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Abstract
State-of-the-art large vocabulary continuous speech recognition
(LVCSR) systems often combine outputs from multiple sub-
systems developed at different sites. Cross system adaptation
can be used as an alternative to direct hypothesis level combi-
nation schemes such as ROVER. In normal cross adaptation it
is assumed that useful diversity among systems exists only at
acoustic level. However, complimentary features among com-
plex LVCSR systems also manifest themselves in other layers
of modelling hierarchy, e.g., subword and word level. It is thus
interesting to also cross adapt language models (LM) to capture
them. In this paper cross adaptation of multi-level LMs mod-
elling both syllable and word sequences was investigated to im-
prove LVCSR system combination. Significant error rate gains
of 6.7% relative were obtained over ROVER and acoustic model
only cross adaptation when combining 13 Chinese LVCSR sub-
systems used in the 2010 DARPA GALE evaluation.

1. Introduction
State-of-the-art large vocabulary continuous speech recognition
(LVCSR) systems often use system combination techniques. The
diversity and complimentary features among multiple systems
can be exploited to improve recognition performance [5, 6, 2].
Increasing the diversity among sub-systems often leads to larger
combination gains. Two major categories of techniques are of-
ten used: hypothesis level combination and cross system adap-
tation. The former exploits the consensus among component
systems using voting as well as confidence measures, such as
ROVER [4] and confusion network combination (CNC) [3]. Al-
ternatively the second category uses acoustic model (AM) cross
adaptation [14, 11, 15, 13, 12]. They may be viewed as an im-
plicit form of system combination. Standard cross adaptation
assumes that useful diversity among component systems exists
exclusively at acoustic model level. The output of one system
is projected at the phone level when it’s used to cross adapt an-
other system. However, for LVCSR systems diversity may also
be exploited at other levels. Complimentary features among di-
verse systems can also manifest themselves in other layers of
modelling hierarchy, e.g., at the subword and word level [8].
These are not addressed under the conventional acoustic-only
cross adaptation framework. For example, homophone and pa-
rameter tying related acoustic confusions will unduly discard
part of the word level system diversity. It is thus useful to also
cross adapt language models (LM) to explicitly capture them.

To address this issue, this paper investigates cross adapta-
tion of language models to improve LVCSR system combina-
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tion. The rest of the paper is organized as follows. ROVER
based hypothesis level combination is reviewed in section2.1.
Standard acoustic model cross adaptation is presented in sec-
tion 2.2. Confidence measure based context dependent cross
adaptation of a multi-level LM modelling both syllable and word
sequences is proposed in section3. In section4 various cross
adaptation and ROVER combination schemes are evaluated on a
total of 13 Chinese LVCSR systems used in the DARPA GALE
phase 4 evaluation.

2. System Combination
2.1. Hypothesis Level System Combination

One commonly used form of hypothesis level combination is
ROVER [4]. Hypotheses from a total ofS component systems
are iteratively aligned to create word transition networks. An
interpolation between voting counts and confidence scores is
then used to find the optimal word sequence within the network.
For any set of confusions in the network this is given by,
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whereN1:S(ws) is number of systems that output wordws,
andc

(s)
w the confidence score assigned by thesth system, and

α is a tunable parameter to balance the contribution between
voting counts and confidence scores. When component sys-
tems using different word segmentation schemes, a direct com-
bination between their outputs is problematic, for example, in
Chinese where different character to word segmentations are
used. Hence, for the Mandarin speech recognition tasks consid-
ered here, the most successful approach is to perform a char-
acter level combination [5, 10]. This requires the mapping of
word level outputs to subword, character level. The confidence
score of each word is assigned to each character it contains.
One major issue with character level ROVER is it does not pre-
serve a consistent character to word segmentation in the final
outputs, and thus affects machine translation performance for
speech translation tasks [5]. In general, hypothesis level com-
bination methods such as ROVER also require the error rate
performance of components systems to be close in order to be
effective in combination.

