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Abstract. We study the problem of welfare maximization in a novel set-
ting motivated by the standard stochastic two-stage optimization with
recourse model. We identify and address algorithmic and game-theoretic
challenges that arise from this framework. In contrast, prior work in algo-
rithmic mechanism design has focused almost exclusively on optimization
problems without uncertainty. We make two kinds of contributions.
First, we introduce a family of mechanisms that induce truth-telling in
general two-stage stochastic settings. These mechanisms are not sim-
ple extensions of VCG mechanisms, as the latter do not readily ad-
dress incentive issues in multi-stage settings. Our mechanisms implement
the welfare maximizer in sequential ex post equilibrium for risk-neutral
agents. We provide formal evidence that this is the strongest implemen-
tation one can expect.
Next, we investigate algorithmic issues by studying a novel combinatorial
optimization problem called the Coverage Cost problem, which includes
the well-studied Fixed-Tree Multicast problem as a special case. We note
that even simple instances of the stochastic variant of this problem are
#P -Hard. We propose an algorithm that approximates optimal welfare
with high probability, using a combination of sampling and supermod-
ular set function maximization—the techniques may be of independent
interest. To the best of our knowledge, our work is the first to address
both game-theoretic and algorithmic challenges of mechanism design in
multi-stage settings with data uncertainty.

1 Introduction

Welfare maximization has been a central problem in both computer science and
economics research. Much work to-date, especially in algorithmic mechanism de-
sign, has focused on welfare maximization in deterministic settings [11, 14, 15].
In this paper, we identify and address new challenges that arise in stochastic
optimization frameworks. In particular, we consider both algorithmic and in-
centive issues motivated by the two-stage stochastic optimization with recourse
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model, a model that has been studied extensively in both the operations research
community [5], and the computer science community [9, 16, 17].

Roughly speaking, two-stage optimization requires a decision maker (the cen-
ter) to make sequential decisions. In the first stage, given a probability distribu-
tion over possible problem instances (called scenarios), the center deploys some
resources and incurs some cost. Typically, such an initial deployment is not a
feasible solution to every possible scenario, but represents a hedge on the center’s
part. In the second stage, once a specific scenario is realized, the center may take
recourse actions to augment its initial solution to ensure feasibility, and incurs
an additional cost for doing so. The goal of the center is to minimize its expected
cost (or maximize its expected profit).

In this paper, we are interested in situations where the uncertainty is initially
unknown to the center, and it needs to learn this information from selfish agents
in order to maximize social welfare. However, an agent may lie about its pri-
vate information to improve its utility. To solve this informational problem, the
center has to interleave elicitation and optimization. In order to appreciate the
challenges that arise from the stochastic setting, let us first consider a stochastic
variant of the well-studied Fixed Tree Multicast (FTM) problem [1, 6, 13].

Recall that an FTM instance consists of a tree T with undirected edges and
a designated node called the root. A set of players, U = {1, 2, . . . , n}, are located
at the nodes of the tree. Each player i ∈ U is interested in a service provided
by the root and has a private value θi for being served. Serving a user involves
building the path from the root to the node at which the user is located. The
center serves a set S ⊆ U of users by building edges in the union of paths that
correspond to the serviced nodes, and pays the costs of the edges built.

In our stochastic two-stage formulation, there is initially some uncertainty
regarding the values of players being served. This uncertainty is modeled as a
distribution over values for each player, and is resolved in the second stage when
each learns of its value. Both the distribution and the value are private to the
player. Edges can be built in either the first or the second stage, with the costs
being higher in the second stage for the corresponding edge. Such an increase
in costs can be viewed as a premium for the extra information obtained in the
second stage. A precise formulation is given in Section 4.

Our objective is to maximize expected social welfare — the sum of the values
of the players served less the cost incurred. What are the challenges introduced
by the two-stage stochastic setting?

