COMPLEX QUADRATIC OPTIMIZATION AND SEMIDEFINITE PROGRAMMING∗

SHUZHONG ZHANG† AND YONGWEI HUANG†

Abstract. In this paper we study the approximation algorithms for a class of discrete quadratic optimization problems in the Hermitian complex form. A special case of the problem that we study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson [J. Comput. System Sci., 68 (2004), pp. 442–470]. We first develop a closed-form formula to compute the probability of a complex-valued normally distributed bivariate random vector to be in a given angular region. This formula allows us to compute the expected value of a randomized (with a specific rounding rule) solution based on the optimal solution of the complex semidefinite programming relaxation problem. In particular, we present an \(\frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi} \)-approximation algorithm, and then study the limit of that model, in which the problem remains NP-hard. We show that if the objective is to maximize a positive semidefinite Hermitian form, then the randomization-rounding procedure guarantees a worst-case performance ratio of \(\frac{\pi}{4} \approx 0.7854 \), which is better than the ratio of \(\frac{2}{\pi} \approx 0.6366 \) for its counterpart in the real case due to Nesterov. Furthermore, if the objective matrix is real-valued positive semidefinite with nonpositive off-diagonal elements, then the performance ratio improves to 0.9349.

Key words. Hermitian quadratic functions, approximation ratio, randomized algorithms, complex semidefinite programming relaxation

AMS subject classifications. 90C20, 90C22

DOI. 10.1137/04061341X

1. Introduction. The pioneering work of Goemans and Williamson [8] has caused a great deal of excitement in the field of optimization, as it used a new tool, semidefinite programming (SDP) in continuous optimization, through randomization and probabilistic analysis, to yield an excellent approximation ratio for a classical combinatorial optimization problem, known as the max-cut problem. This groundbreaking work has been extended in various ways since its first appearance. Among others, Frieze and Jerrum [6] extended the method to solve the general max-\(k \)-cut problem. Bertsimas and Ye [4] introduced another randomization scheme using normal distributions, to achieve the same approximation result as in Goemans and Williamson’s original paper [8]. The Bertsimas–Ye analysis makes use of an important result in statistics, which states that the probability of a bivariate (2-dimensional) normally distributed random vector to be in the first orthant can be expressed analytically using elementary functions. This is impossible, however, for any dimension higher than three; see [1]. Recently, Goemans and Williamson [9] proposed another novel approach to solve the max-3-cut problem using the unit circle in the complex plane as a key modeling ingredient. In this paper we show that it is possible to compute the probability of the bivariate complex-valued normally distributed random vector to be in a specific angular region in \(\mathbb{C}^2 \) (see section 2). We then consider the following quadratic optimization problem in complex variables: maximize \(z^* Qz \), subject

∗Received by the editors August 13, 2004; accepted for publication (in revised form) July 6, 2005; published electronically January 12, 2006. This research was supported by Hong Kong RGC earmarked grants CUHK4174/03E and CUHK418505.
http://www.siam.org/journals/siopt/16-3/61341.html
†Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong (zhang@se.cuhk.edu.hk, http://www.se.cuhk.edu.hk/~zhang; ywhuang@se.cuhk.edu.hk).
to $z^m_k = 1$, $k = 1, \ldots, n$, where z_k is a complex variable and is the kth component of the vector z, and $m \geq 2$ is an integer parameter of the model. Thanks to the new probability formula to be developed in section 2, we are able to compute the expected quality of a particular randomized solution for solving the above quadratic optimization model. The model of Goemans and Williamson for max-3-cut ($m = 3$) turns out to be a special case of this general model. It is interesting to study the limit of this model; that is, the case where $m \to \infty$ and the constraints become $|z_k| = 1$. It turns out that the problem remains NP-hard. However, the corresponding complex SDP relaxation yields an approximation ratio of $\pi/4 \approx 0.7854$, whereas for its counterpart in the real case the ratio is $2/\pi \approx 0.6366$ as shown by Nesterov [11]. If the off-diagonal elements of the objective matrix are real-valued and nonpositive, then the approximation ratio is actually 0.9349.

This paper is organized as follows. In section 2 we discuss the computation of the probability for the complex-valued normal distributions. In section 3 we apply the results developed in section 2 to solve complex-valued quadratic optimization problems. In particular, section 3.1 discusses the Hermitian quadratic function maximization problem, where the complex decision variables take discrete values. Section 3.2 presents an approximation algorithm for the problem. Section 3.3 considers the continuous version of the problem. Section 3.4 considers a special case where a sign restriction on the objective matrix is observed. Finally, we conclude the paper in section 4.

Notation. Throughout, we denote by \bar{a} the conjugate of a complex number a and by C^n the space of n-dimensional complex vectors. For a given vector $z \in C^n$, z^H denotes the conjugate transpose of z. The spaces of $n \times n$ real symmetric and complex Hermitian matrices are denoted by S^n and \mathcal{H}^n, respectively. For a matrix $Z \in \mathcal{H}^n$, we write $\text{Re } Z$ and $\text{Im } Z$ for the real and imaginary part of Z, respectively. Matrix Z being Hermitian implies that $\text{Re } Z$ is symmetric and $\text{Im } Z$ is skew-symmetric. We denote by $S^n_+ (S^n_{++})$ and $\mathcal{H}^n_+ (\mathcal{H}^n_{++})$ the cones of real symmetric positive semidefinite (positive definite) and complex Hermitian positive semidefinite (positive definite) matrices, respectively. The notation $Z \succeq (\succ 0)$ means that Z is positive semidefinite (positive definite). For two complex matrices Y and Z, their inner product $Y \bullet Z = \text{Re } (\text{tr } Y^H Z) = \text{tr } [(\text{Re } Y)^T (\text{Re } Z) + (\text{Im } Y)^T (\text{Im } Z)]$, where tr denotes the trace of a matrix and T denotes the transpose of a matrix.

2. Complex bivariate normal distribution. It is well known that the density function of an n-dimensional real-valued multivariate normal distribution is given as follows:

$$f(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \Omega}} \exp \left(-\frac{1}{2} (x - \mu)^T \Omega^{-1} (x - \mu) \right),$$

where $\mu \in \mathbb{R}^n$ is the mean and $\Omega \in S^n_{++}$ is the covariance matrix.

Let us consider a complex-valued normally distributed random variable in C, with the mean value $z_0 \in C$ and variance $\sigma^2 \in \mathbb{R}_+$. (For more information on the complex-valued normal distributions, we refer the reader to [2]). Similar to the real-valued case, its density function can be written as

$$f(z) = \frac{1}{\pi \sigma^2} \exp \left(-|z - z_0|^2/\sigma^2 \right), z \in C.$$

We denote the complex-valued normal distribution by $\mathcal{N}_c(z_0, \sigma^2)$ with mean z_0 and variance σ^2.