2.2. Acoustic Model Cross Adaptation

When there is a large difference in the error rate performance
of component systems, acoustic model cross adaptation pro-
vides an alternative to hypothesis level combination. It was
initially used as an implicit form of within site system com-
bination [14, 11]. In later research it was also adopted for cross
site combination, often together with hypothesis level combi-
nation techniques [15, 13, 12, 6, 2]. Word level outputs from



one system are mapped to phone model sequences first using a
lexicon and a forced alignment process. Then MLLR or CM-
LLR based linear transforms are estimated using the resulting
phone level supervision and sufficient statistics. The number of
transform parameters balances the trade-off between learning
sufficient information and a bias to the supervision. To improve
robustness to the supervision quality, it is possible to use statis-
tics weighted by confidence scores during cross adaptation [1].
The associated auxiliary function is

Qconf(λ, λ̃) =
X

j,t
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whereµj andΣj are thejth Gaussian component’s mean and
covariance,W rj

the linear transform it is assigned to, andγj(t)
the posterior probability of frameot at componentj. ct is the
frame confidence score and normally set equal to that of word
level, as considered in this paper.

Standard cross adaptation propagates complimentary infor-
mation from one system to another at the phone sequence level.
As there is no direct hypothesis combination between systems
with potentially large difference in error rate, cross adaptation in
general is less sensitive than ROVER to the performance differ-
ence between component systems. As the same language model
and vocabulary are used, consistent word tokenizations are also
preserved. Due to this advantage over ROVER, cross adapta-
tion is considered a “safe” choice to combine LVCSR systems
for speech translation tasks [5, 6, 2].

3. Language Model Cross Adaptation
In current LVCSR systems LMs are often constructed by train-
ing and combining multiple componentn-gram LMs in a mix-
ture model [10, 6, 2, 8]. In order to improve robustness to
varying styles or tasks, unsupervised LM adaptation to a par-
ticular broadcast show, for example, may be used. As directly
adaptingn-gram probabilities is impractical on limited amounts
of data, the standard adaptation schemes only involve updating
the context free, linear interpolation weights. Letwi denote
the ith word of aL word long hypothesis supervisionW =<

w1, w2, ..., wi, ..., wL >, andhn−1
i the ith word’s history of

n − 1 words maximum,< wi−n+1, ..., wi−1 >. The aim is to
optimize the LM log-probability of the supervision
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by re-estimatingλm, the global, context free weight for themth

component. By definition, when the output of an initial recog-
nition pass is used as the supervision, LM self-adaptation is
performed. When the output of another system is used as the
supervision, LM cross adaptation is performed instead.

However, the above approach can only adapt LMs to a par-
ticular genre, epoch or other higher level attributes. Local fac-
tors that determine the “usefulness” of sources on a context de-
pendent basis, such as modelling resolution, generalization, top-
ics and styles, are poorly modelled. To handle this issue, con-
text dependent LM interpolation and adaptation can be used [7].
A set of discrete context dependent back-off weights are used
to dynamically adjust the contribution from component LMs.
Thus equation (3) is extended to
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whereφm(hn−1
i ) is the mth component weight for context

hn−1
i . MAP based maximum likelihood and discriminative schemes

are available to robustly estimate these weight parameters [7].
Take the ML based adaptation as an example, this is given by

φ̂m(hn−1
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whereCML

m (hn−1
i ) is ML statistics for history contexthn−1

i , and
τ controls the contribution from a hierarchical prior,φ̂m(hn−2

i ),
before intersected with a high resolution training data prior [7].

To improve robustness to the supervision quality, it is pos-
sible to use confidence score weighted sufficient statistics when
estimating context free, and dependent interpolation weights.
The log-likelihood in equation (4) is thus modified as
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whereci is the confidence score for wordwi. By default, when
using a null history the above simplifies to confidence score
based adaptation of global, context free weights in equation (3).
To further improve robustness during context dependent LM
cross adaptation, it is also possible to impose a count cut-off
for different histories, for example, the average word level con-
fidence score computed over the supervision hypotheses. Con-
texts which do not have sufficient counts above such threshold
will be pruned in weight estimation, as considered in this paper.

In order to incorporate richer linguistic constraints, it is
possible to train and combine LMs that model different unit
sequences, for example, syllables and words [8]. Context de-
pendently interpolated LMs built at word and syllable level are
intersected to yield a final combined multi-level LM. This LM
leverages from both linear and log-linear forms of model com-
bination and aims to achieve a good balance between general-
ization and discrimination. Its hierarchical nature also provides
a good chance to exploit the additional, non-acoustic system di-
versity at word and syllable sequence level to improve system
combination. Hence, they are considered in the LM cross adap-
tation experiments of the following section.

