
Python Libraries for
Data Analysis and
Machine Learning

Overview

§ Environment Preparation for Python
§ Python Libraries for Data Scientists
§ Data Processing & Visualization Using Python
§ Python for Basic Machine Learning Models

Environment Preparation for Python
We introduce
◦ Anaconda (https://www.anaconda.com/)
◦ Jupyter Notebook (https://jupyter.org/)

for Python environment.

Other alternatives:
◦ Text Editor + Command line
◦ IDE (Integrated Development Environment): PyCharm, Vscode, …

https://www.anaconda.com/
https://jupyter.org/

What is Anaconda?

§The open-source Anaconda is the easiest way to perform Python/R data science
and machine learning on Linux, Windows, and Mac OS X. With over 19 million
users worldwide.

§It is the industry standard for developing, testing, and training on a single
machine, enabling individual data scientists to:
§ Quickly download 7,500+ Python/R data science packages
§ Analyze data with scalability and performance with Dask, NumPy, pandas,

and Numba
§ Visualize results with Matplotlib, Bokeh, Datashader, and Holoviews
§ Develop and train machine learning and deep learning models with scikit-

learn, TensorFlow, and Theano

Anaconda Installation
Please follow the instruction here to install the Anaconda (for Python 3.7)

https://www.anaconda.com/distribution/#download-section

•It provides different versions to suit different OS. Please select the one you are
using.

•Just install according to the default setting, and the environment variables will
be automatically configured after installation.

https://www.anaconda.com/distribution/

What is Jupyter Notebook?
•The Jupyter Notebook is an open-source web application that allows you to
create and share documents that contain live code, equations, visualizations and
narrative text.

•It includes: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

•Jupyter Notebook is included in the Anaconda.

Basic Operation on Jupyter Notebook
After installing the Anaconda, open Anaconda-Navigator as below, and you can
find the Jupyter Notebook on the Anaconda. Then click Launch.

Basic Operation on Jupyter Notebook
Jupyter Notebook is presented as a website. Select the path, then under the
button “New”, choose “Python 3” to open a new python file.

Basic Operation on Jupyter Notebook
Type the code into the input box on Jupyter.

Get started learning Python: https://www.learnpython.org/

https://www.learnpython.org/

Basic Operation on Jupyter Notebook
Click “Run”.

The output will be shown in the blank area right below the input box.

Basic Operation on Jupyter Notebook
Jupyter Notebook will help you
save your code automatically in
“.ipynb” format.

You can also save the code as “.py”
format.

Here, we just use “.ipynb” format.

Python Libraries for Data Scientists
Python toolboxes/libraries for data processing:

◦ NumPy
◦ SciPy
◦ Pandas

Visualization libraries
◦ matplotlib
◦ Seaborn

Machine learning & deep learning
◦ Scikit-learn
◦ Tensorflow/Pytorch/Theano and many more …

Python Libraries for Data Scientists
NumPy:
§ introduces objects for multidimensional arrays and matrices, as well as

functions that allow to easily perform advanced mathematical and
statistical operations on those objects

§provides vectorization of mathematical operations on arrays and matrices
which significantly improves the performance

§many other python libraries are built on NumPy

Link: http://www.numpy.org/

http://www.numpy.org/

Python Libraries for Data Scientists
SciPy:
§ collection of algorithms for linear algebra, differential equations, numerical

integration, optimization, statistics and more

§part of SciPy Stack

§built on NumPy

Link: https://www.scipy.org/scipylib/

https://www.scipy.org/scipylib/

Python Libraries for Data Scientists
Pandas:
§adds data structures and tools designed to work with table-like data

(similar to Series and Data Frames in R)

§provides tools for data manipulation: reshaping, merging, sorting, slicing,
aggregation etc.

§allows handling missing data

Link: http://pandas.pydata.org/

http://pandas.pydata.org/

Python Libraries for Data Scientists
matplotlib:
§python 2D plotting library which produces publication quality figures in a

variety of hardcopy formats

§a set of functionalities similar to those of MATLAB

§ line plots, scatter plots, barcharts, histograms, pie charts etc.

§ relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

https://matplotlib.org/

Python Libraries for Data Scientists
Seaborn:
§based on matplotlib

§provides high level interface for drawing attractive statistical graphics

§ Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

https://seaborn.pydata.org/

Python Libraries for Data Scientists
SciKit-Learn:
§provides machine learning algorithms: classification, regression, clustering,

model validation etc.

§built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/

http://scikit-learn.org/stable/

Loading Python Libraries

19

Press Shift+Enter to execute the jupyter cell, or just click “Run”.

