ECLT5810/SEEM5750 Logistic Regression for Classification

Reference: "Speech and Language Processing" Chapter 5.1-5.7

https://web.stanford.edu/~jurafsky/slp3/

Classification: definition

- Input:
 - an input data x
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output: a predicted class $\hat{y} \in C$

Binary Classification in Logistic Regression

- Given a series of input/output pairs:
 - $-(x^{(i)}, y^{(i)})$
- For each observation x⁽ⁱ⁾
 - We represent $x^{(i)}$ by a **feature vector** $[x_1, x_2, ..., x_n]$
 - We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Features in logistic regression

- For feature x_i, weight w_i tells is how important is x_i
 - $x_1 = \text{``income_level is high/low''}$: $w_1 = +10$
 - x_2 = "student is yes/no": $w_2 = -2$
 - x_3 = "spending_history is high/low": $w_3 = +5$

Logistic Regression for one observation x

- Input observation: vector $x = [x_1, x_2, ..., x_n]$
- Weights: one per feature: $W = [w_1, w_2, ..., w_n]$
 - Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$
- Output: a predicted class $\hat{y} \in \{0,1\}$

(multinomial logistic regression: $\hat{y} \in \{0, 1, 2, 3, 4\}$)

How to do classification

- For each feature x_i, weight w_i tells us importance of x_i
- Also, the model has a bias term b
- We'll sum up all the weighted features and the bias

$$z = \sum_{i=1}^{n} w_i x_i + b$$

$$z = w \cdot x + b$$

• If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

- We need to formalize "sum is high".
- We'd like a principled classifier that gives us a probability
- We want a model that can tell us:

```
p(y=1|x;\theta)
```

$$p(y=0|x;\theta)$$

One issue

 $z = w \cdot x + b$ isn't a probability, it's just a number! Solution: use a function of z that goes from 0 to 1

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

Idea of logistic regression

- We'll compute w·x+b
- And then we'll pass it through the sigmoid function:

$$\sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

Interesting Property

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))} = \sigma(-(w \cdot x + b))$$

Therefore, the sigmoid function has the property:

$$1 - \sigma(x) = \sigma(-x)$$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the decision boundary

The probabilistic classifier

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$
0.4
0.2
0.0
0.8
0.4
0.2
0.4
0.2
0.4
0.5
0.5
0.5
0.5
0.6
0.8

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } w \cdot x + b \le 0 \end{cases}$$

Logistic Regression Shape of sigmoid curve

Consider 1-dimensional x

$$\Pr(x) = \frac{1}{1 + \exp(-(\alpha + \beta x))}$$

Logistic Regression An Example of One-dimension

- We wish to predict death from baseline APACHE Il score of patients.
- Let Pr(x) be the probability that a patient with score x will die.

 Note that linear regression would not work well since it could produce probabilities less than 0 or greater than 1

Logistic Regression An Example of One-dimension

• Data that has a sharp survival cut off point between patients who live or die will lead to a large value of β

Logistic Regression An Example of One-dimension

• One the other hand, if the data has a lengthy transition from survival to death, it will lead to a low value of β

Where did the W's come from? Learning W from data

- Supervised classification:
 - We know the correct label y (either 0 or 1) for each x.
 - But what the system produces is an estimate, \hat{y}
- We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.
- We need a distance estimator: a loss function or a cost function
- We need an optimization algorithm to update w and b to minimize the loss.

Learning components

- A loss function:
 - cross-entropy loss

- An optimization algorithm:
 - stochastic gradient descent

The distance between \hat{y} and y

We want to know how far is the classifier output:

$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

from the true output:

```
y [= either 0 or 1]
```

• We'll call this difference loss function:

```
L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y
```

Deriving cross-entropy loss for a single observation x

- Consider the probability of the correct label in the training data (also called **likelihood** function) p(y|x)
- Recall that \hat{y} denotes the classifier output. There are only 2 discrete outcomes, i.e. 0 or 1.
- We wish to express that if the correct label y=1, the expression is \hat{y} . If the correct label y=0, the expression is $1-\hat{y}$ $p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$
- The goal is to find the parameters, i.e. w and b, that can maximize the likelihood function

Maximize:
$$p(y|x) = \hat{y}^{y}(1 - \hat{y})^{1-y}$$

Deriving cross-entropy loss for a single observation x

Recall that the goal is to maximize the likelihood function

Maximize:
$$p(y|x) = \hat{y}^{y}(1 - \hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

- Now flip sign to turn this into a loss: something to minimize
- Negative log likelihood loss or Cross-entropy loss (because is formula for cross-entropy (y, \hat{y}))

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

• Or, plugging in the definition of \hat{y} :

$$L_{\text{CE}}(\hat{y}, y) = -\left[y\log\sigma(w\cdot x + b) + (1 - y)\log(1 - \sigma(w\cdot x + b))\right]$$

Our goal: minimize the loss

- Let's make explicit that the loss function is parameterized by weights θ =(w,b)
- And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious
- We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Intuition of gradient descent

 How do I get to the bottom of this river canyon?

Look around me 360° Find the direction of steepest slope down Go that way

Our goal: minimize the loss

- For logistic regression, loss function is convex
- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Gradients

 The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

 Gradient Descent: Find the gradient of the loss function at the current point and move in the opposite direction.

How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Now let's consider N dimensions

- We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.
- The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.