Using Euler’s formula, i.e., letting $z - z_0 = \rho e^{i\theta}$, we have

$$f(\rho, \theta) = \frac{\rho}{\pi \sigma^2} \exp \left(- \frac{\rho^2}{\sigma^2} \right),$$

with $(\rho, \theta) \in [0, +\infty) \times [0, 2\pi)$,

where the variable transformation is

$$\begin{cases}
 \text{Re}(z - z_0) = \rho \cos \theta, \\
 \text{Im}(z - z_0) = \rho \sin \theta.
\end{cases}$$

As a matter of terminology, ρ is usually called the modulus of $z - z_0$, also denoted as $|z - z_0|$; θ is called the argument of $z - z_0$, denoted as $\text{Arg}(z - z_0)$.

The density of the joint (complex-valued) normal distribution $z = (z_1, z_2, \ldots, z_n)$, with $z_k \in \mathbb{C}$, $k = 1, 2, \ldots, n$, has the following form:

$$f(z) = \frac{1}{(\pi)^n \det \Omega} \exp \left(-(z - \mu)^H \Omega^{-1} (z - \mu) \right),$$

where $z, \mu \in \mathbb{C}^n$, and $\Omega \in \mathcal{H}_+^n$; μ is the mean vector, and Ω is the covariance matrix.

Let us denote the above complex-valued normal distribution as $\mathcal{N}_c(\mu, \Omega)$.

The bivariate case is of particular interest to us. Consider a complex-valued, bivariate normal random vector. Suppose that it has zero-mean. Furthermore, suppose that its covariance matrix is

$$\Omega = \begin{bmatrix} 1 & \lambda \\ \bar{\lambda} & 1 \end{bmatrix} > 0,$$

where $\bar{\lambda} \in \mathbb{C}$ denotes the conjugate of $\lambda \in \mathbb{C}$. In particular, let $\lambda = \gamma e^{i\alpha}$, and so $\bar{\lambda} = \gamma e^{-i\alpha}$. Since $\Omega > 0$, it follows that $1 - \gamma^2 > 0$. Moreover,

$$\Omega^{-1} = \frac{1}{1 - \gamma^2} \begin{bmatrix} 1 & -\gamma e^{i\alpha} \\ -\gamma e^{-i\alpha} & 1 \end{bmatrix}.$$

Then, by letting $z_1 = \rho_1 e^{i\theta_1}$ and $z_2 = \rho_2 e^{i\theta_2}$, we may rewrite the density function as

$$f(\rho_1, \rho_2, \theta_1, \theta_2) = \frac{\rho_1 \rho_2}{\pi^2 (1 - \gamma^2)} \exp \left(- \frac{1}{1 - \gamma^2} \begin{bmatrix} 1 & -\gamma e^{i\alpha} \\ -\gamma e^{-i\alpha} & 1 \end{bmatrix} \begin{bmatrix} \rho_1 e^{i\theta_1} \\ \rho_2 e^{i\theta_2} \end{bmatrix} \begin{bmatrix} 1 & -\gamma e^{i\alpha} \\ -\gamma e^{-i\alpha} & 1 \end{bmatrix} \begin{bmatrix} \rho_1 e^{i\theta_1} \\ \rho_2 e^{i\theta_2} \end{bmatrix} \right)$$

$$= \frac{\rho_1 \rho_2}{\pi^2 (1 - \gamma^2)} \exp \left(- \frac{\rho_1^2 + \rho_2^2 - 2 \rho_1 \rho_2 \gamma \cos(\alpha + \theta_2 - \theta_1)}{1 - \gamma^2} \right),$$

where the domain of the variables is given as

$$(\rho_1, \rho_2, \theta_1, \theta_2) \in [0, +\infty)^2 \times [0, 2\pi)^2.$$

Now let us further introduce a variable transformation

$$\begin{cases}
 \rho_1 = \rho \cos \xi, \\
 \rho_2 = \rho \sin \xi
\end{cases}$$
with the domain \((\rho, \xi) \in [0, +\infty) \times [0, \pi/2]\). The density function can be further written as

\[
f(\rho, \xi, \theta_1, \theta_2) = \frac{\rho^3 \cos \xi \sin \xi}{\pi^2 (1 - \gamma^2)} \exp\left(-\frac{\rho^2 - 2\gamma \rho^2 \cos \xi \sin \cos(\alpha + \theta_2 - \theta_1)}{1 - \gamma^2}\right),
\]

and the domain is \((\rho, \xi, \theta_1, \theta_2) \in [0, +\infty) \times [0, \pi/2] \times [0, 2\pi)^2\).

Consider \(0 \leq \theta_b^1 < \theta_e^1 \leq 2\pi\) and \(0 \leq \theta_b^2 < \theta_e^2 \leq 2\pi\). Below we shall compute the probability that \((\theta_1, \theta_2) \in [\theta_b^1, \theta_e^1] \times [\theta_b^2, \theta_e^2]\).

Let us denote

\[
P := \text{Prob}\{\theta_b^1 \leq \theta_1 \leq \theta_e^1; \theta_b^2 \leq \theta_2 \leq \theta_e^2\}
\]

\[=
\int_{\theta_b^1}^{\theta_e^1} d\theta_1 \int_{\theta_b^2}^{\theta_e^2} d\theta_2 \int_0^{\pi/2} \int_0^{\infty} \frac{\rho^3 \sin 2\xi}{2\pi^2 (1 - \gamma^2)} \exp\left(-\frac{\rho^2 - \rho^2 \gamma \sin 2\xi \cos(\alpha + \theta_2 - \theta_1)}{1 - \gamma^2}\right) d\rho d\xi d\theta_2 d\theta_1.
\]

To compute the above integration, we note the following facts.

Lemma 2.1.

(i) For a given \(a > 0\), it holds that

\[
\int_0^\infty \rho^3 \exp(-a\rho^2) d\rho = \frac{1}{2a^2}.
\]

(ii) Suppose that \(-1 < b < 1\) is a given real number. Then, with respect to the variable \(\theta\), it holds that

\[
\int \frac{\sin \theta}{(1 - b \sin \theta)^2} d\theta = -\frac{\cos \theta}{(1 - b^2)(1 - b \sin \theta)} + \frac{2b}{(1 - b^2)^{3/2}} \arctan\frac{\tan(\theta/2) - b}{\sqrt{1 - b^2}} + C.
\]

(iii) With respect to the variable \(\theta\), it holds that

\[
\int \left[\frac{1}{1 - \gamma^2 \cos^2(\theta)} + \frac{\gamma \cos \theta \arccos(-\gamma \cos \theta)}{(1 - \gamma^2 \cos^2(\theta))^{3/2}}\right] d\theta = \frac{1}{1 - \gamma^2} \left(\theta + \frac{\gamma \sin \theta \arccos(-\gamma \cos \theta)}{\sqrt{1 - \gamma^2 \cos^2(\theta)}}\right) + C.
\]

(iv) With respect to the variable \(\theta\), it holds that

\[
\int \left[\frac{\gamma \sin(\beta - \theta) \arccos(-\gamma \cos(\theta - \beta))}{\sqrt{1 - \gamma^2 \cos^2(\theta - \beta)}}\right] d\theta = \frac{1}{2} (\arccos(-\gamma \cos(\theta - \beta)))^2 + C.
\]
Part (i) of the lemma is straightforward, and the rest of the lemma can be readily verified by differentiation.

