Python Libraries for
Data Analysis and
Machine Learning

Overview

" Environment Preparation for Python
= Python Libraries for Data Scientists

= Data Processing & Visualization Using Python

= Python for Basic Machine Learning Models

Environment Preparation for Python

We introduce
> Anaconda (https://www.anaconda.com/)
> Jupyter Notebook (https://jupyter.org/)

for Python environment.

Other alternatives:
o Text Editor + Command line

o |DE (Integrated Development Environment): PyCharm, Vscode, ...

https://www.anaconda.com/
https://jupyter.org/

What is Anaconda?”

*The open-source Anaconda is the easiest way to perform Python/R data science
and machine learning on Linux, Windows, and Mac OS X. With over 19 million
users worldwide.

"It is the industry standard for developing, testing, and training on a single
machine, enabling individual data scientists to:

= Quickly download 7,500+ Python/R data science packages

= Analyze data with scalability and performance with Dask, NumPy, pandas,
and Numba

= Visualize results with Matplotlib, Bokeh, Datashader, and Holoviews

= Develop and train machine learning and deep learning models with scikit-
learn, TensorFlow, and Theano

Anaconda Installation

Please follow the instruction here to install the Anaconda (for Python 3.7)

https://www.anaconda.com/distribution/#download-section

*It provides different versions to suit different OS. Please select the one you are
using.

*Just install according to the default setting, and the environment variables will
be automatically configured after installation.

https://www.anaconda.com/distribution/

What is Jupyter Notebook?

*The Jupyter Notebook is an open-source web application that allows you to
create and share documents that contain live code, equations, visualizations and
narrative text.

°It includes: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

*Jupyter Notebook is included in the Anaconda.

Basic Operation on Jupyter Notebook

After installing the Anaconda, open Anaconda-Navigator as below, and you can
find the Jupyter Notebook on the Anaconda. Then click Launch.

Anaconda-Navigator

[oK J
) ANACONDA NAVIGATOR

A Home

O Anaconda Navigator

Applications on Channels

n Environments

Jupyter
N —d
Notebook

‘ Learning

Qt Console

JupyterLab
Lid i
an Community A 0353
An extensible environment for interactivle
and reproducible computing, based on the
Jupyter Notebook and Architecture.

A 574

Web-based, interactive computing notebook
environment. Edit and run human-readable
docs while describing the data analysis.

A 443

graphical calltips, and more.

o]
Glueviz Orange 3 RStudio
0.15.2 3.231 1.1.456
. Multidimensional data visualization across Component based data mining framework. Aset of integrated tools designed to help
Documentation files. Explore relationships within and among Data visualization and data analysis for you be more productive with R. Includes R
related datasets.

novice and expert. Interactive workflows

essentials and notebooks.
with a large toolbox.

Developer Blog

Yy o ?

AYQt GUI that supports inline figures, proper
multiline editing with syntax highlighting,

o Upgrade Now Sign in to Anaconda Cloud

Refresh

Spyder

A 332
Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

.,

VS Code

1.43.2

Streamlined code editor with support for
development operations like debugging,
task running and version control.

Basic Operation on Jupyter Notebook

Jupyter Notebook is presented as a website. Select the path, then under the
button “New”, choose “Python 3” to open a new python file.

& C O @ localhost:8888/tree/Desktop/eclt5810 w ©
: J u pyte r Quit Logout
Files Running Clusters
Select items to perform actions on them. Upload [s
- | Notebook: |
(o | v @@/ Desktop / eclt5810 Name e
I
0.
| Other: |
™ & Untitled.ipynb Text File kB
~ 0 assigment-1-answer.arff Folder kB
Terminal [
— 3 bank-additional-test.arff e _._kB

— [bank-additional.csv 6 Xai 584 kB

Basic Operation on Jupyter Notebook

Type the code into the input box on Jupyter.

Get started learning Python: https://www.learnpython.org/

: Ju pyter Untitled Last Checkpoint: 11 minutes ago (autosaved)

File Edit View Insert Cell Kernel Widgets Help

<>
B

B+ < @B 4 ¥ MRun B C » Code

In []: print("hello world!")

a =1
b=2
c=a+Db

print ("%d+%d=%d" % (a,b,c))

https://www.learnpython.org/

Basic Operation on Jupyter Notebook

Click “Run”.