Reading data using pandas

20

There is a number of pandas commands to read other data formats:

pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])

pd.read_stata('myfile.dta')

pd.read_sas('myfile.sas7bdat')

pd.read_hdf('myfile.h5','df')

Exploring data frames

21

ü Try to read the first 10, 20, 50 records
ü Try to view the last few records

Data Frame data types
Pandas Type Native Python Type Description

object string The most general dtype. Will be assigned to your column
if column has mixed types (numbers and strings).

int64 int Numeric characters. 64 refers to the memory allocated to
hold this character.

float64 float Numeric characters with decimals. If a column contains
numbers and NaNs, pandas will default to float64, in case
your missing value has a decimal.

datetime64,
timedelta[ns]

N/A (but see
the datetime module in
Python’s standard library)

Values meant to hold time data. Look into these for time
series experiments.

22

http://doc.python.org/2/library/datetime.html

Data Frame data types

23

Data Frames attributes

24

Python objects have attributes and methods.

df.attribute description
dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements

shape return a tuple representing the dimensionality

values numpy representation of the data

25

Data Frames attributes

Data Frames methods

26

df.method() description
head([n]), tail([n]) first/last n rows

describe() generate descriptive statistics (for numeric columns only)

max(), min() return max/min values for all numeric columns

mean(), median() return mean/median values for all numeric columns

std() standard deviation

sample([n]) returns a random sample of the data frame

dropna() drop all the records with missing values

Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir(df)

Data Frames methods

27

Data Frames methods

28

Selecting a column in a Data Frame

Note: If we want to select a column
with a name as the attribute in
DataFrames we should use method 1.

E.G., Since there is an attribute – rank
in DataFrame, if we want to select
the column ‘rank’, we should use
df[‘rank’], and cannot use method 2,
i.e., df.rank, which will return the
attribute rank of the data frame
instead of the column “rank”.

29

Selecting a column in a Data Frame

30

Data Frames groupby method

31

Using "group by" method we can:

• Split the data into groups based on some criteria
• Calculate statistics (or apply a function) to each group

Data Frames groupby method

32

Once groupby object is created we can calculate various statistics for each group:

Note: If single brackets are used to
specify the column (e.g. age), then
the output is Pandas Series object.
When double brackets are used the
output is a Data Frame (e.g. age &
balance)

Data Frames groupby method

33

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the groupby object
only verifies that you have passed a valid mapping
- by default the group keys are sorted during the groupby operation. You may
want to pass sort=False for potential speedup:

Data Frame: filtering

34

To subset the data we can apply Boolean indexing. This indexing is commonly
known as a filter. For example if we want to subset the rows in which the age
value is greater than 50:

Any Boolean operator can be used to subset the data:
> greater; >= greater or equal;
< less; <= less or equal;
== equal; != not equal;

Data Frames: Slicing

35

There are a number of ways to subset the Data Frame:
• one or more columns
• one or more rows
• a subset of rows and columns

Rows and columns can be selected by their position or label

Data Frames: Slicing

36

When selecting one column, it is possible to use single set of brackets, but the
resulting object will be a Series (not a DataFrame):

When we need to select more than one column and/or make the output to be a
DataFrame, we should use double brackets:

Data Frames: Selecting rows

37

If we need to select a range of rows, we can specify the range using ":"

Notice that the first row has a position 0, and the last value in the range is omitted:
So for 0:10 range the first 10 rows are returned with the positions starting with 0
and ending with 9

Data Frames: method loc

38

If we need to select a range of rows, using their labels we can use method loc:

Recall that

Data Frames: method iloc

39

If we need to select a range of rows and/or columns, using their positions we can
use method iloc:

Data Frames: method iloc (summary)

40

df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row

df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column

df.iloc[0:7] #First 7 rows
df.iloc[:, 0:2] #First 2 columns
df.iloc[1:3, 0:2] #Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]] #1st and 6th rows and 2nd and 4th columns

Data Frames: Sorting

41

We can sort the data by a value in the column. By default the sorting will occur in
ascending order and a new data frame is return.