Applying Lemma 2.1 (i) and (ii), we get

\[
P = \frac{1}{4\pi^2 (1 - \gamma^2)} \int_{\theta_1^r}^{\theta_1^e} \int_{\theta_2^r}^{\theta_2^e} \left[\int_0^{\pi/2} \sin 2\xi \left(1 - \gamma^2 \cos(\alpha + \theta_2 - \theta_1) \right)^2 d\xi \right] d\theta_2 d\theta_1
\]

\[
= \frac{1 - \gamma^2}{4\pi^2} \int_{\theta_1^r}^{\theta_1^e} \int_{\theta_2^r}^{\theta_2^e} \left[\int_0^{\pi/2} \frac{\sin 2\xi}{(1 - \gamma \cos(\alpha + \theta_2 - \theta_1) \sin 2\xi)^2} d\xi \right] d\theta_2 d\theta_1
\]

\[
= \frac{1 - \gamma^2}{4\pi^2} \int_{\theta_1^r}^{\theta_1^e} \int_{\theta_2^r}^{\theta_2^e} \left[\frac{1}{1 - \gamma^2 \cos^2(\alpha + \theta_2 - \theta_1)} + \frac{\gamma \cos(\alpha + \theta_2 - \theta_1) \arccos(-\gamma \cos(\alpha + \theta_2 - \theta_1))}{(1 - \gamma^2 \cos^2(\alpha + \theta_2 - \theta_1))^{3/2}} \right] d\theta_2 d\theta_1.
\]

Using Lemma 2.1 (iii) we obtain

\[
P = \frac{1}{4\pi^2} \left[(\theta_1^e - \theta_1^r)(\theta_2^e - \theta_2^r) + \int_{\theta_1^r}^{\theta_1^e} \gamma \sin(\theta_2^e + \alpha - \theta_1) \arccos(-\gamma \cos(\theta_2^e + \alpha - \theta_1)) \sqrt{1 - \gamma^2 \cos^2(\theta_2^e + \alpha - \theta_1)} d\theta_1 \right.
\]

\[
- \left. \int_{\theta_1^r}^{\theta_1^e} \gamma \sin(\theta_2^r + \alpha - \theta_1) \arccos(-\gamma \cos(\theta_2^r + \alpha - \theta_1)) \sqrt{1 - \gamma^2 \cos^2(\theta_2^r + \alpha - \theta_1)} d\theta_1 \right]
\]

and then using Lemma 2.1 (iv) we have

\[
P = \frac{(\theta_1^e - \theta_1^r)(\theta_2^e - \theta_2^r)}{4\pi^2} \left[\left(\arccos(-\gamma \cos(\theta_1^e - \theta_2^e - \alpha)) \right)^2
\right.
\]

\[
- \left(\arccos(-\gamma \cos(\theta_1^r - \theta_2^r - \alpha)) \right)^2
\]

\[
+ \left(\arccos(-\gamma \cos(\theta_1^r - \theta_2^r - \alpha)) \right)^2
\]

\[- \left(\arccos(-\gamma \cos(\theta_1^e - \theta_2^e - \alpha)) \right)^2 \right].
\]

Summarizing, we have proven the following result by a limiting argument.

Theorem 2.2. For the complex-valued bivariate normal random vector \(\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \) in \(\mathcal{N}_c(\mu, \Omega) \) with

\[
\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \Omega = \begin{bmatrix} 1 & \gamma e^{i\alpha} \\ \gamma e^{-i\alpha} & 1 \end{bmatrix} \in \mathcal{H}_+^2,
\]

it holds that

\[
\text{Prob} \{ \theta_1^b \leq \text{Arg} \ z_1 \leq \theta_1^e; \ \theta_2^b \leq \text{Arg} \ z_2 \leq \theta_2^e \}
\]

\[
= \frac{(\theta_1^e - \theta_1^b)(\theta_2^e - \theta_2^b)}{4\pi^2} \left[\left(\arccos(-\gamma \cos(\theta_1^e - \theta_2^e - \alpha)) \right)^2
\right.
\]

\[
- \left(\arccos(-\gamma \cos(\theta_1^r - \theta_2^r - \alpha)) \right)^2
\]

\[
+ \left(\arccos(-\gamma \cos(\theta_1^r - \theta_2^r - \alpha)) \right)^2
\]

\[- \left(\arccos(-\gamma \cos(\theta_1^e - \theta_2^e - \alpha)) \right)^2 \right].
\]
3. Quadratic programs and complex SDP formulations.

3.1. Discrete complex quadratic optimization. Suppose that \(Q \) is a Hermitian matrix. Consider the following quadratic programming problem with discrete decision variables:

\[
\begin{align*}
(P) \quad & \max \ z^H Q z \\
\text{s.t.} \quad & z_k \in \{1, \omega, \ldots, \omega^{m-1}\}, \ k = 1, \ldots, n,
\end{align*}
\]

where \(m \geq 2 \) and \(\omega = e^{\frac{2\pi i}{m}} = \cos \frac{2\pi}{m} + i \sin \frac{2\pi}{m} \). As we shall see later, this is an extension of Goemans and Williamson’s model for solving the max-3-cut problem; see [9].

Denote the optimal value of \((P)\) to be \(v(P) \). Consider the following complex-valued mapping \(F_m: \)

\[
F_m(z) := \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos(-\text{Re}(\omega^{-j} z)) \right)^2.
\]

For a Hermitian matrix \(Z \) with \(|Z_{kl}| \leq 1 \) for all \(k,l \), define the componentwise matrix function

\[
F_m(Z) := (F_m(Z_{kl}))_{n \times n} \in \mathcal{H}^n.
\]

It is easy to verify that \(F_m(\bar{z}) = F_m(z) \). Therefore, if \(Z \) is Hermitian, then so is \(F_m(Z) \).

Lemma 3.1. We have

\[
1 = \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos(-\text{Re}(\omega^{-j} z)) \right)^2.
\]

Moreover, \(F_m(z) = z \) for any \(z \in \{1, \omega, \ldots, \omega^{m-1}\} \).

Proof. We observe that

\[
\begin{align*}
= \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos \left(-\cos \left(\frac{j}{m} 2\pi \right) \right) \right)^2 \\
= \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(1 - \frac{2j}{m} \right)^2 \\
= \frac{2 - \omega^{-1} - \omega}{8m} \left(4 \sum_{j=0}^{m-1} j^2 \omega^j - 4m \sum_{j=0}^{m-1} j \omega^j \right).
\end{align*}
\]

Moreover, we have

\[
\sum_{j=0}^{m-1} j^2 \omega^j = \frac{m^2(\omega - 1) - 2m\omega}{(\omega - 1)^2} \quad \text{and} \quad \sum_{j=0}^{m-1} j \omega^j = \frac{m}{\omega - 1}.
\]

Substituting the above equations into (1) yields the intended result.
Suppose $z = \omega^{j_0}$ for some $j_0 \in \{0, 1, \ldots, m - 1\}$. Then,

$$
\frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j (\arccos(-\text{Re}(\omega^{-j}z)))^2
$$

$$
= \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos\left(-\cos\left(\frac{j - j_0}{m} 2\pi\right)\right)\right)^2
$$

$$
= \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos\left(-\cos\left(\frac{j}{m} 2\pi\right)\right)\right)^2
$$

$$
= \omega^{j_0} \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=-j_0}^{m-1-j_0} \omega^j \left(\arccos\left(-\cos\left(\frac{j}{m} 2\pi\right)\right)\right)^2
$$

$$
= \omega^{j_0} = z.
$$

This completes the proof for Lemma 3.1. □

Hence we can rewrite (P) as

$$
\max \ Q \cdot F_m(zz^H)
$$

s.t.

$$
z_k \in \{1, \omega, \ldots, \omega^{m-1}\}, \ k = 1, \ldots, n.
$$

Consider the following nonlinear complex SDP problem:

$$
(\text{SP}) \quad \max \ Q \cdot F_m(Z)
$$

s.t.

$$
Z_{kk} = 1, \ k = 1, \ldots, n,
$$

$$
Z \succeq 0.
$$

Let $v(\text{SP})$ denote the optimal value of (SP).

