and the fact that (S;;, L¢;) are i.i.d. independent of K, and the fifth equality above uses the fact
that conditional on ¢;, K is Poisson distributed with parameter ¢;||h||z: and conditional on the
children being born at time s, e~915:1702Lu1 hag the expectation F(t — s) by the definition of F(-),
and the timing of the children being born at time s has the probability density function T hﬂs )

Next, by the immigration-birth representation, we have Ny = > .q - o7 S7—7(i), and Ly =
> i0<n<T L#A,S:_ﬂ (i), where 7; are the arrival times of the time-inhomogeneous Poisson process N
and Sp_;(i) are i.i.d. copies of Sp_¢, and L3 _,(i) are ii.d. copies of L7 ,, where Sr_; and L _,
are defined as before. Thus, we have

E {efelNT*%LT] - F [ezi:0<7’—i§T(_elsT*ﬂ (9)=02LF_.,(4))
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Hence, we have

E [e—elNT—@LT} —E H ¢—015r—7, (1) =0: L5, (i)
_i:0<ﬁ§T

E H 679151"77—1- (1)792L§~_7—.i ()
1:0<7 <T

N
Fril,

I
=

where we used the tower property andﬁ]-"j]y is the natural filtration generated by N process on the
time interval [0, 7. Conditional on F¥, (Sr_z,, Ly_7) are independent. Thus, we have

E |:6_61NT_92LT:| = E H E |:6—915T7i(i)_92L75“n(7;) f,%v:|

Fy }

=E|e

—01S7_7 ()—02L5__ (i)
Z“K?iSTlogE{e 7 T—7

f;v]]

=E|e

—01Sp_7, (N=02LF__ (1)

Zi:0<ﬂ-§T logE {6

_ efoT N(S) <E [efelSTfs(l)*GZLg"—s(l)] 7l> ds

- p(s)(F(T—s)—1)ds
where the second last equality follows from the fact that for any deterministic and bounded func-
tion g(-), and the inhomogeneous Poisson process N with intensity pu(-), we have E[efoT 9(s)dN.] —
elo n()(e“=1)ds and the last equality follows from the definition of F' in (2.15).

Finally, we show that F'is the unique solution to the integral equation (2.2) satisfying |F'(t)| < 1
for all ¢ € [0,T]. The fact that |F(t)| < 1 is clear from the definition (2.15). To show uniqueness,
let F(t) and Fy(t) be two solutions of (2.2) so that |Fy(t)],|Fa(t)| < 1 for ¢t € [0, T]. Then we have

|

|Fi(t) — Fa(t)] < E [|o=01 g=0261+ 5 1h(s)(Fi(t—s)—1)ds _ ,—61 ,—0261+[; Lrh(s)(Fa(t—s)—1)ds

|

=E _ e 000

_ ‘ef; Gih(s)(Fi(t=s)=1)ds _ [ €ah(s)(Fa(t—s)—1)ds

|-

<E [ ols () (Fu(t—s)=1)ds _ [y Crh(s)(Fa(t—s)—1)ds

Let Fi(t) = Ri(t) +il1(t) and Fy(t) = Ra(t) + ila(t). Then, we have

|1 (t) — Fa(t)] (2.16)

|

+E Hefot £1h(s)(Ra(t—s)—1)ds+i [y £rh(s)I1(t—s)ds _ efot £1h(8)(Ra(t—s)—1)ds—+i [} €1h(s)I2(t—s)ds

}

1 E [ef(f C1h(s)(Ra(t—s)—1)ds | i [y trh(s)T1 (t=s)ds _ i [} e1h(s)I2(t—s)ds

<E Hefot £1h(s)(Ry(t—s)—1)ds+i [y £rh(s)I1(t—s)ds _ efot £1h(s)(Ra(t—s)—1)ds—+i [} £1h(s)I1(t—s)ds

|

—E [ oly () (Ru(t—s)—1)ds _ [y trh(s)(Ra(t—s)—1)ds

|-
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Notice that |Ri(t)| < |Fi(t)] <1 and |Ra(t)| < |Fa(t)| < 1, thus, fot lih(s)(R;(t—s)—1)ds < 0 for
7 =1,2. The map = > e* is Lipschitz with constant 1 for x < 0. Thus, for any 0 <t < T.

E Hefg C1h(s)(Ry(t—s)—1)ds _ [y tuh(s)(Ra(t—s)—1)ds

|<E [/Otflh(s)Rl(t 8) = Ralt — 5)|ds
< |0l Bl /0 [Ri(s) — Ra(s)|ds
< hllz=po.2(ElEa] /O IFi(s) — Fa(s)lds, (2.17)

where HhHLOO[O,T] = SUPg<s<T h(s).
Next, let us notice that for any =,y € R,

1T

e — €| < | cos(z) — cos(y)| + | sin(z) — sin(y)| < 2|z —y|.
Therefore,

E [ef; C1h(s)(Ra(t—s)—1)ds | i Sy lih(s) 1 (t—s)ds _ el Jy €1h(s)I2(t—s)ds

]

)

<E |: et Jo Lrh(s)I1(t—s)ds _ et Jo trh(s)I2(t—s)ds

0

<9F [/t Ch(s) It — 5) — In(t — s)\ds}
t
< 2bl=prBlt] [ 11(5) = Ta(s)ds
< 2bl=pBle] [ IF(5) = Pa(s)lds (2.18)

Hence, by applying (2.17) and (2.18) to (2.16), we get

[F1(t) = F2(1)] < 3Hh’L°°[O,T}E[€1]/O [F1(s) = Fa(s)|ds.

By Gronwall’s inequality, we conclude that Fy = F» on [0,T]. The proof is complete. O

By letting 8; = 0 or 62 = 0 in Theorem 1, we get the single Laplace transforms of the counting
process N and the point process L.

COROLLARY 3 (i) For any 6 € C with R(0) > 0,
E [6_9%] — el W(T=8)(Fx(s)=1)ds
where the function Fy is the unique solution to the integral equation
Fy(t) = E [efo‘ Zlh(s)(FN(t—s)—l)ds] ’ (2.19)

with |[Fy(t)] <1 for0<t<T.
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(ii) For any 0 € C with R(6) > 0,
B [e7%r] = ol uT-a)(Fule)-t)es, (2.20)
where the function F, is the unique solution to the integral equation
Fi(t)=E [€—9z1+f; Elh(s)(FL(t—s)—l)ds] 7 (2.21)

with |Fr(t)] <1 for0<t<T.

REMARK 4 The result of the single Laplace transform of Np has been obtained in Karabash and
Zhu (2015) by using the immigration-birth representation as a special case of the linear marked
Hawkes process.

The Laplace transforms obtained allow us to explicitly compute the moments of the counting
process Nt and the point process L. We derive the first and second moments in the following
result and present the proof in the Appendix. Higher order moments can be derived similarly.