Data Frames: Sorting

42

We can sort the data using 2 or more columns:

Aggregation Functions in Pandas

43

Aggregation - computing a summary statistic about each group, i.e.
• compute group sums or means
• compute group sizes/counts

Common aggregation functions:

min, max
count, sum, prod
mean, median, mode, mad
std, var

Aggregation Functions in Pandas

44

agg() method are useful when multiple statistics are computed per column:

Basic Descriptive Statistics

45

df.method() description

describe Basic statistics (count, mean, std, min, quantiles, max)

min, max Minimum and maximum values

mean, median, mode Arithmetic average, median and mode

var, std Variance and standard deviation

sem Standard error of mean

skew Sample skewness

kurt kurtosis

Draw Graphics Using Matplotlib

46

Matplotlib is a comprehensive
library for creating static,
animated, and interactive
visualizations in Python.

description
histplot Histogram

barplot Estimate of central tendency for a numeric variable

violinplot Similar to boxplot, also shows the probability density of
the data

jointplot Scatterplot

regplot Regression plot

pairplot Pairplot

boxplot boxplot

swarmplot categorical scatterplot

factorplot General categorical plot

Draw Histogram Using Matplotlib

47

import matplotlib.pyplot as plt

Draw Barplot Using Matplotlib

48

Graphics to explore the data

49

Seaborn package is built on matplotlib but provides high level
interface for drawing attractive statistical graphics, similar to ggplot2
library in R. It specifically targets statistical data visualization

Graphics to explore the data

50

To show graphs within Python notebook include inline directive:

Then, the output of plotting commands will be displayed directly below the
code cell that produced it. The resulting plots will then also be stored in the
notebook document.

Draw Histogram Using Seaborn

51

import seaborn as sns

Draw Barplot Using Seaborn

52

Draw Barplot Using Seaborn

53

Draw Scatterplot Using Seaborn

54

Draw Boxplot Using Seaborn

55

Python for Machine Learning

56

Machine learning: the problem setting:
In general, a learning problem considers a set of n samples of data and then tries to
predict properties of unknown data. If each sample is more than a single number and,
for instance, a multi-dimensional entry (aka multivariate data), it is said to have several
attributes or features.

We can separate learning problems in a few large categories:
• Supervised Learning (https://sklearn.org/supervised_learning.html#supervised-learning)

• Classification
• Regression

• Unsupervised Learning (https://sklearn.org/unsupervised_learning.html#unsupervised-learning)
• Clustering

https://sklearn.org/supervised_learning.html
https://sklearn.org/unsupervised_learning.html

Python for Machine Learning

57

Training set and testing set:

Machine learning is about learning some properties of a data set and applying
them to new data. This is why a common practice in machine learning to
evaluate an algorithm is to split the data at hand into two sets, i.e. training
set and testing set.

scikit-learn comes with a few standard datasets, for instance the iris and digits
datasets for classification and the boston house prices dataset for regression.

Loading an example dataset

58

A dataset is a dictionary-like object that holds all the data and some metadata
about the data. This data is stored in the .data member, which is a (n_samples,
n_features) array. In the case of supervised problem, one or more response
variables are stored in the .target member.

Loading an example dataset - digits

59

An example showing how the scikit-learn can be used to recognize images of
hand-written digits.

Loading an example dataset - digits

60

and digits.target gives the ground truth for the digit dataset, that is the number
corresponding to each digit image that we are trying to learn:

For instance, in the case of the digits dataset, digits.data gives access to the
features that can be used to classify the digits samples:

Learning and predicting

61

In the case of the digits dataset, the task is to predict, given an image, which
digit it represents. We are given samples of each of the 10 possible classes (the
digits zero through nine) on which we fit a classifier to be able to predict the
classes to which unseen samples belong.
In scikit-learn, a classifier for classification is a Python object that implements
the methods fit(X, y) and predict(T).

An example of a classifier is the
class sklearn.neural_network.MLPClassifier,
which implements multi-layer perceptron.
The classifier’s constructor takes as
arguments the model’s parameters.

Learning and predicting

62

For now, we will consider the classifier as a black box:

Choosing the parameters of the model
• activation: the nonlinear function implemented in each neuron. We use “logistic”.
• solver: the optimization function used to update the parameters. We use “sgd”
• verbose: to show the training log.
• For other parameters like hidden_layer_sizes, random_state, learning_rate_init,

we can manually set. To find good values for these parameters, we can use tools
such as grid search and cross validation.

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/cross_validation.html

Learning and predicting

63

For the training set, we’ll use all the images from our dataset, except for the last
image, which we’ll reserve for our predicting. We select the training set with
the [:-1] Python syntax, which produces a new array that contains all but the
last item from digits.data:

Learning and predicting

64

Now you can predict new values. In this case, you’ll predict using the last image
from digits.data. By predicting, you’ll determine the image from the training set
that best matches the last image.

The corresponding image is:

Model persistence

65

It is possible to save a model in scikit-learn by using pickle:

https://docs.python.org/2/library/pickle.html