4. Experiments and Results
In this section various ROVER combination and cross adapta-
tion configurations are evaluated on 13 AGILE Chinese LVCSR
systems used in the 2010 DARPA GALE phase 4 evaluation.
The 2009 CU Chinese LVCSR systemwas trained on on 1960
hours of broadcast speech data. A total of 5.6 billion charac-
ters from 28 text sources were used in LM training. These ac-
count for 3.7 billion words after a longest first based character
to word segmentation. A 63k word list was used. The system
uses a multi-pass recognition and system combination frame-
work. The overall structure of the system is shown in figure1.
In the initial lattice generation stage, an interpolated 4-gram
word level baseline LM and adapted gender dependent cross-
word triphone MPE acoustic models with HLDA projected PLP
and pitch features were used in decoding. The lattices gener-
ated were then rescored using a context dependently adapted
multi-level LM, which models both 4-gram word and 6-gram
character sequences [8]. Hierarchical and normalized perplex-
ity smoothing priors were used to adapt the context dependent
interpolation weights [7]. This multi-level LM lattice rescoring
stage used a weighted finite state transducer (WFST) based on-
the-fly expansion algorithm described in [8]. The resulting lat-
tices were then used in a “P3” acoustic re-adaptation and lattice



rescoring stage, where four different acoustic models developed
on the same training data were used:

• P3a: boosted MMI GD PLP+MLP quinphone

• P3b: MPE SAT Gaussianized PLP triphone

• P3c: MPE GD Gaussianized PLP+MLP triphone

• P3d: boosted MMI GD PLP quinphone

before a final CNC combination. As discussed in section2.1,
hypothesis level combination methods require performance of
components systems to be close in order to be effective. Hence,
the two PLP frontend based acoustic models were cross adapted
to the outputs of the two PLP+MLP models to give more bal-
anced performance among different branches. Five GALE Chi-
nese speech test sets of mixed broadcast news (BN) and conver-
sation (BC) genre: 2.6 hourd07, 1 hourd08, 3 hourd09s, 2.6
hour p2ns and 1.5 hourp3ns were used. Performance of the
individual branches and combined CU system are shown in ta-
ble1. LM adaptation gave consistent character error rate (CER)
reductions, for example, of 0.2%-0.6% absolute for the “P3a”
branch over its baseline, “P3a.base”, which used an unadapted
LM. Further CER reductions of 0.1%-0.4% over the best single
branch were obtained in CNC combination. Ond09s the final
BN and BC genre specific performance are 4.1% and 12.6%.

P3a P3dP3b

Latmllr Confmllr Latmllr Confmllr

Multi−level LM Lattices

3−gram Lattices

Adapted Multi−level LM Lattices

Initial Lattice Generation

P3c

1−best

CN

Lattice

CNC

CU STT Output

CU

Figure 1: The CU 2009 Chinese LVCSR system.

System d07 d08 d09s p2ns p3ns
P3a.base 8.6 7.7 9.2 8.3 11.7

P3a 8.3 7.5 8.8 7.9 11.1
P3b 8.1 7.4 8.6 7.9 11.0
P3c 8.2 7.5 8.6 7.9 11.0
P3d 8.4 7.9 8.9 8.1 11.2

CU 7.9 7.3 8.5 7.6 10.6

Table 1: CER performance of CU Chinese LVCSR system for
different system branches. “P3a.base” used an unadapted LM.

The 2009 AGILE Chinese LVCSR systemwas built by com-
bining a range of systems separately developed at Cambridge

University, BBN Technologies and LIMSI-CNRS. The BBN
and LIMSI systems were trained on the same amount of speech
and text data as the CU system presented in table1. The LIMSI
system also employed a multi-pass architecture but only one
single system [9]. The BBN system is more complex and used
a ROVER combination between a total of 8 different systems’
outputs for within site combination [10]. The CER performance
of the BBN and LIMSI systems are shown in the first two lines
of table2. The CU system’s performance is also shown in the
third line of the table. Both the BBN and LIMSI systems used
character to word segmentation schemes in training different
from the CU system. As discussed in sections2.1and2.2, their
outputs were re-tokenized using the CU character to word seg-
mentation scheme for cross adaptation, as well as split into char-
acter sequences for ROVER combination [5].

System d07 d08 d09s p2ns p3ns
BBN 8.8 7.9 8.9 8.0 11.8
LIMSI 9.3 8.5 9.4 8.4 12.5
CU 7.9 7.3 8.5 7.6 10.6

ROVER(3way) 7.5 7.0 8.3 7.0 10.3
ROVER(13way) 7.3 6.8 7.8 7.1 9.8

Table 2: Performance of ROVER combined AGILE systems.

