ECLT5810/SEEM5750
Logistic Regression for Classification

Reference: “Speech and Language Processing” Chapter 5.1-5.7
https://web.stanford.edu/~jurafsky/slp3/

Classification: definition

* |Input:
— an input data x
— a fixed set of classes C={c,, ¢,,..., ¢}

* Output: a predicted classy € C

Binary Classification in Logistic Regression

* Given a series of input/output pairs:
— (x{0) y(i)y
* For each observation x(!

— We represent x{!) by a feature vector [x,, X,,..., X.]

— We compute an output: a predicted class)7“) c
{0,1}

Features in logistic regression

* For feature x,, weight w, tells is how important is x.
* X, =“income_level is high/low": w,;=+10
* X, ="“student is yes/no": W, = -2
* X, ="spending_history is high/low": w;=+5

Logistic Regression for one observation x

* Input observation: vector x =[x, Xx,,..., X |
* Weights: one per feature: W = [w,, w,,..., w |
—Sometimes we call the weights©6=/6,, 06,,..., 6,/

* Output: a predicted class y € {0,1}

(multinomial logistic regression: y € {0, 1, 2, 3, 4})

How to do classification

* For each feature x,, weight w;, tells us importance of x.
e Also, the model has a biasterm b
 We'll sum up all the weighted features and the bias

n
zZ = Zwixi + b
i=1

Z = W-'X+Db

* If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

* We need to formalize “sum is high”.

 We'd like a principled classifier that gives us a
probability

e We want a model that can tell us:
p(y=1|x; 6)
p(y=0]|x;)

One issue

Z =w - Xx + bisn't a probability, it's just a number!
Solution: use a function of z that goes from Oto 1

1.0

sigmoid function

o(z) =

1+e? 1+ exp(—2z)

ldea of logistic regression

 We’ll compute w-x+b

* And then we’ll pass it through the
sigmoid function:

o(w-x+b)
* And we'll just treat it as a probability

Making probabilities with sigmoids

P(y=1) = o(w-x+D)
1
I +exp(—(w-x+Db))

Py=0) = 1—oc(w-x+D)
1
I +exp(—(w-x+b))
exp(—(w-x+b))
I +exp(—(w-x+D))

= 1

Interesting Property

|

-
N—"

|

l—oc(w-x+Db)
1
~ 14exp(—(w-x+b))
exp(—(w-x+b))
1—|-€po(—(W°X-|-b)) = O(=(w-x+b))

= 1

Therefore, the sigmoid function has the property:

1—0o(x)=0(—x)

Turning a probability into a classifier

(1 if P(y=1|x)>0.5
\ O otherwise

<>
|

0.5 here 1s called the decision boundary

The probabilistic classifier
P(y=1) = o(w-x+b)

1
P(y:l) 1 _|_ e—(w-x+b)
0.8
0.6
e e
WX + b
':'.QH —h -4 -2 1] 2] b a

Turning a probability into a classifier

<>

(1 if P(y=1Jx) >0.5 1t wx-

b > ()

| 0 otherwise 1f w-x-

b <0

Logistic Regression
Shape of sigmoid curve

e Consider 1-dimensional x

Pr(x) = -

1+exp(—(a+Bx))

1.0
0.8

0.6
Pr(x) 04

15

Logistic Regression
An Example of One-dimension

 We wish to predict death from baseline APACHE
Il score of patients.

* Let Pr(x) be the probability that a patient with
score x will die.

Ded 1
] 30 Day Mortality-
Survived 0= = ssssssses

0

15 20 25 30
AFPACHE |l Score at Baseline

Note that linear regression would not work well

since it could produce probabilities less than O or
greater than 1

16

Logistic Regression
An Example of One-dimension

e Data that has a sharp survival cut off point
between patients who live or die will lead to a
large value of [

“:H_’ l] v—..——j‘_‘_“
Survived O

M

17

Logistic Regression
An Example of One-dimension

 One the other hand, if the data has a lengthy
transition from survival to death, it will lead to a
low value of 8

Ded 1 = - Seee B8 60 400 SseRe san
Survived (<4 & o esee see es o8 @ - .e
T T T T T T T T T e e rrrrrT
0 - 10 = 20 25 a0 35 40

 p

18

Where did the W’s come from?

Learning W from data
Supervised classification:

= We know the correct label y (either 0 or 1) for each x.

* But what the system produces is an estimate,

We want to set w and b to minimize the distance
between our estimate Y1) and the true yl.

We need a distance estimator: a loss function or a
cost function

We need an optimization algorithm to update w
and b to minimize the loss.

Learning components

A loss function:
* cross-entropy loss

* An optimization algorithm:
* stochastic gradient descent

The distance between y and y

 We want to know how far is the classifier output:
y = o(w-x+b)

* from the true output:
y [= either O or 1]

 We'll call this difference loss function:
L(V ,y) = how much y differs from the true y

Deriving cross-entropy loss for a single
observation x
Consider the probability of the correct label in the training

data (also called likelihood function) p(y|x)

Recall that ¥ denotes the classifier output. There are only
2 discrete outcomes, i.e. 0 or 1.