The first challenge is game-theoretic. While Vickrey-Clarke-Groves (VCG)
mechanisms can induce players to report their true information in single-shot
settings [8], they do not apply directly to the two-stage setting. We demon-
strate that it is possible to induce truth-telling behavior in sequential ex post
equilibrium via an explicit construction of a two-stage mechanism. This solution
concept is different from classical ex post implementation, and will be further
explained in Section 4. We also formally argue that this is the strongest im-
plementation one can expect, by showing that it is impossible to construct a
mechanism that implements the social objective in dominant strategies.



The second challenge is algorithmic. We consider a novel combinatorial op-
timization problem called the Coverage Cost problem (see Section 5 for the
precise formulation) to investigate algorithmic issues that arise in such settings.
The Coverage Cost (CC) problem contains FTM as a special case. We find that
maximizing welfare can be difficult even when the deterministic version is easy
to solve. For instance, maximizing welfare in a deterministic, single-shot version
of FTM can be solved by a linear time algorithm [6]. On the other hand, maxi-
mizing welfare for a stochastic version of FTM is #P-hard (Theorem 5). We then
develop an algorithm for stochastic CC problems that yields an additive approx-
imation to the optimal expected welfare with high probability. Our solution is
based on a combination of sampling techniques (see, e.g., [12]) and supermodular
function maximization [10] (Theorem 6), and may be of independent interest.

Due to space constraints, most proofs have been omitted in this extended
abstract. Readers interested in more details can find the proofs in the full paper.

2 Related Work

A few recent papers have focused on dynamic mechanisms, under the setting of
Markov Decision Processes [2, 3]. Our work differs from these in three respects.
First, to the best of our knowledge, this is the first time an algorithmic aspect
of a two-stage mechanism has been studied. The computational hardness leads
to the use of a sampling-based approximation algorithm, and we describe the
precise trade-off between incentive compatibility and computational efficiency
(Theorem 4). Second, by application of backward induction, we identify a family
of incentive compatible mechanisms, rather than a single mechanism. Finally,
we introduce the sequential generalization of classical solution concepts, and
formally argue why a stronger incentive guarantee — namely an implementation
in dominant strategies — is impossible to achieve (Theorem 3). We expect our
impossibility result to be applicable to the works mentioned above.

To the best of our knowledge, our algorithmic result, i.e. approximating maxi-
mum welfare for a stochastic coverage cost instance, is not obtainable via current
techniques. For instance, the technique in [4] requires the objective function to
be non-negative for all possible actions and scenarios. This condition does not
hold in our problem. The technique in [12] does not address how the underly-
ing problem is to be solved, and yields a different bound that depends on the
variance of a certain quantity.

3 Stochastic Welfare Maximization

In this section, we define stochastic welfare maximization in a general setting.
The terminology and the general definition introduced in this section are moti-
vated by mechanism design. We review two-stage stochastic optimization in the
appendix and refer the interested readers to the survey [17].

Informally, in a two-stage stochastic welfare maximization problem, the cen-
ter decides on the eventual social outcome in two stages. In the first stage, with



less information available, the center commits some resources, at a cost. In the
second stage, with additional, precise information available, it augments initial
allocation by performing (typically more expensive) recourse actions.

Formally, in the first stage the center picks an outcome from the set of feasible
outcomes O1, incurring a first-stage cost c1 : O1 7→ R. In the second stage, the
center may augment the first stage allocation by picking an outcome from the set
O2, incurring an additional cost c2 : O1 ×O2 7→ R. Note that the second-stage
cost depends on both the first and second-stage choices.

Next, we describe the relationship between agent types and their valuations.3

Let Θi be the (ground) type space of agent i, for i = 1, . . . , n. Let vi : Θi×O1×
O2 7→ R denote i’s valuation. In other words, an agent’s valuation depends on
its realized type and the outcomes of both stages.