Theorem 3.2. It holds that $v(\mathcal{P}) = v(\text{SP})$.

Proof. Let \hat{z} be optimal to (P); then, by Lemma 3.1, $\hat{Z} = \hat{z}\hat{z}^H$ is a feasible solution for (SP) and $F_m(\hat{Z}) = \hat{Z}$. Therefore, $v(\text{SP}) \geq Q \cdot F_m(\hat{Z}) = Q \cdot \hat{Z} = v(P)$.

On the other hand, for every feasible solution Z of (SP), we randomly generate a complex vector ξ such that $\xi \in \mathcal{N}_e(0, Z)$, and assign

$$
(2) \quad z_k = \sigma(\xi_k) =
\begin{cases}
1 & \text{if } \text{Arg } \xi_k \in [0, \frac{1}{m} 2\pi), \\
\omega & \text{if } \text{Arg } \xi_k \in [\frac{1}{m} 2\pi, \frac{2}{m} 2\pi), \\
\vdots & \\
\omega^j & \text{if } \text{Arg } \xi_k \in [\frac{j}{m} 2\pi, \frac{j+1}{m} 2\pi), \\
\vdots & \\
\omega^{m-1} & \text{if } \text{Arg } \xi_k \in [\frac{m-1}{m} 2\pi, 2\pi)
\end{cases}
$$
for \(k = 1, \ldots, n \). Suppose that \(Z_{kl} = \gamma e^{i\alpha} \). Then, by Theorem 2.2 we have
\[
\text{Prob}\{z_k = z_l\omega^j, z_l = \omega^r\} = \text{Prob}\{z_k = \omega^{j+r}, z_l = \omega^r\} = \frac{1}{m^2} + \frac{1}{8\pi^2} \left(2 \left(\arccos \left(-\gamma \cos \left(\frac{j}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j-1}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j+1}{m} 2\pi - \alpha \right) \right) \right)^2 \right)
\]
for any \(j, r \in \{0, 1, \ldots, m-1\} \). Therefore, for any given \(k \) and \(l \) we have
\[
\text{Prob}\{z_k \bar{z}_l = \omega^j\} = \sum_{r=0}^{m-1} \text{Prob}\{z_k = z_l\omega^j, z_l = \omega^r\} = \frac{1}{m} + \frac{m}{8\pi^2} \left(2 \left(\arccos \left(-\gamma \cos \left(\frac{j}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j-1}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j+1}{m} 2\pi - \alpha \right) \right) \right)^2 \right)
\]
(3)
It follows that
\[
\mathbb{E}[z_k \bar{z}_l] = \sum_{j=0}^{m-1} \omega^j \text{Prob}\{z_k \bar{z}_l = \omega^j\} = \frac{m}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(2 \left(\arccos \left(-\gamma \cos \left(\frac{j}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j-1}{m} 2\pi - \alpha \right) \right) \right)^2 - \left(\arccos \left(-\gamma \cos \left(\frac{j+1}{m} 2\pi - \alpha \right) \right) \right)^2 \right)
\]
(4)
\[
= \frac{m(2 - \omega^{-1} - \omega)}{8\pi^2} \sum_{j=0}^{m-1} \omega^j \left(\arccos \left(-\gamma \cos \left(\frac{j}{m} 2\pi - \alpha \right) \right) \right)^2
\]

By the linearity of mathematical expectation, we get
\[E[z^HQz] = Q \cdot F_m(Z). \]

Since the solution \(z \) so generated is feasible to (P), we have
\[v(P) \geq E[z^HQz] = Q \cdot Z, \]
for every feasible solution \(Z \) of (SP). This combined with \(v(SP) \geq v(P) \) yields the desired result. \(\qed \)

In particular, if \(m = 2 \), then one can verify that problem (P) reduces to
\[
\begin{align*}
\max & \quad x^T Q x \\
\text{s.t.} & \quad x_k \in \{-1, 1\}, \ k = 1, \ldots, n,
\end{align*}
\]
and problem (SP) reduces to
\[
\begin{align*}
\max & \quad \frac{2}{\pi} Q \cdot \arcsin(X) \\
\text{s.t.} & \quad \bar{X}_{kk} = 1, \ k = 1, \ldots, n,
\end{align*}
\]
where \(\arcsin(X) := [\arcsin(X_{kl})]_{n \times n} \). In that case, Theorem 3.2 specializes to Theorem 2.9 in Goemans and Williamson [8] or Theorem 1 in Zhang [15]. If \(m = 3 \), then (P) is
\[
\begin{align*}
\max & \quad z^HQz \\
\text{s.t.} & \quad z_k \in \{1, \omega, \omega^2\}, \ k = 1, \ldots, n,
\end{align*}
\]
with \(\omega = e^{i \frac{2\pi}{3}} \). In fact, Goemans and Williamson ([9]) model the max-3-cut problem as
\[
(M3C) \quad \max \sum_{1 \leq k < l \leq n} w_{kl}(z_k - z_l)^{\text{H}}(z_k - z_l)
\]
\[
\text{s.t.} \quad z_k \in \{1, \omega, \omega^2\}, \ k = 1, \ldots, n,
\]
and they consider the following complex SDP relaxation:
\[
\begin{align*}
\max & \sum_{1 \leq k < l \leq n} w_{kl}(2 - 2\Re Z_{kl}) \\
\text{s.t.} & \quad Z_{kk} = 1, \ k = 1, \ldots, n, \\
& \quad \Re Z_{kl} \geq -1/2, \ \Re \omega Z_{kl} \geq -1/2, \ \Re \omega^2 Z_{kl} \geq -1/2, \ 1 \leq k < l \leq n, \\
& \quad Z \succeq 0.
\end{align*}
\]
Let the optimal solution of the SDP relaxation be \(Z^* \). Then, Theorem 3.2 asserts that the expected value of the randomized solution based on \(Z^* \) is
\[
\sum_{1 \leq k < l \leq n} w_{kl}(2 - 2\Re F_3(Z_{kl}^*)),
\]
where \(F_3(z) = \frac{a}{8\pi} \left[(\arccos(-\Re z))^2 + \omega(\arccos(-\Re (\omega z)))^2 + \omega^2(\arccos(-\Re (\omega^2 z)))^2 \right] \).
Since \((\arccos(x))^2\) is a convex function, it follows that
\[
\Re F_3(Z^*_{kl}) = \frac{9}{8\pi^2} \left[(\arccos(-\Re Z^*_{kl}))^2 - \frac{1}{2} \left((\arccos(-\Re (\omega^2 Z^*_{kl})))^2 + (\arccos(-\Re (\omega Z^*_{kl})))^2 \right) \right]
\]
\[
\leq \frac{9}{8\pi^2} \left[(\arccos(-\Re Z^*_{kl}))^2 - \left(\arccos \left(\frac{1}{2} \Re (\omega Z^*_{kl} + \omega^2 Z^*_{kl}) \right) \right)^2 \right]
\]
\[
= \frac{9}{8\pi^2} \left[(\arccos(-\Re Z^*_{kl}))^2 - \left(\arccos \left(\frac{1}{2} \Re Z^*_{kl} \right) \right)^2 \right].
\]