We wish to express that if the correct label y = 1, the
expression is §. If the correct label y = 0, the expression

isl—79 A]
pOylx) = T (1=9)"
The goal is to find the parameters, i.e. w and b, that can

maximize the likelihood function
Maximize: p(ylx) = 9pY(1 —)Y

Deriving cross-entropy loss for a single

observation x
Recall that the goal is to maximize the likelihood function

Maximize: p(ylx) = 9pY(1 —)Y
Now take the log of both sides (mathematically handy)

Maximize: logp(y\x) — 108 [)A’y(l _)A’)l_y}
= ylogy+ (1 —y)log(1—9)

whatever values maximize log p(y|x) will also maximize
p(y|x)

Deriving cross-entropy loss for a single

observation x
Maximize: logp(y|x) = log [yAy (1 —)A/)l_y]
= ylogy+ (1 —y)log(l—3)
* Now flip sign to turn this into a loss: something to minimize

* Negative log likelihood loss or Cross-entropy loss (because
is formula for cross-entropy (y, ¥))

Minimize: Lcg(,y) = —logp(ylx) = —|[ylogy+(1—y)log(l—J)]
* Or, plugging in the definition of ¥:

Lce(9,y) = —lyloga(w-x+b)+(1—y)log(l—a(w-x+b))|

Our goal: minimize the loss

* Let's make explicit that the loss function is
parameterized by weights 6=(w,b)

* And we’ll represent y as f (x; ©) to make the
dependence on 6 more obvious

* We want the weights that minimize the loss,
averaged over all examples:

A 1 | |
0 = al‘gmin—ZLCE(f(X(Z)§9)>y<l))
o M

Intuition of gradient descent

* How do | get to the bottom of this river
canyon?

~7 Look around me 360°

\ Find the direction of
steepest slope down

Go that way

26

Our goal: minimize the loss

* For logistic regression, loss function is convex
* A convex function has just one minimum

* Gradient descent starting from any point is
guaranteed to find the minimum

* (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the
function

Loss ¢ Should we move
right or left from here?

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the

function

A
Loss

slope of loss at Wl/

1s negative

So we'll move posit]

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the

function

Loss

1

slope of loss at w*™ __—+7

1s negative

So we'll move positive

A

one step
of gradient
descent

Gradients

* The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

* Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

" The value of the gradient (slope in our example)
%L(f(x; w),y) weighted by a learning rate 7
" Higher learning rate means move w faster

d
Wi = Wt — == L(f (x;w),)

Now let's consider N dimensions

 We want to know where in the N-dimensional
space (of the N parameters that make up 6) we
should move.

 The gradient is just such a vector; it expresses the
directional components of the sharpest slope
along each of the N dimensions.

Imagine 2 dimensions, w and b

Cost(w,b)

* Visualizing the
gradient vector
at the red point

* It has two
dimensions
shown in the x-
y plane

34

Real gradients

* Are much longer; lots and lots of weights
* For each dimension w; the gradient component i
tells us the slope with respect to that variable.

— “How much would a small change in w; influence the
total loss function L?”

— We express the slope as a partial derivative 0 of the
loss ow;

* The gradient is then defined as a vector of these
partials.

The gradient

We'll represent ¥ as f (x; 8) to make the dependence on 8 more
obvious:

5 _
W —L(f(x;0),y)

0
s —L(f(x;0),y)
VL(f(x;0),y) =

0
—L(f(x:6),7)

The final equation for updating © based on the gradient is thus
0t = 0" —nVL(f (x;6),7)

What are these partial derivatives for logistic regression?

The loss function

Lce(9,y) = —|ylogo(w-x+b)+ (1 —y)log(1—o(w-x+b))]

The elegant derivative of this function (see book chapter 5.8 for
derivation)

aLCE(yvy)
aWj

= [o(w-x+b)—ylx;

Algorithm

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function
f 1s a function parameterized by 0
X 1s the set of training inputs x<1), x<2), s xl
y 1s the set of training outputs (labels) y(l), y(

m)

2) m)

oy
600
repeat til done # see caption
For each training tuple (x!), y{)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
Compute §\) = f(x():0) # What is our estimated output §?
Compute the loss L(§V, yl))) # How far off is ${)) from the true output y(?
2. g VoL(f(x\);0),y) # How should we move 6 to maximize loss?
3.006 —ng # Go the other way instead
return 6

Hyperparameters

* The learning rate n is a hyperparameter
— too high: the learner will take big steps and overshoot
— too low: the learner will take too long

* Hyperparameters:
— Briefly, a special kind of parameter for an ML model

— Instead of being learned by algorithm from supervision
(like regular parameters), they are chosen by algorithm
designer.