The output will be shown in the blank area right below the input box.
File Edit View Insert Cell Kernel Widgets Help

B + < @B 4+ ¥ MRun B C » Code A E®

In [1]: print("hello world!")

a=1
b=2
c=a-+b

print("%d+%d=3d" % (a,b,c))

hello world!
1+2=3

| In []:

Basic Operation on Jupyter Notebook

Jupyter Notebook will help you

save your code automatically in In [1]: grin:("hello world!")
“ipynb” format. b = 2
c=a+b

print("%d+%d=%d" % (a,b,c))

hello world!
You can also save the code as “.py” 142=3

format.
In [2]: %%writefile example.py
print("hello world!")
a 1
b 2
c a+b
print ("%d+%d=%d" % (a,b,c))

Here, we just use “.ipynb” format.

Writing example.py

Python Libraries for Data Scientists

Python toolboxes/libraries for data processing:
> NumPy
° SCiPy
° Pandas

Visualization libraries
> matplotlib

o Seaborn

Machine learning & deep learning
o Scikit-learn
> Tensorflow/Pytorch/Theano and many more ...

Python Libraries for Data Scientists

NumPy:

" introduces objects for multidimensional arrays and matrices, as well as
functions that allow to easily perform advanced mathematical and
statistical operations on those objects

" provides vectorization of mathematical operations on arrays and matrices
which significantly improves the performance

" many other python libraries are built on NumPy

Link: http://www.numpy.org/

http://www.numpy.org/

Python Libraries for Data Scientists
SciPy:

= collection of algorithms for linear algebra, differential equations, numerical
integration, optimization, statistics and more

" part of SciPy Stack

" built on NumPy

Link: https://www.scipy.org/scipylib/

https://www.scipy.org/scipylib/

Python Libraries for Data Scientists

Pandas:

= adds data structures and tools designed to work with table-like data
(similar to Series and Data Frames in R)

= provides tools for data manipulation: reshaping, merging, sorting, slicing,
aggregation etc.

= allows handling missing data

pandas |l

I-I M
Link: http://pandas.pydata.org/ Yit =0 @it + i + €3y

http://pandas.pydata.org/

Python Libraries for Data Scientists

matplotlib:

= python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats

= 3 set of functionalities similar to those of MATLAB
" [ine plots, scatter plots, barcharts, histograms, pie charts etc.

= relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/ matp,t“b

https://matplotlib.org/

Python Libraries for Data Scientists

Seaborn:
" based on matplotlib

= provides high level interface for drawing attractive statistical graphics

= Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

https://seaborn.pydata.org/

Python Libraries for Data Scientists

SciKit-Learn:

= provides machine learning algorithms: classification, regression, clustering,
model validation etc.

" built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/ . m

http://scikit-learn.org/stable/

Loading Python Libraries

In [1]: | #Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Press Shift+Enter to execute the jupyter cell, or just click “Run”.

Reading data using pandas

In [4]: df = pd.read csv("http://wwwl.se.cuhk.edu.hk/~eclt5810/lecture/weka tutorial/bank.csv")

There is a number of pandas commands to read other data formats:

pd.read excel ('myfile.xlsx',sheet name='Sheetl', index col=None, na values=['NA'])
pd.read stata('myfile.dta')

pd.read sas('myfile.sas/bdat")

pd.read hdf ('myfile.h5','df")

Exploring data frames

In [5]: #List first 5 records

df.head()
Out[5]:

age job marital education default balance housing loan contact day month duration campaign pdays previous poutcome vy
0 30 unemployed married primary no 1787 no no cellular 19 oct 79 1 -1 0 unknown no
1 33 services married secondary no 4789 yes yes cellular 11 may 220 1 339 4 failure no
2 35 management single tertiary no 1350 yes no cellular 16 apr 185 1 330 1 failure no
3 30 management married tertiary no 1476 yes yes unknown 3 jun 199 4 -1 0 unknown no
4 59 blue-collar married secondary no 0 yes no unknown 5 may 226 1 -1 0 unknown no

v’ Try to read the first 10, 20, 50 records
v’ Try to view the last few records

Data Frame data types

Pandas Type Native Python Type Description

object string The most general dtype. Will be assigned to your column
if column has mixed types (numbers and strings).