The ground type of an agent is revealed in two stages. In the first stage, an
agent i only learns of a probability distribution δi over its ground types. We call
this distribution the agent’s supertype, and denote the supertype space of agent
i by ∆i. Its elements, δi ∈ ∆i, are distributions on Θi. In the second stage,
agent i learns of its ground type (or type for short), realized according to the
distribution δi that is independent of other agents’ type realizations. We call the
collective realized types of all agents in the system a scenario, corresponding to
a scenario in two-stage stochastic optimization.

Most work on two-stage stochastic optimization focus on minimizing cost. In
contrast, we are interested in maximizing social welfare as defined below:

Definition 1 The social welfare of outcomes x1 ∈ O1 and x2 ∈ O2 in scenario
θ = (θ1, . . . , θn) is:

SW (θ, x1, x2) =
n∑

i=1

vi(θi, x
1, x2)− c1(x1)− c2(x1, x2) (1)

As first-stage outcomes are picked without precise information on agent
types, we focus on maximizing expected social welfare, i.e.

maxEθ∼δ

[
SW (θ, x1, x2)

]
(2)

where θ ∼ δ means that the scenario vector θ is distributed according to δ.

4 Mechanism Design Formulation

We now address the first challenge in stochastic welfare maximization, that of
eliciting the supertypes and the realized types from selfish agents. Our treatment
is fully general, and applies to any two-stage stochastic optimization problems.

First, let us define agents’ utility functions. We assume that agents have
quasi-linear utilities. If t is the transfer to agent i, then he has utility:

ui(θi, x
1, x2, t) = vi(θi, x

1, x2) + t (3)
3 For notation, when a type/supertype (space) is subscripted, it refers to that of a

particular agent; when it is not, it refers to the Cartesian product over the agents.



We also assume that agents are risk-neutral in the first stage, i.e., they look
to maximize their expected utility over the distribution of scenarios.

The mechanism design framework is as follows:

Definition 2 A two-stage stochastic mechanism is parametrized by a pair of
mechanisms, (〈f1, {t1i }n

i=1〉, 〈f2, {t2i }n
i=1〉), where:

1. Initially, each agent i has a supertype δi ∈ ∆i. The first-stage mechanism
accepts “supertype” bids from agents.

2. The mechanism applies the decision rule, f1 : ∆ 7→ O1 to pick a first-stage
outcome as a function of declared supertypes. It applies the transfer functions
t1i : ∆ 7→ R to determine first-stage transfers for each agent i.

3. Each agent i now realizes its type θi according to the distribution specified
by the supertype δi. The mechanism accepts “type” bids from each agent.

4. The second-stage mechanism applies the decision rule, f2 : ∆ × O1 × Θ 7→
O2 and picks a second-stage outcome as a function of the declared types,
the declared supertypes, and the first-stage outcome. It applies the transfer
functions t2i : ∆×O1 ×Θ 7→ R to determine second-stage transfers for each
agent i. At this stage the utility of each agent i, ui(θi, x

1, x2, t1i + t2i ), is
determined based on its true type, the two outcomes, and the two transfers.

We model the game induced by the two-stage stochastic mechanism among
the agents as a dynamic game of incomplete information. The strategy of each
agent specifies its actions for each of its information sets. Note that an agent’s
second-stage action may depend on the first stage outcome, the agent’s super-
type and the agent’s realized type. Thus, we define the strategy of agent i with
supertype δi and type θi to be si(δi, θi) = 〈s1

i (δi), s2
i (δi, x

1, θi)〉, where x1 is the
(publicly observable) first-stage decision made by the center, and s1

i and s2
i are

the strategy mappings of agent i in the two stages.