Working through an example

* One step of gradient descent

* A mini-sentiment example, where the true y=1
(positive)
* Two features with values:
X; =3
X, =2
Assume 3 parameters (2 weights and 1 bias) in @°
are zero:
w,=w,=b =0
n=0.1

Example of gradient descent

. w,=w,=b =0;
* Update step for update O is: X, =3; X, =2
0' =0 —nVL(f(x;0),y)

JdLcE(Y,y)
aWj

e Gradient vector has 3 dimensions:

where

= [o(w-x+b)—ylx;

- dLce(9y) T

Example of gradient descent

* Update step for update O is:
0" = 6" —nVL(f(x;6),y)

JdLcE(Y,y)
aWj

e Gradient vector has 3 dimensions:

where

= lo(w-x+

- oL 5, -
—5&?” [(@(rx+h) =) |
Vip = aLfé‘E—wyy) = (c(w-x+b)—y)x2
8ch[§7,y) LG(WX+b) —Yy

w,=w,=b =0;
X1 =3, X, =2

b) —ylx;

Example of gradient descent

. w,=w,=b =0;
* Update step for update O is: X, =3; X, =2
0' =0 —nVL(f(x;0),y)

JdLcE(Y,y)
aWj

e Gradient vector has 3 dimensions:

where

= [o(w-x+b)—ylx;

- ILce(9y) 7 X)k 1y _0.5x _
Vb = #ngﬁ) = [Eggw-xizg —igx; -‘ = { Egégg - Bx; -‘ = { —g.gx; -‘ = { —}(5)-‘
i aLCaElfy,y) | L ocw-x+b)—y J { c(0)—1 J { —0.5 J { —0.5 J

Example of gradient descent

- dLcg(9,y)
N eI I O e O B
| “%ff”) LGWWH?)—y J {6(0)—1 J L—O.SJ L—O.SJ

Now that we have a gradient, we compute the new parameter vector
B! by moving 6° in the opposite direction from the gradient:

Ottt = 0t —nVL(f(x;0),y) n=0.1;

8! =

Example of gradient descent

- dLce(9,y) T
N eI I O e O B
| “%ff”) LGWWH?)—y J {6(0)—1 J L—O.SJ L—O.SJ

Now that we have a gradient, we compute the new parameter vector
B! by moving 6° in the opposite direction from the gradient:

Ottt = 0t —nVL(f(x;0),y) n=0.1;

Wi 1.5] 15
b 0.5 .05

Note that enough negative examples would eventually make w, negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.

That can result in choppy movements

More common to compute gradient over batches
of training instances.

Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Overfitting

A model that perfectly match the training data has
a problem.

* |t will also overfit to the data, modeling noise

— A random feature value that perfectly predicts y (it

happens to only occur in one class) will get a very high
weight.

— Failing to generalize to a test set without this feature
value.

* A good model should be able to generalize

Overfitting

 Models that are too powerful can overfit the
data

* Fitting the details of the training data so exactly
that the model doesn't generalize well to the

test set
— How to avoid overfitting?
— Regularization in logistic regression

Regularization

* A solution for overfitting

* Add a regularization term R(0) to the loss function (for

now written as maximizing logprob rather than
minimizing loss)

m
b = argmaleogP(y<i) XY — aRr(6)
O =
where «a is a hyper-parameter
* |dea: choose an R(0) that penalizes large weights

— fitting the data well with lots of big weights not as

good as fitting the data a little less well, with small
weights

L1 Regularization (= lasso regression)

 The sum of the (absolute value of the) weights

* Named after the L1 norm ||/7]|,, = sum of the
absolute values of the weights, = Manhattan

distance

R(6) = |l6]li =16
=1

* L1 regularized objective function:

6 = argmax ZlogP(y@\x(i)) —OCZ\GJ-\
0 1=i] =1

Logistic Regression
Example

The subset of the Coronary Risk-Factor Study

(CORIS) baseline survey, carried out in three rural
areas of the Western Cape, South Africa

Aim: establish the intensity of ischemic heart
disease risk factors in that high-incidence region

Response variable (class attribute) is the
presence or absence of myocardial infraction
(MI) at the time of survey

160 cases in data set, sample of 302 controls

Logistic Regression

Example

10 20 30

160

100

tobacco

10 20 30

0

6 10 14

2

08

04

0.0

15 25 35 45

alcohol

50 100

0

60

o))
©

1]

40

20

15 25 35 45 20 40 60

FIGURE 4.12. A scatterplot matrix of the South
African heart disease data. Fach plot shows a pair of
risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart
disease (famhist) is binary (yes or no).

52

Logistic Regression
Example

* Fit a logistic-regression model by
maximum likelihood, giving the results
shown in the next slide

e 7z scores for each coefficients in the
model (coefficients divided by their
standard errors)

Logistic Regression
Example

e Results from a logistic regression fit to the South
African heart disease data:

ST coetcent | st Eror |2 Score

(Intercept) -4.130 0.964 -4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034
dI 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity -0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

Logistic Regression
Example

z scores greater than approximately 2 in absolute
value is significant at the 5% level

Some surprises in the table of coefficients
* sbp and obesity appear to be not significant

On their own, both sbp and obesity are
significant, with positive sign

Presence of many other correlated variables
- no longer needed (can even get a negative

sign)

