{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "a5b2fec9", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hello world\n", "1+2=3\n" ] } ], "source": [ "print('hello world')\n", "a = 1\n", "b = 2\n", "print(\"%d+%d=%d\" %(a,b,a+b))" ] }, { "cell_type": "code", "execution_count": 3, "id": "ab50e31e", "metadata": {}, "outputs": [], "source": [ "# import python library\n", "import numpy as np\n", "import scipy as sp\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 4, "id": "97956a46", "metadata": {}, "outputs": [], "source": [ "# load the data as data frame\n", "df = pd.read_csv('http://www1.se.cuhk.edu.hk/~eclt5810/lecture/weka_tutorial/bank.csv')" ] }, { "cell_type": "code", "execution_count": 5, "id": "b6defd02", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
030unemployedmarriedprimaryno1787nonocellular19oct791-10unknownno
133servicesmarriedsecondaryno4789yesyescellular11may22013394failureno
235managementsingletertiaryno1350yesnocellular16apr18513301failureno
330managementmarriedtertiaryno1476yesyesunknown3jun1994-10unknownno
459blue-collarmarriedsecondaryno0yesnounknown5may2261-10unknownno
\n", "
" ], "text/plain": [ " age job marital education default balance housing loan \\\n", "0 30 unemployed married primary no 1787 no no \n", "1 33 services married secondary no 4789 yes yes \n", "2 35 management single tertiary no 1350 yes no \n", "3 30 management married tertiary no 1476 yes yes \n", "4 59 blue-collar married secondary no 0 yes no \n", "\n", " contact day month duration campaign pdays previous poutcome y \n", "0 cellular 19 oct 79 1 -1 0 unknown no \n", "1 cellular 11 may 220 1 339 4 failure no \n", "2 cellular 16 apr 185 1 330 1 failure no \n", "3 unknown 3 jun 199 4 -1 0 unknown no \n", "4 unknown 5 may 226 1 -1 0 unknown no " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# list first 5 records\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 6, "id": "b02ff41c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('int64')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check a particular column type\n", "df['age'].dtypes" ] }, { "cell_type": "code", "execution_count": 7, "id": "73b80b88", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "age int64\n", "job object\n", "marital object\n", "education object\n", "default object\n", "balance int64\n", "housing object\n", "loan object\n", "contact object\n", "day int64\n", "month object\n", "duration int64\n", "campaign int64\n", "pdays int64\n", "previous int64\n", "poutcome object\n", "y object\n", "dtype: object" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Check the type for all the columns\n", "df.dtypes" ] }, { "cell_type": "code", "execution_count": 8, "id": "37e45b42", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(4521, 17)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Find how many records this data frame has?\n", "df.shape" ] }, { "cell_type": "code", "execution_count": 9, "id": "29d2b042", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "76857" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# How many elements are there?\n", "df.size" ] }, { "cell_type": "code", "execution_count": 10, "id": "45e073e1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['age', 'job', 'marital', 'education', 'default', 'balance', 'housing',\n", " 'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays',\n", " 'previous', 'poutcome', 'y'],\n", " dtype='object')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what are the columns names?\n", "df.columns" ] }, { "cell_type": "code", "execution_count": 11, "id": "d83b73fe", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agebalancedaydurationcampaignpdaysprevious
count4521.0000004521.0000004521.0000004521.0000004521.0000004521.0000004521.000000
mean41.1700951422.65781915.915284263.9612922.79363039.7666450.542579
std10.5762113009.6381428.247667259.8566333.109807100.1211241.693562
min19.000000-3313.0000001.0000004.0000001.000000-1.0000000.000000
25%33.00000069.0000009.000000104.0000001.000000-1.0000000.000000
50%39.000000444.00000016.000000185.0000002.000000-1.0000000.000000
75%49.0000001480.00000021.000000329.0000003.000000-1.0000000.000000
max87.00000071188.00000031.0000003025.00000050.000000871.00000025.000000
\n", "
" ], "text/plain": [ " age balance day duration campaign \\\n", "count 4521.000000 4521.000000 4521.000000 4521.000000 4521.000000 \n", "mean 41.170095 1422.657819 15.915284 263.961292 2.793630 \n", "std 10.576211 3009.638142 8.247667 259.856633 3.109807 \n", "min 19.000000 -3313.000000 1.000000 4.000000 1.000000 \n", "25% 33.000000 69.000000 9.000000 104.000000 1.000000 \n", "50% 39.000000 444.000000 16.000000 185.000000 2.000000 \n", "75% 49.000000 1480.000000 21.000000 329.000000 3.000000 \n", "max 87.000000 71188.000000 31.000000 3025.000000 50.000000 \n", "\n", " pdays previous \n", "count 4521.000000 4521.000000 \n", "mean 39.766645 0.542579 \n", "std 100.121124 1.693562 \n", "min -1.000000 0.000000 \n", "25% -1.000000 0.000000 \n", "50% -1.000000 0.000000 \n", "75% -1.000000 0.000000 \n", "max 871.000000 25.000000 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# give the summary for the numeric columns in the dataset\n", "df.describe()" ] }, { "cell_type": "code", "execution_count": 13, "id": "fec7e7c4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "age 10.576211\n", "balance 3009.638142\n", "day 8.247667\n", "duration 259.856633\n", "campaign 3.109807\n", "pdays 100.121124\n", "previous 1.693562\n", "dtype: float64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# calcuate the standard deviation for all numeric columns\n", "df.std(numeric_only=True)" ] }, { "cell_type": "code", "execution_count": 14, "id": "35f4412c", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "age 41.170095\n", "balance 1422.657819\n", "day 15.915284\n", "duration 263.961292\n", "campaign 2.793630\n", "pdays 39.766645\n", "previous 0.542579\n", "dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# calcuate the mean value for all numeric columns\n", "df.mean(numeric_only=True)" ] }, { "cell_type": "code", "execution_count": 26, "id": "6128c250", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
030unemployedmarriedprimaryno1787nonocellular19oct791-10unknownno
133servicesmarriedsecondaryno4789yesyescellular11may22013394failureno
235managementsingletertiaryno1350yesnocellular16apr18513301failureno
330managementmarriedtertiaryno1476yesyesunknown3jun1994-10unknownno
459blue-collarmarriedsecondaryno0yesnounknown5may2261-10unknownno
\n", "
" ], "text/plain": [ " age job marital education default balance housing loan \\\n", "0 30 unemployed married primary no 1787 no no \n", "1 33 services married secondary no 4789 yes yes \n", "2 35 management single tertiary no 1350 yes no \n", "3 30 management married tertiary no 1476 yes yes \n", "4 59 blue-collar married secondary no 0 yes no \n", "\n", " contact day month duration campaign pdays previous poutcome y \n", "0 cellular 19 oct 79 1 -1 0 unknown no \n", "1 cellular 11 may 220 1 339 4 failure no \n", "2 cellular 16 apr 185 1 330 1 failure no \n", "3 unknown 3 jun 199 4 -1 0 unknown no \n", "4 unknown 5 may 226 1 -1 0 unknown no " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# list first 5 records\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 15, "id": "ad16cee2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 unemployed\n", "1 services\n", "2 management\n", "3 management\n", "4 blue-collar\n", "Name: job, dtype: object" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# subset the data frame using column name\n", "df['job'][:5]" ] }, { "cell_type": "code", "execution_count": 28, "id": "96a51b7e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 unemployed\n", "1 services\n", "2 management\n", "3 management\n", "4 blue-collar\n", "Name: job, dtype: object" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# use the column name as an attribute (not recommand)\n", "df.job[:5]" ] }, { "cell_type": "code", "execution_count": 16, "id": "600188b7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 4521.000000\n", "mean 41.170095\n", "std 10.576211\n", "min 19.000000\n", "25% 33.000000\n", "50% 39.000000\n", "75% 49.000000\n", "max 87.000000\n", "Name: age, dtype: float64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.age.describe()" ] }, { "cell_type": "code", "execution_count": 17, "id": "a4b0c8b1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "41.17009511170095" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.age.mean()" ] }, { "cell_type": "code", "execution_count": 18, "id": "5478408d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4521" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.age.count()" ] }, { "cell_type": "code", "execution_count": 19, "id": "2204f459", "metadata": {}, "outputs": [], "source": [ "df_job = df.groupby(['job'])" ] }, { "cell_type": "code", "execution_count": 21, "id": "4625ec32", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agebalancedaydurationcampaignpdaysprevious
job
admin.39.6820081226.73640216.324268234.6694562.63179949.9937240.644351
blue-collar40.1564481085.16173415.482030278.1617342.84672341.5909090.493658
entrepreneur42.0119051645.12500015.255952285.4761902.58928632.2738100.428571
housemaid47.3392862083.80357115.294643292.6339292.50000026.4017860.357143
management40.5407641766.92879316.254902260.5366362.97316840.9680080.549020
retired61.8695652319.19130415.556522285.6565222.46521735.0739130.591304
self-employed41.4535521392.40983616.180328264.1256833.27868928.2568310.590164
services38.5707431103.95683515.515588262.4868112.82254236.3717030.443645
student26.8214291543.82142916.392857248.6904762.39285745.7142860.964286
technician39.4700521330.99609416.183594252.1783852.73177139.2656250.576823
unemployed40.9062501089.42187516.093750301.2656252.67968836.6250000.484375
unknown48.1052631501.71052615.842105216.9210532.55263236.2368420.500000
\n", "
" ], "text/plain": [ " age balance day duration campaign \\\n", "job \n", "admin. 39.682008 1226.736402 16.324268 234.669456 2.631799 \n", "blue-collar 40.156448 1085.161734 15.482030 278.161734 2.846723 \n", "entrepreneur 42.011905 1645.125000 15.255952 285.476190 2.589286 \n", "housemaid 47.339286 2083.803571 15.294643 292.633929 2.500000 \n", "management 40.540764 1766.928793 16.254902 260.536636 2.973168 \n", "retired 61.869565 2319.191304 15.556522 285.656522 2.465217 \n", "self-employed 41.453552 1392.409836 16.180328 264.125683 3.278689 \n", "services 38.570743 1103.956835 15.515588 262.486811 2.822542 \n", "student 26.821429 1543.821429 16.392857 248.690476 2.392857 \n", "technician 39.470052 1330.996094 16.183594 252.178385 2.731771 \n", "unemployed 40.906250 1089.421875 16.093750 301.265625 2.679688 \n", "unknown 48.105263 1501.710526 15.842105 216.921053 2.552632 \n", "\n", " pdays previous \n", "job \n", "admin. 49.993724 0.644351 \n", "blue-collar 41.590909 0.493658 \n", "entrepreneur 32.273810 0.428571 \n", "housemaid 26.401786 0.357143 \n", "management 40.968008 0.549020 \n", "retired 35.073913 0.591304 \n", "self-employed 28.256831 0.590164 \n", "services 36.371703 0.443645 \n", "student 45.714286 0.964286 \n", "technician 39.265625 0.576823 \n", "unemployed 36.625000 0.484375 \n", "unknown 36.236842 0.500000 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_job.mean(numeric_only=True)" ] }, { "cell_type": "code", "execution_count": 26, "id": "5d7cb47e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