4.1 Sequential Solution Concepts

Before explaining our mechanism, let us first consider what solution concept
is appropriate for our setting. Classical solution concepts, including dominant-
strategy (DS), ex post (EP), and Bayes-Nash (BN) equilibrium, all focus on
whether an agent has incentive to deviate from truth-telling knowing its own
type. For example, in the classical BN equilibrium, an agent cannot deviate from
its strategy and improve its expected utility, where the expectation is taken over
the distribution of the other agent’s types. In contrast, in our two-stage setting,
an agent is also uncertain about its own realized type in the first stage. The un-
certainty about an agent’s own type makes these classical concepts inappropriate
for our setting. Formally,

Theorem 1 For general two-stage stochastic optimization problems, if the out-
comes picked by the mechanism depend on both the supertype and ground type
of an agent, then there exists a supertype space for which the agent may have
incentive to lie about its supertype if he foresees its realized type. This holds even
if the agent is the only participant in the mechanism.



The impossibility result is based on a public-good problem where the center can
decide to serve the agent in either the first stage, the second stage, or not at all,
and the agents may have a high or low type realization.

In order to match the flow of the information in the execution of the mecha-
nism with the timing of agents’ reports, we introduce a sequential generalization
of the classical solution concepts. Informally, a sequential solution is one where
agents have no incentive to deviate from their equilibrium strategy given the
information available up to the time they take an action. Applied to our setting,
a set of strategies is in sequential EP equilibrium if an agent

– cannot improve its expected utility by lying in the first stage, where the
expectation is taken over the scenarios, even if he knows the other agents’
true supertype, provided the other agents are truthful; and

– cannot improve its utility by lying in the second stage4.

4.2 A Sequential Ex Post Implementation of Welfare Maximizer

Since we are interested in implementing the welfare maximizer, the decision
rules for both stages are fixed, and our goal is to find transfer functions such
that truth-telling by all agents constitutes a sequential EP equilibrium.

We start by noting that once first-stage decisions have been made, the situ-
ation resembles a standard one-shot VCG setting. Hence, we have:

Lemma 1 For any first-stage decisions x1 ∈ O1, first-stage payments t1, real-
ization of types θ, the family of Groves mechanism implements the social welfare
maximizer, conditional on the first-stage decisions, in dominant strategies.

Henceforth, we set the second-stage transfer function to be:

t2∗i (δ, x1, θ̂) =
∑

j 6=i

v(θ̂j , x
1, x2∗)− c2(x1, x2∗) + g2

i (δ−i, θ−i) + h2
i (δ, θ̂−i)

where g2
i (·, ·) is an arbitrary function that does not dependent on either δi or θi,

and h2
i (·, ·) is an arbitrary function that does not depend on θi.

We next apply the technique of backward induction to analyze the first stage
of the dynamic game. Suppose that we fix our second-stage mechanism to be a
Groves mechanism 〈f2∗, {t2∗i }n

i=1〉. When we evaluate the expected utility of an
agent’s first-stage strategy, we can assume that all agents will truthfully report
their second-stage realized types. By propagating the expected transfers in the
second stage to the first stage, we find the following family of transfer functions
that helps to implement the first-stage decision rule truthfully. The proof can be
found in the full paper.

Theorem 2 Let x1∗ be the optimal first-stage decisions based on the declared
supertypes δ̂. Let the first-stage transfers be given by:

t1∗i (δ̂) = −c1(x1∗) + h1
i (δ̂−i)− Eθ−i∼δ−i [h

2
i (δ̂, θ−i)]

4 In fact, in our mechanism, truth-telling is weakly dominant in the second stage.



where h1
i (·) is an arbitrary function that does not depend on the declaration δ̂i of

agent i. Then, together with any Groves mechanism in the second stage, the two-
stage mechanism implements the expected social welfare maximizer in sequential
ex post equilibrium.

For a concrete application of this theorem, we consider the problem of im-
plementing the social welfare maximizer for a class of problems known as the
stochastic two-stage coverage cost problems in Section 5, which includes (stochas-
tic) public goods and FTM problems as special cases.

Similar mechanisms have been proposed in [2, 3]. Our results differ in that
our proof is based on an explicit backward induction analysis. As a result, we
obtain a family of incentive compatible mechanisms, of which the mechanisms
in [2, 3], when specialized to a two-stage setting, are members of the family.