int64 int Numeric characters. 64 refers to the memory allocated to
hold this character.

float64 float Numeric characters with decimals. If a column contains
numbers and NaNs, pandas will default to float64, in case
your missing value has a decimal.

datetime64, N/A (but see Values meant to hold time data. Look into these for time
timedelta[ns] the datetime module in series experiments.
Python’s standard library)

http://doc.python.org/2/library/datetime.html

Data Frame data types

In [7]:

Out[7]:

In [8]:

#Check a particular column type
df['age'].dtype

dtype('int64"')

#Check types for all the columns
df .dtypes

Out[8]:

age

job
marital
education
default
balance
housing
loan
contact
day
month
duration
campaign
pdays
previous
poutcome

y

int64
object
object
object
object
int64
object
object
object
int64
object
int64
int64
int64
int64
object
object

dtype: object

Data Frames attributes

Python objects have attributes and methods.

df.attribute description

dtypes list the types of the columns

columns list the column names

axes list the row labels and column names

ndim number of dimensions

size number of elements

shape return a tuple representing the dimensionality
values numpy representation of the data

Data Frames attributes

In [1l1]: #Find how many records this data frame has
df.shape

Out[11l]: (4521, 17)

In [12]: #How many elements are there?
df.size

Out[12]: 76857

In [13]: #What are the column names?
df.columns

Out[13]: Index(['age', 'job', 'marital', 'education', 'default', 'balance', 'housing’,
'"loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays',
'previous', 'poutcome', 'y'],
dtype='object')

Data Frames methods

Unlike attributes, python methods have parenthesis.
All attributes and methods can be listed with a dir() function: dir (d£f)

df.method() description

head([n]), tail([n]) first/last n rows

describe() generate descriptive statistics (for numeric columns only)
max(), min() return max/min values for all numeric columns

mean(), median() return mean/median values for all numeric columns
std() standard deviation

sample([n]) returns a random sample of the data frame

dropna() drop all the records with missing values

Data Frames methods

In [14]: #Give the summary for the numeric columns in the dataset
df .describe()

Out[1l4]:
age balance day duration campaign pdays previous

count 4521.000000 4521.000000 4521.000000 4521.000000 4521.000000 4521.000000 4521.000000
mean 41.170095 1422.657819 15.915284 263.961292 2.793630 39.766645 0.542579
std 10.576211 3009.638142 8.247667 259.856633 3.109807 100.121124 1.693562
min 19.000000 -3313.000000 1.000000 4.000000 1.000000 -1.000000 0.000000
25% 33.000000 69.000000 9.000000 104.000000 1.000000 -1.000000 0.000000
50% 39.000000 444.000000 16.000000 185.000000 2.000000 -1.000000 0.000000
75% 49.000000 1480.000000 21.000000 329.000000 3.000000 -1.000000 0.000000
max 87.000000 71188.000000 31.000000 3025.000000 50.000000 871.000000 25.000000

Data Frames methods

In [13]:

Out[13]:

In [14]:

Out[14]:

calcuate the standard deviation for all numeric columns
df. std (numeric_only=True)

age 10. 576211
balance 3009. 638142
day 8. 247667
duration 259. 856633
campaign 3. 109807
pdays 100. 121124
previous 1. 693562

dtype: float64

calcuate the mean value for all numeric columns
df. mean (numeric_only=True)

age 41. 170095
balance 1422. 657819
day 15. 915284
duration 263. 961292
campalgn 2. 793630
pdays 39. 766645
previous 0. 542579

dtype: float64

Selecting a column in a Data Frame

In [22]:

Out[22]:

In [23]:

outf23]:

#Subset the data frame using column name
df['job'][:5]

0 unemployed
1 services
2 management
3 management
4 blue-collar

Name: job, dtype: object

#Use the column name as an attribute
dfljobi:5]

0 unemployed
1 services
2 management
3 management
4 blue-collar
Name: job, dtype: object

Note: If we want to select a column
with a name as the attribute in
DataFrames we should use method 1.