age
job
admin.39.682008
blue-collar40.156448
entrepreneur42.011905
housemaid47.339286
management40.540764
retired61.869565
self-employed41.453552
services38.570743
student26.821429
technician39.470052
unemployed40.906250
unknown48.105263
\n", "
" ], "text/plain": [ " age\n", "job \n", "admin. 39.682008\n", "blue-collar 40.156448\n", "entrepreneur 42.011905\n", "housemaid 47.339286\n", "management 40.540764\n", "retired 61.869565\n", "self-employed 41.453552\n", "services 38.570743\n", "student 26.821429\n", "technician 39.470052\n", "unemployed 40.906250\n", "unknown 48.105263" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby('job')[['age']].mean()" ] }, { "cell_type": "code", "execution_count": 27, "id": "60330043", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
age
job
unemployed40.906250
services38.570743
management40.540764
blue-collar40.156448
self-employed41.453552
technician39.470052
entrepreneur42.011905
admin.39.682008
student26.821429
housemaid47.339286
retired61.869565
unknown48.105263
\n", "
" ], "text/plain": [ " age\n", "job \n", "unemployed 40.906250\n", "services 38.570743\n", "management 40.540764\n", "blue-collar 40.156448\n", "self-employed 41.453552\n", "technician 39.470052\n", "entrepreneur 42.011905\n", "admin. 39.682008\n", "student 26.821429\n", "housemaid 47.339286\n", "retired 61.869565\n", "unknown 48.105263" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby('job', sort=False)[['age']].mean()" ] }, { "cell_type": "code", "execution_count": 33, "id": "673a22d0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
459blue-collarmarriedsecondaryno0yesnounknown5may2261-10unknownno
1656technicianmarriedsecondaryno4073nonocellular27aug2395-10unknownno
2655blue-collarmarriedprimaryno627yesnounknown5may2471-10unknownno
2767retiredmarriedunknownno696nonotelephone17aug11911052failureno
2856self-employedmarriedsecondaryno784noyescellular30jul1492-10unknownno
......................................................
449058admin.marriedsecondaryno3496yesnounknown2jun1114-10unknownno
450360self-employedmarriedprimaryno362noyescellular29jul8166-10unknownyes
450951technicianmarriedtertiaryno2506nonocellular30nov2103-10unknownno
451757self-employedmarriedtertiaryyes-3313yesyesunknown9may1531-10unknownno
451857technicianmarriedsecondaryno295nonocellular19aug15111-10unknownno
\n", "

927 rows × 17 columns

\n", "
" ], "text/plain": [ " age job marital education default balance housing loan \\\n", "4 59 blue-collar married secondary no 0 yes no \n", "16 56 technician married secondary no 4073 no no \n", "26 55 blue-collar married primary no 627 yes no \n", "27 67 retired married unknown no 696 no no \n", "28 56 self-employed married secondary no 784 no yes \n", "... ... ... ... ... ... ... ... ... \n", "4490 58 admin. married secondary no 3496 yes no \n", "4503 60 self-employed married primary no 362 no yes \n", "4509 51 technician married tertiary no 2506 no no \n", "4517 57 self-employed married tertiary yes -3313 yes yes \n", "4518 57 technician married secondary no 295 no no \n", "\n", " contact day month duration campaign pdays previous poutcome y \n", "4 unknown 5 may 226 1 -1 0 unknown no \n", "16 cellular 27 aug 239 5 -1 0 unknown no \n", "26 unknown 5 may 247 1 -1 0 unknown no \n", "27 telephone 17 aug 119 1 105 2 failure no \n", "28 cellular 30 jul 149 2 -1 0 unknown no \n", "... ... ... ... ... ... ... ... ... ... \n", "4490 unknown 2 jun 111 4 -1 0 unknown no \n", "4503 cellular 29 jul 816 6 -1 0 unknown yes \n", "4509 cellular 30 nov 210 3 -1 0 unknown no \n", "4517 unknown 9 may 153 1 -1 0 unknown no \n", "4518 cellular 19 aug 151 11 -1 0 unknown no \n", "\n", "[927 rows x 17 columns]" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_sub = df[df['age']>50]\n", "df_primary = df[df['education']=='primary']\n", "df_sub" ] }, { "cell_type": "code", "execution_count": 34, "id": "f65b6616", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobeducation
1656techniciansecondary
\n", "
" ], "text/plain": [ " age job education\n", "16 56 technician secondary" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_sub.loc[10:20, ['age','job','education']]" ] }, { "cell_type": "code", "execution_count": 35, "id": "ce314fda", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobeducation
4655blue-collarprimary
4961admin.unknown
5453blue-collarsecondary
5657managementsecondary
5954techniciansecondary
6163retiredsecondary
6456admin.secondary
6551blue-collarsecondary
7456retiredsecondary
7554managementtertiary
\n", "
" ], "text/plain": [ " age job education\n", "46 55 blue-collar primary\n", "49 61 admin. unknown\n", "54 53 blue-collar secondary\n", "56 57 management secondary\n", "59 54 technician secondary\n", "61 63 retired secondary\n", "64 56 admin. secondary\n", "65 51 blue-collar secondary\n", "74 56 retired secondary\n", "75 54 management tertiary" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_sub.iloc[10:20, [0,1,3]]" ] }, { "cell_type": "code", "execution_count": 37, "id": "990ecf13", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
50319studentsingleprimaryno103nonocellular10jul1042-10unknownyes
190019studentsingleunknownno0nonocellular11feb1233-10unknownno
278019studentsinglesecondaryno302nonocellular16jul2051-10unknownyes
323319studentsingleunknownno1169nonocellular6feb46318-10unknownno
99920studentsinglesecondaryno291nonotelephone11may17253715failureno
\n", "
" ], "text/plain": [ " age job marital education default balance housing loan \\\n", "503 19 student single primary no 103 no no \n", "1900 19 student single unknown no 0 no no \n", "2780 19 student single secondary no 302 no no \n", "3233 19 student single unknown no 1169 no no \n", "999 20 student single secondary no 291 no no \n", "\n", " contact day month duration campaign pdays previous poutcome y \n", "503 cellular 10 jul 104 2 -1 0 unknown yes \n", "1900 cellular 11 feb 123 3 -1 0 unknown no \n", "2780 cellular 16 jul 205 1 -1 0 unknown yes \n", "3233 cellular 6 feb 463 18 -1 0 unknown no \n", "999 telephone 11 may 172 5 371 5 failure no " ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_sorted = df.sort_values(by='age')\n", "df_sorted.head()" ] }, { "cell_type": "code", "execution_count": 39, "id": "5a88de33", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviouspoutcomey
323319studentsingleunknownno1169nonocellular6feb46318-10unknownno
278019studentsinglesecondaryno302nonocellular16jul2051-10unknownyes
50319studentsingleprimaryno103nonocellular10jul1042-10unknownyes
190019studentsingleunknownno0nonocellular11feb1233-10unknownno
172520studentsinglesecondaryno1191nonocellular12feb2741-10unknownno
1320studentsinglesecondaryno502nonocellular30apr2611-10unknownyes
99920studentsinglesecondaryno291nonotelephone11may17253715failureno
415221studentsinglesecondaryno6844nonocellular14aug12631277otherno
11021studentsinglesecondaryno2488nonocellular30jun25861693successyes
204621servicessinglesecondaryno1903yesnounknown29may1072-10unknownno
\n", "
" ], "text/plain": [ " age job marital education default balance housing loan \\\n", "3233 19 student single unknown no 1169 no no \n", "2780 19 student single secondary no 302 no no \n", "503 19 student single primary no 103 no no \n", "1900 19 student single unknown no 0 no no \n", "1725 20 student single secondary no 1191 no no \n", "13 20 student single secondary no 502 no no \n", "999 20 student single secondary no 291 no no \n", "4152 21 student single secondary no 6844 no no \n", "110 21 student single secondary no 2488 no no \n", "2046 21 services single secondary no 1903 yes no \n", "\n", " contact day month duration campaign pdays previous poutcome y \n", "3233 cellular 6 feb 463 18 -1 0 unknown no \n", "2780 cellular 16 jul 205 1 -1 0 unknown yes \n", "503 cellular 10 jul 104 2 -1 0 unknown yes \n", "1900 cellular 11 feb 123 3 -1 0 unknown no \n", "1725 cellular 12 feb 274 1 -1 0 unknown no \n", "13 cellular 30 apr 261 1 -1 0 unknown yes \n", "999 telephone 11 may 172 5 371 5 failure no \n", "4152 cellular 14 aug 126 3 127 7 other no \n", "110 cellular 30 jun 258 6 169 3 success yes \n", "2046 unknown 29 may 107 2 -1 0 unknown no " ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_sorted = df.sort_values(by=['age','balance'], ascending=[True, False])\n", "df_sorted.head(10)" ] }, { "cell_type": "code", "execution_count": 40, "id": "556aa66a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agebalance
min19.000000-3313.000000
mean41.1700951422.657819
max87.00000071188.000000
\n", "