Further noticing that
\[
\min_{-\frac{1}{2} \leq x < 1} \frac{2 + \frac{9}{4\pi^2} \left[(\arccos \left(\frac{x}{2} \right))^2 - (\arccos(-x))^2 \right]}{2 - 2x} = 0.8360 \ldots,
\]
the approximation ratio of Goemans and Williamson [9] thus follows from the fact that
\[
\sum_{1 \leq k < l \leq n} w_{kl} (2 - 2\Re F_3(Z^*_{kl})) \geq 0.836 \times \sum_{1 \leq k < l \leq n} w_{kl} (2 - 2\Re Z^*_{kl}) \geq 0.836 \times v^*(M3C).
\]

The above analysis is due to Goemans and Williamson [9]. Therefore, in this sense (3) is a generalization of Theorem 1 of [9] and our rounding procedure (2) is an extension of the procedure in section 5.1 of [9].

3.2. Bounds on the approximation ratios. In this subsection, we investigate approximation algorithms for (P) with positive semidefinite \(Q\) via complex SDP relaxation.

Consider the following complex SDP relaxation for (P):
\[
(CSDP) \quad \max \quad Q \cdot Z \quad \text{s.t.} \quad Z_{kk} = 1, \ k = 1, \ldots, n, \quad Z \succeq 0.
\]

Suppose that \(Z^*\) is an optimal solution of (CSDP). We draw a random vector \(\xi \in \mathcal{N}(0, Z^*)\), and generate a feasible solution \(z \in \mathbb{C}^n\) of (P) by applying the rounding procedure (2).

In what follows, we wish to establish an approximation ratio \(\alpha \in (0, 1]\) for the approximation algorithm, i.e., an \(\alpha\) such that
\[
\mathbb{E}(Q \cdot z z^H) \geq \alpha \mathbb{E}(Q \cdot Z^*),
\]
for the randomized solution \(z\).
To begin with, we need the following technical lemma, whose proof is given in the appendix of this paper.

Lemma 3.3. Suppose that $Z \in \mathcal{H}^n$ is positive semidefinite. Then

$$F_2(Z) \geq \frac{1}{\pi} (Z + Z^T) = \frac{2}{\pi} \text{Re} \ Z \quad \text{and} \quad F_m(Z) \geq \frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi} Z \quad \text{for} \ m \geq 3.$$

Therefore, according to (4) and Lemma 3.3, the expectation of the objective value of z can be estimated as

$$E[Q \bullet zz^H] = Q \bullet F_m(Z^*) \geq \alpha_m (Q \bullet Z^*),$$

where

$$\alpha_m = \begin{cases}
\frac{2}{\pi} & \text{if} \ m = 2, \\
\frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi} & \text{if} \ m \geq 3.
\end{cases}$$

Hence we arrive at the approximation ratio α_m for our randomized algorithm for solving (P) ($m \geq 2$). Summarizing, we have the following theorem.

Theorem 3.4. Suppose that $Q \succeq 0$. Then there holds $E[Q \bullet zz^H] \geq \alpha_m v(P)$, where z is obtained by the randomized algorithm and $v(P)$ is the optimal value of (P). In particular, $\alpha_3 \geq 0.5371$, $\alpha_4 \geq 0.6366$, $\alpha_5 \geq 0.6873$, $\alpha_{10} \geq 0.7599$, and $\alpha_{100} \geq 0.7851$.

In the case of $m = 2$, (CSDP) is actually a real SDP problem. According to Lemma 3.3, one asserts that the real version of relaxation problem (CSDP) yields a $\frac{2}{\pi}$-approximation ratio, which is in accordance with the result of Nesterov [11].

Prior to our result in this section, we learned through private communications that So, Zhang, and Ye [12] used a very different technique based on Grothendieck’s inequality and obtained the same approximation ratio result for the discrete complex quadratic optimization problem (P). We believe that both techniques are interesting and useful in their own right.

3.3. Continuous complex quadratic optimization. By taking the limit, i.e., $m \to \infty$, the quadratic optimization model (P) becomes

$$\text{(CP)} \quad \max_{z} \quad z^H Q z \\
\text{s.t.} \quad |z_k| = 1, \ k = 1, \ldots, n,$$

where $Q \in \mathcal{H}^n_+$. In that case, the problem is equivalent to

$$\text{(SCP)} \quad \max_{Z} \quad Q \bullet F(Z) \\
\text{s.t.} \quad Z_{kk} = 1, \ k = 1, \ldots, n, \quad Z \succeq 0$$

with

$$F(z) := \lim_{m \to \infty} F_m(z) = \frac{1}{4\pi} \int_{0}^{2\pi} e^{i\theta} (\arccos(-\gamma \cos(\theta - \alpha)))^2 \, d\theta,$$

where $\gamma = |z| \leq 1$ and $\alpha = \text{Arg} \ z$.

To be continued...
The applications of Hermitian quadratic optimization models such as (P) and
(CP) can be found, e.g., in Luo, Luo, and Kisiaiou [10] for applications in signal
processing. Although in [10] the minimization version of the problem was considered,
from the viewpoint of optimization both formulations are equivalent (see reduction
below).

Proposition 3.5. Problem (CP) is strongly NP-hard in general.

Proof. The optimization problem in the form

$$\max \ |z^T A z|
\text{s.t. } z_k \in \mathbb{C}, |z_k| \leq 1, k = 1, \ldots, n,$$

is called complex programming and was shown in [13] to be NP-hard in general. Problem (CP) is related to complex programming, but they are not the same: the objective
in (CP) takes the Hermitian form and is assumed to be positive semidefinite. The
proof for Proposition 3.5 to be presented below is due to Tom Luo of Minnesota
University, who sketched this proof to us in a private communication.

As a first step we shall prove that the problem

$$\min \ z^H Q z
\text{s.t. } |z_k| = 1, k = 1, \ldots, n,$$

is NP-hard in general, where $Q \in \mathcal{H}_n^m$.

To this end, we consider a reduction from the following NP-complete matrix
partition problem; i.e., given a matrix $G = [G_1, \ldots, G_N] \in \mathbb{R}^{M \times N}$, decide whether or
not a subset of $\{1, \ldots, N\}$ exists, say I, such that

$$\sum_{k \in I} G_k = \frac{1}{2} \sum_{k=1}^N G_k.$$

The NP-completeness of the above problem follows from the fact that when $M = 1$
and all the components are positive integers the above problem reduces to the famous
partition problem, which is NP-complete (see, e.g., page 223 of [7]).