PROPOSITION 5 (i) The first moment of the counting process N is given by
T
BNi] = [ u(T = Oun(t)dr,
0
where 1 is the unique solution to the equation:
¢
Pi(t) =1 +/ E[l1]h(t — s)1p1(s)ds, 0<t<T. (2.22)
0
(i) The first moment of the process L is given by
T
BlLr) = Bl) [ (T - tjin ().
0

(iii) The second moment of the counting process N is given by

T

BV - | " T~ Dty + ( | wir- swl(t)dt)Z,

where o is the unique solution to the equation:

Uo(t) = (P1(t))? + /Ot E[01])h(s)a(t — s)ds,  0<t<T. (2.23)

(iv) The second moment of the process L is given by

T T 2
BILE = [ u(T - Dua(tat + (B[] ( / M(T—t)wl(t)dt> ,

where 1y is defined in (2.22) and 13 is the unique solution to the equation:

U3(t) = B[] (v1(1)* + /0 Elli]h(s)s(t — s)ds,  0<t<T. (2.24)

10
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REMARK 6 It follows from Proposition 5 that the first moments E[Nr| and E[Lt] and also the
second moment E[NZ] depend on the distribution of ¢1 only via the mean E[(1], and the second

moment E[L2] depends on the distribution of {1 only via the E[¢1], E[¢3], the first two moments of
0.

Using the Laplace transform of N7, one can also compute the probability mass function of Np
analytically, as shown in the following result. The proof relies on the celebrated Faa di Bruno’s
formula, and it is given in the appendix.

PROPOSITION 7 We have P(Np =0) = e~ s wT=s)ds and for any k > 1,

T 1
_ _ =[5 w(T—s)ds
P(Nr = k) =e™% 2 L g 120 -y LRl
k T m;
TL( [ wir - 9meos)
j=1 0
where the summation is over all k-tuples of nonnegative integers (mq, ..., my) satisfying the con-
straint 1-m1+2-mg+3-m3+---+k-my =k, and Fno(t) =0,
Fx l(t) ) [6_ IN Zlh(s)ds:| ’
and for every j > 2,
4!
Fyn.i(t) =
i) =2 mLImmg20me oy 1 — 1)lma
T j_l t m;
-E [e™ fo L1h(s)ds H (/ glh(S)FNﬂ(t — S)dS) s
i=1 /0
where the summation is over all (j — 1)-tuples of nonnegative integers (ma,...,mj_1) satisfying

the constraint 1-my +2-ma+3-mg+---+(j—1)-mj_1=j—1.

Next, let us discuss the distribution of Lp. First note that by assuming that P(¢; = 0) = 0, we
always have P(Lp = 0) = P(Np = 0) = e~ Jo #()ds for any nonnegative jump size distribution
of £1. Next, we assume that the random jump size £1 has a lattice distribution and takes discrete
values kd, k € N with P(¢; = ké) = py, where 0 < py, <1 and > 72, pr = 1 for some § > 0. Note
that this includes the case for geometrically distributed ¢;, Poisson distributed ¢; etc. for fixed
9 = 1. Under this assumption, Ly also takes values kd, for k£ € N U {0}.

Then we have the following result on the distribution of Ly when the jump size {¢;} is lattice
distributed. The proof is deferred to the Appendix.

PROPOSITION 8 We have P(Ly = 0) = e~ Jo #(T=9)ds and for any k > 1,

T 1
= = _fo w(T—s)ds
P(Lr=ko) =e Z mq!1Imime2ima .o Ll
k T m;
TI( [ wir - 9rseas)
j=1 M0
where the summation is over all k-tuples of nonnegative integers (mq,...,my) satisfying the con-

11
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straint 1-my+2-mo+3-mg+---+k-mp ==k, and Fro(t) =0,
FL 1(t) = pre” fot 5h(s)ds’

and for every j > 2,

N J — [ kSh(s)ds (U — k)
Fry®) = <k> ke PED o g 2 -y G — R

J
k=0

mg

]1:[]: (/Ot koh(s)Fpi(t — s)d8> :

where the summation is over all (j — k)-tuples of nonnegative integers (mu,...,mj_y) satisfying
the constraint 1-mq +2-mo+---+(j — k) -mj_p =3 — k.

Numerical methods to calculate the summands in Faa di Bruno’s formula in Propositions 7 and
8 can be found in, e.g. Klimko (1973). In general, when the jump size ¢; is not lattice distributed,
one can still efficiently calculate the distributions of Ny and Lr by numerically inverting the
Laplace transforms in Corollary 3. See e.g. Abate and Whitt (1995) for numerical Laplace transform
inversion methods.

3. Applications in Dark Pool Trading

In this section, we apply the main results to analyze performance problems arising from trading in
dark pools. We use the Hawkes process to model executions of a large midpoint peg order placed at
an empty dark pool and compute various performances in Section 3.1. Non-empty dark pools are
discussed in Sections 3.2. In computing some performance metrics (e.g. the probability of obtaining
another fill conditioned on a past fill) and studying non-empty pools, we will see that it is natural
to study a Hawkes process with a time-dependent baseline intensity.

3.1. Model description and performance analysis

Suppose an investor rests a large midpoint buy order of size x > 0 in a dark pool with a continuous
first-come-first-served matching mechanism. This order is “pegged” at the mid-quote of transpar-
ent exchanges, i.e., the execution price of the order automatically adjusts as the market moves.
Considering a sell order is similar. As liquidity in dark pools could be sparse and there could be
a high probability of no volume in pools (see, e.g., Ganchev et al. (2010), Markov and Ingargiola
(2013)), we assume in this section that when the investor’s order reaches the dark pool there are
no other orders sitting in the pool.

We model the successive executions of this midpoint peg order using a Hawkes process. More
specifically, we model the consolidated sell trades from other players in the dark pool as a Hawkes
process (N, L) with the intensity (1.1), where N; counts the number of eligible-to-trade sell orders
(or trades with the investor’s resting buy order) by time ¢ and the i.i.d. sequence {¢; : i = 1,2,...}
models the volumes of arriving sell orders. Such a self-exciting Hawkes process based model of
executions of a large order could capture the clustering of trade arrivals and positive liquidity
feedback in dark pools.

Since the pool is assumed to be initially empty, there will be no trade occurring at time zero
when the investor puts the buy order in the pool. A sample path of the trading intensity A\; and
the remaining quantity of the dark order is given in Figure 1.

12
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(a) Trading intensity A¢ (b) Remaining order size

Figure 1. (a) A sample path of the intensity A+ of a Hawkes process and (b) a sample path of the remaining order
size (x — L)t for a resting dark order with initial size x = 20. Here for the Hawkes model (1.1), the baseline
intensity p(t) = 1, the trade size ¢; follows an exponential distribution with mean one, and the exciting function
h(t) = 2 =1 . Note that this Hawkes model is non-Markovian.

JURGEmIER

For this particular path, we observe from Figure 1(b) that the resting order matches with in-
coming sell trades with variable sizes, and it will be completely filled at time t = 7.2 if the investor
leaves the order in the pool for a sufficiently long time. On the other hand, if the investor decides
to cancel the order before time ¢ = 7.2, then this resting order will be partially executed and the
remaining quantity could be routed to another dark pool or a lit exchange for liquidity-seeking
purposes.