" ], "text/plain": [ " age balance\n", "min 19.000000 -3313.000000\n", "mean 41.170095 1422.657819\n", "max 87.000000 71188.000000" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['age','balance']].agg(['min','mean','max'])" ] }, { "cell_type": "code", "execution_count": 29, "id": "c553896f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([0.0036106 , 0.03070638, 0.04017201, 0.02826678, 0.0199071 ,\n", " 0.01873609, 0.00325279, 0.00117101, 0.00097584, 0.00026022]),\n", " array([19. , 25.8, 32.6, 39.4, 46.2, 53. , 59.8, 66.6, 73.4, 80.2, 87. ]),\n", " )" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuuUlEQVR4nO3df3DU9Z3H8deanxRIxIAJsSFssFd+qmTXi8kZ8aY0NHC9Mo1n4E6k2jKTqz1I9rjjR+xA0bpomRuPg4QBg2PkiplO0ONKlARPcnisWGiClMvRdIgGMHuZpGcWZUxC+N4fGb7tusuPDWjMZ5+Pme+M+9n39/v5fD9mzMvPd/cTh2VZlgAAAAx1y3APAAAA4PNE2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGC12uAfwRbp06ZI+/PBDjR07Vg6HY7iHAwAAroNlWTp//rzS09N1yy2Rr9NEVdj58MMPlZGRMdzDAAAAQ3DmzBl99atfjfi8qAo7Y8eOlTQ4WUlJScM8GgAAcD0CgYAyMjLs3+ORiqqwc/nRVVJSEmEHAIARZqgfQeEDygAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYbUhhp6KiQk6nU4mJiXK5XDp06NBV6xsbG+VyuZSYmKisrCxt27btirWvvPKKHA6HFi5ceMP9AgAARBx2ampqVFpaqvLycjU1NSk/P1+FhYVqb28PW9/W1qb58+crPz9fTU1NWrt2rZYvX67a2tqQ2g8++EArV65Ufn7+DfcLAAAgSQ7LsqxITsjJyVF2drYqKyvttmnTpmnhwoXyer0h9atWrdLevXvV0tJit5WUlOj48ePy+Xx228DAgObMmaPHHntMhw4d0kcffaTXXnttyP2GEwgElJycrJ6eHiUlJUVy2/iSmLx633APIWLvb1ww3EMAgBHtRn9/R7Sy09fXp2PHjqmgoCCovaCgQIcPHw57js/nC6mfN2+ejh49qv7+frttw4YNmjBhgr7//e/flH4lqbe3V4FAIOgAAADRJaKw09XVpYGBAaWmpga1p6amyu/3hz3H7/eHrb948aK6urokSf/1X/+lqqoq7dix46b1K0ler1fJycn2kZGRcc17BAAAZhnSB5QdDkfQa8uyQtquVX+5/fz583rkkUe0Y8cOjR8//qb2u2bNGvX09NjHmTNnrnp9AABgnthIisePH6+YmJiQ1ZTOzs6QVZfL0tLSwtbHxsYqJSVFJ0+e1Pvvv69vf/vb9vuXLl0aHFxsrE6dOqWMjIyI+5WkhIQEJSQkRHKLAADAMBGt7MTHx8vlcqmhoSGovaGhQXl5eWHPyc3NDamvr6+X2+1WXFycpk6dqhMnTqi5udk+/vIv/1J//ud/rubmZmVkZAypXwAAACnClR1J8ng8WrJkidxut3Jzc7V9+3a1t7erpKRE0uCjo3Pnzqm6ulrS4DevtmzZIo/Ho2XLlsnn86mqqkq7d++WJCUmJmrmzJlBfdx6662SFNR+rX4BAADCiTjsFBcXq7u7Wxs2bFBHR4dmzpypuro6ZWZmSpI6OjqC9r5xOp2qq6tTWVmZtm7dqvT0dG3evFlFRUU3tV8AAIBwIt5nZyRjn52Rj312ACD6fKH77AAAAIw0hB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNGGFHYqKirkdDqVmJgol8ulQ4cOXbW+sbFRLpdLiYmJysrK0rZt24Le37Nnj9xut2699VaNHj1a99xzj15++eWgmvXr18vhcAQdaWlpQxk+AACIIhGHnZqaGpWWlqq8vFxNTU3Kz89XYWGh2tvbw9a3tbVp/vz5ys/PV1NTk9auXavly5ertrbWrrnttttUXl4un8+n9957T4899pgee+wx7d+/P+haM2bMUEdHh32cOHEi0uEDAIAo47Asy4rkhJycHGVnZ6uystJumzZtmhYuXCiv1xtSv2rVKu3du1ctLS12W0lJiY4fPy6fz3fFfrKzs7VgwQI99dRTkgZXdl577TU1NzdHMtwggUBAycnJ6unpUVJS0pCvg+EzefW+4R5CxN7fuGC4hwAAI9qN/v6OaGWnr69Px44dU0FBQVB7QUGBDh8+HPYcn88XUj9v3jwdPXpU/f39IfWWZenNN9/UqVOn9MADDwS919raqvT0dDmdTi1atEinT5+OZPgAACAKxUZS3NXVpYGBAaWmpga1p6amyu/3hz3H7/eHrb948aK6uro0ceJESVJPT4/uuOMO9fb2KiYmRhUVFfrmN79pn5OTk6Pq6mr9yZ/8if73f/9XTz/9tPLy8nTy5EmlpKSE7bu3t1e9vb3260AgEMntAgAAA0QUdi5zOBxBry3LCmm7Vv1n28eOHavm5mZ9/PHHevPNN+XxeJSVlaUHH3xQklRYWGjXzpo1S7m5uZoyZYpeeukleTyesP16vV795Cc/iejeAACAWSIKO+PHj1dMTEzIKk5nZ2fI6s1laWlpYetjY2ODVmRuueUW3XnnnZKke+65Ry0tLfJ6vXbY+azRo0dr1qxZam1tveJ416xZExSEAoGAMjIyrnqPAADALBF9Zic+Pl4ul0sNDQ1B7Q0NDcrLywt7Tm5ubkh9fX293G634uLirtiXZVlBj6A+q7e3Vy0tLfZjsHASEhKUlJQUdAAAgOgS8WMsj8ejJUuWyO12Kzc3V9u3b1d7e7tKSkokDa6mnDt3TtXV1ZIGv3m1ZcsWeTweLVu2TD6fT1VVVdq9e7d9Ta/XK7fbrSlTpqivr091dXWqrq4O+sbXypUr9e1vf1uTJk1SZ2ennn76aQUCAS1duvRG5wAAABgs4rBTXFys7u5ubdiwQR0dHZo5c6bq6uqUmZkpSero6Ajac8fpdKqurk5lZWXaunWr0tPTtXnzZhUVFdk1n3zyiX74wx/q7NmzGjVqlKZOnapdu3apuLjYrjl79qwWL16srq4uTZgwQffdd5/eeecdu18AAIBwIt5nZyRjn52Rj312ACD6fKH77AAAAIw0hB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKPFDvcAMHwmr9433EMAAOBzx8oOAAAw2pDCTkVFhZxOpxITE+VyuXTo0KGr1jc2NsrlcikxMVFZWVnatm1b0Pt79uyR2+3WrbfeqtGjR+uee+7Ryy+/fMP9AgAARBx2ampqVFpaqvLycjU1NSk/P1+FhYVqb28PW9/W1qb58+crPz9fTU1NWrt2rZYvX67a2lq75rbbblN5ebl8Pp/ee+89PfbYY3rssce0f//+IfcLAAAgSQ7LsqxITsjJyVF2drYqKyvttmnTpmnhwoXyer0h9atWrdLevXvV0tJit5WUlOj48ePy+XxX7Cc7O1sLFizQU089NaR+wwkEAkpOTlZPT4+SkpKu6xyT8ZmdL8b7GxcM9xAAYES70d/fEa3s9PX16dixYyooKAhqLygo0OHDh8Oe4/P5QurnzZuno0ePqr+/P6Tesiy9+eabOnXqlB544IEh9ytJvb29CgQCQQcAAIguEYWdrq4uDQwMKDU1Nag9NTVVfr8/7Dl+vz9s/cWLF9XV1WW39fT0aMyYMYqPj9eCBQv0L//yL/rmN7855H4lyev1Kjk52T4yMjIiuV0AAGCAIX1A2eFwBL22LCuk7Vr1n20fO3asmpub9atf/Uo//elP5fF4dPDgwRvqd82aNerp6bGPM2fOXPW+AACAeSLaZ2f8+PGKiYkJWU3p7OwMWXW5LC0tLWx9bGysUlJS7LZbbrlFd955pyTpnnvuUUtLi7xerx588MEh9StJCQkJSkhIiOQWAQCAYSJa2YmPj5fL5VJDQ0NQe0NDg/Ly8sKek5ubG1JfX18vt9utuLi4K/ZlWZZ6e3uH3C8AAIA0hB2UPR6PlixZIrfbrdzcXG3fvl3t7e0qKSmRNPjo6Ny5c6qurpY0+M2rLVu2yOPxaNmyZfL5fKqqqtLu3bvta3q9Xrndbk2ZMkV9fX2qq6tTdXV10DevrtUvAABAOBGHneLiYnV3d2vDhg3q6OjQzJkzVVdXp8zMTElSR0dH0N43TqdTdXV1Kisr09atW5Wenq7NmzerqKjIrvnkk0/0wx/+UGfPntWoUaM0depU7dq1S8XFxdfdLwAAQDgR77MzkrHPTjD22flisM8OANyYL3SfHQAAgJGGsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGC3iPxcBIDIjdadqdn4GYApWdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYbUtipqKiQ0+lUYmKiXC6XDh06dNX6xsZGuVwuJSYmKisrS9u2bQt6f8eOHcrPz9e4ceM0btw4zZ07V++++25Qzfr16+VwOIKOtLS0oQwfAABEkYjDTk1NjUpLS1VeXq6mpibl5+ersLBQ7e3tYevb2to0f/585efnq6mpSWvXrtXy5ctVW1tr1xw8eFCLFy/WW2+9JZ/Pp0mTJqmgoEDnzp0LutaMGTPU0dFhHydOnIh0+AAAIMo4LMuyIjkhJydH2dnZqqystNumTZumhQsXyuv1htSvWrVKe/fuVUtLi91WUlKi48ePy+fzhe1jYGBA48aN05YtW/Too49KGlzZee2119Tc3BzJcIMEAgElJyerp6dHSUlJQ76OKSav3jfcQ8CX2PsbFwz3EABA0o3//o5oZaevr0/Hjh1TQUFBUHtBQYEOHz4c9hyfzxdSP2/ePB09elT9/f1hz7lw4YL6+/t12223BbW3trYqPT1dTqdTixYt0unTp6863t7eXgUCgaADAABEl4jCTldXlwYGBpSamhrUnpqaKr/fH/Ycv98ftv7ixYvq6uoKe87q1at1xx13aO7cuXZbTk6OqqurtX//fu3YsUN+v195eXnq7u6+4ni9Xq+Sk5PtIyMj43pvFQAAGGJIH1B2OBxBry3LCmm7Vn24dkl67rnntHv3bu3Zs0eJiYl2e2FhoYqKijRr1izNnTtX+/YNPoJ56aWXrtjvmjVr1NPTYx9nzpy59s0BAACjxEZSPH78eMXExISs4nR2doas3lyWlpYWtj42NlYpKSlB7Zs2bdIzzzyjAwcO6K677rrqWEaPHq1Zs2aptbX1ijUJCQlKSEi46nUAAIDZIlrZiY+Pl8vlUkNDQ1B7Q0OD8vLywp6Tm5sbUl9fXy+32624uDi77Wc/+5meeuopvfHGG3K73dccS29vr1paWjRx4sRIbgEAAESZiB9jeTwevfDCC9q5c6daWlpUVlam9vZ2lZSUSBp8dHT5G1TS4DevPvjgA3k8HrW0tGjnzp2qqqrSypUr7ZrnnntOTz75pHbu3KnJkyfL7/fL7/fr448/tmtWrlypxsZGtbW16ciRI3rooYcUCAS0dOnSG7l/AABguIgeY0lScXGxuru7tWHDBnV0dGjmzJmqq6tTZmamJKmjoyNozx2n06m6ujqVlZVp69atSk9P1+bNm1VUVGTXVFRUqK+vTw899FBQX+vWrdP69eslSWfPntXixYvV1dWlCRMm6L777tM777xj9wsAABBOxPvsjGTssxOMfXZwNeyzA+DL4gvdZwcAAGCkIewAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYbUtipqKiQ0+lUYmKiXC6XDh06dNX6xsZGuVwuJSYmKisrS9u2bQt6f8eOHcrPz9e4ceM0btw4zZ07V+++++4N9wsAABBx2KmpqVFpaanKy8vV1NSk/Px8FRYWqr29PWx9W1ub5s+fr/z8fDU1NWnt2rVavny5amtr7ZqDBw9q8eLFeuutt+Tz+TRp0iQVFBTo3LlzQ+4XAABAkhyWZVmRnJCTk6Ps7GxVVlbabdOmTdPChQvl9XpD6letWqW9e/eqpaXFbispKdHx48fl8/nC9jEwMKBx48Zpy5YtevTRR4fUbziBQEDJycnq6elRUlLSdZ1jssmr9w33EPAl9v7GBcM9BACQdOO/vyNa2enr69OxY8dUUFAQ1F5QUKDDhw+HPcfn84XUz5s3T0ePHlV/f3/Ycy5cuKD+/n7ddtttQ+5Xknp7exUIBIIOAAAQXSIKO11dXRoYGFBqampQe2pqqvx+f9hz/H5/2PqLFy+qq6sr7DmrV6/WHXfcoblz5w65X0nyer1KTk62j4yMjGveIwAAMEvsUE5yOBxBry3LCmm7Vn24dkl67rnntHv3bh08eFCJiYk31O+aNWvk8Xjs14FAgMADXKeR+JiTR28Awoko7IwfP14xMTEhqymdnZ0hqy6XpaWlha2PjY1VSkpKUPumTZv0zDPP6MCBA7rrrrtuqF9JSkhIUEJCwnXdGwAAMFNEj7Hi4+PlcrnU0NAQ1N7Q0KC8vLyw5+Tm5obU19fXy+12Ky4uzm772c9+pqeeekpvvPGG3G73DfcLAAAgDeExlsfj0ZIlS+R2u5Wbm6vt27ervb1dJSUlkgYfHZ07d07V1dWSBr95tWXLFnk8Hi1btkw+n09VVVXavXu3fc3nnntOP/7xj/Xzn/9ckydPtldwxowZozFjxlxXvwAAAOFEHHaKi4vV3d2tDRs2qKOjQzNnzlRdXZ0yMzMlSR0dHUF73zidTtXV1amsrExbt25Venq6Nm/erKKiIrumoqJCfX19euihh4L6WrdundavX39d/QIAAIQT8T47Ixn77AQbiR9ABa6GDygDZvpC99kBAAAYaQg7AADAaIQdAABgNMIOAAAw2pB2UAaAL6OR+KF7PlQNfP5Y2QEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGhDCjsVFRVyOp1KTEyUy+XSoUOHrlrf2Ngol8ulxMREZWVladu2bUHvnzx5UkVFRZo8ebIcDoeef/75kGusX79eDocj6EhLSxvK8AEAQBSJOOzU1NSotLRU5eXlampqUn5+vgoLC9Xe3h62vq2tTfPnz1d+fr6ampq0du1aLV++XLW1tXbNhQsXlJWVpY0bN141wMyYMUMdHR32ceLEiUiHDwAAokxspCf80z/9k77//e/rBz/4gSTp+eef1/79+1VZWSmv1xtSv23bNk2aNMlerZk2bZqOHj2qTZs2qaioSJJ077336t5775UkrV69+sqDjY1lNQcAAEQkopWdvr4+HTt2TAUFBUHtBQUFOnz4cNhzfD5fSP28efN09OhR9ff3RzTY1tZWpaeny+l0atGiRTp9+vRV63t7exUIBIIOAAAQXSIKO11dXRoYGFBqampQe2pqqvx+f9hz/H5/2PqLFy+qq6vruvvOyclRdXW19u/frx07dsjv9ysvL0/d3d1XPMfr9So5Odk+MjIyrrs/AABghiF9QNnhcAS9tiwrpO1a9eHar6awsFBFRUWaNWuW5s6dq3379kmSXnrppSues2bNGvX09NjHmTNnrrs/AABghog+szN+/HjFxMSErOJ0dnaGrN5clpaWFrY+NjZWKSkpEQ73D0aPHq1Zs2aptbX1ijUJCQlKSEgYch8AAGDki2hlJz4+Xi6XSw0NDUHtDQ0NysvLC3tObm5uSH19fb3cbrfi4uIiHO4f9Pb2qqWlRRMnThzyNQAAgPkifozl8Xj0wgsvaOfOnWppaVFZWZna29tVUlIiafDR0aOPPmrXl5SU6IMPPpDH41FLS4t27typqqoqrVy50q7p6+tTc3Ozmpub1dfXp3Pnzqm5uVm/+93v7JqVK1eqsbFRbW1tOnLkiB566CEFAgEtXbr0Ru4fAAAYLuKvnhcXF6u7u1sbNmxQR0eHZs6cqbq6OmVmZkqSOjo6gvbccTqdqqurU1lZmbZu3ar09HRt3rzZ/tq5JH344YeaPXu2/XrTpk3atGmT5syZo4MHD0qSzp49q8WLF6urq0sTJkzQfffdp3feecfuFwAAIByHdfnTwlEgEAgoOTlZPT09SkpKGu7hDLvJq/cN9xCAqPf+xgXDPQTgS+9Gf3/zt7EAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMNKexUVFTI6XQqMTFRLpdLhw4dump9Y2OjXC6XEhMTlZWVpW3btgW9f/LkSRUVFWny5MlyOBx6/vnnb0q/AAAAEYedmpoalZaWqry8XE1NTcrPz1dhYaHa29vD1re1tWn+/PnKz89XU1OT1q5dq+XLl6u2ttauuXDhgrKysrRx40alpaXdlH4BAAAkyWFZlhXJCTk5OcrOzlZlZaXdNm3aNC1cuFBerzekftWqVdq7d69aWlrstpKSEh0/flw+ny+kfvLkySotLVVpaekN9RtOIBBQcnKyenp6lJSUdF3nmGzy6n3DPQQg6r2/ccFwDwH40rvR398Rrez09fXp2LFjKigoCGovKCjQ4cOHw57j8/lC6ufNm6ejR4+qv7//c+sXAABAkmIjKe7q6tLAwIBSU1OD2lNTU+X3+8Oe4/f7w9ZfvHhRXV1dmjhx4ufSryT19vaqt7fXfh0IBK7ZFwAAMMuQPqDscDiCXluWFdJ2rfpw7Te7X6/Xq+TkZPvIyMiIqD8AADDyRRR2xo8fr5iYmJDVlM7OzpBVl8vS0tLC1sfGxiolJeVz61eS1qxZo56eHvs4c+bMdfUHAADMEVHYiY+Pl8vlUkNDQ1B7Q0OD8vLywp6Tm5sbUl9fXy+32624uLjPrV9JSkhIUFJSUtABAACiS0Sf2ZEkj8ejJUuWyO12Kzc3V9u3b1d7e7tKSkokDa6mnDt3TtXV1ZIGv3m1ZcsWeTweLVu2TD6fT1VVVdq9e7d9zb6+Pv33f/+3/c/nzp1Tc3OzxowZozvvvPO6+gUAAAgn4rBTXFys7u5ubdiwQR0dHZo5c6bq6uqUmZkpSero6Aja+8bpdKqurk5lZWXaunWr0tPTtXnzZhUVFdk1H374oWbPnm2/3rRpkzZt2qQ5c+bo4MGD19UvAABAOBHvszOSsc9OMPbZAYYf++wA1/aF7rMDAAAw0hB2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjDSnsVFRUyOl0KjExUS6XS4cOHbpqfWNjo1wulxITE5WVlaVt27aF1NTW1mr69OlKSEjQ9OnT9eqrrwa9v379ejkcjqAjLS1tKMMHAABRJOKwU1NTo9LSUpWXl6upqUn5+fkqLCxUe3t72Pq2tjbNnz9f+fn5ampq0tq1a7V8+XLV1tbaNT6fT8XFxVqyZImOHz+uJUuW6OGHH9aRI0eCrjVjxgx1dHTYx4kTJyIdPgAAiDIOy7KsSE7IyclRdna2Kisr7bZp06Zp4cKF8nq9IfWrVq3S3r171dLSYreVlJTo+PHj8vl8kqTi4mIFAgG9/vrrds23vvUtjRs3Trt375Y0uLLz2muvqbm5OaIb/GOBQEDJycnq6elRUlLSkK9jismr9w33EICo9/7GBcM9BOBL70Z/f0e0stPX16djx46poKAgqL2goECHDx8Oe47P5wupnzdvno4ePar+/v6r1nz2mq2trUpPT5fT6dSiRYt0+vTpq463t7dXgUAg6AAAANElorDT1dWlgYEBpaamBrWnpqbK7/eHPcfv94etv3jxorq6uq5a88fXzMnJUXV1tfbv368dO3bI7/crLy9P3d3dVxyv1+tVcnKyfWRkZERyuwAAwABD+oCyw+EIem1ZVkjbteo/236taxYWFqqoqEizZs3S3LlztW/f4COYl1566Yr9rlmzRj09PfZx5syZa9wZAAAwTWwkxePHj1dMTEzIKk5nZ2fIysxlaWlpYetjY2OVkpJy1ZorXVOSRo8erVmzZqm1tfWKNQkJCUpISLjqPQEAALNFtLITHx8vl8ulhoaGoPaGhgbl5eWFPSc3Nzekvr6+Xm63W3FxcVetudI1pcHP47S0tGjixImR3AIAAIgyET/G8ng8euGFF7Rz5061tLSorKxM7e3tKikpkTT46OjRRx+160tKSvTBBx/I4/GopaVFO3fuVFVVlVauXGnXrFixQvX19Xr22Wf1P//zP3r22Wd14MABlZaW2jUrV65UY2Oj2tradOTIET300EMKBAJaunTpDdw+AAAwXUSPsaTBr4l3d3drw4YN6ujo0MyZM1VXV6fMzExJUkdHR9CeO06nU3V1dSorK9PWrVuVnp6uzZs3q6ioyK7Jy8vTK6+8oieffFI//vGPNWXKFNXU1CgnJ8euOXv2rBYvXqyuri5NmDBB9913n9555x27XwAAgHAi3mdnJGOfnWDsswMMP/bZAa7tC91nBwAAYKQh7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMFrE++wgPL7GDQDAlxMrOwAAwGiEHQAAYDQeYwHAMBqJj8DZ9RkjDSs7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGixwz0AAMDIMnn1vuEeQsTe37hguIeAYcTKDgAAMBorOwAA47EaFd1Y2QEAAEYj7AAAAKMRdgAAgNGGFHYqKirkdDqVmJgol8ulQ4cOXbW+sbFRLpdLiYmJysrK0rZt20JqamtrNX36dCUkJGj69Ol69dVXb7hfAACAiMNOTU2NSktLVV5erqamJuXn56uwsFDt7e1h69va2jR//nzl5+erqalJa9eu1fLly1VbW2vX+Hw+FRcXa8mSJTp+/LiWLFmihx9+WEeOHBlyvwAAAJLksCzLiuSEnJwcZWdnq7Ky0m6bNm2aFi5cKK/XG1K/atUq7d27Vy0tLXZbSUmJjh8/Lp/PJ0kqLi5WIBDQ66+/btd861vf0rhx47R79+4h9RtOIBBQcnKyenp6lJSUFMltX9NI/KQ/AAA30+f1DbIb/f0d0VfP+/r6dOzYMa1evTqovaCgQIcPHw57js/nU0FBQVDbvHnzVFVVpf7+fsXFxcnn86msrCyk5vnnnx9yv5LU29ur3t5e+3VPT4+kwUm72S71Xrjp1wQAYCT5PH6//vF1I1yfsUUUdrq6ujQwMKDU1NSg9tTUVPn9/rDn+P3+sPUXL15UV1eXJk6ceMWay9ccSr+S5PV69ZOf/CSkPSMj48o3CQAAhiT5+c/3+ufPn1dycnLE5w1pU0GHwxH02rKskLZr1X+2/XquGWm/a9askcfjsV9funRJv//975WSknLV826mQCCgjIwMnTlz5qY/OhtJmIdBzMMfMBeDmIdBzMMfMBeD/ngexo4dq/Pnzys9PX1I14oo7IwfP14xMTEhqymdnZ0hqy6XpaWlha2PjY1VSkrKVWsuX3Mo/UpSQkKCEhISgtpuvfXWK9/g5ygpKSmqf2gvYx4GMQ9/wFwMYh4GMQ9/wFwMujwPQ1nRuSyib2PFx8fL5XKpoaEhqL2hoUF5eXlhz8nNzQ2pr6+vl9vtVlxc3FVrLl9zKP0CAABIQ3iM5fF4tGTJErndbuXm5mr79u1qb29XSUmJpMFHR+fOnVN1dbWkwW9ebdmyRR6PR8uWLZPP51NVVZX9LStJWrFihR544AE9++yz+s53vqN/+7d/04EDB/T2229fd78AAABhWUOwdetWKzMz04qPj7eys7OtxsZG+72lS5dac+bMCao/ePCgNXv2bCs+Pt6aPHmyVVlZGXLNX/ziF9bXv/51Ky4uzpo6dapVW1sbUb9fVp9++qm1bt0669NPPx3uoQwr5mEQ8/AHzMUg5mEQ8/AHzMWgmzkPEe+zAwAAMJLwt7EAAIDRCDsAAMBohB0AAGA0wg4AADAaYecm8Hq9uvfeezV27FjdfvvtWrhwoU6dOhVUY1mW1q9fr/T0dI0aNUoPPvigTp48OUwj/nxUVlbqrrvusjeAys3NDfrjrtEwB+F4vV45HA6VlpbabdEyF+vXr5fD4Qg60tLS7PejZR4k6dy5c3rkkUeUkpKir3zlK7rnnnt07Ngx+/1omYvJkyeH/Ew4HA498cQTkqJnHi5evKgnn3xSTqdTo0aNUlZWljZs2KBLly7ZNdEyF+fPn1dpaakyMzM1atQo5eXl6Ve/+pX9/k2Zhxv+PhesefPmWS+++KL1m9/8xmpubrYWLFhgTZo0yfr444/tmo0bN1pjx461amtrrRMnTljFxcXWxIkTrUAgMIwjv7n27t1r7du3zzp16pR16tQpa+3atVZcXJz1m9/8xrKs6JiDz3r33XetyZMnW3fddZe1YsUKuz1a5mLdunXWjBkzrI6ODvvo7Oy034+Wefj9739vZWZmWt/73vesI0eOWG1tbdaBAwes3/3ud3ZNtMxFZ2dn0M9DQ0ODJcl66623LMuKnnl4+umnrZSUFOuXv/yl1dbWZv3iF7+wxowZYz3//PN2TbTMxcMPP2xNnz7damxstFpbW61169ZZSUlJ1tmzZy3LujnzQNj5HHR2dlqS7H2ALl26ZKWlpVkbN260az799FMrOTnZ2rZt23AN8wsxbtw464UXXojKOTh//rz1ta99zWpoaLDmzJljh51omot169ZZd999d9j3omkeVq1aZd1///1XfD+a5uKzVqxYYU2ZMsW6dOlSVM3DggULrMcffzyo7bvf/a71yCOPWJYVPT8TFy5csGJiYqxf/vKXQe133323VV5eftPmgcdYn4Oenh5J0m233SZJamtrk9/vV0FBgV2TkJCgOXPm6PDhw8Myxs/bwMCAXnnlFX3yySfKzc2Nyjl44okntGDBAs2dOzeoPdrmorW1Venp6XI6nVq0aJFOnz4tKbrmYe/evXK73fqrv/or3X777Zo9e7Z27Nhhvx9Nc/HH+vr6tGvXLj3++ONyOBxRNQ/333+/3nzzTf32t7+VJB0/flxvv/225s+fLyl6fiYuXryogYEBJSYmBrWPGjVKb7/99k2bB8LOTWZZljwej+6//37NnDlTkuw/YPrZP1qampoa8sdNR7oTJ05ozJgxSkhIUElJiV599VVNnz49quZAkl555RX9+te/ltfrDXkvmuYiJydH1dXV2r9/v3bs2CG/36+8vDx1d3dH1TycPn1alZWV+trXvqb9+/erpKREy5cvt/+sTjTNxR977bXX9NFHH+l73/uepOiah1WrVmnx4sWaOnWq4uLiNHv2bJWWlmrx4sWSomcuxo4dq9zcXD311FP68MMPNTAwoF27dunIkSPq6Oi4afMQ8d/GwtX96Ec/0nvvvRf0d70uczgcQa8tywppG+m+/vWvq7m5WR999JFqa2u1dOlSNTY22u9HwxycOXNGK1asUH19fcj/rfyxaJiLwsJC+59nzZql3NxcTZkyRS+99JLuu+8+SdExD5cuXZLb7dYzzzwjSZo9e7ZOnjypyspKPfroo3ZdNMzFH6uqqlJhYaHS09OD2qNhHmpqarRr1y79/Oc/14wZM9Tc3KzS0lKlp6dr6dKldl00zMXLL7+sxx9/XHfccYdiYmKUnZ2tv/7rv9avf/1ru+ZG54GVnZvo7/7u77R371699dZb+upXv2q3X/72yWdTaGdnZ0haHeni4+N15513yu12y+v16u6779Y///M/R9UcHDt2TJ2dnXK5XIqNjVVsbKwaGxu1efNmxcbG2vcbDXPxWaNHj9asWbPU2toaVT8TEydO1PTp04Papk2bpvb2dknR9d+Iyz744AMdOHBAP/jBD+y2aJqHf/iHf9Dq1au1aNEizZo1S0uWLFFZWZm9GhxNczFlyhQ1Njbq448/1pkzZ/Tuu++qv79fTqfzps0DYecmsCxLP/rRj7Rnzx79x3/8h5xOZ9D7l/+FNTQ02G19fX1qbGxUXl7eFz3cL5RlWert7Y2qOfjGN76hEydOqLm52T7cbrf+5m/+Rs3NzcrKyoqaufis3t5etbS0aOLEiVH1M/Fnf/ZnIdtR/Pa3v1VmZqak6PxvxIsvvqjbb79dCxYssNuiaR4uXLigW24J/hUcExNjf/U8mubistGjR2vixIn6v//7P+3fv1/f+c53bt483NjnqGFZlvW3f/u3VnJysnXw4MGgr1ReuHDBrtm4caOVnJxs7dmzxzpx4oS1ePFi475CuGbNGus///M/rba2Nuu9996z1q5da91yyy1WfX29ZVnRMQdX8sffxrKs6JmLv//7v7cOHjxonT592nrnnXesv/iLv7DGjh1rvf/++5ZlRc88vPvuu1ZsbKz105/+1GptbbX+9V//1frKV75i7dq1y66JlrmwLMsaGBiwJk2aZK1atSrkvWiZh6VLl1p33HGH/dXzPXv2WOPHj7f+8R//0a6Jlrl44403rNdff906ffq0VV9fb919993Wn/7pn1p9fX2WZd2ceSDs3ASSwh4vvviiXXPp0iVr3bp1VlpampWQkGA98MAD1okTJ4Zv0J+Dxx9/3MrMzLTi4+OtCRMmWN/4xjfsoGNZ0TEHV/LZsBMtc3F5P4y4uDgrPT3d+u53v2udPHnSfj9a5sGyLOvf//3frZkzZ1oJCQnW1KlTre3btwe9H01zsX//fkuSderUqZD3omUeAoGAtWLFCmvSpElWYmKilZWVZZWXl1u9vb12TbTMRU1NjZWVlWXFx8dbaWlp1hNPPGF99NFH9vs3Yx4clmVZN3MZCgAA4MuEz+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYLT/Bzao+vSUggCIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# use matplotlib to draw histogram\n", "plt.hist(df['age'], bins=10, density=1)" ] }, { "cell_type": "code", "execution_count": 32, "id": "e1ae327d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Li_Sh\\AppData\\Local\\Temp\\ipykernel_19216\\4080712448.py:2: UserWarning: \n", "\n", "`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n", "\n", "Please adapt your code to use either `displot` (a figure-level function with\n", "similar flexibility) or `histplot` (an axes-level function for histograms).\n", "\n", "For a guide to updating your code to use the new functions, please see\n", "https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n", "\n", " sns.distplot(df['age'])\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABU60lEQVR4nO3deXxU5d028OvMnm0m+2QPCYsEwpoAAsbdWFDrgpVq61LElmqrkPpWgbphfagtDw+1FaiKWutGW9C6oBAVQSQFgYQ1rAlJyL7vmcnM3O8fkxmICZCESc4s1/fjfIAzZya/W5a5cq+SEEKAiIiIyIco5C6AiIiIaKgxABEREZHPYQAiIiIin8MARERERD6HAYiIiIh8DgMQERER+RwGICIiIvI5KrkLcEc2mw1lZWUICgqCJElyl0NERER9IIRAc3MzYmJioFBcuI+HAagXZWVliI+Pl7sMIiIiGoCSkhLExcVd8B4GoF4EBQUBsP8P1Ov1MldDREREfdHU1IT4+Hjn5/iFMAD1wjHspdfrGYCIiIg8TF+mr3ASNBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfI7sAWj16tVISkqCTqdDWloavvnmmwvev23bNqSlpUGn0yE5ORlr167t9vybb74JSZJ6PDo6OgazGURERORBZA1A69evx8KFC7F06VLk5uYiIyMDs2bNQnFxca/3FxYWYvbs2cjIyEBubi6WLFmCRx99FBs2bOh2n16vR3l5ebeHTqcbiiYRERGRB5CEEEKuLz5t2jRMnjwZa9ascV5LSUnBbbfdhuXLl/e4/4knnsBHH32E/Px857UFCxZg//79yMnJAWDvAVq4cCEaGhr6XIfJZILJZHL+2nGWSGNjI4/CICIi8hBNTU0wGAx9+vyWrQfIbDZj7969yMzM7HY9MzMTO3fu7PU1OTk5Pe6/8cYbsWfPHnR2djqvtbS0IDExEXFxcbj55puRm5t7wVqWL18Og8HgfPAkeCIiIu8mWwCqqamB1WqF0Wjsdt1oNKKioqLX11RUVPR6v8ViQU1NDQBg9OjRePPNN/HRRx/hvffeg06nw8yZM3HixInz1rJ48WI0NjY6HyUlJZfYOiIiInJnsp8G//0TW4UQFzzFtbf7z71++eWX4/LLL3c+P3PmTEyePBl/+ctf8NJLL/X6nlqtFlqtdkD1ExERkeeRrQcoPDwcSqWyR29PVVVVj14eh6ioqF7vV6lUCAsL6/U1CoUCU6ZMuWAPEBEREfkW2XqANBoN0tLSkJ2djdtvv915PTs7G7feemuvr5k+fTo+/vjjbte2bNmC9PR0qNXqXl8jhEBeXh7GjRvnuuLJ4727q/eVhr25Z1rCIFZCRERykHUZfFZWFl577TW8/vrryM/Px6JFi1BcXIwFCxYAsM/Nue+++5z3L1iwAEVFRcjKykJ+fj5ef/11rFu3Do8//rjznueeew6bN29GQUEB8vLy8OCDDyIvL8/5nkRERESyzgGaO3cuamtrsWzZMpSXlyM1NRWbNm1CYmIiAKC8vLzbnkBJSUnYtGkTFi1ahJdffhkxMTF46aWXMGfOHOc9DQ0N+PnPf46KigoYDAZMmjQJ27dvx9SpU4e8fUREROSeZN0HyF31Zx8B8kwcAiMi8j4esQ8QERERkVxkXwZP5O7YW0RE5H3YA0REREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOSq5CyDyNDYhUNnUgbKGDrSZLZgYH4wgnVrusoiIqB8YgIj6od1sxRs7C3Gmvt157aujVbjmskjMGBEmY2VERNQfHAIj6iOTxYo3u8KPWikhKTwAMcE6mCw2fH64Au/uKobNJuQuk4iI+oA9QER9YLUJvPPfYpTUt8NPrcRDGcmIMuhgEwK5xfX4T14ZjlY04y9fncRj14+Uu1wiIroI9gAR9UFucT1OVrdAo1TggRnDEGXQAQAUkoS0xFDcOjEWALDqy+PYerRKzlKJiKgPGICILsJqE9h6zB5qrkuJRHyof4970hJDMDUpFEIAWf/MQ1NH51CXSURE/cAARHQRucX1qG/rRKBWhWlJ55/ofPO4aAyPCEB9Wyf+tu3UEFZIRET9xQBEdAEWm83Z+3PlqAhoVOf/K6NSKvDbH4wGAKzbUYjKpo4hqZGIiPqPAYjoAg6UNKK+rRNBWhWmJYVe9P7MMUakJYago9OGVV+cGIIKiYhoIBiAiC4gt6QeADB9eBjUyov/dZEkCU/OsvcC/XNPCU7XtA5qfURENDAMQETn0dzRiYJqe4AZHxfc59dNGRaKqy+LgNUm8ObO04NTHBERXRIGIKLzOFzWBAEgLsQPoQGafr123swkAMC/955BM1eEERG5HQYgovM4cKYBADA+1tDv12aMDMfwiAC0mCzYsPeMiysjIqJLxQBE1IvG9k4U1bYBAFIHEIAkScIDXb1Af88p4hEZRERuhgGIqBeHShshACSG+iPYv3/DXw53TIpFkE6FwppWbDte7doCiYjokjAAEfXicFkTAGBcXP97fxwCtCrclR4PAHj/u2KX1EVERK7BAET0PWaLDSV19uGvy4xBl/ReP0qPAwB8dbQK9a3mS66NiIhcgwGI6HuKalthFQLBfup+r/76vtFReqTG6tFpFfhof5mLKiQiokvFAET0PaeqWwAAwyMCIUnSJb/fnMn2XqB/czUYEZHbUMldAJG7OdW1+WFyRIBL3u+HE2Lwwqf5OFjaiOOVzRhlDMK7u/o+J+ieaQkuqYOIiM5iDxDROdrNVpQ1tAOw9wC5QligFteMjgTAXiAiInfBAER0jsKaFggAEYFa6P3ULntfxzDYR3ll3BOIiMgNyB6AVq9ejaSkJOh0OqSlpeGbb7654P3btm1DWloadDodkpOTsXbt2vPe+/7770OSJNx2220urpq81UkXD385XH1ZBIK0KlQ0dWBvcb1L35uIiPpP1gC0fv16LFy4EEuXLkVubi4yMjIwa9YsFBf3Pj+isLAQs2fPRkZGBnJzc7FkyRI8+uij2LBhQ497i4qK8PjjjyMjI2Owm0FepOCcCdCupFMrccMYIwDg0wPlLn1vIiLqP1kD0MqVK/Hggw9i/vz5SElJwapVqxAfH481a9b0ev/atWuRkJCAVatWISUlBfPnz8e8efOwYsWKbvdZrVb85Cc/wXPPPYfk5OSL1mEymdDU1NTtQb6nzWRBVbMJAJAc7toeIAC4eUI0AODTg+WwCQ6DERHJSbYAZDabsXfvXmRmZna7npmZiZ07d/b6mpycnB7333jjjdizZw86O8+euL1s2TJERETgwQcf7FMty5cvh8FgcD7i4+P72RryBme6Jj+HBWjgr3X9AskrRkTA4KdGdbMJp2taXf7+RETUd7IFoJqaGlitVhiNxm7XjUYjKioqen1NRUVFr/dbLBbU1NQAAL799lusW7cOr776ap9rWbx4MRobG52PkpKSfraGvIFj9+f4UP9BeX+NSoEbx9r//B4obRyUr0FERH0j+yTo7280J4S44OZzvd3vuN7c3Iyf/vSnePXVVxEeHt7nGrRaLfR6fbcH+Z4z9fYeoLgQv0H7GjePjwEAHC5thJWrwYiIZCPbRojh4eFQKpU9enuqqqp69PI4REVF9Xq/SqVCWFgYDh8+jNOnT+OWW25xPm+z2QAAKpUKx44dw/Dhw13cEvIGQgiU1Hf1AIUMTg8QAEwfHoYQfzXq2zpxurbV5ZOtiYiob2TrAdJoNEhLS0N2dna369nZ2ZgxY0avr5k+fXqP+7ds2YL09HSo1WqMHj0aBw8eRF5envPxwx/+ENdccw3y8vI4t4fOq76tE21mK5QKCdEG3aB9HbVS4VwNdriMw2BERHKRdQgsKysLr732Gl5//XXk5+dj0aJFKC4uxoIFCwDY5+bcd999zvsXLFiAoqIiZGVlIT8/H6+//jrWrVuHxx9/HACg0+mQmpra7REcHIygoCCkpqZCo7m0gy3Jeznm/0QbdFApB/evxaxU+2qww2VNXA1GRCQTWc8Cmzt3Lmpra7Fs2TKUl5cjNTUVmzZtQmJiIgCgvLy8255ASUlJ2LRpExYtWoSXX34ZMTExeOmllzBnzhy5mkBe4swQDH85zBgRBq1KgeYOC0rq2pAY5vol90REdGGyH4b68MMP4+GHH+71uTfffLPHtauuugr79u3r8/v39h5E31cyBBOgHbQqJVKi9cgracDhsiYGICIiGci+CoxIblabcB6AOlhL4L9vbIx9peGhskbnSkYiIho6DEDk8yqaOmCxCfiplQgLGJp5YiMjg6BWSmho60RpV/giIqKhwwBEPs/R+xMTrLvgHlSupFEpcJkxCIB9MjQREQ0tBiDyeeWNHQCAaMPgz/8519hYAwDgUCmHwYiIhhoDEPm8ikZ7D9Bg7v/Tm9HGIKgUEmpbzahsMg3p1yYi8nUMQOTThBCy9QBp1UqMjLTvBH2ImyISEQ0pBiDyafVtnTBZbFAqJEQEaYf86zuGwbgrNBHR0GIAIp/mGP6KDNJCqRiaCdDnSonSQyEBlU0m1DRzGIyIaKgwAJFPK5Np+MvBT6N0HojKYTAioqHDAEQ+rcIZgIZ2AvS5UmMcw2BcDk9ENFQYgMinlXcNgUXJGIBSYvSQAJQ2tKOu1SxbHUREvoQBiHxWR6cV9W2dAOTtAQrUqjAs3H4eGCdDExENDQYg8lmO5e8GPzX8NfKeC5zadTYYh8GIiIYGAxD5LLk2QOzNmK55QMV1bWhs75S5GiIi78cARD6rosneAyTn/B8Hg58aCV0n0R/hMBgR0aBjACKf5Th+whgkfwACzg6DHeIwGBHRoGMAIp8khEBVs70HKFI/9DtA92Zs1zDY6ZpWtJgsMldDROTdGIDIJzV1WNDRaYNCAiIC3SMAhQRoEBvsBwEgn71ARESDigGIfFJV1/yf0AAtVEr3+Wsw1jkMxnlARESDyX3+5ScaQpVd524Z3WT4y8GxK/Sp6ha0m60yV0NE5L0YgMgnOXqAIt1kArRDeJAWRr0WNgHkl3MYjIhosDAAkU+q7ApA7tYDBJydDM1hMCKiwcMARD7HvgLMPgQWqXevHiDg7DDYyaoWmDo5DEZENBgYgMjnlDd2wGSxrwALD9TIXU4PRr0WYQEaWGwCRyub5S6HiMgrMQCRzzneFSrCArVQKdzvr4AkSUiNtfcCHS7lMBgR0WBwv3/9iQbZicoWAIAxyP3m/zg4hsGOVTZzNRgR0SBgACKf4+gBcsf5Pw4xwTqE+KvRaRXYdrxa7nKIiLwOAxD5nONVXT1AbhyAJElyrgb7/FC5zNUQEXkfBiDyKUIIFHQFoAg3HgIDzu4K/WV+FUwWDoMREbkSAxD5lOpmE5pNFkgAwgPcbwXYueJD/aHXqdBssmDHiRq5yyEi8ioMQORTTnb1/oQGaNzqDLDeKM5ZDbYxt1TmaoiIvIt7fwIQudipas8Y/nKYlBACAMg+UonG9k6ZqyEi8h4MQORTTlW3AvCcABRj0OEyYxDMFhs+PcDJ0ERErsIARD7FMQQWEegZAUiSJNwxORYAsHHfGZmrISLyHgxA5FM8bQgMAG6bFAuFBOwpqsfpmla5yyEi8goMQOQzWkwWlDfaT4H3pABk1OtwxcgIAMAG9gIREbmESu4CiIZKYdf8n/BADfw1nvNH/91dxYg22Ddt/PvO04gM0kGpkHq9955pCUNZGhGRx2IPEPmMk9X2IzCSIwJlrqT/xkbr4a9RoqnDgmMVPCGeiOhSMQCRzzhVZe8BGu6BAUilVCCta0n87tO1MldDROT5GIDIZzgmQA+PCJC5koGZkhQKwH6afX2rWeZqiIg8GwMQ+QxHABoR6Xk9QAAQHqhFckQABIDviurkLoeIyKMxAJFPsFhtKKzx3CEwh6nD7L1Ae07Xw2K1yVwNEZHnYgAin1BS345Oq4BOrUBssJ/c5QzY2BgD9DoVWkwWHDjTKHc5REQeiwGIfMKprh2gk8MDoTjPEnJPoFRImJ4cBgD49lQNhBAyV0RE5JkYgMgnOCdAe+j8n3NNSQqFWimhvLEDBdwZmohoQBiAyCc4zgDz1BVg5/LXqDC5a0n8tydrZK6GiMgzec52uESX4OwSeM/vAQKAmcPDsauwDkcrmlHZ1AGj3r5T9Lu7ivv0eu4YTUS+jj1A5PWEEDjVdQyGpy6B/77wIC3GROsBANuOV8tcDRGR52EAIq9X22pGY3snJAlICvf8ITCHay6LBADsL2lATYtJ5mqIiDwLAxB5Pcf8n7gQP+jUSpmrcZ3YED9cZgyCALDtGHuBiIj6gwGIvJ63zf851zWj7b1AuSX1qOPxGEREfcYARF7PcQjqCC8MQAmh/hgREQibAL46WiV3OUREHoMBiLyeN+0B1JsbxhgBALnF9ahs6pC5GiIiz8AARF7v7B5A3hmA4kP9MSZaDwFgy5FKucshIvIIDEDk1drNVpQ2tAPwniXwvckcY4QEIL+8CcW13B2aiOhiGIDIqxXU2Ht/QvzVCA3QyFzN4InU6zA50b479KZDFTwjjIjoIhiAyKs5hr+SvXT461zXpxihVkoormvD/jMNcpdDROTWGIDIqzl3gPaBAGTwUzs3R/z8UAVMFqvMFRERuS8GIPJqp7p6gLx5/s+5Zo4IR2iABk0dFm6OSER0AQxA5NUcS+B9JQCplQrMTo0CAOw4WcPNEYmIzkP2ALR69WokJSVBp9MhLS0N33zzzQXv37ZtG9LS0qDT6ZCcnIy1a9d2e37jxo1IT09HcHAwAgICMHHiRPzjH/8YzCaQm7LaBApq7ENg3roEvjcp0XqMiAiExSaw6WC53OUQEbklWQPQ+vXrsXDhQixduhS5ubnIyMjArFmzUFxc3Ov9hYWFmD17NjIyMpCbm4slS5bg0UcfxYYNG5z3hIaGYunSpcjJycGBAwfws5/9DD/72c+wefPmoWoWuYmSujaYLTZoVQrEhvjJXc6QkSQJN42PhkICjpQ34URVs9wlERG5HVkD0MqVK/Hggw9i/vz5SElJwapVqxAfH481a9b0ev/atWuRkJCAVatWISUlBfPnz8e8efOwYsUK5z1XX301br/9dqSkpGD48OF47LHHMH78eOzYsWOomkVuwjH8lRwRCKVCkrmaoWXU6zAtOQwA8MmBclhtXBZPRHQu2QKQ2WzG3r17kZmZ2e16ZmYmdu7c2etrcnJyetx/4403