Let the decision vector be

$$z = (z_0, z_1, \ldots, z_N, z_{N+1}, \ldots, z_{2N})^T \in \mathbb{C}^{2N+1}.$$

Let $n = 2N + 1$ and

$$A := \left(\begin{array}{cc}
-e_N & I_N \\
-I_N & G \\
\frac{1}{2} G e_N & 0^T_N
\end{array} \right) \in \mathbb{R}^{(M+N) \times n},$$

where $e_N \in \mathbb{R}^N$ is the vector of all ones. Let $Q := A^T A$.

Next we show that a matrix partition exists if and only if there is $z \in \mathbb{C}^n$, with
$|z_k| = 1$ for all k, such that $z^H Q z = 0$. Clearly, $z^H Q z = 0$ is equivalent to $A z = 0$;
that is,

$$0 = -z_0 + z_k + z_{N+k}, k = 1, \ldots, N,$$

$$0 = -2 \left(\sum_{k=1}^N G_k \right) z_0 + \sum_{k=1}^N G_k z_k.$$

Let $z_k/z_0 = e^{i \theta_k}$ for $k = 1, \ldots, 2N$. Using (5) we have

$$\cos \theta_k + \cos \theta_{N+k} = 1,$$

$$\sin \theta_k + \sin \theta_{N+k} = 0,$$
where $k = 1, \ldots, N$. Equations (7) and (8) imply that $\theta_k \in \{-\pi/3, \pi/3\}$. This in particular means that $\cos \theta_k = \cos \theta_{N+k} = 1/2$ for $k = 1, \ldots, N$. Since

$$\text{Re} \left(-\frac{1}{2} \left(\sum_{k=1}^{N} G_k \right) + \sum_{k=1}^{N} G_k z_k / z_0 \right) = -\frac{1}{2} \sum_{k=1}^{N} G_k + \sum_{k=1}^{N} G_k \cos \theta_k = 0$$

is always satisfied, (6) is true if and only if

$$\text{Im} \left(-\frac{1}{2} \left(\sum_{k=1}^{N} G_k \right) + \sum_{k=1}^{N} G_k z_k / z_0 \right) = \sum_{k=1}^{N} G_k \sin \theta_k = 0,$$

which amounts to the existence of a matrix partition.

Let λ_{max} be the maximum eigenvalue of Q. By observing that

$$\begin{align*}
\min \quad & z^H Q z \\
\text{s.t.} \quad & |z_k| = 1, \quad k = 1, \ldots, n,
\end{align*}$$

is equivalent to

$$\begin{align*}
\max \quad & z^H (\lambda_{\text{max}} I - Q) z \\
\text{s.t.} \quad & |z_k| = 1, \quad k = 1, \ldots, n,
\end{align*}$$

where $\lambda_{\text{max}} I - Q \in \mathcal{H}_+^n$, the desired result follows. \Box

For a given $z \in \mathbb{C}$ with $z = \gamma e^{i\alpha}$ and $|z| = \gamma \leq 1$, we have

$$F(z) = \frac{1}{4\pi} \int_0^{2\pi} e^{i\theta} (\arccos(-\gamma \cos(\theta - \alpha)))^2 d\theta$$

$$= \frac{1}{4\pi} e^{i\alpha} \int_0^{2\pi} e^{i\theta} (\arccos(-\gamma \cos \theta))^2 d\theta$$

$$= \frac{1}{4\pi} e^{i\alpha} \left[\int_0^{\pi} e^{i\theta} (\arccos(-\gamma \cos \theta))^2 d\theta - \int_0^{\pi} e^{i\theta} (\arccos(\gamma \cos \theta))^2 d\theta \right]$$

$$= \frac{1}{2} e^{i\alpha} \int_0^{\pi} e^{i\theta} \left(\frac{\pi}{2} - \arccos(\gamma \cos \theta) \right) d\theta$$

$$= \frac{1}{2} e^{i\alpha} \int_0^{\pi} e^{i\theta} \arcsin(\gamma \cos \theta) d\theta$$

$$= \frac{1}{2} e^{i\alpha} \int_0^{\pi} e^{i\theta} \left(\gamma \cos \theta + \sum_{k=1}^{\infty} \frac{(2k)!}{4^k (k!)^2 (2k+1)^2(2k+1)} (\gamma \cos \theta)^{2k+1} \right) d\theta$$

$$= \frac{\pi}{4} e^{i\alpha} + \pi \sum_{k=1}^{\infty} \frac{(2k)!}{2^{2k+1} (k!)^2 (k+1)^2} \gamma^{2k+1} e^{i\alpha}$$

$$= \frac{\pi}{4} e^{i\alpha} + \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{(2k)!}{2^{2k+1} (k!)^2 (k+1)^2} |z|^{2k+1} e^{i\alpha}$$

(9)

where the second to last step follows from the fact that

$$\int_0^{\pi} \sin \theta (\cos \theta)^{2k+1} d\theta = 0 \text{ and } \int_0^{\pi} (\cos \theta)^{2k+2} d\theta = \frac{(2k+1)(2k-1) \cdots 1}{(2k+2)(2k) \cdots 2} \pi, \quad k = 0, 1, \ldots.$$
Clearly, if $Z \in \mathcal{H}_n^+$, then $Z^T \in \mathcal{H}_n^+$. Furthermore, observe that the Hadamard product of any two positive semidefinite Hermitian matrices remains Hermitian positive semidefinite. Denote $A \circ B$ to be the Hadamard product of A and B, and denote $A^{(k)}$ to be

$$A \circ A \circ \cdots \circ A.$$

It thus follows from (9) that

$$F(Z) = \frac{\pi}{4} Z + \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{(2k)!^2}{2^{4k+1}(k!)^4(k+1)} (Z^T \circ Z)^{(k)} \circ Z \succeq \frac{\pi}{4} Z.$$

Since $Q \succeq 0$, we have

$$Q \cdot F(Z) \geq \frac{\pi}{4} Q \cdot Z.$$

Consider the following complex SDP relaxation for (CP):

$$(\text{CSDP}) \quad \max \quad Q \cdot Z \quad \text{s.t.} \quad Z_{kk} = 1, \quad k = 1, \ldots, n, \quad Z \succeq 0.$$

Let the optimal value of (CP) be $v^*(CP)$, the optimal value of (CSDP) be $v^*(CSDP)$, and Z^* be an optimal solution. Suppose that a randomized solution z is generated by independently setting $z_k = e^{i \text{Arg} \xi_k}$ for each $k = 1, \ldots, n$, and $\xi \in \mathcal{N}_{c}(0, Z^*)$. Let the expected value of the randomized solution z be $v(H(C))$. Then

$$v(H(C)) \geq \frac{\pi}{4} v^*(CSDP) \geq \frac{\pi}{4} v^*(CP) \approx 0.7854 \cdot v^*(CP).$$