E.G., Since there is an attribute — rank
in DataFrame, if we want to select
the column ‘rank’, we should use
df[‘rank’], and cannot use method 2,
i.e., df.rank, which will return the
attribute rank of the data frame
instead of the column “rank”.

Selecting a column in a Data Frame

In [24]: #Calculate the basic statistics for the age column
df.age.describe()

Out[24]: count 4521.000000

mean 41.170095

std 10.576211

min 19.000000 In [26]: #Calculate the average age
25% 33.000000 df.age.mean()

50% 39.000000 . .

75% 49.000000 Out[26]: 41.17009511170095

max 87.000000

Name: age, dtype: floaté64

In [25]: #Find how many values in the age column (use count method)
df.age.count ()

Out[25]: 4521

Data Frames groupby method

Using "group by" method we can:

e Split the data into groups based on some criteria
e C(Calculate statistics (or apply a function) to each group

In [27]: #Group data using rank
df job = df.groupby(['job'])
In [28]: #Calculate mean value for each numeric column per each group
df job.mean()
Out[28]:
age balance day duration campaign pdays previous
job
admin. 39.682008 1226.736402 16.324268 234.669456 2.631799 49.993724 0.644351
blue-collar 40.156448 1085.161734 15.482030 278.161734 2.846723 41.590909 0.493658
entrepreneur 42.011905 1645.125000 15.255952 285.476190 2.589286 32.273810 0.428571
- housemaid 47.339286 2083.803571 15.294643 292.633929 2.500000 26.401786 0.357143

Data Frames groupby method

Once groupby object is created we can calculate various statistics for each group:

In [29]: #Calculate mean age for each job:
df.groupby('job')[['age']].mean()

Out[29]:
age
job
admin. 39.682008 Note: If single brackets are used to
blue-collar 40.156448 specify the column (e.g. age), then
entrepreneur 42.011905 the output is Pandas Series object.
housemaid 47.339286 When double brackets are used the
management 40.540764 output is a Data Frame (e.g. age &
retired 61.869565 balance)

Data Frames groupby method

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the groupby object
only verifies that you have passed a valid mapping

- by default the group keys are sorted during the groupby operation. You may
want to pass sort=False for potential speedup:

In [30]: #Calculate mean age for each job:
df.groupby(['job'], sort=False)[['age’']].mean()

Data Frame: filtering

To subset the data we can apply Boolean indexing. This indexing is commonly
known as a filter. For example if we want to subset the rows in which the age
value is greater than 50:

In [31]: #Subset the rows in which the age value is greater than 50
df sub = df[df['age'] > 50]

Any Boolean operator can be used to subset the data:
> greater; >=greater or equal;

< less; <= less or equal;

== equal; = not equal;

In [32]: | #Select only those rows whose education level is primary
df primary = df[df['education'] == 'primary']

Data Frames: Slicing

There are a number of ways to subset the Data Frame:
* one or more columns
* Ohe or more rows
e asubset of rows and columns

Rows and columns can be selected by their position or label

Data Frames: Slicing

When selecting one column, it is possible to use single set of brackets, but the
resulting object will be a Series (not a DataFrame):

In []: | #Select column age:
df['age']

When we need to select more than one column and/or make the output to be a
DataFrame, we should use double brackets:

In []: #Select column age and job:
df[['age’, "job']]

Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using ":

In []: #Select rows by their position:
df[10:20]

Notice that the first row has a position 0, and the last value in the range is omitted:
So for 0:10 range the first 10 rows are returned with the positions starting with O
and ending with 9

Data Frames: method loc

If we need to select a range of rows, using their labels we can use method loc:

In [35]: #Select rows by their labels:
df sub.loc[10:20,['age', 'job', "education’']]

Out[35]:
age job education

16 56 technician secondary

Recall that 1In [31]: #Subset the rows in which the age value is greater than 50
df sub = df[df['age’'] > 50]

Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can
use method iloc:

In [47]: #Select rows by their labels:
df sub.iloc[10:20,[0, 1, 31]]

Out[47]:
age job education

46 55 blue-collar primary
49 61 admin. unknown
54 53 blue-collar secondary
56 57 management secondary