ROVER combination performance of two AGILE systems are
shown in the second section of the table. The first one is a 3-way
cross site combination between the final outputs of the three sys-
tems shown in the first section of the table. Absolute CER gains
of 0.2%-0.6% over the best single system were obtained. The
second ROVER configuration is more complicated and involved
a 13-way combination between individual branch outputs of all
4 CU component systems shown in the middle section of ta-
ble 1, all 8 BBN component systems and the LIMSI system’s
outputs. Performance of this combined system is shown in the
last line of table2. As expected, the amount of diversity and
complimentary features increased as more systems were used
in combination. Further CER reductions of 0.2%-0.5% were
obtained on four test sets exceptp2ns. In particular, for test
sets with higher error rates and potentially larger diversity such
asd09s andp3ns, the use of more systems produced more re-
liable voting during ROVER, and thus a larger improvement of
0.5% over the 3-way configuration. The 13-way ROVER gave
absolute CER gains of 0.5%-0.8% over the CU system.

AM LM d07 d08 d09s p2ns p3ns

XA

Base 7.5 6.7 7.9 7.1 10.1
SA CD 7.4 6.8 7.7 7.1 9.8
XA CI 7.3 6.8 7.6 7.0 9.8
XA CD 7.0 6.5 7.4 6.7 9.6

Table 3: CER Performance of cross adapted AGILE sys-
tems. “Base” stands for no LM adaptation, “SA” for self-
adaptation,“XA” for cross adaptation, “CI” for context indepen-
dent and “CD” for context dependent.

Cross adaptationperformance of various systems are shown
in table3. The first two systems used standard acoustic model
only cross adaptation. The 4 CU acoustic models shown in ta-
ble 1 were each adapted to the outputs from BBN and LIMSI
separately using confidence scored based MLLR discussed in



section2.2. A regression class tree was used that can generate
a maximum total number of 4 transforms for speech states and
one for silence. The resulting 8 cross adapted acoustic mod-
els were then used to rescore the CU system’s lattices shown
in figure 1 before a final 8-way CNC combination. Option-
ally using the unadapted baseline LM, or the CU self-adapted
LM gave the “Base” and “SA CD” systems in table3 respec-
tively. Some gains from LM self-adaptation are still maintained
on this acoustic cross adaptation setup. The “SA CD” system
gave 0.1%-0.3% CER reductions ond07, d09s andp3ns over
the “Base” system which used no LM adaptation of any form.
This “SA CD” system also gave CER performance very close
to the 13-way ROVER system of table1.

The rest of table3shows performance of two combined sys-
tems by cross adapting both the CU acoustic and language mod-
els to the BBN and LIMSI outputs. In addition to the acoustic
only cross adaptation described above, the interpolation weights
of the CU multi-level LM were also adapted to the BBN and
LIMSI outputs separately at audio document level using con-
fidence score based estimation described in section3. The re-
sulting two sets of cross adapted LMs were used to rebuild the
CU system lattices. These were then rescored using 4 BBN or
LIMSI cross adapted CU acoustic models before a final 8-way
CNC combination, as is shown in figure2. The first AM+LM
cross adapted system uses only context free interpolation weights
for both word and character layers of the CU multi-level LM.
As is shown in the second line of table3, this “XA CI” system
only gave 0.1% CER reduction ond07, d09s andp2ns against
the acoustic only cross adapted “SA CD” system. In order to
capture more of the LM diversity among different systems, the
second AM+LM cross adapted system used context dependent
interpolation weights for both word and character layers of the
CU multi-level LM. Performance of this system is shown in the
last line of table3. Further absolute CER reductions of 0.2%-
0.3% were obtained over context free LM cross adaptation. This
fully cross adapted “XA CD” system gave the best CER perfor-
mance among all combined systems shown in tables2 and3.
The overall CER gains over the first acoustic only cross adapta-
tion baseline system in table3 were 0.2%-0.5% absolute across
all test sets. In particular, significant CER reductions of 0.4%-
0.5% were obtained ond07, d09s, p2ns andp3ns (5.0%-6.7%
rel.). Using this system the BN and BC specific performance on
d09s are 3.5% and 11.1%.

5. Conclusion
Language model cross adaptation was investigated in this pa-
per to improve LVCSR system combination. Experimental re-
sults on a state-of-the-art speech recognition task suggest com-
plimentary features exist on multiple layers of modelling hier-
archy among highly diverse systems. The proposed LM cross
adaptation method may be useful to capture additional diver-
sity. Future research will focus on improving robustness in cross
adaptation and system architecture refinement.
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