Ys+ePejs7OxxvxACX375JY4dO4Yrr7zyvLWYTCY0NTV1e5DnO7sDdIDMlcjj+tFG+GuUqG42IedUjdzlEBG5FZVcX7impgZWqxVGo7HbdaPRiIqKil5fU1FR0ev9FosFNTU1iI6OBgA0NjYiNjYWJpMJSqUSq1evxg033HDeWpYvX47nnnvuEltE7sbXJkB/n59GiR+MjcLG3FJ8cbQK4+KCYfBTAwDe3dX7MHNv7pmWMFglEhHJRvZJ0JLUfWhCCNHj2sXu//71oKAg5OXl4bvvvsMLL7yArKwsfP311+d9z8WLF6OxsdH5KCkpGUBLyN14+xlgfTE5MQTxIX4wW2z47BAnRBMROcjWAxQeHg6lUtmjt6eqqqpHL49DVFRUr/erVCqEhYU5rykUCowYMQIAMHHiROTn52P58uW4+uqre31frVYLrVZ7Ca0hdyOEcAYgX+0BAgCFJOHWibF4eetJHDjTiPTEFp/+/0FE5CBbD5BGo0FaWhqys7O7Xc/OzsaMGTN6fc306dN73L9lyxakp6dDrVaf92sJIWAymS69aPIYNS1mNHVYIElAUrhvzgFyiAn2c06I/nh/GSw2m8wVERHJT9YhsKysLLz22mt4/fXXkZ+fj0WLFqG4uBgLFiwAYB+auu+++5z3L1iwAEVFRcjKykJ+fj5ef/11rFu3Do8//rjznuXLlyM7OxsFBQU4evQoVq5cibfeegs//elPh7x9JB9H7098iD90aqXM1cjvhhQjArQqVLeY8O3JWrnLISKS3YCGwAoLC5GUlHTJX3zu3Lmora3FsmXLUF5ejtTUVGzatAmJiYkAgPLy8m57AiUlJWHTpk1YtGgRXn75ZcTExOCll17CnDlznPe0trbi4YcfxpkzZ+Dn54fRo0fj7bffxty5cy+5XvIcvj4B+vv8NErMSo3Cv/eewVdHKzEhzoBgf43cZRERyUYSjlnE/aBUKnHllVfiwQcfxJ133gmdTjcYtcmmqakJBoMBjY2N0Ov1cpdDA/DsR4fx5s7TeCgjCUtvGtPj+f6sguqPvq6YGqyvfyFCCLzyTQGKatswNkaPn0xL7NPruAqMiDxFfz6/BzQEtn//fkyaNAm/+c1vEBUVhV/84hfYvXv3gIolcqV3dxXj3V3F2HHSvu9NbYvZee3chy+SJAm3ToiFQgIOlzXheCV3iCYi3zWgAJSamoqVK1eitLQUb7zxBioqKnDFFVdg7NixWLlyJaqreQo1yau62T7pPSKIq/vOFWXQYfq5E6KtnBBNRL7pkiZBq1Qq3H777fjnP/+JF198EadOncLjjz+OuLg43HfffSgv574jNPRMFisa2+07gzMA9XRdihFBOhVqW83YfoI7RBORb7qkALRnzx48/PDDiI6OxsqVK/H444/j1KlT+Oqrr1BaWopbb73VVXUS9VlNsxkAEKBVwV8j21ZXbkunVmJ2qn3X9K+PVaG+1SxzRUREQ29AAWjlypUYN24cZsyYgbKyMrz11lsoKirC73//eyQlJWHmzJn429/+hn379rm6XqKLqmruAABEBLL353zGxxmQHB4Ai03gkwNlcpdDRDTkBhSA1qxZg3vuuQfFxcX48MMPcfPNN0Oh6P5WCQkJWLdunUuKJOoPx/yfSA5/nZckSfjhhBgoJCC/ohlHy3kAMBH5lgGND2RnZyMhIaFH6BFCoKSkBAkJCdBoNLj//vtdUiRRf1S3cAJ0X0TqdbhiRDi2n6jBxwfKMDwyEGql7McDEhENiQH9azd8+HDU1PScPFlXV+eSDRKJLkUVV4D12TWjI2HwU6O+rRPbjnP1JhH5jgEFoPPtndjS0uJ1myKSZ7HaBOpa7JN6OQR2cVqVEjeNs0+I3n68GrUtPDOPiHxDv4bAsrKyANjnDzz99NPw9/d3Pme1WrFr1y5MnDjRpQUS9UddqxlWIaBWStD7nf+AXDprbIweIyMDcaKqBR8fKMP904dBkiS5yyIiGlT9CkC5ubkA7D1ABw8ehEZz9iwhjUaDCRMmdDuYlGioVTtWgAVpoeCHeJ9IkoRbJsTgz1+ewPHKFhwua0JqrEHusoiIBlW/AtDWrVsBAD/72c/w5z//medkkds5uwKMQ7H9ER6oxZUjw7H1WLV9QnREIPw0SrnLIiIaNAOaA/TGG28w/JBbckyADuceQP129WWRCA/UornDgk0HuYs7EXm3PvcA3XHHHXjzzTeh1+txxx13XPDejRs3XnJhRAPhWALPCdD9p1YqMGdyLF7ZXoC9xfUYH2fASGOQ3GUREQ2KPgcgg8HgnBhpMHB+ALkfm01wCfwlSgwLwOXJYcgpqMXG3FI8eu1IuUsiIhoUfQ5Ab7zxRq8/J3IXpQ3tMFtsUCokDoFdgsyxRhyvbEZtqxkf5JVi3hVcFUZE3mdAc4Da29vR1tbm/HVRURFWrVqFLVu2uKwwov46XtkMwH4GmFLBD+yB0qqUmDslHgoJOFTaiH/tPSN3SURELjegozBuvfVW3HHHHViwYAEaGhowdepUaDQa1NTUYOXKlfjlL3/p6jqJLup4ZQsAIFLP3p9LFRfijxvGRGHz4Qo885/DGBdrQEr0xRc+vLuruE/vf8+0hEstkYjokgwoAO3btw//93//BwD497//jaioKOTm5mLDhg14+umnGYBIFo4eoCg9l8C7QsbIcBRUt+BEVQvm/30PPvrVTIS5aGixr0EJYFgiosExoCGwtrY2BAXZV4ds2bIFd9xxBxQKBS6//HIUFRW5tECivjpWYQ9ARgYgl1BIEuZOicewMH+UNrTjl+/sg9lik7ssIiKXGFAAGjFiBD788EOUlJRg8+bNyMzMBABUVVVxfyCShcVqw8lq+xAYA5Dr+GtUeO3+dARqVdhdWIdfv7cPnVaGICLyfAMKQE8//TQef/xxDBs2DNOmTcP06dMB2HuDJk2a5NICifqiqK4NZosNaqWEYH+eAeZKIyKDsPonk6FRKrD5cCUWrc+DhSGIiDzcgALQnXfeieLiYuzZsweff/658/p1113nnBtENJSOnzP8xTPAXO/KURFY89PJUCslfHKgHAve3ocWk0XusoiIBmxAAQgAoqKiMGnSJCgUZ99i6tSpGD16tEsKI+qPY10ToHkG2OC5LsWIv94zGRqVAl/kV+LONTtRUtd28RcSEbmhAQWg1tZWPPXUU5gxYwZGjBiB5OTkbg+ioXai0jH/h0vgB9ONY6Pw/s8vR3igFkcrmjH7z9/g/d3FEELIXRoRUb8MaBn8/PnzsW3bNtx7772Ijo7mLrEkO0cPECdAu15vS9bnzRyG93YXo6S+HU9uPIhXthfgB6lRiAvxl6FCIqL+G1AA+uyzz/Dpp59i5syZrq6HqN9MFisKa1oBMAANlWB/DX5x1XDsPFWL7CMVKKhpxeqvT2FMtB5XjYpAfCiDEBG5twEFoJCQEISGhrq6FqIBKahuhdUmoNepoNcN6I80DYBCknDFiHCMidbjy/xK5JU04Eh5E46UNyEh1N/+XIyek9KJyC0NaA7Q888/j6effrrbeWBEcnHsAH1ZVBCHY2UQGqDBj9Lj8eh1IzE5IRhKSUJxXRve3V2M/91yDN+erIGp0yp3mURE3Qzo2+X//d//xalTp2A0GjFs2DCo1d33Xdm3b59LiiPqC8cO0KOMQTJX4tuMeh3uTItH5tgo/LegFrsK6lDf1olPD5bji/xKTBkWiunDwxDir5G7VCKigQWg2267zcVlEA2coweIAcg96HVqZI6JwtWjIpFbUo9vT9aipsWEHSdrsPNUDcbGGHBDihHhQVyxR0TyGVAAeuaZZ1xdB9GAOU6BH2UMck6GJvlpVApMSwrDlGGhOF7ZjB0na1BQ3YqDpY04Ut6EK0eG4+rLIqFWDng7MiKiARvwvzwNDQ147bXXsHjxYtTV1QGwD32Vlpa6rDiii2kzW1DctRnfKGOgzNVQbxSShNFResy/Ihm/vnYERkYGwmoT2HqsGi9vPYnKpg65SyQiHzSgAHTgwAGMGjUKL774IlasWIGGhgYAwAcffIDFixe7sj6iC3JsgBgeqEVYIIdU3F20wQ8PzBiGe6YmIEirQlWzCau/Pom9RXVyl0ZEPmZAASgrKwsPPPAATpw4AZ3u7L4rs2bNwvbt211WHNHFHHOuAGPvj6eQJAmpsQb8+rqRGBkZiE6rwIZ9pdhypII7ShPRkBlQAPruu+/wi1/8osf12NhYVFRUXHJRRH11nCvAPFagVoX7ZwzDtaMjAQBfH6vGhn1nYLUxBBHR4BtQANLpdGhqaupx/dixY4iIiLjkooj6ytkDxADkkRSShOtTjLhjUiwUErCvuAEb9p2BjT1BRDTIBhSAbr31VixbtgydnZ0A7F3axcXFePLJJzFnzhyXFkh0IY4l8CMZgDxa+rBQ3DM1AQoJyCtpwIe5pQxBRDSoBhSAVqxYgerqakRGRqK9vR1XXXUVRowYgaCgILzwwguurpGoV41tnahsMgHgCjBvMCbGgLlTEiAB2FNUjy2HOZxORINnQPsA6fV67NixA1u3bsXevXths9kwefJkXH/99a6uj+i8jlfZe39ig/0QpFNf5G7yBONiDeicHId/7zuD7SdqEBagxT3TEuQui4i8UL8DkM1mw5tvvomNGzfi9OnTkCQJSUlJiIqKghCCZzHRkDla4Rj+Yu+PN5mcGIL6NjO+PFqF/+wvxZy0OFwxMlzusojIy/RrCEwIgR/+8IeYP38+SktLMW7cOIwdOxZFRUV44IEHcPvttw9WnUQ9HCmzT8QfE62XuRJytWtHR2JCnAE2AfzqvX04U8+Dl4nItfrVA/Tmm29i+/bt+PLLL3HNNdd0e+6rr77Cbbfdhrfeegv33XefS4sk3/buruJer39zohoAUNdqPu895JkkScIdk+NQ02JGaUM7Hn5nH/75i+nQqZVyl0ZEXqJfPUDvvfcelixZ0iP8AMC1116LJ598Eu+8847LiiM6H6tNoKLRfoRCjMFP5mpoMKiVCtwzLQHB/mocONOIZZ8ckbskIvIi/QpABw4cwA9+8IPzPj9r1izs37//kosiupjaFhMsNgGNUoHQQI3c5dAgCfHX4M8/ngRJsvcEfnqgXO6SiMhL9CsA1dXVwWg0nvd5o9GI+vr6Sy6K6GLKu3p/ogw6KDjx3qtdNSoCj1w9AgDw5MYDnA9ERC7RrzlAVqsVKtX5X6JUKmGxWC65KKKLKW9sBwBEG3QXuZM83bu7imHU6xAf4oeS+nb85LVdeCgjudfgyyXzRNRX/QpAQgg88MAD0Gp7P3XbZDK5pCiii3H0AEVz/o9PUCokzJ2SgL98dQJFtW34+lgVrh19/t5oIqKL6VcAuv/++y96D1eA0WATQqCsgT1AviY0QIMfTojBv/aewVdHqzA8IhCJYQFyl0VEHqpfAeiNN94YrDqI+qzZZEGr2QoJgFHPAORLJiWE4ERVC/JKGvDPPSX49bUjuTSeiAZkQGeBEcnJsfw9PEgLjYp/hH3NDyfEIMRfjfq2TnyYVwrBQ1OJaAD46UEep5zDXz5Np1Zi7hT7yfEHzjQir6RB7pKIyAMxAJHHKeMGiD4vIdQf146OBAB8tL8Mda1mmSsiIk/DAEQe59w9gMh3XX1ZJIaF+cNksWH9d8Ww2jgURkR9xwBEHsVssaG2xb7dAofAfJtCknBXejx0agVK6tvx1dFKuUsiIg/CAEQepaKpAwJAkFaFIJ1a7nJIZsH+Gtw2MRYA8PWxauwurJO5IiLyFP1aBk8kN+cO0MHu2fvDU+mH3vi4YByvbMG+4nosfD8Xmx7LQLA/z4cjogtjDxB5lPIG7gBNPd0yPhphARqUNXYg65/7YeN8ICK6CAYg8ig8A4x6o1UrcffUBGhUCnx1tAprt5+SuyQicnMcAiOPYRMCFU3sAaLexQT74flbx+KJDQexYvMxTIwLxowR4UNaQ1+HQHloK5H8ZO8BWr16NZKSkqDT6ZCWloZvvvnmgvdv27YNaWlp0Ol0SE5Oxtq1a7s9/+qrryIjIwMhISEICQnB9ddfj927dw9mE2iI1LSY0GkVUCslhAVyjgf1dFd6PO5Mi4NNAA+/uw9Fta1yl0REbkrWALR+/XosXLgQS5cuRW5uLjIyMjBr1iwUF/f+XVRhYSFmz56NjIwM5ObmYsmSJXj00UexYcMG5z1ff/017r77bmzduhU5OTlISEhAZmYmSktLh6pZNEic+//odVBIkszVkDuSJAm/vy0VE+KD0dDWifl/34Pmjk65yyIiNyQJGQ/SmTZtGiZPnow1a9Y4r6WkpOC2227D8uXLe9z/xBNP4KOPPkJ+fr7z2oIFC7B//37k5OT0+jWsVitCQkLw17/+tc8n1Tc1NcFgMKCxsRF6vb6frSJXcwwrfH6oAttPVGNqUqhz6TPRuRxDS5VNHbjlLztQ1WzCVaMi8Nr96VArB//7PQ6BEcmrP5/fsvUAmc1m7N27F5mZmd2uZ2ZmYufOnb2+Jicnp8f9N954I/bs2YPOzt6/y2tra0NnZydCQ0PPW4vJZEJTU1O3B7kfToCmvjLqdXj1vnTo1ApsO16NJzYc4KGpRNSNbAGopqYGVqsVRqOx23Wj0YiKiopeX1NRUdHr/RaLBTU1Nb2+5sknn0RsbCyuv/7689ayfPlyGAwG5yM+Pr6fraHBJoRwDoFxAjT1xYT4YKz+yWQoFRI27ivFHz47yhBERE6yT4KWvjeXQwjR49rF7u/tOgD88Y9/xHvvvYeNGzdCpzt/r8HixYvR2NjofJSUlPSnCTQEmjosaDFZIME+B4ioL64dbcTyO8YBAP62vQB/3HyMIYiIAMi4DD48PBxKpbJHb09VVVWPXh6HqKioXu9XqVQICwvrdn3FihX4n//5H3zxxRcYP378BWvRarXQarUDaAUNlbIG+/BXpF4LjUr23E4e5K70eLSZLHj24yNY8/Up2GwCT84afcFvtIjI+8n2SaLRaJCWlobs7Oxu17OzszFjxoxeXzN9+vQe92/ZsgXp6elQq8+eC/WnP/0Jzz//PD7//HOkp6e7vngacqVdASg2mMNf1H8PzEzCslvHArD3BP3mX/thtthkroqI5CTrRohZWVm49957kZ6ejunTp+OVV15BcXExFixYAMA+NFVaWoq33noLgH3F11//+ldkZWXhoYceQk5ODtatW4f33nvP+Z5//OMf8dRTT+Hdd9/FsGHDnD1GgYGBCAwMHPpGkks4eoBiGIBogO6bPgxalQJLPjiEjftKkVvcgJ9MTYC/9sL/DHLFFpF3kjUAzZ07F7W1tVi2bBnKy8uRmpqKTZs2ITExEQBQXl7ebU+gpKQkbNq0CYsWLcLLL7+MmJgYvPTSS5gzZ47zntWrV8NsNuPOO+/s9rWeeeYZPPvss0PSLnI99gCRK8ydkoAogx9+/tYeFNa04i9bT2JuejyGhQec9zU84JbIO8m6D5C74j5A7mXttlP4w2dHIQF45paxnANE59XX3pr/3XIM7+4qRm2rGQoJuGpUJK6+LGJI9goC2KtENFg8Yh8gor5yDH9FBHECNLlGtMEPv7pmBCbGB8MmgK3HqvDSlydwoqpZ7tKIaIjw04TcXinn/9Ag0KqV+FFaHO6emoAgnQq1rWa88e1prNtRgJK6NrnLI6JBxtPgye2V1XP+Dw0OSZIwLtaAkZGB+CK/ErsK6nCquhVrtp1CcngAMkZGYJQxkEvmibwQAxC5PfYA0WDTqZW4eXwMZg4Px5dHq5BXUo+CmlYU1LQiMkiLjJHhmBAXDNUQzREiosHHAERurbrZhKYO+w7QMTwDjAZZSIAGd6bF4fqUSOw8VYvvTtehqtmEDftKseVIJWYkh2FqUhj8NEq5SyWiS8QARG7tUFkjACAsUAutmh86NDSC/TWYPS4a146OxO7COuw8VYOmDgs2H6nEthPVuG60EZcnh0Gp4NAYkadiACK3duiMPQDFBrP3h4aeTq3ElaMiMGNEGA6eacT2E9WobDLh04Pl+O50HeZOiefhvEQeigPa5NYOljoCED9kSD4qhQKTEkLw62tH4vaJsfDXKFHVbMKar09hX1G93OUR0QAwAJFbO1zWBACICWEAIvkpJAlTkkKRdf0ojDIGwmIT+Pe+M8g+UnHxFxORW2EAIrdV12o+uwKMwwzkRvy1Ktw3fRiuHR0JANh6rBrbjlfLXBUR9QcDELktx/BXWIAGOk6AJjejkCRcn2LED8ZGAQA2H67ArsJamasior5iACK3dcgx/4fDX+TGrhwVgWsuiwAAfLK/3Hl0CxG5NwYgclsHz3ACNHmG61OMGBOth1UIrN9Tgk6rTe6SiOgiGIDIbTn2AOIO0OTuJEnC7ZNiEaRVobrZhM8OcVI0kbtjACK3VN9qxpl6ToAmzxGgVWFOWhwA4L8FtThTzwNVidwZAxC5JUfvT2KYP48dII8xyhiESfHBAIDPD1VACCFvQUR0XgxA5JYcK8BSYw0yV0LUPzeMMUKlkFBQ04rjlS1yl0NE58EARG7JMQF6PAMQeZhgfw0uTw4DYF8ab2MvEJFbYgAit3TAEYDiguUthGgArr4sAjq1AhVNHc7eTCJyLwxA5HZqWkwobWiHJAGpsXq5yyHqN3+NCjOHhwMAdp6skbkaIuoNAxC5HcfwV3J4AIJ0apmrIRqYqUmhUCoklNS3o6SOK8KI3A0DELmd/WcaAHD4izxbkE7tnMOWU8AjMojcDQMQuR3nBOg4ToAmzzajaxjs4JlGNHV0ylwNEZ2LAYjcihAC+xmAyEvEhvghMdQfViGwu7BO7nKI6BwMQORWKpo6UNNiglIhYUw0AxB5PseS+Nziem6MSORGGIDIrewvsff+jDIGcQdo8gop0XpoVQrUt3WimJOhidwGAxC5lYOlDQC4ASJ5D41KgbEx9u0ccksa5C2GiJwYgMitODdAjGcAIu8xMT4EgH0ytMVmk7kaIgIYgMiNCCHOBqDYYHmLIXKh5IgABOlUaO+04gTPByNyCwxA5DaK69rQ2N4JjVKBy6KC5C6HyGUUkoQJXftacRiMyD0wAJHbcCx/T4kOgkbFP5rkXSbEBwMAjpY3oc1skbcYImIAIvdxkDtAkxeLMegQ4q+GxSbwzQmeD0YkNwYgchuOHqBx3ACRvJAkSUiJtq8Gyz5SKXM1RMQARG7BahM4XGoPQBPYA0ReyhGAvjpaBauNmyISyUkldwHkm97dVdzt15VNHWg1W6FWSvjudB32FtXLVBnR4BkWFgA/tRJ1rWbsLarH1KRQuUsi8lnsASK3UNrQDgCICfaDQpJkroZocCgVknOF45bDFTJXQ+TbGIDILZyptweguGA/mSshGlxjHPOA8it5NhiRjDgERm6htN5+RlJsiL/MlRANrpHGQKgUEopq27DqixMw6nUXvP+eaQlDVBmRb2EPEMnOYrOhvLEDAHuAyPtpVUokhQcAAE5UcVdoIrkwAJHsKho7YLEJ+KmVCAvUyF0O0aAbGRkIADhR2SxzJUS+iwGIZFdSZx/+ig/1g8QJ0OQDRhrtE6ELa1rRaeXhqERyYAAi2ZV0TYCO5/wf8hGRQVrodSpYbAKFNa1yl0PkkxiASHZne4AYgMg3SJLk7AXiMBiRPBiASFZtJgtqW80AgLgQToAm3zHKEYA4EZpIFgxAJKuSruXv4YFa+Gu4KwP5jhERgZAAVDWb0NBmlrscIp/DAESyKq5zzP9h7w/5Fj+N0tnryV4goqHHAESyOlPP+T/ku0ZE2ofBCqoZgIiGGgMQycYmhHMIjAGIfFFyhH1DxILqVh6LQTTEGIBINjXNJnR02qBWSoi6yHEARN4oIdQfKoWEZpMF1S0mucsh8ikMQCQbx/4/scF+UCq4ASL5HrVSgYSu3s+Cau4HRDSUGIBINs79f7gBIvkw5zAYN0QkGlIMQCQbzv8hApLD7eeCFVS3wMZ5QERDhgGIZGG22FDRdQI8AxD5srhQP6iVEtrMVlQ1cR4Q0VBhACJZnGlogwCg16lg8FPLXQ6RbFQKBYaFOYbBuByeaKgwAJEszjg2QGTvDxGSw+0B6BQnQhMNGQYgkkUxJ0ATOSVH2OcBFdZwHhDRUGEAoiEnuAEiUTcxwX7QqhTo6LShvGtuHBENLgYgGnLljR1o7rBAIdn3ACLydUqFdHYeEI/FIBoSDEA05HKLGwAAUXodNCr+ESQCuh+LQUSDj58+NOT2FdcDAOI4/EXkNLxrHtDp2lZYbZwHRDTYZA9Aq1evRlJSEnQ6HdLS0vDNN99c8P5t27YhLS0NOp0OycnJWLt2bbfnDx8+jDlz5mDYsGGQJAmrVq0axOppIPacrgMADAtjACJyiDLo4KdWwmSxoayhXe5yiLyerAFo/fr1WLhwIZYuXYrc3FxkZGRg1qxZKC4u7vX+wsJCzJ49GxkZGcjNzcWSJUvw6KOPYsOGDc572trakJycjD/84Q+IiooaqqZQH7WZLThU1gQASOya80BEgEKSkORcDs95QESDTdYAtHLlSjz44IOYP38+UlJSsGrVKsTHx2PNmjW93r927VokJCRg1apVSElJwfz58zFv3jysWLHCec+UKVPwpz/9CT/+8Y+h1WqHqinUR3nFDbDaBAx+agRzA0SibnguGNHQUcn1hc1mM/bu3Ysnn3yy2/XMzEzs3Lmz19fk5OQgMzOz27Ubb7wR69atQ2dnJ9TqgX2gmkwmmExnt6Bvamoa0PvQxX132j7/JzHMH5LEE+DJtd7d1Xvvsadw7AdUVNsKi9UGlVL2WQpEXku2v101NTWwWq0wGo3drhuNRlRUVPT6moqKil7vt1gsqKmpGXAty5cvh8FgcD7i4+MH/F50YXuK7PN/OPxF1JMxSIsAjRKdVoGSes4DIhpMsn978f1eACHEBXsGeru/t+v9sXjxYjQ2NjofJSUlA34vOj+L1YZ9RfYeIE6AJupJkiRnLxDPBSMaXLIFoPDwcCiVyh69PVVVVT16eRyioqJ6vV+lUiEsLGzAtWi1Wuj1+m4Pcr2jFc1oNVsRpFXBqNfJXQ6RW+J+QERDQ7YApNFokJaWhuzs7G7Xs7OzMWPGjF5fM3369B73b9myBenp6QOe/0NDx7H8fXJiCBSc/0PUq+Hh9h6g4ro2dFptMldD5L1kHQLLysrCa6+9htdffx35+flYtGgRiouLsWDBAgD2oan77rvPef+CBQtQVFSErKws5Ofn4/XXX8e6devw+OOPO+8xm83Iy8tDXl4ezGYzSktLkZeXh5MnTw55+6g7xwToKcNCZK6EyH2FBWqg16lgtQkU1bbJXQ6R15JtFRgAzJ07F7W1tVi2bBnKy8uRmpqKTZs2ITExEQBQXl7ebU+gpKQkbNq0CYsWLcLLL7+MmJgYvPTSS5gzZ47znrKyMkyaNMn56xUrVmDFihW46qqr8PXXXw9Z26g7IQR2Fdp7gNKHhbJ7n+g8HPOA8koaOA+IaBBJwjGLmJyamppgMBjQ2NjI+UAucrKqGdev3A6tSoEDz2Ziw95SuUsiclt7i+qwYV8pEkL9sf2318hdDpHH6M/nt+yrwMg35JyqBQCkJYZAq1LKXA2Re0vumgd0pr4NLSaLzNUQeScGIBoS/y2wD39dnjzw1XpEviIkQIMQfzVsAviua/EAEbkWAxANOiEE/ltg7wGaPpwBiKgvHKfDO3pPici1GIBo0J2oakFtqxk6tQIT4oLlLofIIzj2A2IAIhocDEA06Bz/gKcnhkKj4h85or5wzAM6VNaIxrZOmash8j78NKJBx+Evov7T+6kRHqiFEMCuQvYCEbkaAxANKpvt7P4/nABN1D/Du4bBdnIYjMjlGIBoUB0pb0JdqxkBGiXGxxnkLofIoyRzIjTRoGEAokG17Xg1AGD68HColfzjRtQfyeH2HqBjlc2oaTHJXA2Rd+EnEg2qb07YA9BVo8JlroTI8wRoVRgdFQTg7Fw6InINBiAaNK0mC/YW2Q9AzRgZIXM1RJ5pxnD7Nw87TtTIXAmRd2EAokGTc6oWnVaBhFB/DOvqyiei/rmyq/d0+/Fq8OhGItdhAKJBs71r+OtKDn8RDdjlyWHQqhQoa+zAySqeDk/kKgxANGi2d02AvpLDX0QDplMrMa1rCwnHogIiunQMQDQoimvbcLq2DSqFxA0QiS7RVaPs30QwABG5DgMQDYqvjlYCACYnhiBIp5a5GiLP5ghAuwrr0G62ylwNkXdgAKJBkZ1vD0A3pBhlroTI8w2PCEBssB/MFhv+y2MxiFyCAYhcrrG9E7sK7Mdf3DCGAYjoUkmShKsu6xoGO8ZhMCJXYAAil/v6WBUsNoGRkYFc/k7kIo5hsC+PVnI5PJELMACRy2050jX8xd4fIpfJGBkOrUqBkrp2HKtslrscIo/HAEQuZbJYnV30DEBEruOvUTl3VN9yuFLmaog8HwMQudR/C+rQYrIgMkiLCXHBcpdD5FUyx9q/qdhypELmSog8HwMQudTmw/Z/mK9LMUKhkGSuhsi7XDc6EgoJOFTahNKGdrnLIfJoDEDkMmaLDZsOlgMAbhoXLXM1RN4nLFCL9GGhAIDsw+wFIroUDEDkMjtOVqOhrRPhgVru/kw0SDK75tZt5jwgokvCAEQu85+8MgDAzeOjoeTwF9GguHFsFABg9+k61LSYZK6GyHMxAJFLtJktyO5a/n7rxBiZqyHyXvGh/pgQZ4DVJvDJ/jK5yyHyWCq5CyDv8EV+FdrMVoQGaHCkrAn55dynhGiw3D4pFvvPNOKD3FI8MDNJ7nKIPBJ7gMglPsorBQCMjzNAkjj8RTSYbp4QA6VCwv4zjThV3SJ3OUQeiQGILlllUwe2dm1+OJF7/xANuvBALa4cGQ4A+DC3VOZqiDwTAxBdsvXflcBqE0gM80ekXid3OUQ+4bZJsQCAD3JLeTYY0QAwANElsdoE3t9dDACY2rU/CRENvswxUQjQKHGmvh27CuvkLofI4zAA0SXZdrwKZY0dCPZXIzXWIHc5RD7DT6PELRPsKy7/kVMkczVEnocBiC7Ju7vsvT93To6DWsk/TkRD6f4ZwwAAnx+uQBmPxiDqF35i0YCV1LXhq6NVAIC7pyXIXA2R70mJ1uPy5FBYbQJv/5e9QET9wQBEA/bK9gLYBJAxMhzDIwLlLofIJz0ww74P0Hu7i9HRaZW5GiLPwQBEA1LdbMI/95QAAB6+eoTM1RD5rhvGGBEb7If6tk4uiSfqBwYgGpA3dxbCZLFhYnwwLk/m6i8iuSgVEn42cxgA4K9bT8JkYS8QUV8wAFG/NXd04q2uVSe/vHo4d34mktlPpiUiMkiLM/XteK9rYQIRXRgDEPXbuh2FaO6wYHhEAG5IMcpdDpHP89Mo8eh1IwEAf/nqJFpMFpkrInJ/DEDUL1XNHXhlewEAYNENo6BQsPeHyB3MnRKPxDB/1Laase6bQrnLIXJ7DEDUL/+XfQJtZismxgfjpnHRcpdDRF3USgV+k3kZAGDNtpMo4CGpRBfEAER9dqKyGeu/s88vWHpTCuf+ELmZW8ZH44oR4ejotOHxf+2H1cYzwojOhwGI+kQIgWc/PgybADLHGDGF534RuR1JkvDineMRqFVhX3ED1u0okLskIrfFAER9sv67Enx7shY6tQJLZqfIXQ4RnUdssB+eutn+d3TF5uP47jQPSiXqjUruAsj9VTR24IVP8wEAv7nhMgwLD5C5IiLf8W4/lrXf03UkzV3p8dh6tBqfH67A/L/vwYZfzsCISO7WTnQu9gDRBdlsAks+OIhmkwUT4oMx74okuUsioouQJAn/N3ciJiUEo7G9E/e/vhulPCyVqBsGILqgtdtP4aujVdAoFfjTneOh5LJ3Io/gp1Fi3f1TkBQegNKGdtz612+RV9Igd1lEboMBiM7r25M1WLH5GADguVvHYpQxSOaKiKg/QgM0eGf+NIyOCkJNiwlz/5aDd3cVw8bVYUQMQNS70zWt+PV7ubAJ4EdpcfjxlHi5SyKiAYgJ9sO/fzkD146OhMliw5IPDmLuKznIL2+SuzQiWUlCCH4r8D1NTU0wGAxobGyEXq+Xu5whV9HYgTvX7sSZ+nakxurxo7R4qJXMykTuzjEJujdWm8Ab3xZiZfZxtJntB6ZeNzoS8zOSMS0plLu6k1foz+c3A1AvfDkA1bWa8eNXcnC8sgXDwvzxrwUzkH2kUu6yiMhFGtrM+OxQBQ6VNsLxj3+wnxrjYg0YYQxEYmgANKqz3/BcKFQRuZv+fH5zGTw5lTa04751u3CquhVGvRb/eHAaIoK0cpdFRC4U7K/B3VMTUNNiwo4TNdh/pgEN7Z345mQNvjlZA4UExIX4Iyk8APEh/iiubUNciB97iMjrsAeoF77YA5Rf3oQH3tiNyiYTog06/OPBqRgRaZ/03J99SIjIs3RabThW0Yz88iYU1LSisb2zxz3+GiVGGoMwKjIQcSH+iA7WIcbgh+hgHcIDtQjUqvq1QnQgexsR9QV7gKhf/rWnBE/95xA6Om0YGRmItx6cimiDn9xlEdEQUCsVSI01IDXWACEE6ts6UVjTisKaFpQ3dqC2xYw2sxX7Sxqw/wLL6P01SgRqVQjQqqCQ7HsRSQAcRwZKkCBJgEKS0NjeCUlC1/MSFBKgUiigVSugVSmhVSugU9l/LiCg16kR7K9GiL8GBj/7zwO1Kp5HSJeEAciHNbZ1YtknR7Bh3xkAQMbIcPzl7kkI9tfIXBkRyUGSJIQGaBAaoEFaYggA4K70OJyubcPxymacrGpBWUM7yho7UN7QjvLGDrSYLACANrPVPrm62eTSmj4/XNHrdYUE+GlU8Fcr4adRwl+jxNgYQ1dQUsPgr0FwV1gK0Krgp1baHxoldColdBoFNEoFQ5QPYwDyQUIIfHKgHM99fAQ1LSYoJGDR9aPwyDUjOM5PRN2olAqMiAw871EaJosVrSYrWjosaDZ1otVkhU0ICAEICHT9ByEAmxCwCYGtR6u6fm2/RwjAYrOho9MGk8UGU6cVHef82NFpRbvZijazBW1mKyw2AZsAWk0WtHYFMAA4WtHcr7YpJJwNRT0CkhJ+akW354N09nAVGqBBsL8GYQEaRBl0CAvQMEh5IAYgH/Pfglq8+PlR5BY3AACGRwTgD3PG83R3IhoQrUoJrUqJ0IC+9xyXNXRc0tfstNq6epwsXcGoKyB1WtHeFZLazFa0d9rvMVts6LQKdFpt6LTa4NgH0iaAVrMVrV3bAgyURqVAtME+Lyo+1A/JEYFICg/A8IgAJHxvVR25D06C7oW3TYK22gS+yK/Ea98U4LvT9QAAtVLClSMjcNWoCKi4xw8RuUBfJyzLubBCCAGrELBYBcxWGzotNpitNuevLVYbzOeEJfvz9l/bA1VXT5TJilaTBS0mCy70IaqQgBB/DcIDtQgP1CA8SIu5U+KRGBaAaL2Ove4uxn2ALpG3BKCTVc34ILcUH+wrRVmj/TsutVLC3CnxiAvxh16nlrlCIiLPZrHZ0NRuQWN7JxrazKhrNaO6xYSaFhNqWswwW2znfa1GpUB8iB+GhQUgIcwfiaH+iA3xR5ReB6NBi/AALQNSP3nUKrDVq1fjT3/6E8rLyzF27FisWrUKGRkZ571/27ZtyMrKwuHDhxETE4Pf/va3WLBgQbd7NmzYgKeeegqnTp3C8OHD8cILL+D2228f7KbIrsVkwZ7Tddh5qhZfHKlEQU2r8zmDnxr3TEvAAzOGwajXcWk7EZELqBQK58RxIKDbc0IINHdYzgaiZhOqW0yobTGjvs0ejk5Vt+JUdWuv762QgCi9DpF6HaL0OkQZdDDqdYgI0iKs62uGBth7l/w0yiForXeRNQCtX78eCxcuxOrVqzFz5kz87W9/w6xZs3DkyBEkJPTsSi0sLMTs2bPx0EMP4e2338a3336Lhx9+GBEREZgzZw4AICcnB3PnzsXzzz+P22+/HR988AHuuusu7NixA9OmTRvqJg6KNrMFlU0mFFS34GjX/h1HK5pRWNMK6zmHHKqVEq4YEY45aXG4PsUInZp/QYiIhookSdD7qaH3U2N4RPdJ5FabQGN7J+pazahtNaGuxYzaVjMa2zvR1NGJlg4LbAIoa+xw9uBfiJ/aPg8rLNAeikL8NdDrVAjSqaH36/qx289V0PupEaRTQavyzc8GWYfApk2bhsmTJ2PNmjXOaykpKbjtttuwfPnyHvc/8cQT+Oijj5Cfn++8tmDBAuzfvx85OTkAgLlz56KpqQmfffaZ854f/OAHCAkJwXvvvdenugZrCKyu1Yydp2pgtdnHn602AYtNwGqzdf0onD+2m61o6RpfbumwoKmjE1XNJlQ2daC5w3LerxEf6ofLk8Jw5agIXH1ZBILOM8zFHiAiIvdltQm0mCy4PDkUlU32f/srmjpQ2diB6hYT6lrNXeHpwsNsfaFRKeCvObsKzk9t31ZA1/Wj/XrXVgIaBdRKBZSSBKVSgkohQSHZf1QqFfYfJQlKhQSVUnKujnPsCWXfHcr+8xB/DaYPD7vU/1XdeMQQmNlsxt69e/Hkk092u56ZmYmdO3f2+pqcnBxkZmZ2u3bjjTdi3bp16OzshFqtRk5ODhYtWtTjnlWrVp23FpPJBJPp7N4VjY2NAOz/I13pYHE9Hn5jt0vey0+jQHyIP0ZGBmJUVBBGGYNwmTEIkXqd8x5hbkeTub3X17e19m+5KBERDS01gL0ny5y/DtMAYRFqIOLsN7ZCCJgtNrSa7Kvg2rq2BuiwWNHRaUVHp0BHpxUm569tUCokNHd0osVkX/3WYQI6eh+FG1QT4gx456HLXfqejs/tvvTtyBaAampqYLVaYTQau103Go2oqOh946uKiope77dYLKipqUF0dPR57znfewLA8uXL8dxzz/W4Hh8f39fmyOI4gC/lLoKIiGgASgAYHh+c925ubobBYLjgPbJPgv7+5lFCiAtuKNXb/d+/3t/3XLx4MbKyspy/ttlsqKurQ1hYmPN1TU1NiI+PR0lJiUevDLsQb2+jt7cP8P42env7AO9vo7e3D/D+Nrpz+4QQaG5uRkxMzEXvlS0AhYeHQ6lU9uiZqaqq6tGD4xAVFdXr/SqVCmFhYRe853zvCQBarRZabfdTz4ODg3u9V6/Xu91vuKt5exu9vX2A97fR29sHeH8bvb19gPe30V3bd7GeHwfZdsDTaDRIS0tDdnZ2t+vZ2dmYMWNGr6+ZPn16j/u3bNmC9PR0qNXqC95zvvckIiIi3yPrEFhWVhbuvfdepKenY/r06XjllVdQXFzs3Ndn8eLFKC0txVtvvQXAvuLrr3/9K7KysvDQQw8hJycH69at67a667HHHsOVV16JF198Ebfeeiv+85//4IsvvsCOHTtkaSMRERG5H1kD0Ny5c1FbW4tly5ahvLwcqamp2LRpExITEwEA5eXlKC4+u1w7KSkJmzZtwqJFi/Dyyy8jJiYGL730knMPIACYMWMG3n//ffzud7/DU089heHDh2P9+vWXvAeQVqvFM88802OozJt4exu9vX2A97fR29sHeH8bvb19gPe30Vvax6MwiIiIyOfwFEwiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EA+p7t27fjlltuQUxMDCRJwocfftjteSEEnn32WcTExMDPzw9XX301Dh8+LE+xA7B8+XJMmTIFQUFBiIyMxG233YZjx451u8eT27hmzRqMHz/euUHX9OnTux2M68ltO5/ly5dDkiQsXLjQec3T2/nss89CkqRuj6ioKOfznt4+ACgtLcVPf/pThIWFwd/fHxMnTsTevXudz3t6G4cNG9bj91CSJDzyyCMAPL99FosFv/vd75CUlAQ/Pz8kJydj2bJlsNnOHkzq6W1sbm7GwoULkZiYCD8/P8yYMQPfffed83lPbx8EdbNp0yaxdOlSsWHDBgFAfPDBB92e/8Mf/iCCgoLEhg0bxMGDB8XcuXNFdHS0aGpqkqfgfrrxxhvFG2+8IQ4dOiTy8vLETTfdJBISEkRLS4vzHk9u40cffSQ+/fRTcezYMXHs2DGxZMkSoVarxaFDh4QQnt223uzevVsMGzZMjB8/Xjz22GPO657ezmeeeUaMHTtWlJeXOx9VVVXO5z29fXV1dSIxMVE88MADYteuXaKwsFB88cUX4uTJk857PL2NVVVV3X7/srOzBQCxdetWIYTnt+/3v/+9CAsLE5988okoLCwU//rXv0RgYKBYtWqV8x5Pb+Ndd90lxowZI7Zt2yZOnDghnnnmGaHX68WZM2eEEJ7fPgagC/h+ALLZbCIqKkr84Q9/cF7r6OgQBoNBrF27VoYKL11VVZUAILZt2yaE8M42hoSEiNdee83r2tbc3CxGjhwpsrOzxVVXXeUMQN7QzmeeeUZMmDCh1+e8oX1PPPGEuOKKK877vDe08fsee+wxMXz4cGGz2byifTfddJOYN29et2t33HGH+OlPfyqE8Pzfw7a2NqFUKsUnn3zS7fqECRPE0qVLPb59QgjBIbB+KCwsREVFBTIzM53XtFotrrrqKuzcuVPGygausbERABAaGgrAu9potVrx/vvvo7W1FdOnT/eqtgHAI488gptuugnXX399t+ve0s4TJ04gJiYGSUlJ+PGPf4yCggIA3tG+jz76COnp6fjRj36EyMhITJo0Ca+++qrzeW9o47nMZjPefvttzJs3D5IkeUX7rrjiCnz55Zc4fvw4AGD//v3YsWMHZs+eDcDzfw8tFgusVit0Ol23635+ftixY4fHtw/gHKB+cRyy+v2DVY1GY48DWD2BEAJZWVm44oorkJqaCsA72njw4EEEBgZCq9ViwYIF+OCDDzBmzBivaJvD+++/j3379mH58uU9nvOGdk6bNg1vvfUWNm/ejFdffRUVFRWYMWMGamtrvaJ9BQUFWLNmDUaOHInNmzdjwYIFePTRR53H/nhDG8/14YcfoqGhAQ888AAA72jfE088gbvvvhujR4+GWq3GpEmTsHDhQtx9990APL+NQUFBmD59Op5//nmUlZXBarXi7bffxq5du1BeXu7x7QNkPgrDU0mS1O3XQoge1zzBr371Kxw4cKDXc9I8uY2XXXYZ8vLy0NDQgA0bNuD+++/Htm3bnM97ctsAoKSkBI899hi2bNnS47uzc3lyO2fNmuX8+bhx4zB9+nQMHz4cf//733H55ZcD8Oz22Ww2pKen43/+538AAJMmTcLhw4exZs0a3Hfffc77PLmN51q3bh1mzZqFmJiYbtc9uX3r16/H22+/jXfffRdjx45FXl4eFi5ciJiYGNx///3O+zy5jf/4xz8wb948xMbGQqlUYvLkybjnnnuwb98+5z2e3D72APWDYxXK99NtVVVVjxTs7n7961/jo48+wtatWxEXF+e87g1t1Gg0GDFiBNLT07F8+XJMmDABf/7zn72ibQCwd+9eVFVVIS0tDSqVCiqVCtu2bcNLL70ElUrlbIunt/NcAQEBGDduHE6cOOEVv4/R0dEYM2ZMt2spKSnOsw+9oY0ORUVF+OKLLzB//nznNW9o3//7f/8PTz75JH784x9j3LhxuPfee7Fo0SJnr6w3tHH48OHYtm0bWlpaUFJSgt27d6OzsxNJSUle0T4GoH5w/KZnZ2c7r5nNZmzbtg0zZsyQsbK+E0LgV7/6FTZu3IivvvoKSUlJ3Z73hjZ+nxACJpPJa9p23XXX4eDBg8jLy3M+0tPT8ZOf/AR5eXlITk72inaey2QyIT8/H9HR0V7x+zhz5swe208cP37ceRC0N7TR4Y033kBkZCRuuukm5zVvaF9bWxsUiu4foUql0rkM3hva6BAQEIDo6GjU19dj8+bNuPXWW72jffLMvXZfzc3NIjc3V+Tm5goAYuXKlSI3N1cUFRUJIezL/gwGg9i4caM4ePCguPvuuz1q2d8vf/lLYTAYxNdff91tiWpbW5vzHk9u4+LFi8X27dtFYWGhOHDggFiyZIlQKBRiy5YtQgjPbtuFnLsKTAjPb+dvfvMb8fXXX4uCggLx3//+V9x8880iKChInD59Wgjh+e3bvXu3UKlU4oUXXhAnTpwQ77zzjvD39xdvv/228x5Pb6MQQlitVpGQkCCeeOKJHs95evvuv/9+ERsb61wGv3HjRhEeHi5++9vfOu/x9DZ+/vnn4rPPPhMFBQViy5YtYsKECWLq1KnCbDYLITy/fQxA37N161YBoMfj/vvvF0LYlzY+88wzIioqSmi1WnHllVeKgwcPylt0P/TWNgDijTfecN7jyW2cN2+eSExMFBqNRkRERIjrrrvOGX6E8Oy2Xcj3A5Cnt9Oxn4harRYxMTHijjvuEIcPH3Y+7+ntE0KIjz/+WKSmpgqtVitGjx4tXnnllW7Pe0MbN2/eLACIY8eO9XjO09vX1NQkHnvsMZGQkCB0Op1ITk4WS5cuFSaTyXmPp7dx/fr1Ijk5WWg0GhEVFSUeeeQR0dDQ4Hze09snCSGELF1PRERERDLhHCAiIiLyOQxARERE5HMYgIiIiMjnMAARERGRz2EAIiIiIp/DAEREREQ+hwGIiIiIfA4DEBEREfkcBiAiIiLyOQxARERE5HMYgIiIiMjnMAARkVf4/PPPccUVVyA4OBhhYWG4+eabcerUKefzO3fuxMSJE6HT6ZCeno4PP/wQkiQhLy/Pec+RI0cwe/ZsBAYGwmg04t5770VNTY0MrSGiwcYAREReobW1FVlZWfjuu+/w5ZdfQqFQ4Pbbb4fNZkNzczNuueUWjBs3Dvv27cPzzz+PJ554otvry8vLcdVVV2HixInYs2cPPv/8c1RWVuKuu+6SqUVENJh4GjwReaXq6mpERkbi4MGD2LFjB373u9/hzJkz0Ol0AIDXXnsNDz30EHJzczFx4kQ8/fTT2LVrFzZv3ux8jzNnziA+Ph7Hjh3DqFGj5GoKEQ0C9gARkVc4deoU7rnnHiQnJ0Ov1yMpKQkAUFxcjGPHjmH8+PHO8AMAU6dO7fb6vXv3YuvWrQgMDHQ+Ro8e7XxvIvIuKrkLICJyhVtuuQXx8fF49dVXERMTA5vNhtTUVJjNZgghIElSt/u/3/lts9lwyy234MUXX+zx3tHR0YNaOxENPQYgIvJ4tbW1yM/Px9/+9jdkZGQAAHbs2OF8fvTo0XjnnXdgMpmg1WoBAHv27On2HpMnT8aGDRswbNgwqFT8p5HI23EIjIg8XkhICMLCwvDKK6/g5MmT+Oqrr5CVleV8/p577oHNZsPPf/5z5OfnY/PmzVixYgUAOHuGHnnkEdTV1eHuu+/G7t27UVBQgC1btmDevHmwWq2ytIuIBg8DEBF5PIVCgffffx979+5FamoqFi1ahD/96U/O5/V6PT7++GPk5eVh4sSJWLp0KZ5++mkAcM4LiomJwbfffgur1Yobb7wRqampeOyxx2AwGKBQ8J9KIm/DVWBE5JPeeecd/OxnP0NjYyP8/PzkLoeIhhgHuonIJ7z11ltITk5GbGws9u/fjyeeeAJ33XUXww+Rj2IAIiKfUFFRgaeffhoVFRWIjo7Gj370I7zwwgtyl0VEMuEQGBEREfkczuwjIiIin8MARERERD6HAYiIiIh8DgMQERER+RwGICIiIvI5DEBERETkcxiAiIiIyOcwABEREZHP+f/neK/6tuvFjwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# use