59 54 technician secondary

61 63 retired secondary

Data Frames: method iloc (summary)

df.iloc[0] # First row of a data frame
df.iloc[1] #(i+1)th row
df.iloc[-1] # Last row

df.iloc[:, O] # First column
df.iloc[:, -1] # Last column

df.iloc[0:7] #First 7 rows

df.iloc[:, 0:2] #First 2 columns

df.iloc[1:3, 0:2] #Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]]1 #1st and 6% rows and 274 and 4t? columns

Data Frames: Sorting

We can sort the data by a value in the column. By default the sorting will occur in
ascending order and a new data frame is return.

In [50]: | # Create a new data frame from the original sorted by the column Age
df sorted = df.sort values(by ='age')
df sorted.head()

Out :
0 age job marital education default balance housing loan contact day month duration campaign pdays previous poutcome y
503 19 student single primary no 103 no no cellular 10 jul 104 2 -1 0 unknown vyes
1900 19 student single unknown no 0 no no cellular 11 feb 123 3 -1 0 unknown no
2780 19 student single secondary no 302 no no cellular 16 jul 205 1 -1 0 unknown vyes
3233 19 student single unknown no 1169 no no cellular 6 feb 463 18 -1 0 unknown no
999 20 student single secondary no 291 no no telephone 11 may 172 5 371 5 failure no

Data Frames: Sorting

We can sort the data using 2 or more columns:

In [51]: df _sorted = df.sort values(by =['age', 'balance'], ascending = [True, False])
df sorted.head(10)

k1511
e age job marital education default balance housing loan contact day month duration campaign pdays previous poutcome y
3233 19 student single unknown no 1169 no no cellular 6 feb 463 18 -1 0 unknown no
2780 19 student single secondary no 302 no no cellular 16 jul 205 1 -1 0 unknown yes
503 19 student single primary no 103 no no cellular 10 jul 104 2 -1 0 unknown yes
1900 19 student single unknown no 0 no no cellular 11 feb 123 3 -1 0 unknown no
1725 20 student single secondary no 1191 no no cellular 12 feb 274 1 -1 0 unknown no
13 20 student single secondary no 502 no no cellular 30 apr 261 1 -1 0 unknown vyes
999 20 student single secondary no 291 no no telephone 11 may 172 <) 371 <) failure no
4152 21 student single secondary no 6844 no no cellular 14 aug 126 3 127 7 other no
110 21 student single secondary no 2488 no no cellular 30 jun 258 6 169 3 success yes
2046 21 services single secondary no 1903 yes no unknown 29 may 107 2 -1 0 unknown no

Aggregation Functions in Pandas

Aggregation - computing a summary statistic about each group, i.e.
* compute group sums or means
e compute group sizes/counts

Common aggregation functions:
min, max
count, sum, prod

mean, median, mode, mad
std, var

Aggregation Functions in Pandas

agg() method are useful when multiple statistics are computed per column:

In [28]: df[['age','balance’']].agg(['min', 'mean’', 'max'])

Out[28]:
age balance

min 19.000000 -3313.000000
mean 41.170095 1422.657819

max 87.000000 71188.000000

Basic Descriptive Statistics

df.method() description

describe Basic statistics (count, mean, std, min, quantiles, max)
min, max Minimum and maximum values

mean, median, mode Arithmetic average, median and mode

var, std Variance and standard deviation

sem Standard error of mean

skew Sample skewness

kurt kurtosis

Draw Graphics Using Matplotlib

Matplotlib is a comprehensive | histplot Histogram
library for creating static, barplot Estimate of central tendency for a numeric variable
animated' and interactive violinplot Similar to boxplot, also shows the probability density of
visualizations in Python. the data

jointplot Scatterplot

regplot Regression plot

pairplot Pairplot

boxplot boxplot

swarmplot categorical scatterplot

factorplot General categorical plot

Draw Histogram Using Matplotlib

. t tolotlib lot It In [31]: #Use matplotlib to draw a histogram of a age data
Import matplotiib.pyplot as p plt.hist(df['age'],bins=8, density=1)