4.3 Impossibility of Sequential Dominant Strategy Implementation

A stronger form of incentive compatibility than sequential EP equilibrium is that
of sequential DS equilibrium. This asserts that truth-telling is a weakly dominant
strategy regardless of the other agents’ strategies, provided that an agent does
not know the future realization. We now show that under mild restrictions on
the transfer functions, no mechanism can achieve welfare maximization in DS.

Definition 3 A mechanism satisfies No Positive Transfers (NPT) if for all play-
ers i, the first and second-stage payments t1i , t

2
i are non-positive.

Definition 4 A mechanism satisfies Voluntary Participation (VP) if all truthful
players are guaranteed non-negative expected utility and non-negative marginal
second-stage utility.

The definition of NPT asserts that all payments flow from the players to
the mechanism. The VP condition requires that it is in the agents’ interest to
participate in the mechanism in both stages. We now state our main theorem.

Theorem 3 There exists an instance of the two-stage stochastic public goods
problem with two players for which no mechanism satisfying VP, NPT can im-
plement the expected welfare maximizer (WLF) in DS.

Thus, subject to the conditions of NPT and VP, we have shown that our
implementation in the previous section is the strongest possible.

Informally, one cannot implement the socially efficient outcome in dominant
strategies because when certain agents in the mechanism lie inconsistently —
for example, by first declaring a “low” distribution in the first stage, followed
by a “high” valuation in the second stage — other agents may benefit from
misrepresenting their distributions. We now formalize this intuition.

Consider an instance of a two-stage stochastic public goods problem with
two players, A and B, with some distributions δA, δB on their respective values
of being served by a public good e. The cost of the public good is c1 À 0 in



the first stage and c2 = 2c1 in the second stage. Let h be some value > c2. We
now define distributions that play a role in the proof. Let Ĥ be a degenerate
distribution localized at h, H denote a full-support distribution5 with most of
its mass at h, L denote a full-support distribution with most of its mass at 0,
and M̂ denote the degenerate distribution localized at c1/2.

For notation, let 〈D1, D2〉 denote the strategy of a player that reports D1

as its supertype and reports v ∼ D2 as its type. When we consider only the
first-stage strategy, we may write 〈D, ·〉 instead. A strategy is consistent if it is
of the form 〈D, D〉, and truthful if it is consistent and D = δi for agent i.

The following lemmas are simple consequences of VP, NPT, DS, and WLF.

Lemma 2 If player A and player B both play 〈L, ·〉, then t1B → 0.

Lemma 3 Suppose that player B plays 〈D, ·〉 and then reports b in the second
stage, where 0 < b ≤ h and D is a full-support distribution. If either one of the
following conditions holds, then player B is serviced and t2B = 0:

1. x1 = 1
2. Player A plays 〈D′, Ĥ〉, where D′ is a full-support distribution.

We now establish our main lemma: because of the possibility of inconsistent
lies, the mechanism cannot charge players with high supertypes. The proof of
the main theorem follows from this lemma and details are in the full paper.

Lemma 4 If player A plays 〈L, ·〉 and B plays 〈H, ·〉, then t1B → 0.

4.4 Incentive Compatibility and Sampling-Based Solutions

As we will see in Section 5, even for simple stochastic welfare maximization
problems, there may exist no efficient solutions. To algorithmically implement
the desired objective, one may have to approximate the optimal value via sam-
pling, a technique commonly employed in stochastic optimization. In this section,
we discuss the impact of such approximation on incentive compatibility.