We want to compute various performance quantities of interest such as time-to-first-fill and fill
rate which indicate the liquidity of a dark venue. Their mathematical expressions and economic
interpretations are summarized below. In a fragmented financial market with multiple dark pools
and exchanges, these performance metrics could be useful for smart order routing and allocation
of liquidity among different pools to maximize fills and liquidity opportunities from dark pools,
which in turn help investors reduce market impact or opportunity cost in trading big orders. In
terms of the notations, we differentiate between ¢; and [; by having ¢; being random and [; being
deterministic and given.

Performance quantities we consider:

(a) Time-to-first-fill 7(1) of the order is defined by
7(1) :=1inf{t > 0: N; = 1}.

That is, 7(1) measures the time between order placement at a given dark venue and the
first execution (possibly a partial fill) of that order. Thus we obtain that the probability of
a fill within [0, ¢] is given by

P(r(1)<t)=1—-P(N; =0) =1—¢ b5 for ¢ > 0.

JFrom this expression, it is clear that the baseline intensity u(-) completely determines
the distribution of time-to-first-fill. In particular, when p(-) = p is constant, 7(1) is an
exponential random variable with mean 1/pu.

(b) Time-to-complete-fill o, of a resting order with size z > 0 is defined by the time it takes
for the order to be completely executed. That is, o, measures the time it takes for the
aggregated volumes of matching trades exceed the resting order’s size x:

oy :=inf{t > 0: L; > z}. (3.1)

13
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Hence its distribution is given by
P(oy <t)=P(L; > ), fort>0.

Since we have obtained the Laplace transform of L; in (2.20), we can then use the inverse
Laplace transform to obtain the distribution of L; and that of o, numerically. In addition,
we can also compute the expected time-to-complete-fill E[o,] numerically, where

Elo,] = /OOOP(% > t)dt = /OOOP(Lt < z)dt. (3.2)

The expected fill rate of the resting dark order with size > 0 in the time interval [0, ¢] is
defined by

é E[min{L;, z}], (3.3)

which is equal to % fox P(Ly > y)dy. In practice, the deadline ¢ can be deterministic or ran-
dom. For example, the investor may rest the order in a particular dark pool for one minute
which is predetermined at the time of order placement. It is also possible that the investor
may cancel a resting order due to exogenous market events such as a significant price move,
in which case ¢ is random. We can numerically evaluate the expected fill rate (3.3) efficiently
if ¢ is independent of the execution process (N, L) by first inverting the Laplace transform
of L; in (2.20) and getting its distribution, and then calculate the expectation in (3.3).
Alternatively, one can also use Fast Fourier Transform (FFT) methods where the expected
fill rates (3.3) across the whole spectrum of order sizes = can be obtained in one set of FFT
calculations. See e.g. Carr and Madan (1999).

The probability of obtaining one fill (or at least one fill) in the next 7" units of time, given
that there is an initial fill of size I; < z in (0,¢]. Mathematically we are interested in
computing

P(Niyr — Ny = 1[Ny = 1,4y = [y), (3.4)
and
P(Nepr — N, > 1N, = 1,60 =1) =1~ P(Neyr — Ny = 0[N, = 1,6, = 1), (3.5)

As argued in the industry paper Mittal and Taur (2007), these conditional fill probabilities
are particularly interesting in practice. Liquidity in a dark pool is sticky, and the expectation
of liquidity changes when a trade occurs. The conditional fill probabilities in (3.4) and (3.5)
give investors a quantitative view of the liquidity expectation in the future given a prior fill
of the resting order.

To compute these conditional fill probabilities, we can use the Laplace transform of Ny
in Corollary 3 and the intensity dynamics (1.1) to obtain that

P(Nt+T - Nt == Oth == 1,£1 == ll)

fg /Jf(Tl)e_ Jot u(s)ds o~ I (H(S)+h(3—7'1)l1)d56— Lt+T(H($)+h(S—T1)ll)deTl

7 , 3.6
fot M(Tl)e_ Jo! nu(s)ds o~ le (#(S)+h(5—71)ll)d5d7.1 ( )

14
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and

P(Nt"rT - Nt - 1‘Nt = 1761 = ll)
¢ -1
= </ pu(ry)e Jot n(s)ds g™ I (#(S)Jrh(STl)ll)dsdTl)
0

. /t [u(ﬁ)e_ St wls)ds = 55T (u()+h(s—r1)i)ds
0
t+T T+t—s
: / (u(s) + h(s — 7)11)E [e*fo flh<u>dﬂ ds]dn. (3.7)
t

A detailed derivation of (3.6) and (3.7) relies on the distributional properties of a Hawkes
process with a time-dependent baseline intensity (due to the conditioning), and it is given
in the Appendix.

Two interesting observations are in order. First, we can infer from (3.5) and (3.6) that
the conditional probability of at least one fill given there is a past fill of size [; in the last ¢
units of time, is independent of the distribution of the trade size £1. Second, we note from
(3.7) that the conditional probability of exactly one fill in the next 7" units of time depends
on the distribution of ¢; only through its Laplace transform.

The expected fill size of the resting dark order in the next 7" units of time conditioned on
there is an initial fill of size l; < z in (0,t], is given by

E [(LtJrT — Lt) AN (x — l1)|Nt =1,/ = l1] =E [min{Lt+T, JIHNt =1,0, = ll] — 1. (38)

Similar as the conditional fill probabilities, such a conditional expectation provides the
investor with an indication of the liquidity size in the dark pool based on a prior execution
of the dark order.

To compute this conditional expected fill size, we can first infer from Corollary 3 and the
intensity dynamics (1.1) to obtain the following Laplace transform:

E |:€_0(Lt+T_Lt)‘Nt =10 = ll}

fg ,U(Tl)ei Sy n(s)ds = f:l (u(s)-&-h(s—ﬁ)l1)dsef:*T(u(s)+h(sf‘rl)ll)(FL(T+tfs)fl)dsd7_1

; ‘ . (3.9)
S (e I3 w)ds g f2 ) Hh(smm))ds gy

where for any 0 <t < T, the function FJ, satisfies the integral equation:

Fr(t)=E e~ 00+ [5 Lih(s)(Fr(t—s)—1)ds

Then, we can numerical invert this Laplace transform to obtain the conditional distribution
of Ly+7— Ly and hence the conditional expectation in (3.8). The derivation of (3.9) is similar
as the derivation of (D1) in the Appendix, where we use the properties of a Hawkes process
with a time-dependent baseline intensity. We omit the derivation here.

Two remarks are in order. First, the estimations of the performance metrics of a resting order

are relatively straightforward if the investor has his/her own execution data from trading in dark
pools. For example, the expected fill rate of an order of size x placed at a dark pool for a given
time horizon can be estimated as the arithmetic average of the fill rate of many orders with the
same sizes x placed at this pool, assuming that the market conditions and pool characteristics
remain stationary. The estimation procedure is similar for other performance quantities. Second,
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given the investor has the execution data from trading in a dark pool, it is also possible to estimate
the Hawkes model by first estimating the trade size distribution ¢;, and then estimate the baseline
intensity and the exciting function using parametric or non—parametric methods. See e.g. Bacry et
al. (2015), Errais et al. (2010) and references therein for details on estimations of Hawkes models.