Out[31]: (array([0.0073383 , 0.03565062, 0.03320452, 0.02193684, 0.01662828,
0.00130112, 0.00111896, 0.0004684 1),
array([19. , 27.5, 36. , 44.5, 53. , 61.5, 70. , 78.5, 87. 1),
<a list of 8 Patch objects>)

0.035 A

0.030 A

0.025 A

0.020 A

0.015 A

0.010 A

0.005 A

0.000 -

Draw Barplot Using Matplotlib

[42]: df. groupby ([’ job’ 1) [age’]. count (). plot (kind="bar’)

[42]: <Axes: xlabel="job’ >

1000 A

800 -

600 -

400 +

200 -

in
ar
ur
id
nt
ed
ed
es
nt
an
ed
VN

Graphics to explore the data

Seaborn package is built on matplotlib but provides high level
interface for drawing attractive statistical graphics, similar to ggplot2
library in R. It specifically targets statistical data visualization

Graphics to explore the data

To show graphs within Python notebook include inline directive:

In []: %matplotlib inline

Then, the output of plotting commands will be displayed directly below the
code cell that produced it. The resulting plots will then also be stored in the
notebook document.

Draw Histogram Using Seaborn

import seaborn as sns In [33]: #Use seaborn package to draw a histogram
sns.distplot(df[('age')])

Out[33]: <matplotlib.axes. subplots.AxesSubplot at 0xla2lb0Ocb00>

0.05 A

0.04 -

0.03 1

0.02 1

0.01 A

0. 00] L)] L J]] L])
20 30 50 60 80

Draw Barplot Using Seaborn

In [43]: # Use seaborn package to display a barplot
sns.set_style("whitegrid")

ax = sns.barplot(x='education',y ='age', data=df, estimator=len)

2000
1500
§ 1000
500

o —

primary saecondary fertiary unknown

- education —

Draw Barplot Using Seaborn

In [54]: # Split into groups based on education:
ax = sns.barplot(x='job',y ='age', hue='education', data=df, estimator=len)

education
pnmary
sacondary
fertiary
unknown

300
200
- ‘
0 lIl .. I -1 II .| N III L L. b III. ——

memploﬂmagdﬁ.ﬂunphqhﬁ‘mren.ﬁunstudﬂsemaﬂnednknown

Draw Scatterplot Using Seaborn

In [50]: | #Scatterplot in seabori
sns. scatterplot (x="age’, y= balance’, data=df)

Out[50]: <Axes: xlabel="age’, ylabel="balance’ >

70000

60000

50000

40000

balance

20000

10000

Draw Boxplot Using Seaborn

In [60]: # box plot
sns.boxplot (x='education',y="'age', data=df)

Out[60]: <matplotlib.axes. subplots.AxesSubplot at 0Oxla22f2cac8>

N :
b o l

pnmary saecondary fertiary unknown

- education _

Python for Machine Learning

Machine learning: the problem setting:

In general, a learning problem considers a set of n samples of data and then tries to
predict properties of unknown data. If each sample is more than a single number and,
for instance, a multi-dimensional entry (aka multivariate data), it is said to have several
attributes or features.

We can separate learning problems in a few large categories:
e Supervised Learning (https://sklearn.org/supervised learning.html#supervised-learning)
* Classification
* Regression
* Unsupervised Learning (https://sklearn.org/unsupervised learning.html#unsupervised-learning)

e Clustering

https://sklearn.org/supervised_learning.html
https://sklearn.org/unsupervised_learning.html

Python for Machine Learning

Training set and testing set:

Machine learning is about learning some properties of a data set and applying
them to new data. This is why a common practice in machine learning to

evaluate an algorithm is to split the data at hand into two sets, i.e. training
set and testing set.

scikit-learn comes with a few standard datasets, for instance the iris and digits
datasets for classification and the boston house prices dataset for regression.

Loading an example dataset

In [61]: import sklearn
from sklearn import datasets
iris = datasets.load iris()
digits = datasets.load digits()

A dataset is a dictionary-like object that holds all the data and some metadata
about the data. This data is stored in the .data member, which is a (n_samples,
n_features) array. In the case of supervised problem, one or more response
variables are stored in the .target member.