Theorem 4 For a given two-stage stochastic optimization problem, suppose
that:

– there exists a sample average approximation algorithm that finds an ε-optimal
first-stage decision with prob. ≥ (1 − ξ) for any ε > 0 and ξ ∈ (0, 1) in
polynomial time;

– the exact second-stage optimal decision can be found in polynomial time; and
– the worst-case error can be bounded,

5 A distribution D is a full-support distribution if it has support (0, h] and a cumulative
density function that is strictly increasing at every point in its support. Full support
distributions play the following role in the proofs: When players report full-support
distributions in the first stage, reporting any bid in (0, h] in the second stage is
consistent with the behavior of a truthful player.



then an ε∗-approximate sequential ex post equilibrium can be algorithmically im-
plemented for any ε∗ ≡ ε∗(ε, ξ) > 0.

The key idea in the proof is that sampling is required only in the first stage.
Hence, to the agents, this additional source of uncertainty only happens in the
first stage, when they are interested in maximizing expected utilities. Therefore,
the sampling required can be factored into the agents’ expected utilities.

Note that the above theorem applies to both multiplicative and additive ap-
proximation, with corresponding changes in the incentive guarantees. It demon-
strates a trade-off between stronger incentive guarantees and the running time
of the sampling-based algorithm. As stochastic welfare maximization involves a
mixed-sign objective, in our following result, we focus on additive approximation.

5 A Polynomial Time Implementation for a Class of
Stochastic Coverage Cost Problems

To better appreciate the algorithmic challenge posed by stochastic welfare maxi-
mization, we now examine the class of stochastic CC (Coverage Cost) problems.
This class of problems includes FTM as a special case.

Our approach is based on a combination of the Sample Average Approxi-
mation (SAA) method (see, e.g, [12, 17]) and supermodular set function maxi-
mization. However, our analysis differs from those found in recent work (e.g. [16,
4]), as we are faced with a mixed-sign objective. To begin, let us first define a
single-shot version of the coverage-cost problem.

Definition 5 A coverage cost problem (CC) consists of three components:

– a set of players U = {1, 2, . . . , n} and a universe of elements E;
– a cost function c : E 7→ R+ that assigns a non-negative cost to each element

e ∈ E; (we let c(S) =
∑

e∈S c(e) for S ⊆ E)
– a service set Ps ⊆ E for each player s that needs to be constructed in order

to serve s, and a value of θs of serving s.

The objective is to find P ⊆ E that maximizes welfare:
∑

s:Ps⊆P θs − c(P ).

Stochastic CC is defined by extending the CC problem to have two cost
functions, c1 and c2, for the respective stages. Also, instead of a precise value θs

of serving agent s ∈ U , in the first stage, only a distribution δs is known. The
objective is to maximize expected welfare.

By interpreting the universe of elements E as the set of edges in the fixed
tree, and the service sets Ps as the (unique) path connecting a node s to the root
r of the tree, we see that CC is a generalization of FTM. The following example
shows that the generalization is strict:

Example 1 Consider an instance with three players: U = {1, 2, 3} and three
elements E = {a, b, c}. Let P1 = {a, b}, P2 = {b, c}, P3 = {a, c}. The cyclic
structure entails that this cannot be a FTM instance.



It is formally hard to solve two-stage stochastic CC. The difficulty is not due
to a lack of combinatorial structure, as we will show that deterministic CC can
indeed be solved in polynomial time. The difficulty is due to the uncertainty
in the optimization parameters. We show that it is difficult to solve optimally
a stochastic CC instance with only one element (a single-edge FTM instance),
even when the distributions are discrete and communicated explicitly as tables
of probabilities. The theorem is by reduction from Partition ([7]).

Theorem 5 Maximizing expected welfare for stochastic CC is #P-hard.

5.1 A Probabilistic Approximation

In view of the above hardness result, we propose a sampling-based solution that
approximates the expected welfare with high probability. Our algorithm achieves
an additive approximation, as multiplicative approximation is unachievable with
a polynomial number of samples (due to the mixed-sign objective; example in
full paper). The main theorem of this section is as follows:

Theorem 6 The two-stage stochastic CC problem can be approximated to within
an additive error of ε in time polynomial in M , |E|, and 1

ε , for all ε > 0, where
M = maxθ

∑
s∈U θs.