Numerical examples We now present numerical examples to illustrate the computations of the
various quantities derived in Section 3.1. We also consider different order size distributions for ¢;,
different exciting functions h(-), and different baseline intensities u(-) to investigate their impact
on the performance metrics. Our numerical experiments are implemented in MATLAB on a PC
with a 3.30 GHz Intel Processor and 8 GB of RAM.

To compute the performance quantities, we need to get the distribution of L; numerically. This
requires us first to solve the integral equation (2.21) to obtain the point process transform FT ()
for a given 6 € C with a nonnegative real part, and then use Laplace inversion methods to obtain
the distribution of L; for fixed ¢t. The Laplace inversion method we use is a Fourier series method
which employs Bromwich contour inversion integral and Euler summation. See Abate and Whitt
(1995) for a detailed description of this Laplace inversion algorithm (called EULER in the paper).

To numerically solve F7(t) which satisfies a Hammerstein—type Volterra integral equation as
in (2.21), we apply the collocation method, see e.g. Chapter 2.3.3 in Brunner (2004). The main
idea of this method is to select a number of points (collocation points) on [0, ], and use piecewise
polynomial functions to approximate the true solution where the piecewise polynomial functions
solve the given integral equation at the collocation points. Table 3.1 reports the computation time
for representative examples where we solve F,(t) for ¢ € [0, 6] using piecewise linear approximation
on [0,6] with a uniform mesh consisting of 150 subintervals, a number which balances the speed
and accuracy of the algorithm. The computation time is generally around 25 seconds for various
different specifications of the mark size ¢; and the exciting function A(-).

l; =1 {; ~ exponential ¢; ~ hyper exponential

hi(t) 25.411 24.795 25.343
ha(t)  25.349 25.048 25.472
ha(t) 25.433 25.778 25.801

Table 1. For a given § € C (§ = 1 + ¢ in this example), this table records the CPU time (in seconds) for using
piecewise linear collocation method to solve Ff(t) on the time interval [0, 6] with a uniform mesh consisting of 150
subintervals for different combinations of the mark size ¢; and the exciting function h(t). Here, we have considered
three distributions for £;: (a) £; = 1; (b) ¢; follows an exponential distribution with mean 1; and (c) ¢; has mean one
and it follows a mixture of an exponential distribution with mean 5 and an exponential distribution with mean 1/5.

Three exciting functions h(t) considered are: (a) hi(t) = 5 (1+1)7%; (b) ho(t) = 5 (1+t)~%; and (c) hs(t) = Se .

We now report numerical results for the performance quantities (b)—-(e) in Section 3.1, since
the time-to-first-fill is completely determined by the baseline intensity function. Unless otherwise
stated, we fix a constant baseline intensity u(t) = p = 1.

Varying the trade size distribution ¢; while fixing an exciting function h(t) = 2 1

10 T+¢)2*
Without loss of generality, we consider here three different distributions for ¢;, all with a unit inez;n:
(a) ¢; = 1; (b) ¢; has an exponential distribution; and (c¢) ¢; has a hyper-exponential distribution:
here, we consider a concrete example where ¢; follows a mixture of an exponential distribution
with mean 5 and an exponential distribution with mean 1/5. This choice of trade size distributions
is motivated by Afeche et al. (2014). In particular, a mixture of exponential distributions with
different means can capture the feature that in dark pools, impatient high frequency traders submit
small “pinging” orders and liquidity traders may submit relatively larger orders. In addition, the
class of hyper-exponential distributions is very rich that it can approximate many heavy-tailed
distributions for trade sizes, while maintaining analytical tractability, see e.g. Cai (2009), Cai and
Kou (2011).
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Figure 2 summarizes the results on the expected time-to-complete-fill as a function of the resting
order size z. Two key observations stand out from our results in Figure 2.

12

..... I~hyper exp

—exp L

107F

- - == =

expected time to complete fill

Figure 2. Expected time-to-complete-fill E[og] in (3.2), as a function of the resting order size . Here, u(t) =1 and

the exciting function h(t) = %W are fived. The three curves correspond to three different distributions with a

unit mean: (a) €; = 1 (red); (b) £; follows an exponential distribution (black); and (c) £; follows a mizture of an
exponential distribution with mean 5 and an exponential distribution with mean 1/5 (blue).

First, the expected time-to-complete-fill of the dark order increases in the size x of the dark order
and changes significantly when the distribution of the incoming trade size varies. It can be seen
from the figure that given the size of the investor’s resting order x, when the incoming trade size
follows a hyper-exponential distribution (a mixture of exponential distributions), it takes longer on
average to completely fill this resting order than the cases of an exponential and a constant order
size with the same mean. This observation is similar to the special case when h = 0 where the
point process L becomes a compound Poisson process, and one can show that (see the Appendix
for a proof)

Ec®] > Ec@] =2z +1>E[cV)]=[z], forz>0. (3.10)

Here E[ag)], i = 1,2,3, are the expected time-to-complete-fill for the compound Poisson arrival
with trade sizes Ez(l) being constant, EZ@) being exponential and Egg) being hyper-exponential (all
with mean one) respectively. We also remark that the expected time-to-complete-fill with Hawkes
trades arrivals depends on the distribution of ¢;, not just its coefficient of variation.

Second, the expected time-to-complete-fill of the first unit of a resting dark order is greater than
the second and subsequent units. This reflects the self-exciting modeling of the order execution
process which captures the trade clustering behavior. In other words, after a partial execution
of the resting dark order, the expectation of another trade and the future trading intensity will
increase, which leads to a continuing reduction of the marginal time-to-complete-fill of the resting
dark order.

Next in Figure 3, we plot the expected fill rate of a resting order of size x = 10, as a function of
rest time ¢ for different trade size distributions. We observe that for a hyper-exponential trade size
distribution, the expected fill rate of the resting order is much smaller than the case of a constant
order size with the same mean. This is consistent with the observations from Figure 2 which suggest
that it is harder to fill an order with “more variable” trade sizes. We provide an informal explanation

on this relative order of expected fill rate for different trade size distributions in Figure 3. Let Lgl),
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LEQ), and L§3) denote the associated L; when Egl) is a constant 1, £§2) is exponentially distributed
and 653) is hyper-exponentially distributed, all with the same mean. First, notice that E[Lgl) | =
E[L,EZ)] = E[LE?’)] from Proposition 5 as E[Egl)} = E[E?)] = E[Eg‘g)]. Next, observe that the hyper-
exponential distribution is more “spread out” than the exponential distribution which is more
“spread out” than a constant. Now when the jump size increases, the intensity of future arrivals also
increase, and as a result L; increases. Similar argument holds when the jump size decreases. This

suggests Lgs) with a hyper-exponential jump size is “more variable” than L7§2) with an exponential

jump size in the sense that L§3) is more likely to take on “extreme” values. So intuitively, the

expected fill rates satisfy %E[min{LEl),x}] > %E[min{L?),aj}] > %E[min{L?),x}].
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Figure 3. Ezpected fill rate E[min{ L, z}]/x in (3.3) vs rest time t, for a resting order with size x = 10. Here, u(t) =1

and the exciting function h(t) = %ﬁ are fized. The three curves correspond to three different distributions with

a unit mean: (a) €; =1 (red); (b) £; follows an exponential distribution (black); and (c) ; follows a mixture of an
exponential distribution with mean 5 and an exponential distribution with mean 1/5 (blue).