Since (CP) can be viewed as the limit of (P) as $m \to \infty$, it is interesting to observe that the approximation ratio for (CP), $\frac{\pi}{2}$, is indeed the limit of $\alpha_m = \frac{m^2(1 - \cos \frac{2m}{\pi})}{8\pi}$ as $m \to \infty$. It is also interesting to compare this ratio with that of its real counterpart:

$$(\text{RP}) \quad \max \quad x^T Q x \quad \text{s.t.} \quad x_k^2 = 1, \quad k = 1, \ldots, n,$$

where Q is a real positive semidefinite matrix. Nesterov [11] showed that in this case the randomization solution based on the SDP relaxation

$$(\text{RSDP}) \quad \max \quad Q \cdot X \quad \text{s.t.} \quad X_{kk} = 1, \quad k = 1, \ldots, n, \quad X \succeq 0,$$

has the following approximation ratio:

$$v(H(R)) \geq \frac{2}{\pi} v^*(RSDP) \geq \frac{2}{\pi} v^*(RP) \approx 0.6366 \cdot v^*(RP).$$

Therefore, the complex SDP relaxation for the complex quadratic optimization problem is more effective than the real SDP relaxation for its real counterpart, in the sense that the former has a slightly better approximation ratio.
We remark that as in the analysis of Nesterov [11], Ye [14], and Zhang [15] for the real case, we can extend all the approximation results to the following more general setting:

$$\max \quad z^T Q z$$

s.t. $$(|z_1|^2, |z_2|^2, \ldots, |z_n|^2)^T \in \mathcal{F},$$

where \mathcal{F} is a closed convex set in \mathbb{R}^n. The corresponding complex and convex SDP relaxation is

$$\max \quad Q \cdot Z$$

s.t. $\text{diag} \, Z \in \mathcal{F}, \quad Z \succeq 0.$

In particular, if \mathcal{F} is a hypercube and $Q \succ 0$, then the above $\pi/4$-approximation result also follows from the matrix cube theorem of Ben-Tal, Nemirovski, and Roos [3]. However, our technique appears to be very different in nature.

It is also interesting to remark that if we regard (CP) as an equivalent real quadratic problem

$$\max \quad (u^T, v^T) \begin{pmatrix} \text{Re} Q & -\text{Im} Q \\ \text{Im} Q & \text{Re} Q \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

s.t. $u_k^2 + v_k^2 = 1, \quad k = 1, \ldots, n,$

then the approximation ratio obtained that way would be $2/\pi$ instead of $\pi/4$. This shows that the complex SDP relaxation does have an advantage in this particular case.

3.4. Structured continuous complex quadratic optimization.

In this section, we study a special case of (CP) with a sign structure on the object matrix, which is parallel to the original (real) max-cut model studied in [8]:

$$(CPS) \quad \max \quad z^T Q z$$

s.t. $|z_k| = 1, \quad k = 1, \ldots, n,$

where we assume that $Q = [q_{jl}]_{n \times n} \in \mathbb{S}^n_+$ and $q_{jl} \leq 0$ for all $1 \leq j < l \leq n$. Using (9) we know that the expected value of the randomized solution based on the complex SDP relaxation is

$$v(H(C)) = 2 \sum_{j<l} q_{jl} \text{Re} \, F(Z^*_{jl}) + \sum_{j=1}^n q_{jj}$$

$$= 2 \sum_{j<l} q_{jl} \left(\frac{\pi}{4} + \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{(2k)!}{2^{4k+1} (k!)^4 (k+1)} \right) |Z^*_{jl}|^{2k} \text{Re} \, Z^*_{jl}$$

$$+ \sum_{j=1}^n q_{jj},$$

(10)

where Z^* is the optimal solution of the complex SDP relaxation. Define the following real function on $y \in [0, 1]$:

$$g(y) := \frac{\pi}{4} + \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{(2k)!}{2^{4k+1} (k!)^4 (k+1)} y^{2k}$$
We have \(0 \leq g(y) \leq 1\) for all \(y \in [0, 1]\). Suppose that \(x\) is real and \(|x| \leq y \leq 1\). Then,
\[
\min_{|x| \leq y} \frac{1 - g(y)x}{1 - x} = \min_{|x| \leq y} \left(g(y) + \frac{1 - g(y)}{1 - x} \right) = \frac{1 + g(y)y}{1 + y}.
\]
One computes that
\[
\min_{0 \leq y \leq 1} \frac{1 + g(y)y}{1 + y} \approx 0.9349 =: \beta.
\]
Therefore,
\[
1 - g(y)x \geq \beta - \beta x
\]
for all \(y \in [0, 1]\) and \(|x| \leq y\), or equivalently,
\[
g(y)x \leq 1 - \beta + \beta x
\]
for all \(y \in [0, 1]\) and \(|x| \leq y\). Using (11), we have
\[
\left(\frac{\pi}{4} + \frac{\pi}{2} \sum_{k=1}^{\infty} \frac{(2k)!}{2^{2k+1}k!^4(k+1)} |Z^*_{jl}|^{2k} \right) \text{Re} Z^*_{jl} \leq 1 - \beta + \beta \text{Re} Z^*_{jl}.
\]
This yields an approximation ratio of 0.9349 for (CPS).

4. Concluding remarks. In this paper we discussed complex quadratic maximization models, denoted as (P) and (CP), in which the decision variables either take values as unit roots of the equation \(z^m = 1\) or are assumed to have modulus 1. We established approximation ratios for randomization algorithms for these problems, based on the properties of the complex-valued normal distributions. In particular, the approximation ratio is \(m^2(1 - \cos^2 \frac{\pi}{m})\) for (P) when \(m \geq 3\), and is \(\pi/4\) for (CP). If the off-diagonal elements of the objective matrix \(Q\) are nonpositive, then the approximation ratio is improved to 0.9349. Our approach is based on a probability analysis of the complex-valued normally distributed random variables. The same results can also be obtained by different approaches. For example, recently So, Zhang, and Ye [12] used Grothendieck’s inequality and obtained the same \(m^2(1 - \cos^2 \frac{\pi}{m})\) approximation bound for (P), and Ben-Tal, Nemirovski, and Roos [3] established a matrix cube theorem and obtained the \(\pi/4\) approximation ratio for a model similar to (CP). Moreover, Ben-Tal, Nemirovski, and Roos [3] also suggested that the \(\pi/4\)
approximation ratio is a tight bound. However, it remains unknown whether or not
\[\alpha_m = \frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi^2} \] is a tight bound for (P). Related to our models, Charikar and
Wirth [5] discussed quadratic maximization models (the real case) in which \(Q \) is not assumed to be positive semidefinite; instead, the diagonals of \(Q \) are assumed to be all zeros. They proposed a randomized algorithm for such a quadratic maximization model and established an \(\Omega(1/\log n) \)-approximation ratio. We plan to extend our
analysis to such models in the future.

Appendix A. Proof of Lemma 3.3.

Consider

\[
F_m(z) = \frac{m(2 - \omega - \omega^{-1})}{8\pi^2} \sum_{j=0}^{m-1} \omega^j (\arccos(-\text{Re}(\omega^{-j}z)))^2
\]

\[
= \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi^2} e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} (\arccos(-\gamma \cos \theta_j))^2,
\]

where \(z = \gamma e^{i\alpha} \), \(\omega = e^{i\frac{2\pi}{m}} \), and \(\theta_j = \frac{j}{m}2\pi - \alpha \) for \(j = 0, \ldots, m - 1 \).