Loading an example dataset - digits

An example showing how the scikit-learn can be used to recognize images of

hand-written dIgItS. Training: 0 Training: 1 Training: 2 Training: 3

U145

Prediction: 8 Prediction: 8 Prediction: 4 Prediction: 9

P04

Loading an example dataset - digits

For instance, in the case of the digits dataset, digits.data gives access to the
features that can be used to classify the digits samples:

In [62]: print(digits.data)

[[0. 0. 5. ... 0. 0. 0.]
[0. 0. 0. ... 10. 0. 0.]
[0. 0. 0. ... 16. 9. 0.]
[0. 0. 1. ... 6. 0. 0.]
[0. 0. 2. ... 12. 0. 0.]
[0. 0. 10. ... 12. 1. 0.]]

and digits.target gives the ground truth for the digit dataset, that is the number
corresponding to each digit image that we are trying to learn:

In [63]: print(digits.target)

[012 ...89 8]

Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which
digit it represents. We are given samples of each of the 10 possible classes (the
digits zero through nine) on which we fit a classifier to be able to predict the
classes to which unseen samples belong.

In scikit-learn, a classifier for classification is a Python object that implements
the methods fit(X, y) and predict(T). —{_FioDEN Lavers |—

¢
e

e O O B

[——

An example of a classifier is the -

class sklearn.neural_network.MLPClassifier,
which implements multi-layer perceptron.

The classifier’s constructor takes as
arguments the model’s parameters.

Learning and predicting

For now, we will consider the classifier as a black box:

In [14]: from sklearn.neural network import MLPClassifier
mlp = MLPClassifier(hidden layer sizes=(5,),
activation='logistic',
solver='sgd',
random_state=1,
learning rate_init=.3,
verbose=True)

Choosing the parameters of the model

e activation: the nonlinear function implemented in each neuron. We use “logistic”.

* solver: the optimization function used to update the parameters. We use “sgd”

* verbose: to show the training log.

* For other parameters like hidden_layer_sizes, random_state, learning_rate_init,
we can manually set. To find good values for these parameters, we can use tools

such as irid search and cross validation.

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/cross_validation.html

Learning and predicting

For the training set, we’ll use all the images from our dataset, except for the last
image, which we’ll reserve for our predicting. We select the training set with
the [:-1] Python syntax, which produces a new array that contains all but the

last item from digits.data:

In [15]: mlp.fit(digits.data[:-1], digits.target[:-1])

Iteration 1, loss = 2.20438383
Iteration 2, loss = 1.80364476
Iteration 3, loss = 1.47148064
Iteration 4, loss = 1.21869988
Iteration 5, loss = 1.05839722
Iteration 6, loss = 0.94305276
Iteration 7, loss = 0.83013913
Iteration 8, loss = 0.88684539
Iteration 9, loss = 0.80028227

Iteration 10, loss = 0.78686013

Out[15]: |,

MLPClassifier

MLPClassifier(activation='logistic', hidden layer sizes=(5,),

learning_rate_init=0.3, random state=1, solver='sgd',
verbose=True)

Learning and predicting

Now you can predict new values. In this case, you'll predict using the last image
from digits.data. By predicting, you’ll determine the image from the training set
that best matches the last image.

In [17]: mlp.predict(digits.data[-1:])

Out[1l7]: array([8])

The corresponding image is:

~N o BB W N F O
] |]]]] |

_ 0

Model persistence

It is possible to save a model in scikit-learn by using pickle:

In [22]:
out[22]:
In [23]:
Out[23]:

In [24]:

from sklearn.neural network import MLPClassifier

MLPClassifier (hidden_layer sizes=(5,),
activation='logistic',
solver='sgd',
random_state=1,
learning_rate_init=.3,)

X, y = sklearn.datasets.load iris(return X y=True)

mlp.fit(X, y)

mlp =

%v MLPClassifier

gMLPC1assifier(activation='1ogistic', hidden layer sizes=(5,),
' learning rate init=0.3, random state=1, solver='sgd')§

import pickle

s = pickle.dumps(mlp)
mlp2 = pickle.loads(s)
mlp2.predict(X[0:1])

array([0])

print(y[0])

0

https://docs.python.org/2/library/pickle.html