Furthermore, we plot in Figure 4 the conditional probability of one fill and the conditional
expected fill size for the resting order as a function of the future 7" units of time, given that there
is a fill of size one in the past two units of time. Mathematically, the event conditioned on is
{Ny=1,01 = 1}.

For the conditional probability of one fill in Figure 4(a), we note that it is biggest when the trade
size ¢; follows a hyper-exponential distribution with mean one, and it is smallest when the trade
size is constantly one. Let us explain. It is clear from (3.7) that this conditional probability of one
fill depends monotonically on the following Laplace transform of the random variable £;:

TH+t—s

E|e o Thwduti) (3.11)

If we denote a := 0T+t_8 h(u)du > 0, then computing the Laplace transform in (3.11) for the three

distributions of ¢; (hyper-exponential, exponential and constant one) yields

1 0.2
6 024+«

5 5 1 —a
b > > e @,
6 b+a 14+a

Now the observation in Figure 4(a) follows from (3.7) and the above inequalities.
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Figure 4. (a) The probability of one fill in (3.4) and (b) the expected fill size in (3.8) for a resting order with size

x = 10, conditioning on the event {N2 = 1,£; = 1}. Here, u(t) = 1 and the exciting function h(t) = = %)2 are

10 (1+

fized. The three curves correspond to three different distributions with a unit mean: (a) €; = 1 (red); (b) €; follows
an exponential distribution (black); and (c) ¢; follows a mizture of an exponential distribution with mean 5 and an
exponential distribution with mean 1/5 (blue).

Varying the exciting function while fixing an exponential trade size distribution. We
next investigate how the exciting function h impacts the performance quantities. For illustration
purposes, we consider a family of power-law exciting functions with different tail behaviors:

C

RY(t) = A+

forC >0, ~v>1 (3.12)

In particular, |AY||pr = [ h7(¢)dt = % In the literature, this quantity ||h7]|z: is usually inter-
preted as a branching ratio, i.e., the expected number of events generated by any parent event.
In the following, we will fix C' = 0.9, and ¢; follows an exponential distribution with mean 1 and
the baseline intensity p = 1. We consider three different exciting functions h7(t) = %ﬁ cor-
responding to v = 2,2.5 and 3. This allows us to better understand how the exciting functions
impact the performance quantities.

We first plot in Figure 5 the expected time-to-complete-fill of an order as a function of the order
size x, for different exciting functions A" in (3.12). As one can observe from Figure 5, the larger
the =y, the longer it takes on average to fill a given order completely.

Next, we plot in Figure 6 the expected fill rate for a given order with size x = 10, as a function
of the resting time of the order. Consistent with Figure 5, the larger the v, the harder to fill an
order and hence the smaller the expected fill rate for a given resting time.

Let us explain the phenomenon observed in Figures 5 and 6. For v; > 72 > 1, we find from (3.12)
that A7 (t) < h72(t) for all ¢ > 0. This implies that one can find a common probability space such
that the associated point processes satisfy L] < L}* for all ¢ almost surely. Then the observations
in Figures 5 and 6 readily follow from the formulas for the expected time-to-complete-fill in (3.2)
and the expected fill rate in (3.3).

We further investigate the conditional probability of another fill and the conditional expected fill
size for different exciting functions, for a given resting order of size 10. Again, the event conditioned
onis {Ny = 1,¢; = 1}, i.e., there is a fill of size one in the past two units of time. These two
performance quantities are plotted in Figure 7. We find from Figure 7(a) that, unlike in Figure 4(a),
there is no monotonicity for the conditional probability of one fill when we vary ~. This is not
surprising as we can see from the formula (3.7) that this conditional probability depends on the
exciting function in a delicate way.

The effect of the baseline intensity x(t) on performance metrics. So far, all the numerical
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expected time to complete fill

X

Figure 5. FEzpected time-to-complete-fill E[oz] in (3.2) vs order size x for different exciting functions h” defined in
(3.12). Here, 4; follows an exponential distribution with mean 1 and the baseline intensity u(t) = 1 for the Hawkes
model.

expected fill rate

Figure 6. Expected fill rate E[min{ L, z}]/x in (3.3) vs rest time t for a given order with size x = 10. Here, ¢; follows
an exponential distribution with mean 1 and the baseline intensity u = 1 for the Hawkes model. The three curves
correspond to three different exciting functions hY defined in (3.12).

examples on performance metrics are presented assuming a constant baseline intensity p(t) = 1.
We now briefly discuss the effect of a non-constant baseline intensity of the Hawkes process on
performance metrics. Such a time-dependent baseline intensity p(t) could represent, for example,
the intraday pattern of dark pool liquidity.

For illustration purposes, we focus on the representative performance metric: the expected fill
rate of a resting dark order given in (3.3). We compare in Figure 8 the case of a constant baseline
intensity pu(t) = 1 with the following two cases where u(t) is piecewise constant:

2, for0<t<4, 0.5, for 0 <t <4,
ur(t) =405, ford<t<8, and pa(t)=<¢2, ford<t<s, (3.13)
1, for t > 8. 1, for t > 8.
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Figure 7. (a) The probability of one fill in (3.4) and (b) the expected fill size (3.8) for a resting order of size x = 10,
conditioning on the event {N2 = 1,£1 = 1}, i.e., there is a fill of size one in the past two units of time. Here, {;
follows an exponential distribution with mean 1 and the baseline intensity p = 1 for the Hawkes model. The three
curves correspond to three different exciting functions h” defined in (3.12).

We can observe from Figure 8 that the expected fill rate of a resting dark order depends on the
baseline intensity of the Hawkes execution process in a delicate way. For the initial time period [0, 4],
as p1(t) > 1 > po(t), it follows that a higher baseline intensity of the Hawkes execution process
leads to a higher expected fill rate of the resting order. On the other hand, on the time interval
(4, 8], we have pa(t) > 1 > py(t). Compared with a Hawkes execution process with a constant one
baseline intensity, the expected fill rate of a resting dark order during the time interval (4, 8] is
still higher when the trades follow a Hawkes arrival process with a baseline intensity p1(¢) < 1. In
addition, the expected fill rate of an order may also become higher when the Hawkes process has a
baseline intensity pa(t) > 1. These two observations are due to the fact the intensity of a Hawkes
process depends on both the baseline intensity and its own entire history (i.e. the past occurrence
of trades).
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Figure 8. Expected fill rate E[min{ L, z}]/x in (3.3) vs rest time t for a given order with size x = 10. Here, ¢; follows
an exponential distribution with mean 1 and the exciting function h(t) = %ﬁ for the Hawkes model. The three

curves correspond to three different baseline intensity functions u(t): p(t) = 1 and pi(t), p2(t) given in (3.13).
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3.2. Non-empty dark pools

The performance formulas derived in Section 3.1 can be generalized to non-empty dark pools. To
illustrate, we consider computing time-to-first-fill, time-to-complete-fill and expected fill rate of a
posted dark order.