Since \(\arccos(-x) = \frac{\pi}{2} - \arcsin(-x) \), we have

\[
F_m(z) = \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi^2} e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \left(\frac{\pi^2}{4} + \pi \arcsin(\gamma \cos \theta_j) + (\arcsin(\gamma \cos \theta_j))^2 \right)
\]

\[
= \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi^2} e^{i\alpha} \sum_{j=0}^{m-1} (\pi e^{i\theta_j} \arcsin(\gamma \cos \theta_j) + e^{i\theta_j} (\arcsin(\gamma \cos \theta_j))^2)
\]

\[
= \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi^2} e^{i\alpha} \sum_{j=0}^{m-1} (\pi e^{i\theta_j} \gamma \cos \theta_j + \pi e^{i\theta_j} (\arcsin(\gamma \cos \theta_j) - \gamma \cos \theta_j)
\]

\[+ e^{i\theta_j} (\arcsin(\gamma \cos \theta_j))^2). \]

Set

\[I_1 = \gamma e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \cos \theta_j, \]

\[I_2 = e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} (\arcsin(\gamma \cos \theta_j) - \gamma \cos \theta_j), \]

\[I_3 = e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} (\arcsin(\gamma \cos \theta_j))^2. \]

Thus, we shall have

\[
F_m(z) = \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi} (I_1 + I_2 + I_3/\pi). \]
Let us now treat these items one by one. First, we note that

\[
I_1 = \gamma e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \cos \theta_j
\]

\[
= \gamma e^{i\alpha} \frac{1}{2} \sum_{j=0}^{m-1} (e^{i\theta_j} + e^{-i\theta_j})
\]

\[
= \gamma e^{i\alpha} \left(m + \sum_{j=0}^{m-1} e^{i\frac{\pi}{m}j} e^{-2i\alpha} \right)
\]

\[
= \begin{cases}
\frac{\gamma e^{i\alpha}}{2} & m = \frac{mz}{2} \quad \text{if } m \geq 3, \\
\gamma e^{i\alpha} + \gamma e^{-i\alpha} = z + \bar{z} \quad \text{if } m = 2.
\end{cases}
\]

Let us denote

\[
a_n = \frac{(2n)!}{2^{2n+1}(2n+1)!}, \quad n = 0, 1, \ldots
\]

Then we have the Taylor expansion

\[
\arcsin(t) = \sum_{n=0}^{\infty} a_n t^{2n+1},
\]

and so

\[
I_2 = e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \sum_{n=1}^{\infty} a_n (\cos \theta_j)^{2n+1}
\]

\[
= \sum_{n=1}^{\infty} a_n 2^{2n+1} e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \left(e^{-i\theta_j} + e^{i\theta_j} \right)^{2n+1}
\]

\[
= \sum_{n=1}^{\infty} a_n 2^{2n+1} e^{i\alpha} \sum_{j=0}^{m-1} \sum_{k=0}^{2n+1} \binom{2n+1}{k} e^{i\theta_j (2n+2-2k)}
\]

\[
= \sum_{n=1}^{\infty} a_n 2^{2n+1} e^{i\alpha} \sum_{k=0}^{2n+1} \binom{2n+1}{k} \left(\sum_{j=0}^{m-1} e^{i\frac{\pi}{m}j (2n+2-2k)} \right) e^{-i\alpha (2n+2-2k)}
\]

Let us denote

\[
b_k = \sum_{j=0}^{m-1} e^{i\frac{\pi}{m}kj},
\]

where \(k \) is an integer number. Obviously, \(b_k \) is either 0 or \(m \). In particular, if \(m \) is even and \(k \) is odd, then \(b_k = 0 \). We further obtain that

\[
I_2 = \sum_{n=1}^{\infty} a_n 2^{n+1} e^{i\alpha} \binom{2n+1}{k} b_{2n+2-2k} e^{-i\alpha (2n+2-2k)}
\]

\[
= \sum_{n=1}^{\infty} a_n 2^{n+1} \sum_{k=0}^{2n+1} \binom{2n+1}{k} b_{2n+2-2k} z^{2n+1-k} z^k.
\]
Similarly, we have

\[I_3 = e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} (\arcsin(\gamma \cos \theta_j))^2 \]

\[= e^{i\alpha} \sum_{j=0}^{m-1} e^{i\theta_j} \sum_{s=0,t=0}^{\infty} a_s a_t \gamma^{2s+2t+2} (\cos \theta_j)^{2s+2t+2} \]

\[= e^{i\alpha} \sum_{s=0,t=0}^{\infty} a_s a_t \gamma^{2s+2t+2} \sum_{k=0}^{2s+2t+2} \binom{2s+2t+2}{k} \sum_{j=0}^{m-1} e^{i\theta_j} (2s + 2t + 2k) \]

\[= e^{i\alpha} \sum_{s=0,t=0}^{\infty} a_s a_t \gamma^{2s+2t+2} \sum_{k=0}^{2s+2t+2} \binom{2s + 2t + 2}{k} b_{2s+2t+3-2k} e^{-i\alpha(2s+2t+3-2k)} \]

\[= \sum_{s=0,t=0}^{\infty} a_s a_t \gamma^{2s+2t+2} \sum_{k=0}^{2s+2t+2} \binom{2s + 2t + 2}{k} b_{2s+2t+3-2k} e^{-i\alpha(2s+2t+3-2k)} \]

If \(m \) is even, then \(I_3 = 0 \) since \(b_{2s+2t+3-2k} = 0 \) in each term.

Observing that the Hadamard product of any two positive semidefinite Hermitian matrices remains Hermitian positive semidefinite, it follows from (14) that

\[F_m(Z) = \frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi} Z + \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi} \sum_{n=1}^{\infty} \left[\frac{a_n}{2^{2n+1}} \sum_{k=0}^{2n+1} \binom{2n+1}{k} b_{2n+2-2k} \right] Z^{(k)} \circ (Z^T)^{(2n+1-k)} \]

\[+ \frac{m(1 - \cos \frac{2\pi}{m})}{4\pi^2} \sum_{s=0}^{\infty} a_s a_t \gamma^{2s+2t+2} \sum_{k=0}^{2s+2t+2} \binom{2s + 2t + 2}{k} b_{2s+2t+3-2k} Z^{(k)} \circ (Z^T)^{(2s+2t+2-k)} \]

for \(m \geq 3 \); a similar expansion of \(F_2(Z) \) can be obtained easily. Since \(Z \succeq 0 \) and \(Z^T \succeq 0 \), we get

\[F_m(Z) \succeq \frac{m^2(1 - \cos \frac{2\pi}{m})}{8\pi} Z, \]

for \(m \geq 3 \) and \(F_2(Z) \succeq \frac{1}{2}(Z + Z^T) = \frac{1}{2} \Re Z \). This completes the proof.

Acknowledgments. We would like to thank Tom Luo, Anthony So, Yinyu Ye, and Jiawei Zhang for stimulating discussions on the subject. We thank André Tits for drawing our attention to complex programming.

REFERENCES