We now describe the framework for solving two-stage stochastic CC problems.
The key structure we will establish and exploit is that optimizations at both
stages involve supermodular functions. Recall that a set function f : 2N 7→ R is
supermodular if for all S, T ⊆ N , f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ). We will
show that the expected welfare is supermodular in the set of elements bought in
the first stage (see Corollary 1), and that the welfare in the second stage, given
the elements bought in the first stage, is also supermodular in the remaining
elements. Once these results are established, it is natural to consider the following
algorithm:

1. Use the algorithm for supermodular function maximization of [10] to find
the optimal first-stage elements to buy. Note that the algorithm needs a
value oracle that cannot be implemented in polynomial time. We instead
use sampling to approximate the solution value.

2. Given the realized values, use the algorithm of [10] to find the optimal second-
stage elements to buy. In this case, the exact value for the value oracle can
be found in polynomial time.

In Lemmas 5–8 and Corollary 1, we establish that both the first-stage opti-
mization problem, denoted by w̄(·), and the second-stage optimization problem,
denoted by fθ(·), involve supermodular functions.

Lemma 5 For any valuation θ, the function Vθ(·) defined via:

Vθ(E′) =
∑

s:Ps⊆E′
θs

is supermodular in E′.



Lemma 6 For any valuation θ and any set E1 of elements bought in the first
stage, the second-stage objective fθ(·) given by:

fθ(E′) = Vθ(E1 ∪ E′)− c2(E′)

is supermodular in E′.

Lemma 7 Given any realization θ, the optimal value of the second-stage objec-
tive f∗θ (·) given by:

f∗θ (P ) = max
F⊆E\P

Vθ(F ∪ P )− c2(F )

is supermodular in the set P of elements bought in the first stage.

Lemma 8 Given any realization θ, the welfare function wθ(·) defined via:

wθ(P ) = f∗θ (P )− c1(P )

is supermodular in the set P of elements bought in the first stage.

Corollary 1 The function w(·) = Eθ∼δ[wθ(·)] is supermodular.

Armed with Lemma 8 and Corollary 1, we now address the algorithmic issues
of the stochastic CC problem. In the proof of Theorem 5, we have shown that
evaluating w(·) exactly is #P-hard in general. Fortunately, we can approximate
its value in polynomial time, while preserving supermodularity.

Lemma 9 Let S be a size O(M2

ε2 |E|) set of scenarios drawn from the universe.
Let ŵ(·) be the sample average approximation of w(·) constructed using the sam-
ples in S. Then,

1. ŵ(·) is supermodular;
2. for all F ⊆ E, P

[∣∣ŵ(F )− w(F )
∣∣ > ε

]
≤ o(e−|E|).

The proof of Lemma 9 is in the full paper. We now prove Theorem 6.

Proof (Theorem 6). For running time, by using the strongly polynomial-time
algorithm of Iwata et al. [10] to perform maximization of supermodular function,
the number of function evaluation is bounded by O(|E|5 log |E|). Each function
evaluation requires, for each of the O((M2

ε2 |E|)) samples, finding the second-stage
optimal solution given a first-stage solution. The second-stage optimal solution is
solved again using supermodular function maximization, and hence each function
evaluation takes O(|E|5 log |E| × (M2

ε2 |E|)) time.
For correctness, by Lemma 9, we can approximate the function w(·) by ŵ(·)

to within an additive error of ε′ with probability at least (1− o(e−|E|)). As ŵ(·)
is supermodular by construction, the algorithm of [10] applies.

Given this algorithm, the fact that the second-stage optimization can be
solved efficiently using supermodular function maximization, and that the worst-
case error of any stochastic CC problem is bounded by max{maxθ

∑
i∈U θi, c

1(E)},
we see that Theorem 4 applies. Thus, the welfare maximizer of stochastic CC
problem can be implemented in ε-approximate sequential EP equilibrium for any
desired ε > 0.
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