Suppose at time zero when the investor’s midpoint peg buy order of size x > 0 reaches the dark
pool, the liquidity size Y in the pool is a random variable with a known or estimated cumulative
distribution function Fy(y) which could possibly have a mass at zero (see e.g. Ganchev et al.
(2010)). Here Y > 0 represents the size of existing buy orders at the midpoint, and ¥ < 0
represents the size of sell orders resting at the midpoint in the pool. In particular, there will be an
immediate execution of the investor’s buy order at time zero if Y < 0. In this case, when Y < —z,
then the investor’s dark order is completely filled at time zero. Otherwise for Y € (—=z,0), the dark
buy order will get partially filled. The trader on the other side of the completed trade then realizes
there could potentially be more liquidity on the opposite side of his trade, and then re-routes his
other orders to this pool. Other information-seekers may also notice the trade and submit orders
to this pool. Hence, this trade against resting sell orders at time zero may also incur a jump of the
intensity of the arriving sell trades.

Mathematically, with a random liquidity size Y in the dark venue, the intensity of the Hawkes
process N modeling the executions of the dark buy order will be modified as follows (defined till
the time the dark order is completely filled):

A= pAmin{z, [V} lyco-h(E) + Y h(t—7) - L, (3.14)
o< <t

where min{z, |Y|} - 1y <o represents the size of a fill at time zero, and the impact on the trading
intensity also decays according to the exciting function h. Hence, conditioned on Y = y > 0,
suppose these existing buy orders with total size y also rest in the pool until full execution, then
the Hawkes process (N, L) will be essentially the same as in the case of an empty dark pool. On
the other hand, conditioned on Y = y < 0, the intensity A follows a different dynamics where now
the baseline intensity is time-varying as given in the first two parts of the expression (3.14).

We now derive the performance quantities and still use the same notations as in Section 3.1
for simplicity. First, with a random liquidity size Y in the dark pool, the time-to-first-fill of the
investor’s dark buy order is given by

7(1) =inf{t >0: L; > Y}.
Hence we obtain
P(r(1) =0)=P(Y < 0) = Fy(0—),

P(r(1) >t)=P(L; <Y) = /OOP(Lt <vy)dFy(y), fort>0.
0

Since we have derived the transform of L;, we can then use inverse Laplace transform to get
P(L; < y) for y > 0, and hence compute the distribution and the expectation of 7(1).
Second, the time-to-complete-fill of the investor’s dark buy order with size x > 0 is given by
oy =inf{t >0:L; >z +Y},

hence we have

P(o, =0) =P < —z) = Fy(—x), (3.15)
Ploz >t)=P(Li<z+Y), fort>0. (3.16)
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To obtain the distribution of o, it suffices to compute P(L; < 2+ Y"). Note that
P(Li<z+Y)=P(L;—Y <x)

0
= / P(Ly <z +ylY =y)dFy(y)

—T

+ /OO P(Ly < x 4+ y)dFy (y). (3.17)
0

So it only remains to compute P(L; < = + y|Y = y) for —z < y < 0. Conditioned on Y =y €
(—x,0), i.e., there is a partial execution of the dark buy order at time zero (which matches with
resting sell orders in the pool), then from (3.14) we infer that the intensity of the Hawkes process
becomes

At =plyl - h(t) + Z h(t — ) - 4,
o< <t

where the baseline intensity p(t) = p+|y|- h(t) is deterministic and time-dependent. Since we have
computed the Laplace transform of (Ny, L;) where the baseline intensity of the Hawkes process
can be time-varying, we can then use inverse Laplace transform to compute P(L; < xz + y|Y = y)
for —x < y < 0. Now the distribution of time-to-complete-fill of the midpoint dark order can
be computed using (3.15), (3.16) and (3.17). The expected time-to-complete-fill E[o,] also readily
follows.

Finally, the expected fill rate of the investor’s resting midpoint dark order of size z, in a given
time interval [0, t], is given by

1 1 v
L Bmin{(L - v)*, 2} = L / P((Ly— Y)* > 2)dz, (3.18)
T x 0

where at := max{a,0} for a real number a. This expected fill rate can hence also be readily

computed as we have derived the distribution of L; — Y in (3.17).
Therefore, if the dark pool is non-empty at the time of the dark order placement by the investor,
these performance quantities can still be similarly derived and efficiently numerically computed.

Numerical examples For illustration purposes, we plot in Figure 9 the expected fill rate of
a given midpoint peg order when the initial liquidity size Y in the dark pool has the following
distribution: P(Y = 0) = 0.3 and when Y # 0, it has a density function

fr(y) =035 kly*"le " fory £0.

That is, Y has a mass at zero, and it follows a two-sided Weibull distribution with scale parameter 1
and shape parameter k. Note that when k € (0, 1), the tail of Y is heavier than that of a two-sided
exponential distribution. In addition, a smaller shape parameter k implies a heavier tail of the
liquidity size Y. Such a choice of Y is motivated by Ganchev et al. (2010) which empirically finds
that the distribution of volume in dark pools is heavy-tailed: often, there is no volume available,
but sometimes very large volume is present.

We observe from Figure 9 that the expected fill rate of a posted order at ¢ = 0 in a non-empty
pool is greater than zero, which is different from that in an empty pool. Intuitively, this is clear as
there could be contra-side sell orders resting at the midpoint in a non-empty pool which triggers
trades at time zero when the investor posts a buy order at the midpoint. In fact, mathematically
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Figure 9. Ezpected fill rate in (3.18) vs rest time t for a given resting order with size x = 10. Here, p =1, the trade

size £; follows an exponential distribution with mean 1 and the exciting function h(t) = %W. The initial liquidity

in the pool is modeled by a random variable Y which has a mass 0.3 at zero, and when Y # 0, it follows a two-sided
Weibull distribution with scale parameter 1 and shape parameter k.

we can deduce from (3.18) that the expected fill rate at time zero is simply

since Ly = 0. Hence, the initial percentage of fill when the order is posted critically depends on both
the posted order size x, and the distribution of the volume of contra-side resting orders (—Y)*.
While we also observe from Figure 9 that a smaller shape parameter £ of the liquidity Y leads to
a larger expected fill rate at time zero, we remark that our extensive numerical experiments show
this is not generally true for any order size x.