Imagine 2 dimensions, w and b

- Visualizing the gradient vector at the red point
- It has two dimensions shown in the xy plane

Real gradients

- Are much longer; lots and lots of weights
- For each dimension w_i the gradient component i tells us the slope with respect to that variable.
 - "How much would a small change in w_i influence the total loss function L?"
 - We express the slope as a partial derivative ϑ of the loss ϑw_i
- The gradient is then defined as a vector of these partials.

The gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla L(f(x;\theta),y) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \\ \frac{\partial}{\partial w} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus $\theta^{t+1} = \theta^t - \eta \nabla L(f(x; \theta), y)$

What are these partial derivatives for logistic regression?

The loss function

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function (see book chapter 5.8 for derivation)

$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_{i}} = [\sigma(w \cdot x + b) - y]x_{j}$$

Algorithm

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(m)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(m)}
     #
\theta \leftarrow 0
repeat til done # see caption
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                                 # How are we doing on this tuple?
         Compute \hat{\mathbf{y}}^{(i)} = f(\mathbf{x}^{(i)}; \boldsymbol{\theta})
                                                 # What is our estimated output \hat{y}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)})
                                                 # How far off is \hat{y}^{(i)}) from the true output y^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                 # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                                 # Go the other way instead
return \theta
```

Hyperparameters

- The learning rate η is a **hyperparameter**
 - too high: the learner will take big steps and overshoot
 - too low: the learner will take too long
- Hyperparameters:
 - Briefly, a special kind of parameter for an ML model
 - Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Working through an example

- One step of gradient descent
- A mini-sentiment example, where the true y=1 (positive)
- Two features with values:

$$x_1 = 3$$

$$x_2 = 2$$

Assume 3 parameters (2 weights and 1 bias) in Θ^0 are zero:

$$w_1 = w_2 = b = 0$$

 $\eta = 0.1$

• Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta^{t+1} = \theta^t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$$

Gradient vector has 3 dimensions:

$$abla_{w,b} = \left[egin{array}{c} rac{\partial L_{ ext{CE}}(\hat{y},y)}{\partial w_1} \ rac{\partial L_{ ext{CE}}(\hat{y},y)}{\partial w_2} \ rac{\partial L_{ ext{CE}}(\hat{y},y)}{\partial b} \end{array}
ight]$$

• Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta^{t+1} = \theta^t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$$

Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(w \cdot x + b) - y)x_1 \\ (\boldsymbol{\sigma}(w \cdot x + b) - y)x_2 \\ \boldsymbol{\sigma}(w \cdot x + b) - y \end{bmatrix}$$

• Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta^{t+1} = \theta^t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$$

Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$\theta^{t+1} = \theta^t - \eta \nabla L(f(x; \theta), y) \qquad \eta = 0.1;$$

$$\theta^1 =$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$\theta^{t+1} = \theta^t - \eta \nabla L(f(x;\theta), y) \qquad \eta = 0.1;$$

$$\theta^1 = \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix} - \eta \begin{bmatrix} -1.5 \\ -1.0 \\ 0.5 \end{bmatrix} = \begin{bmatrix} .15 \\ .1 \\ .05 \end{bmatrix}$$

Note that enough negative examples would eventually make w₂ negative

Mini-batch training

- Stochastic gradient descent chooses a single random example at a time.
- That can result in choppy movements
- More common to compute gradient over batches of training instances.
- Batch training: entire dataset
- Mini-batch training: m examples (512, or 1024)

Overfitting

- A model that perfectly match the training data has a problem.
- It will also overfit to the data, modeling noise
 - A random feature value that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
 - Failing to generalize to a test set without this feature value.
- A good model should be able to generalize

Overfitting

- Models that are too powerful can overfit the data
- Fitting the details of the training data so exactly that the model doesn't generalize well to the test set
 - How to avoid overfitting?
 - Regularization in logistic regression

Regularization

- A solution for overfitting
- Add a regularization term R(θ) to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) - \alpha R(\theta)$$

where α is a hyper-parameter

- Idea: choose an $R(\theta)$ that penalizes large weights
 - fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights

L1 Regularization (= lasso regression)

- The sum of the (absolute value of the) weights
- Named after the **L1 norm** $||W||_1$, = sum of the absolute values of the weights, = **Manhattan** distance

$$R(\theta) = ||\theta||_1 = \sum_{i=1}^{n} |\theta_i|$$

L1 regularized objective function:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[\sum_{1=i}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} |\theta_j|$$

- The subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried out in three rural areas of the Western Cape, South Africa
- Aim: establish the intensity of ischemic heart disease risk factors in that high-incidence region
- Response variable (class attribute) is the presence or absence of myocardial infraction (MI) at the time of survey
- 160 cases in data set, sample of 302 controls

Logistic Regression

Example

FIGURE 4.12. A scatterplot matrix of the South African heart disease data. Each plot shows a pair of risk factors, and the cases and controls are color coded (red is a case). The variable family history of heart disease (famhist) is binary (yes or no).

- Fit a logistic-regression model by maximum likelihood, giving the results shown in the next slide
 - z scores for each coefficients in the model (coefficients divided by their standard errors)

 Results from a logistic regression fit to the South African heart disease data:

	Coefficient	Std. Error	z Score
(Intercept)	-4.130	0.964	-4.285
sbp	0.006	0.006	1.023
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184

- z scores greater than approximately 2 in absolute value is significant at the 5% level
- Some surprises in the table of coefficients
 - sbp and obesity appear to be not significant
- On their own, both sbp and obesity are significant, with positive sign
- Presence of many other correlated variables
 no longer needed (can even get a negative sign)