4. Conclusions

We study the Hawkes process, a self-exciting point process, where the baseline intensity is time-
dependent, the exciting function is a general function and the jump sizes of the intensity process
are i.i.d. non-negative random variables. We obtain closed-form formulas for the Laplace transform,
moments and the distribution of the Hawkes process. We apply these results to dark pool trading
and analyze various performance metrics of a resting dark order which trades against contra-side
marketable orders arriving according to a Hawkes process. These performance quantities can be
useful for strategic allocation of liquidity among different pools to reduce market impact and
execution costs in portfolio trading.
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Appendix A: Proof of Proposition 5

Proof of Proposition 5. We first compute the first two moments of the counting process N. By dif-
ferentiating the Laplace transform of the counting process N with respect to (w.r.t.) 6 in Corollary
3, we get

0 T 0 T
Ele—0Nr :/ T_ I ST (T —3)(Fx(s)~1)ds
20 [e™"7] ; 1( 5)769 N(s)dse ;
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and by differentiating w.r.t. § again, we get

o2 ON g 0 T (T—s)(F, 1)d
@E[e_ 7] :/0 w(T — 3)@FN(8)dse‘f0 w(T=s)(Fn(s)=1)ds

T P 2 ;
T ( / M(T_S)%FN(S)dS> T (T =) (Ex (s)~1)ds.
0

By differentiating both sides of (2.19) w.r.t. 8, we get

t
QFN(t):E —1+ / elh(s)ﬁFN(t—s)ds e~ 0ty () (Fx(t=s)=1)ds | (A1)
00 0 00

By differentiating w.r.t. € again, we get
0 ! 9 ’ O+ [ 1h(s)(Fy (t 1)d
3 Fx(t) = (‘”/0 €1h<s>39FN<t—s>ds> e TR NI A (Ag)

t 2 ,
+E [/ €1h(s)%FN(t — s)dse_9+f0 glh(s)(F”(t_S)_l)ds} )
0

By letting 8 = 0 in (A1), we get

0 ¢ 0
— =— — t— ds.
89FN(t> o 1 +/0 E[ﬂl]h(s)agFN( s) o s
This implies that
0
spv 0| =)

where 11 (-) is defined in (2.22) and thus

E[N7] = —%E[e_GNT]

0=0
By letting 8 = 0 in (A2), we get

2

2 t
Sty ®] =07+ [ Bl g e - 1)

502 ds.

0=0

0=0

By the definition of 15(-) in (2.23), we have a%FN(t)’e:o = 12(t). Finally, we conclude that

E[N7] = wE[e ]

0=0

T o2 2
= | T =05z

ds+ < /O ! (T — s)%FN(s)

d8>
6=0

= /0 " T~ syt + ( /0 S s>wl<t>dt)2-
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We next compute the first two moments of the process L. We can compute from (2.21) that

;ﬂ@ko_mm+£mmméyw—ﬁH@
which implies that
DR =B,
90 0=0
Hence,
0 T 0 T
Bllr] = - gble )| == [T - Gre)| ds=B] [ - sy e

We can also compute from (2.21) that

82

t 2
(_fl + / glh(S)ﬁFL(t _ S)ds) e—@fl—i-fot €1h(s)(FL(t—s)—1)ds]
0 00
0’ 001+ [ 01h(s)(FL(t—s)—1)d
+E[/O €1h()802 (t — s)dse” 0 ]

Therefore, by the definition of 1)1,
t ) 2 t 52
= E[¢?] <—1 —|—/ h(s)=Fr(t —s) ds) —I—/ E[1]h(s) 55 FL(t — s)
2

= Bl (0)* + [ BlhG) g Ll o

5?2
WFL (t) ds

0=0

ds.
6=0

, we conclude that
6=0

Now, by recalling that ¢3(t) = g—;FL(t)

6=0

T 2
= [ wr =95

2
ds>
0=0

hﬁw(ﬁ%@—$§ﬂ@

T T 2
-/ MT—ﬂ%@MH%M&W<A MT—wwqu.

Finally, let us show that (2.22), (2.23) and (2.24) have unique solutions. We will only show
uniqueness for the solution of (2.22) here, and the argument is the same for (2.23) and (2.24).

Assume that (2.22) has two solutions, say 1/151) and 1/19. Then, for any 0 < ¢ < T, we have

w@@—@%ﬂgéthme@< (s ds

< Hh/HLoc OT]E El / ‘w(l) w@)(s)‘ ds.
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By Gronwall’s inequality, we conclude that w(l) §2) on [0,T]. O

Appendix B: Proof of Proposition 7

Proof of Proposition 7. Note that for any z € C with |z| < 1, by considering z = e~?, we obtain
from the Laplace transform of Np that
E[zV7] = elo H(T—s)(Fn(s)=1)ds (B1)
where (with slight abuse of notations) Fy(t) depends on z and it is given by
Fn(t)=z-E [efot Elh(s)(FN(t*S)*l)ds} , forany 0<t<T. (B2)

It is easy to see that

[2N7] =) AP (N =
k=0

and hence

1 0 No)

z=0

Let us recall the celebrated Faa di Bruno’s formula, for any smooth functions f and g:

L fga)) = > i et (g(a) [TV @)™, (B3)

d:c” my!11Mimo2Ime oy Inlme e
J:

where the summation is over all n-tuples of nonnegative integers (myq,...,m,) satisfying the con-
straint 1-mq +2-mg+3-m3+---+n-m, =n. Notice that

E[ NT} —¢ fo (T- sdser w(T— s)FN(s)ds

and FN = 0 for z = 0. By applying Faa di Bruno’s formula (B3) (with f(z) = €%, g(z) =
fo — 8)Fn(s)ds and n = k), we get:

k
iE SN _e—fo w(T— sdsz k!

T
el | L g 1202 el

m;

ﬁ (/OT w(T S)FN,j(S)d8> y

where
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JFrom (B2) it is clear that Fyyo(t) = 0, and
Fx 1(t) - E |:€_ IN Z1h(s)dsi| )

By applying Faa di Bruno’s formula again, we get for any j > 2 the following recursive equation:

S RN
Fi,;(t) E[efoflh( )(F (t—s) 1)d}

~ g1 0
_ (J—1)!
=) Z mqlllmimeyl2ime ... mj—ll(j — 1)!m,-71
T Jj—1 t m;
-E [6 Jo Lah(s)ds H (/ Elh(S)FN,Z(t — S)dS) ] .
i=1 /0
The proof is therefore completed. O

Appendix C: Proof of Proposition 8

Proof of Proposition 8. The proof also relies on Faa di Bruno’s formula. Note that for any |z| < 1,
o0
E [zELT} =" FP(Lr = ko),
k=0

and thus,

For any z € C with |z] < 1,

E [Z%LT] — oo 1W(T=s)(F(s)~1)ds

)

where for any 0 <t < T,

FiL(t)=E {Zéelefg élh(s)(FL(t—s)—l)ds} _ Z kel koh(s) (Fy (t=s)=1)ds )

k=1

By applying Faa di Bruno’s formula, we get:

1 T ]{'
E[ —LTi| — = Jy m(T—s)ds
SR N 2 Ty B T
k T m;
TL( [ wr-oris)
j=1 0
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where

It is clear that F7,o(t) = 0, and
Fr 1(t) = pre” Jy 8h(s)ds

By applying Faa di Bruno’s formula again, we get for any j > 2 the following recursive equation:

o e
FLJ() Z Sk fy koh(s)(Fr(t—s)—1)d i

z=0

L o kOh(8) (P (t=5)—1)ds

P dZ] 7 Pk o
. J ] @ [ kSh(s)(Fr(t—s)—1)ds
:Z<k>k‘dzg P Pk
k=0 z=0
j .
— J — [ kSh(s)ds (7 —k)!
= k;‘ 0
kzzo <k) ) P2 T oy 1 R
ik, -
11 (/ k6h(s)Fpi(t — s)ds> :
i=1 WO
where the summation is over 1-mj +2-mo+ -+ -+ (j — k) - m_p=j—k. 0

Appendix D: Derivations of Equations (3.6) and (3.7)

Let us compute for a non-negative integer k,
P(N(t,t +T] =k|Ny = 1,01 = 1y),

where N (t,t+7T] = Npir — N;. Our strategy is to first compute the probability generating function
of N(t,t+ T conditional on N; =1 and ¢; = ;.

Note that on [0,¢], the first jump 71 has the probability density function (7 )e = Jo" n(s)ds - Con-
ditional on the time of the first jump 71, Ny = 1 if and only if N(71,¢] = 0, which occurs with

probability e~ S (o) th(s=m)h)ds conditional on ¢; = [y. Next, notice that conditional on there is
only one jump on [0, ¢] and the time of the first jump being 71 and conditional on the first jump size
being [1, the stochastic process N (t,t + s| as a function of s € [0, 7], is a Hawkes process with an
exciting function A(+), i.i.d. jump sizes ¢; and the time-dependent baseline intensity p(s)+h(s—71)l1
at timet <s <t+1T.

Hence, from the discussions above and the probability generating functions we derived in (B1)
and (B2) in the proof of Proposition 7, we conclude that, for any z € C with 0 < |z| < 1, the
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probability generating function is given by

H(z) =E [ZN(t’tJrT]’Nt — 1,0 = 11]

fot (e STt n(s)ds o= f:l (,u(s)+h(sf'r1)l1)dseft“'T(,u(s)—i-h(s—rl)ll)(FN(T+t—s)—1)dsd7_1

= 7 , (D1)
f(f pi()e” St u(s)ds o~ I (#(s)'i'h(s—‘rl)ll)dsdﬁ

where for any 0 <t < T,
Fy(t) = 2B [efJ (1h(s) (Fx (t—5)—1)ds

The probability generating function yields
oo
E [NEHTIN, = 1,0, = zl} =Y FP(N(tt+T] = kN, =1,6 = 1),
=0

and hence the Taylor expansion coefficient of this generating function gives the probability mass
function we need. Hence, we can compute that

¢ — 7t n(s)ds o= S5 () Fh(s=T)h)ds 4
P(N(t7t+T] :O‘N(t) = 1’£1 :ll) :H(O) — fO /’L(Tl)e (& m

i

S plry)em I w7, ()t =rb)ds g
and
P(N(t,t +T) = 1|N(t) = 1,4, = Iy)

t . -1
—HO = (/o p(r)e” J3t (e o= [, (“(S)+h(s_71)ll)dsd71>

t
. / () 5 s o= I (o) HR(s=r)ia)ds o [T (uls) (s )ds
0

dsdr

t+T o
/ (,u(s)—l—h(s—ﬁ)ll)aFN(T—kt—s)
t z=0

t —1
= ( / pu(ri)e=Jo nls)ds o= [7, () +hls =)l )ds dﬁ>
0

' / | [#(ﬁ)e‘ S (s)ds o= S (uls) Hhs—ra)h)ds
0

t+T T+t—s
. / (u(s) + h(s —m))E {e_ Jo M(“)du} ds] dry.
t

Appendix E: Derivations of (3.10)

We provide a direct proof for (3.10). It is obvious that E[a;gl)] = [z], since oV is the hitting time

to level z > 0 for a Poisson process with rate one. Hence, it suffices to show

Ec®]>Ec®]=2+1 forz >0, (E1)
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where E[Ug(ci)], 1 = 2,3, are the expected hitting time to level x > 0 for the compound Poisson
(2

arrival with jump sizes £;”’ being exponential and EZ(-?’) being hyper-exponential respectively. Let us

write the density function of 61(-3) as
—>\1J? —>\21'
chie + (1 — c)Aae” 2%, x>0,

where 0 < c < 1and 0 < A <1< A9 so that

1—
Bl = £+ 5

Since the baseline intensity is one, we have {L,Ej )t > 0} is a martingale for j = 2,3, where
()

ng ) is the point process with jump sizes £;”’. Now we infer from optional stopping theorem that

E [afg‘) /\M} —E [L(j) ] j=23 (E2)

o AM

for any M > 0. Note that 0 < LS?”/\M < L((f]i)” By letting M — oo, we apply monotone convergence
of the left hand side of (E2) and dominated convergence theorem on the right hand side of (E2)

and we get:

EloW)] =2 +E [L - x} . j=23, (E3)

Oz

provided that E[L((T(Z)] is finite for j = 2, 3.
Next, let us compute and estimate the expected overshoot E[L((TJ(Z) —z]. For j = 2, it is well known
that for exponentially distributed EEQ) with mean 1, the overshoot is also exponentially distributed

with mean 1 and thus
Ec®]=2+E [ng) - x} =z +1. (E4)

®3)

For j = 3, we note that for a hyper-exponentially distributed ¢;” with mean 1, we can compute

that for any 0 < z < z,

fzoo cAi(y — z)e MVdy + fzoo(l —¢)(y — 2)Aae Ydy
foo c)\le—)\lydy + fzoo(l — c))\ze—Aﬁ/dy

z

1 —X\z 1 Xz
_ et +(1—c)x e

ceMZ 4 (1 — c)e M2

Notice that

c/\%e*)‘lz +(1- c)/\%e*)‘zz 1 1
ce=MZ 4 (1 —cle 22 = A1 Ao’
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uniformly in 0 < z < z and thus E[L((fg)] < %+ + < oo is finite. Moreover,

c)\%e*)‘lz +(1— c))\—lge*’\ﬂ -
ce~MZ% 4 (1 — c)e 22 ’

1 _A 1\ _,
S 1) et s (1) [1- — ) e
c<)\1 >e > ( c)( /\2>e

Since Ay > A; and z > 0, the strict inequality (E6) holds if we can show that

if and only if

c > 1 1—c
A1 - )\2,

(E6)

(E7)

This holds and indeed we get the equality in (E7) due to E[KZ(-S)] = 1. Hence, we can infer from (E5)
that E[LS:Z) — x| > 1 when the jump size is hyper-exponentially distributed. On combining with

(E3) and (EA4), we obtain (E1).
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