seaborn to draw histogram\n", "sns.distplot(df['age'])" ] }, { "cell_type": "code", "execution_count": 42, "id": "6ab2d183", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIECAYAAADo2H/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbXElEQVR4nO3deVhO6eM/8PfTvqislUZaiJEs2QdDdjP2ZixjJz5j7NmGj5FlEmMGkbGOIXwxxj4Yy6DsWwoRQtKYYrKESqnu3x/9nPF4IjOfdM5t3q/req5L5zny9rS9u89930cnhBAgIiIikoyR2gGIiIiI/gmWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEomagd4W3JycvDHH3/AxsYGOp1O7ThERET0BoQQePz4MZycnGBk9Pqxlne2xPzxxx9wdnZWOwYRERH9AwkJCShTpsxrz3lnS4yNjQ2A3BfB1tZW5TRERET0Jh49egRnZ2fl5/jr/O0Sc+jQIXz77beIiIhAYmIitmzZgo4dOyrPCyEwdepULF26FA8ePEDdunXx/fffo3Llyso5GRkZGDNmDNatW4f09HQ0a9YMCxcu1GtcDx48wPDhw7F9+3YAQPv27RESEoKiRYu+Uc7nl5BsbW1ZYoiIiCTzJlNB/vbE3tTUVFSrVg0LFizI8/lZs2Zhzpw5WLBgAU6fPg1HR0e0aNECjx8/Vs4ZOXIktmzZgvXr1+PIkSN48uQJ2rZti+zsbOWc7t27IyoqCrt378bu3bsRFRWFXr16/d24RERE9K4S/wMAYsuWLcrbOTk5wtHRUcycOVM59vTpU2FnZycWL14shBDi4cOHwtTUVKxfv1455/bt28LIyEjs3r1bCCHEpUuXBABx4sQJ5Zzjx48LAOLy5ctvlC0lJUUAECkpKf/Lf5GIiIgK0d/5+V2gS6zj4uKQlJSEli1bKsfMzc3RuHFjHDt2DAAQERGBZ8+e6Z3j5OQELy8v5Zzjx4/Dzs4OdevWVc6pV68e7OzslHNelpGRgUePHuk9iIiI6N1VoCUmKSkJAODg4KB33MHBQXkuKSkJZmZmKFas2GvPsbe3N3j/9vb2yjkvmzFjBuzs7JQHVyYRERG9297KZncvT8YRQuQ7Qeflc/I6/3XvZ8KECUhJSVEeCQkJ/yA5ERERyaJAS4yjoyMAGIyW3L17VxmdcXR0RGZmJh48ePDac+7cuWPw/v/880+DUZ7nzM3NlZVIXJFERET07ivQEuPm5gZHR0fs27dPOZaZmYnw8HDUr18fAFCzZk2YmprqnZOYmIjo6GjlnA8++AApKSk4deqUcs7JkyeRkpKinENERET/bn97n5gnT57g2rVryttxcXGIiopC8eLFUbZsWYwcORJBQUHw8PCAh4cHgoKCYGVlhe7duwMA7Ozs4Ofnh9GjR6NEiRIoXrw4xowZgypVqqB58+YAgEqVKqF169YYOHAglixZAgD4z3/+g7Zt26JixYoF8f8mIiIiyf3tEnPmzBk0adJEeXvUqFEAgD59+mDlypUYN24c0tPTMXjwYGWzu7179+rtvDd37lyYmJigS5cuymZ3K1euhLGxsXLO//3f/2H48OHKKqb27du/cm8aIiIi+vfRCSGE2iHehkePHsHOzg4pKSmcH0NERCSJv/Pz+62sTiIiIiJ621hiiIiISEosMURERCQllhgiIiKS0t9enUREhcN1/M4Cf583Z7Yp8PdJRKQWjsQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKXGzO4lw8zMiIqK/cCSGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpJSgZeYrKwsfPXVV3Bzc4OlpSXc3d0xbdo05OTkKOcIITBlyhQ4OTnB0tISPj4+uHjxot77ycjIwLBhw1CyZElYW1ujffv2+P333ws6LhEREUmqwEvMN998g8WLF2PBggWIiYnBrFmz8O233yIkJEQ5Z9asWZgzZw4WLFiA06dPw9HRES1atMDjx4+Vc0aOHIktW7Zg/fr1OHLkCJ48eYK2bdsiOzu7oCMTERGRhEwK+h0eP34cHTp0QJs2bQAArq6uWLduHc6cOQMgdxQmODgYEydOhK+vLwAgNDQUDg4OWLt2LT7//HOkpKRg+fLlWL16NZo3bw4AWLNmDZydnfHbb7+hVatWBR2biIiIJFPgIzENGzbE/v37cfXqVQDAuXPncOTIEXz88ccAgLi4OCQlJaFly5bK3zE3N0fjxo1x7NgxAEBERASePXumd46TkxO8vLyUc4iIiOjfrcBHYr788kukpKTg/fffh7GxMbKzszF9+nR89tlnAICkpCQAgIODg97fc3BwQHx8vHKOmZkZihUrZnDO87//soyMDGRkZChvP3r0qMD+T0RERKQ9BT4S89NPP2HNmjVYu3Ytzp49i9DQUHz33XcIDQ3VO0+n0+m9LYQwOPay150zY8YM2NnZKQ9nZ+f/7T9CREREmlbgJWbs2LEYP348unXrhipVqqBXr17w9/fHjBkzAACOjo4AYDCicvfuXWV0xtHREZmZmXjw4MErz3nZhAkTkJKSojwSEhIK+r9GREREGlLgJSYtLQ1GRvrv1tjYWFli7ebmBkdHR+zbt095PjMzE+Hh4ahfvz4AoGbNmjA1NdU7JzExEdHR0co5LzM3N4etra3eg4iIiN5dBT4npl27dpg+fTrKli2LypUrIzIyEnPmzEH//v0B5F5GGjlyJIKCguDh4QEPDw8EBQXBysoK3bt3BwDY2dnBz88Po0ePRokSJVC8eHGMGTMGVapUUVYrERER0b9bgZeYkJAQTJo0CYMHD8bdu3fh5OSEzz//HAEBAco548aNQ3p6OgYPHowHDx6gbt262Lt3L2xsbJRz5s6dCxMTE3Tp0gXp6elo1qwZVq5cCWNj44KOTERERBLSCSGE2iHehkePHsHOzg4pKSnvzKUl1/E7C/x93pzZpsDfJxUMfryJ6N/o7/z85r2TiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKRU4EusiYiI1FTQK/u4qk+7OBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpPRWSszt27fRs2dPlChRAlZWVqhevToiIiKU54UQmDJlCpycnGBpaQkfHx9cvHhR731kZGRg2LBhKFmyJKytrdG+fXv8/vvvbyMuERERSajAS8yDBw/QoEEDmJqa4tdff8WlS5cwe/ZsFC1aVDln1qxZmDNnDhYsWIDTp0/D0dERLVq0wOPHj5VzRo4ciS1btmD9+vU4cuQInjx5grZt2yI7O7ugIxMREZGETAr6HX7zzTdwdnbGihUrlGOurq7Kn4UQCA4OxsSJE+Hr6wsACA0NhYODA9auXYvPP/8cKSkpWL58OVavXo3mzZsDANasWQNnZ2f89ttvaNWqVUHHJiIiIskU+EjM9u3bUatWLXTu3Bn29vbw9vbGsmXLlOfj4uKQlJSEli1bKsfMzc3RuHFjHDt2DAAQERGBZ8+e6Z3j5OQELy8v5ZyXZWRk4NGjR3oPIiIiencVeIm5ceMGFi1aBA8PD+zZsweDBg3C8OHDsWrVKgBAUlISAMDBwUHv7zk4OCjPJSUlwczMDMWKFXvlOS+bMWMG7OzslIezs3NB/9eIiIhIQwq8xOTk5KBGjRoICgqCt7c3Pv/8cwwcOBCLFi3SO0+n0+m9LYQwOPay150zYcIEpKSkKI+EhIT/7T9CREREmlbgJaZ06dLw9PTUO1apUiXcunULAODo6AgABiMqd+/eVUZnHB0dkZmZiQcPHrzynJeZm5vD1tZW70FERETvrgIvMQ0aNMCVK1f0jl29ehUuLi4AADc3Nzg6OmLfvn3K85mZmQgPD0f9+vUBADVr1oSpqaneOYmJiYiOjlbOISIion+3Al+d5O/vj/r16yMoKAhdunTBqVOnsHTpUixduhRA7mWkkSNHIigoCB4eHvDw8EBQUBCsrKzQvXt3AICdnR38/PwwevRolChRAsWLF8eYMWNQpUoVZbUSERER/bsVeImpXbs2tmzZggkTJmDatGlwc3NDcHAwevTooZwzbtw4pKenY/DgwXjw4AHq1q2LvXv3wsbGRjln7ty5MDExQZcuXZCeno5mzZph5cqVMDY2LujIREREJCGdEEKoHeJtePToEezs7JCSkvLOzI9xHb+zwN/nzZltCvx9UsHgx5vonynorx1+3RSuv/Pzm/dOIiIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSclE7QBa4Tp+Z4G+v5sz2xTo+yMiIiJ9HIkhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSkonaAYiICHAdv7PA3+fNmW0K/H0SaQlHYoiIiEhKb73EzJgxAzqdDiNHjlSOCSEwZcoUODk5wdLSEj4+Prh48aLe38vIyMCwYcNQsmRJWFtbo3379vj999/fdlwiIiKSxFstMadPn8bSpUtRtWpVveOzZs3CnDlzsGDBApw+fRqOjo5o0aIFHj9+rJwzcuRIbNmyBevXr8eRI0fw5MkTtG3bFtnZ2W8zMhEREUnirZWYJ0+eoEePHli2bBmKFSumHBdCIDg4GBMnToSvry+8vLwQGhqKtLQ0rF27FgCQkpKC5cuXY/bs2WjevDm8vb2xZs0aXLhwAb/99tvbikxEREQSeWslZsiQIWjTpg2aN2+udzwuLg5JSUlo2bKlcszc3ByNGzfGsWPHAAARERF49uyZ3jlOTk7w8vJSznlZRkYGHj16pPcgIiKid9dbWZ20fv16nD17FqdPnzZ4LikpCQDg4OCgd9zBwQHx8fHKOWZmZnojOM/Pef73XzZjxgxMnTq1IOITERGRBAp8JCYhIQEjRozAmjVrYGFh8crzdDqd3ttCCINjL3vdORMmTEBKSorySEhI+PvhiYiISBoFXmIiIiJw9+5d1KxZEyYmJjAxMUF4eDjmz58PExMTZQTm5RGVu3fvKs85OjoiMzMTDx48eOU5LzM3N4etra3eg4iIiN5dBV5imjVrhgsXLiAqKkp51KpVCz169EBUVBTc3d3h6OiIffv2KX8nMzMT4eHhqF+/PgCgZs2aMDU11TsnMTER0dHRyjlERET071bgc2JsbGzg5eWld8za2holSpRQjo8cORJBQUHw8PCAh4cHgoKCYGVlhe7duwMA7Ozs4Ofnh9GjR6NEiRIoXrw4xowZgypVqhhMFCYiIqJ/J1VuOzBu3Dikp6dj8ODBePDgAerWrYu9e/fCxsZGOWfu3LkwMTFBly5dkJ6ejmbNmmHlypUwNjZWIzIRERFpTKGUmLCwML23dTodpkyZgilTprzy71hYWCAkJAQhISFvNxwRERFJifdOIiIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQllhgiIiKSEksMERERSYklhoiIiKTEEkNERERSYokhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpGSidgAikpfr+J0F/j5vzmxT4O+TiN5NHIkhIiIiKbHEEBERkZRYYoiIiEhKLDFEREQkJZYYIiIiklKBl5gZM2agdu3asLGxgb29PTp27IgrV67onSOEwJQpU+Dk5ARLS0v4+Pjg4sWLeudkZGRg2LBhKFmyJKytrdG+fXv8/vvvBR2XiIiIJFXgJSY8PBxDhgzBiRMnsG/fPmRlZaFly5ZITU1Vzpk1axbmzJmDBQsW4PTp03B0dESLFi3w+PFj5ZyRI0diy5YtWL9+PY4cOYInT56gbdu2yM7OLujIREREJKEC3ydm9+7dem+vWLEC9vb2iIiIQKNGjSCEQHBwMCZOnAhfX18AQGhoKBwcHLB27Vp8/vnnSElJwfLly7F69Wo0b94cALBmzRo4Ozvjt99+Q6tWrQo6NhEREUnmrc+JSUlJAQAUL14cABAXF4ekpCS0bNlSOcfc3ByNGzfGsWPHAAARERF49uyZ3jlOTk7w8vJSziEiIqJ/t7e6Y68QAqNGjULDhg3h5eUFAEhKSgIAODg46J3r4OCA+Ph45RwzMzMUK1bM4Jznf/9lGRkZyMjIUN5+9OhRgf0/iIiISHve6kjM0KFDcf78eaxbt87gOZ1Op/e2EMLg2Mted86MGTNgZ2enPJydnf95cCIiItK8t1Zihg0bhu3bt+PgwYMoU6aMctzR0READEZU7t69q4zOODo6IjMzEw8ePHjlOS+bMGECUlJSlEdCQkJB/neIiIhIYwq8xAghMHToUGzevBkHDhyAm5ub3vNubm5wdHTEvn37lGOZmZkIDw9H/fr1AQA1a9aEqamp3jmJiYmIjo5WznmZubk5bG1t9R5ERET07irwOTFDhgzB2rVrsW3bNtjY2CgjLnZ2drC0tIROp8PIkSMRFBQEDw8PeHh4ICgoCFZWVujevbtyrp+fH0aPHo0SJUqgePHiGDNmDKpUqaKsViIiIqJ/twIvMYsWLQIA+Pj46B1fsWIF+vbtCwAYN24c0tPTMXjwYDx48AB169bF3r17YWNjo5w/d+5cmJiYoEuXLkhPT0ezZs2wcuVKGBsbF3RkIiIiklCBlxghRL7n6HQ6TJkyBVOmTHnlORYWFggJCUFISEgBpiMiIqJ3xVtdYk1EpAWu43cW6Pu7ObNNgb4/IvpneANIIiIikhJLDBEREUmJJYaIiIikxBJDREREUuLEXipQBT2BEuAkSiIiyhtHYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFIyUTsAERHRv43r+J0F/j5vzmxT4O9T6zgSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQlrk6if6WCXhnwb1wVQESkNo7EEBERkZRYYoiIiEhKLDFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUuGMvERG9kYLe6Rrgbtf0v+FIDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFJiiSEiIiIpscQQERGRlFhiiIiISEosMURERCQlE7UDEBERkfa4jt9Z4O/z5sw2Bfr+OBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSQ0RERFLSfIlZuHAh3NzcYGFhgZo1a+Lw4cNqRyIiIiIN0HSJ+emnnzBy5EhMnDgRkZGR+PDDD/HRRx/h1q1bakcjIiIilWm6xMyZMwd+fn4YMGAAKlWqhODgYDg7O2PRokVqRyMiIiKVafYGkJmZmYiIiMD48eP1jrds2RLHjh0zOD8jIwMZGRnK2ykpKQCAR48evdG/l5OR9j+kNfSm/+7fUdAZgYLPKUNGgB/vgiJDRoAf74IiQ0aAH++ColbG5+cIIfJ/h0Kjbt++LQCIo0eP6h2fPn26qFChgsH5kydPFgD44IMPPvjgg4934JGQkJBvV9DsSMxzOp1O720hhMExAJgwYQJGjRqlvJ2Tk4P79++jRIkSeZ7/Tzx69AjOzs5ISEiAra1tgbzPgiZDRkCOnMxYcGTIyYwFR4aczFhwCjqnEAKPHz+Gk5NTvudqtsSULFkSxsbGSEpK0jt+9+5dODg4GJxvbm4Oc3NzvWNFixZ9K9lsbW01/QkFyJERkCMnMxYcGXIyY8GRISczFpyCzGlnZ/dG52l2Yq+ZmRlq1qyJffv26R3ft28f6tevr1IqIiIi0grNjsQAwKhRo9CrVy/UqlULH3zwAZYuXYpbt25h0KBBakcjIiIilWm6xHTt2hX37t3DtGnTkJiYCC8vL+zatQsuLi6q5DE3N8fkyZMNLltpiQwZATlyMmPBkSEnMxYcGXIyY8FRM6dOiDdZw0RERESkLZqdE0NERET0OiwxREREJCWWGCIiIpISSwwRERFJiSWGiIiIpMQSIzkhBOLj45Genq52lFfKyspCaGiowe7LRPTPPHz4UO0Ievr374/Hjx8bHE9NTUX//v1VSET/Flxi/Q8tXLgQycnJCAgIUDVHTk4OLCwscPHiRXh4eKia5XWsrKwQExOj2h4/75KmTZti8+bNBrfVePToETp27IgDBw6oE0wS58+ff+Nzq1at+haTvJlvvvkGrq6u6Nq1KwCgS5cu2LRpExwdHbFr1y5Uq1ZN5YSAsbExEhMTYW9vr3c8OTkZjo6OyMrKUinZX7Kzs7Fy5Urs378fd+/eRU5Ojt7z/LqRk6Y3u9OyTZs2IS4uTvUSY2RkBA8PD9y7d0/TJaZu3bqIiorSZImR7YdaWFgYMjMzDY4/ffoUhw8fViGRXKpXrw6dTvfKm8m+KDs7u5BSvdqSJUuwZs0aALm3Xdm3bx9+/fVXbNiwAWPHjsXevXtVy/bo0SMIIZQb9llYWCjPZWdnY9euXQbFRi0jRozAypUr0aZNG3h5eRXYjYELwqNHj974XK3cQyk1NRUzZ858ZSm8ceNGoeRgifmH9u/fr3YExaxZszB27FgsWrQIXl5easfJ0+DBgzFq1CgkJCSgZs2asLa21ntezXIgyw+1F8vWpUuX9C7PZWdnY/fu3XjvvffUiKYoVqzYG/9wuH///ltOk7e4uDjlz5GRkRgzZgzGjh2LDz74AABw/PhxzJ49G7NmzVIl38sSExPh7OwMANixYwe6dOmCli1bwtXVFXXr1lU1W9GiRaHT6aDT6VChQgWD53U6HaZOnapCMkPr16/Hhg0b8PHHH6sdxcDz1/FNaKFYA8CAAQMQHh6OXr16oXTp0qqVQpaYd0DPnj2RlpaGatWqwczMDJaWlnrPq/XD4kXPh8KHDx+uHHuxOKj5hSnLD7XnZUun06Fp06YGz1taWiIkJESFZH8JDg5W/nzv3j0EBgaiVatWeq/lnj17MGnSJJUSQm80sHPnzpg/f77eD7aqVavC2dkZkyZNQseOHVVIqK9YsWJISEiAs7Mzdu/ejcDAQAC58+HU/oF28OBBCCHQtGlTbNq0CcWLF1eeMzMzg4uLC5ycnFRM+BczMzOUL19e7Rh5OnjwoPLnmzdvYvz48ejbt6/e101oaChmzJihVkQDv/76K3bu3IkGDRqomoNzYt7A1atXERYWlueQmdqXkwAgNDT0tc/36dOnkJK8Wnx8/Guf18plpjp16mDKlCkGv63t2rULkyZNQkREhErJcl9DIQTc3d1x6tQplCpVSnnOzMwM9vb2MDY2Vi3fyz755BM0adIEQ4cO1Tu+YMEC/Pbbb9i6das6wV5gaWmJs2fPolKlSnrHY2JiUKNGDU1MmB86dCh27NgBDw8PREZG4ubNmyhSpAh++uknfPPNNzh79qzaEREfHw9nZ2cYGWl3rcjs2bNx48YNLFiwQFOXkl7WrFkzDBgwAJ999pne8bVr12Lp0qUICwtTJ9hL3NzcsGvXLoOvncLGEpOPZcuW4YsvvkDJkiXh6Oio98mv0+k08Q2ECo4MP9RkUaRIEURFRRn89hsbGwtvb288efJEpWR/qVGjBipVqoTly5cr8zkyMjLQv39/xMTEaOLr+9mzZ5g3bx4SEhLQt29feHt7A8gd9SpSpAgGDBigcsJcDx8+xKlTp/L8Za93794qpfpLp06dcPDgQRQvXhyVK1eGqamp3vObN29WKZk+KysrnDt3zmCO49WrV1G9enWkpaWplEzfmjVrsG3bNoSGhsLKykq1HCwx+XBxccHgwYPx5Zdfqh3ljaSnp+PZs2d6x7QwEWzVqlWvfV4L3+QAOX6oAdofHQRyv3aGDh2KsWPH6h3/9ttvsWDBgnxH5wrDqVOn0K5dO+Tk5CirfM6dOwedTocdO3agTp06KieUwy+//IIePXogNTUVNjY2Br/saeGSdr9+/V77/IoVKwopyetVrFgRbdu2xezZs/WOjx49Gjt27MCVK1dUSqbP29sb169fhxACrq6uBqWwsL5XssTkw9bWFlFRUXB3d1c7yiulpqbiyy+/xIYNG3Dv3j2D59W+bg7kXtd/0bNnz5CWlgYzMzNYWVlp4pscIMcPNVlGB1euXAk/Pz+0bt1aubZ/4sQJ7N69Gz/88AP69u2rbsD/Ly0tDWvWrMHly5chhICnpye6d+9uMPlcTatXr8aSJUtw48YNHD9+HC4uLggODoabmxs6dOigdjxUqFABH3/8MYKCglT9rfxdsGvXLnzyyScoV64c6tWrByD36+b69evYtGmTZiYm5zdhe/LkyYWSgyUmH35+fqhduzYGDRqkdpRXGjJkCA4ePIhp06ahd+/e+P7773H79m0sWbIEM2fORI8ePdSOmKfY2Fh88cUXGDt2LFq1aqV2HIXWf6jJNDp48uRJzJ8/HzExMcprOXz4cNVX1chk0aJFCAgIwMiRIzF9+nRER0fD3d0dK1euRGhoqN6kULVYW1vjwoULmv5lTyYJCQlYtGiR3vegQYMGKavU6C8sMfmYMWMG5syZgzZt2qBKlSoGQ2YvrrZRS9myZbFq1Sr4+PjA1tYWZ8+eRfny5bF69WqsW7cOu3btUjviK505cwY9e/bE5cuX1Y4iDRlGB2WS1yjH3Llz4e7urolRDk9PTwQFBaFjx46wsbHBuXPn4O7ujujoaPj4+CA5OVntiPD19UW3bt3QpUsXtaO81saNG7FhwwbcunXLYK8lrYxgymLixInw8fFBgwYNVB194xLrfCxduhRFihRBeHg4wsPD9Z7T6XSaKDH379+Hm5sbgNwfcM8vzTRs2BBffPGFmtHyZWxsjD/++EPVDNu3b8dHH30EU1NTbN++/bXntm/fvpBSvVrnzp2xd+9eTY8OPnf9+nWsWLECN27cQHBwMOzt7bF79244OzujcuXKasfTG+UIDAxULr0WK1YMwcHBmigxcXFxymTeF5mbmyM1NVWFRIbatGmDsWPH4tKlS3n+sqeFr5v58+dj4sSJ6NOnD7Zt24Z+/frh+vXrOH36NIYMGaJ2PD2HDx9WivXPP/+M9957D6tXr4abmxsaNmyodjwAQEREBEJCQpCRkYEaNWrAx8cHjRs3RsOGDVGkSJFCy8ESk48X9xDRKnd3d9y8eRMuLi7w9PTEhg0bUKdOHfzyyy8GW9Or5eVyIIRAYmIiFixYoPo+Ax07dkRSUhLs7e1fuy+I2vvZPFe+fHlMmjQJJ06c0OzoIACEh4fjo48+QoMGDXDo0CEEBgbC3t4e58+fxw8//ICNGzeqHREhISFYtmwZOnbsiJkzZyrHa9WqhTFjxqiY7C9ubm557nb966+/wtPTU6VU+gYOHAgAmDZtmsFzWvm6WbhwIZYuXYrPPvsMoaGhGDduHNzd3REQEKCZOXlA7m7wvXr1Qo8ePXD27FlkZGQAAB4/foygoCDNjKzv3r0b2dnZOHXqFMLDwxEWFoaFCxciPT0dNWrUwIkTJwoniCDpzZkzR8ybN08IIcSBAweEpaWlMDMzE0ZGRiI4OFjldLl0Op3ew8jISDg4OIjPPvtM/PHHH2rHk4qrq+srH25ubmrHU9SrV0/Mnj1bCCFEkSJFxPXr14UQQpw6dUo4OTmpGU1hYWEhbt68KYTQz3j16lVhYWGhZjTFjz/+KN577z2xfv16YW1tLdatWycCAwOVP9ObsbS0VD7WpUqVElFRUUKI3I918eLF1Yymp3r16iI0NFQIof85GRkZKRwcHNSM9kqXL18WixcvFp9++qkwMTERJUuWLLR/myMxeRg1ahS+/vprWFtbY9SoUa89d86cOYWU6tX8/f2VPzdp0gSXL1/GmTNnUK5cOU3cHA6AwTJg+udkGB0EgAsXLmDt2rUGx0uVKpXnKjo1yDDK0a9fP2RlZWHcuHFIS0tD9+7d8d5772HevHno1q2b2vEMPH36VO8eSlrh6OiIe/fuwcXFBS4uLjhx4gSqVauGuLg4CA1NDb1y5QoaNWpkcNzW1lZTdy9ftGiRMs0iOzsbH374IRo3boxJkyYV6m1kWGLyEBkZqey1EhkZ+crztLrrY9myZVG2bFm1Y+QpMzMTcXFxKFeuHExMtPnpl5qaivDw8Dwn/2nlUg2g/deyaNGiSExMVOZrPRcZGan6PZ6eGzt2LIYMGYKnT59CCIFTp05h3bp1mDFjBn744Qe14ykGDhyIgQMHIjk5GTk5OZq5qeJz2dnZCAoKwuLFi3Hnzh1cvXoV7u7umDRpElxdXeHn56d2RDRt2hS//PILatSoAT8/P/j7+2Pjxo04c+YMfH191Y6nKF26NK5duwZXV1e940eOHNHUZP4hQ4agVKlSGD16NAYNGqTafmRcnSSp+fPnv/G5WvjBm5aWhqFDhyqb3j3/Jjd8+HA4OTlh/PjxKifMFRkZiY8//hhpaWlITU1F8eLFkZycDCsrK9jb2xfanVlfJy0tDcOGDVNuN6HV13LcuHE4fvw4fv75Z1SoUAFnz57FnTt30Lt3b/Tu3bvQ9pHIz7JlyxAYGIiEhAQAwHvvvYcpU6Zo4gcvkDvylpWVZbCDa2xsLExNTQ1+2Klh2rRpCA0NxbRp0zBw4EBlGfiGDRswd+5cHD9+XO2IyMnJQU5OjlL4N2zYgCNHjqB8+fIYNGgQzMzMVE6Ya9asWQgNDcWPP/6IFi1aYNeuXYiPj4e/vz8CAgIMbuOhlq1bt+LQoUMICwvDpUuXUK1aNfj4+MDHxwcffvhh4U3uLbQLV1SgXjcvQotzJIYPHy5q1qwpDh8+LKytrZXrvNu2bRPVq1dXOd1fGjduLAYOHCiysrKU69G3bt0SjRo1Eps2bVI7nhBCntcyMzNTdO/eXRgZGQmdTidMTU2FkZGR6Nmzp8jKylI7noE///xT3LlzR+0YBho1aiRWrlxpcHz16tWicePGhR8oD+XKlRO//fabEEJ/HkdMTIwoWrSomtGk9N///ldYWloqcwgtLCzEV199pXasV3r48KH45ZdfRJ8+fYSpqakwMzMrtH+bIzH5ePr0KUJCQnDw4ME8t3jn3gJvxsXFBT/99BPq1aunt9fFtWvXUKNGDTx69EjtiAByL4GcPHkSFStWRNGiRXH8+HFUqlQJJ0+eRJ8+fTSxn40Mr6UQArdu3UKpUqWQlJSEs2fPIicnB97e3gYjCmqaMmUK+vXrp5kbkOblxb2fXnTt2jXUqlVLE/MkLC0tcfnyZbi4uOh9Tl66dAl16tRR7T5Z58+fh5eXF4yMjHD+/PnXnluY8zjeRFpaGi5duoScnBx4enoW6rLlN3X//n1lZVJYWBiio6NRokQJNG7cGD///HOhZNDehXSN6d+/P/bt24dPP/0UderU0ew8GK37888/87yOn5qaqqnX1NTUVMnj4OCAW7duoVKlSrCzs8OtW7dUTpdLhtdSCAEPDw9cvHgRHh4emrqW/6JffvkFgYGBaNy4Mfz8/ODr66u5Sak6nQ6PHz82OJ6SkqKJpcsAULlyZRw+fNigDP7888957nFTWKpXr65sn1C9enXodLo8J/FqZRk4kHu7jq5du8LKygq1atVSO84rVa1aFZcuXULx4sXRqFEjDBw4ED4+PvDy8irUHCwx+di5cyd27dql+l4mL8tv1dSLtLCCqnbt2ti5cyeGDRsG4K9J0cuWLVPuq6MF3t7eOHPmDCpUqIAmTZogICAAycnJWL16NapUqaJ2PAByvJZGRkbw8PDAvXv3NDXy8rKIiAicP38eK1asgL+/P4YMGYJu3bqhf//+qF27ttrxAAAffvghZsyYgXXr1sHY2BhA7kTaGTNmaGbjs8mTJ6NXr164ffs2cnJysHnzZly5cgWrVq3Cjh07VMsVFxeHUqVKKX+WwYQJEzB8+HB07twZfn5+qF+/vtqR8vSf//xHldJioNAuXEmqUqVK4ty5c2rHMODj4/NGjyZNmqgdVQghxNGjR4WNjY0YNGiQsLCwECNGjBDNmzcX1tbW4syZM2rHU5w+fVocOHBACCHE3bt3xUcffSRsbGyEt7e3sq+E2mR5LXfs2CEaNmwoLly4oHaUN/Ls2TOxefNm0a5dO2Fqaiq8vLxEcHCwePjwoaq5Ll68KEqUKCHKlSsn+vbtK/r27SvKlSsnSpUqpanXdvfu3aJRo0bC2tpaWFpaigYNGog9e/aoHUs6WVlZYtu2baJTp07CzMxMVKxYUcycOVMkJiaqHe2VcnJyRE5Ojir/NktMPnbt2iVat26tbJJE/9z58+dF7969ReXKlUWlSpVEjx49xPnz59WOJSUZXsuiRYsqmy5aWFiIYsWK6T20JiMjQ6xfv160bNlSmJiYiEaNGomKFSsKGxsbsX79elWz3b59W0yYMEF8/PHH4pNPPhFTp04V9+7dUzWTbIKCgsTy5csNji9fvlzMnDlThUT5u3Pnjpg9e7aoUqWKMDU1Fe3atRNbt24V2dnZakcTQggRGhoqvLy8hLm5uTA3NxdVqlQRq1atKtQMnNibjz///BNdunTBoUOHYGVlZbDFu5a2qwaA33//HTqdTjP7cNC/1/Ml4K/Sp0+fQkryehEREVixYgXWrVsHc3Nz9O7dGwMGDFAm0s6ePRuzZs3CnTt3VE5K/wtXV1esXbvW4PLMyZMn0a1bN81ebjp58iR+/PFHhIaGonTp0nj48CGKFi2KFStWwMfHR7Vcc+bMwaRJkzB06FA0aNAAQggcPXoU33//PQIDA/U2YX2bWGLy0bx5c9y6dQt+fn5wcHAwmDiphW/EOTk5CAwMxOzZs5VVADY2Nhg9ejQmTpwIIyMjlRPmysnJwbVr1/Jc5ZXXDpVquHfvHgICAl65Gk1LpfXu3bt5ZtTaKgstq1q1KmJiYtCyZUsMHDgQ7dq1U+adPPfnn3/CwcGhUHedlmFVTbFixd54IrkWvm4sLCwQExNjsPnijRs34OnpiadPn6qUzNCdO3ewevVq5eapHTt2hJ+fH5o3b4709HR89dVX2LhxI+Lj41XL6ObmhqlTp6J37956x0NDQzFlypRCK4Wc2JuPY8eO4fjx45rZvj8vEydOxPLlyzFz5ky9RjxlyhQ8ffoU06dPVzsiTpw4ge7duyM+Pt5gdYCWVgb07NkT169ff2Vp1YKIiAj06dMHMTExmnstHz16pOzcmd9Sb7V2+HxR586d0b9//9eOXJYqVarQb5shw6qa4OBg5c/37t1DYGAgWrVqpUwuP378OPbs2YNJkyapku9lzs7OOHr0qEGJOXr0KJycnFRKZahdu3bYs2cPKlSogIEDB6J3794oXry48rylpSVGjx6NuXPnqpgSSExMzHPScf369ZGYmFh4QQr14pWEvL29xfHjx9WO8VqlS5cW27ZtMzi+detWzdxor1q1aqJz587i0qVL4sGDB+Lhw4d6D60oUqSIZibwvkqVKlVEp06dxIkTJ0RcXJy4efOm3kNNRkZGyoZxz2/0+fLj+XGtUXNy4stu3rypZHn546ulj/dzvr6+IiQkxOB4SEiI6NChQ+EHysPMmTNFiRIlxI8//qi8dsuXLxclSpQQQUFBasdT9O/fXxw7duy15+Tk5Kj+sa9cubKYPn26wfGvv/5aeHl5FVoOXk7Kx969ezF16lRMnz4dVapUMZgTo4XfJi0sLHD+/HlUqFBB7/iVK1dQvXp1pKenq5TsL9bW1jh37pzBhl1aU7t2bYSEhKBevXpqR3klGxsbREZGavK1DA8PR4MGDWBiYoLw8PDXntu4ceNCSvV6q1atwrfffovY2FgAQIUKFTB27Fj06tVL5WS50tLSYGVlpXaM1ypSpAiioqIMPidjY2Ph7e2t2mZ3LxJCYPz48Zg/f75yTzQLCwt8+eWXCAgIUDmdfDZt2oSuXbuiefPmaNCgAXQ6HY4cOYL9+/djw4YN6NSpU+EEKbS6JKnn2z5r+bfJOnXqiGHDhhkcHzp0qKhbt64KiQw1adJE/Prrr2rHyNepU6dE06ZNRVhYmEhOThYpKSl6Dy3o0KGD2Lhxo9ox8hUfH5/nyEZOTo6Ij49XIZGh2bNnCysrKzFu3Dixbds2sXXrVjF27FhhZWUl5syZo3Y8IYQQ1tbWokePHmL37t2aWZXysrJly4pZs2YZHJ81a5YoW7asCole7fHjx+LUqVPiwoUL4unTp2rHyVNYWJho27atKFeunChfvrxo166dOHTokNqxDJw5c0b06NFD1KhRQ3h7e4sePXqIs2fPFmoGjsTkQ4bfJsPDw9GmTRuULVsWH3zwAXQ6HY4dO4aEhATs2rULH374odoRsWXLFnz11VcYO3ZsniNaWpmMGhsbi88++8zg7uVCCNXnmzyXnJyMPn36oE6dOvDy8jJ4Ldu3b69SMn3GxsZITEw02F343r17sLe318RrqZXJia+zefNmrFu3Djt37oStrS26du2Knj17amYzPiB3l1k/Pz+0bt1amRNz4sQJ7N69Gz/88AP69u2rbkCJrFmzBv369YOvr68yx/HYsWPYsmULVq5cie7du6sdUVNYYt4Rt2/fxsKFC3H58mUIIeDp6YnBgwdrZsJaXiuknk9W1Eo5AIA6derAxMQEI0aMyHNirxZK6/bt29GrV688t6LX0mtpZGSEO3fuKDumPhcfHw9PT0+kpqaqlOwvFhYWiI6OzvMySJUqVTS1YuXx48fYuHEj1q1bh4MHD8LNzQ09e/bUzKWQkydPYv78+cqEc09PTwwfPhx169ZVLZOvry9WrlwJW1tb+Pr6vvbczZs3F1Kq16tUqRL+85//GCxRnjNnDpYtW4aYmBiVkhnSwopTlpg85Lek8UVaGUHQuvyWAmrlBnxWVlaIjIxExYoV1Y7ySq6urmjbti0mTZoEBwcHteMYeH5LjHnz5mHgwIF68zmys7Nx8uRJGBsb4+jRo2pFVHh5eaF79+7473//q3c8MDAQP/30Ey5cuKBSste7dOkSevTogfPnz2umtGpRv379MH/+fNjY2KBfv36vPXfFihWFlOr1zM3NcfHixTxv+Onl5aWZYq2VFadcYp2HF5c05rfEVgvfQFasWIEiRYqgc+fOesd//vlnpKWlaWIvG62UlPzUqlULCQkJmi4x9+7dg7+/vyYLDADlUpwQAhcuXICZmZnynJmZGapVq4YxY8aoFU/P1KlT0bVrVxw6dCjPyYla8vTpU2zfvh1r167F7t27YW9vr5nXMb+bo5YtW7aQkuh7sZhopaTkx9nZGfv37zcoMfv374ezs7NKqQwNGjQItWrVws6dO1G6dGn1tqMo1Bk4knhx+eKWLVtEuXLlxOLFi8W5c+fEuXPnxOLFi4WHh4fYsmWL2lGFEEJUqFBBud/Pi8LCwkSFChVUSJS3VatWifr164vSpUsrywPnzp0rtm7dqnKyv2zYsEF4enqKFStWiDNnzigf8+cPLejdu7dYtmyZ2jHy1bdvX81Mhn4dLUxOfJ09e/aI3r17C1tbW1GsWDExcOBAERYWpnYsPa9aTv/8QW9u4cKFwszMTAwaNEisWrVKrF69Wnz++efC3NxcLF68WO14CisrKxEbG6t2DN47KT+1a9cWO3fuNDi+c+dOUaNGDRUSGTI3NxdxcXEGx+Pi4oSFhUXhB8rDwoULRcmSJUVgYKCwtLQU169fF0IIsWLFCuHj46Nyur88X4324kNrq9ECAwNFyZIlRZ8+fcR3330n5s2bp/fQmtjYWLF7926RlpYmhBCa2YtFFpaWlqJz585iy5YtIjMzU+04eYqKitJ7nD59WixdulS8//77YtOmTWrHE0IIkZSUJHr27ClKly4tjI2NNV20Nm/eLBo0aCCKFy8uihcvLho0aKCpX/aE0M6KU86JyYelpSXOnj2LSpUq6R2PiYlBjRo1NLEHS9myZbFgwQKDVSnbtm3DkCFD8Pvvv6uU7C+enp4ICgpCx44dYWNjg3PnzsHd3R3R0dHw8fFBcnKy2hEByDF35+UdR1+k0+lw48aNQkzzavfv30fnzp1x8OBB6HQ6xMbGwt3dHX5+fihatChmz56tSq78dhJ+kdr7QGVlZWHhwoXo3LkzSpcurWqWf2Lnzp349ttvERYWpnYUfPTRR7h16xaGDh2a5+WPDh06qJRMTppZcap2i9I6b29v0b17d5Genq4ce/r0qejevbvw9vZWMdlfxo4dK1xcXMSBAwdEVlaWyMrKEvv37xcuLi5i9OjRascTQghhYWGhXEIqUqSIMhJz9epVzYwWUcHq1auXaNWqlUhISND7mO/Zs0d4enqqliu/Sx9aG3mztLRUfXfWf+rq1avCyspK7RhCiNzvO5GRkWrHeGdoZdSaE3vzsXjxYrRr1w7Ozs7K/ZPOnTsHnU6HHTt2qJwuV2BgIOLj49GsWTOYmOR+SHNyctC7d28EBQWpnC6Xm5sboqKiDEYyfv31V3h6eqqUKm+rV6/G4sWLERcXh+PHj8PFxQXBwcFwc3PT1G9rmZmZiIuLQ7ly5ZSPu5bs3bsXe/bsQZkyZfSOe3h4qHrjuoMHD6r2b/8TdevWRWRkpCZGAV/l5dEtIQQSExMxZcoUeHh4qJRKn7Ozc573n9IC2W6mCUATeygBXJ2Urzp16iAuLg5r1qxR9mDp2rUrunfvDmtra7XjAchd8fHTTz8hMDAQUVFRsLS0RJUqVTT1TW/s2LEYMmQInj59CiEETp06hXXr1mHGjBn44Ycf1I6nWLRoEQICAjBy5EhMnz5dWX1WtGhRBAcHa6LEpKWlYdiwYQgNDQUAXL16Fe7u7hg+fDicnJwwfvx4lRPmSk1NzXO7/OTkZJibm6uQKJcW9vr5OwYPHozRo0fj999/R82aNQ2+72hhm4eiRYsa/BAWQsDZ2Rnr169XKZW+4OBgjB8/HkuWLIGrq6vacfS8eDNNWdjZ2aFo0aJ5Pnft2rVCy8E5MW/o0qVLuHXrlnLPjee0sjvqc0ePHkWtWrVU/SHxKsuWLUNgYCASEhIAAO+99x6mTJkCPz8/lZP9RYa5OyNGjMDRo0cRHByM1q1b4/z583B3d8f27dsxefJkg92G1dKmTRvUqFEDX3/9NWxsbHD+/Hm4uLigW7duyMnJwcaNG9WOCAB48OABli9fjpiYGOh0OlSqVAn9+vXTu3OwmmTYKPLlnc2NjIxQqlQplC9fXjOjhMWKFUNaWhqysrJgZWVlMIdDKyMcsqhfvz4OHDgACwsLveNXrlxBs2bNCm0upjY+uzTsxo0b6NSpEy5cuJDn3jFa+Abyoo8++ghRUVFwd3dXO4oiKysL//d//4d27dph4MCBSE5ORk5OjsF29FoQFxcHb29vg+Pm5uaa2GEWALZu3YqffvoJ9erV0/tc9PT0xPXr11VMpu+7775D48aNcebMGWRmZmLcuHG4ePEi7t+/r4mN7oDcH77t27eHnZ0datWqBQCYP38+pk2bhu3bt2ti1EYrw/avo9PpUL9+fYPCkpWVhUOHDhXa7q2vI9NoR3Z2NrZs2aJXrDt06KCZQgjklsKOHTtix44dSq6YmBg0bdoUXbp0KbwghTb7RlJt27YVHTp0EHfv3hVFihQRFy9eFIcPHxZ16tTR5A25XpxAqSWyTE6sVKmSspTxxddy3rx5mllS/+IS9RczRkVFCVtbWzWjKTIzM4WPj484fvy4CAgIEG3atBEfffSRmDhxovjjjz/UjqeoXLmyGDhwoMjKylKOZWVlif/85z+icuXKKiaTi5GRkbhz547B8eTkZM1MkJbFhQsXhLu7u7CyshLe3t7C29tbWFtbC1dXV3H+/Hm14ynS09NFw4YNRefOnUVOTo64cOGCsLe3F/7+/oWagyUmHyVKlFA2ObO1tRWXL18WQgixf/9+Ub16dTWj5UmrJcbHx0czmwO+zo8//ijee+89sX79emFtbS3WrVsnAgMDlT9rQaNGjcT8+fOFELkf7xs3bgghhBgyZIho1aqVmtH0lCxZUly9elXtGK9lYWGhfE2/6PLly5paNaf1jSJ1Op24e/euwfErV64IGxsbFRLlLTs7W1y5ckUcPnxYhIeH6z20om7duqJdu3bi/v37yrH79++L9u3bi3r16qmYzNDDhw9F9erVxSeffCLs7e3FmDFjCj2DdsamNCo7OxtFihQBAJQsWRJ//PEHKlasCBcXF1y5ckXldIaWLFmiye3oZZicCOTeayUrKwvjxo1DWloaunfvjvfeew/z5s1Dt27d1I4HAJgxYwZat26NS5cuISsrC/PmzcPFixdx/PjxfO+6Xph69+6N5cuXY+bMmWpHeaUaNWogJibG4DYTMTExqF69ujqhXqLlyebPb6qo0+nQt29fvbl42dnZOH/+POrXr69WPD1auddPfs6dO4czZ86gWLFiyrFixYph+vTpqt+5/OVVaDqdDj/99BOaN2+OTz75BJMmTVLOKaw9llhi8uHl5aVMnKxbty5mzZoFMzMzLF26VFPzToDcGeElSpRQJgKKN7j3U2Hp2rUrAGD48OHKMa1NTnxu4MCBmp67U79+fRw9ehTfffcdypUrh71796JGjRo4fvw4qlSponY8RWZmJn744Qfs27cPtWrVMiiuc+bMUSnZX4YPH44RI0bg2rVrqFevHoDcH3bff/89Zs6cqXczWLWKdkhICJYtW4aOHTvqFcJatWqpfu8kOzs7ALnfa2xsbGBpaak8Z2Zmhnr16mHgwIFqxdOjmXv95KNixYq4c+cOKleurHf87t27BvdTKmx5rUIDcj/+ixcvxpIlSwr9ezpXJ+Vjz549SE1Nha+vL27cuIG2bdvi8uXLKFGiBH766Sc0bdpU7Yi4d+8eunbtigMHDmhqZ9QXybATLgCkp6dDCKEsDY6Pj8eWLVvg6emJli1bqpxOLk2aNHnlczqdDgcOHCjENHnLa+XPi7RQtC0tLXH58mW4uLjorZiLjY1F1apVNbFr+Lhx4zBlyhTl6+bmzZvYunUrKlWqhFatWqmcLpe1tTXOnTunehHIz65du5TX88ViPW3aNMycORMNGzZUzi3sHaX/zkhvYU2K50hMPl78AnR3d8elS5dw//79v7U50dvm7+8PExMT3Lp1S+/2CF27doW/v78mSoxWSkp+OnToAF9fXwwaNAgPHz5EnTp1YGZmhuTkZMyZMwdffPGF2hFfuW2+TqeDubm53l2j1STDpnIyrPyRYaPIyMhIrFq1Svm6qVevHkxNTTX1dVO3bl1cu3ZN8yWmbdu2AIAuXbooP2OejzW0a9dOeVuNYq2F1XovY4n5B7Syf8RzWt0Z9WVXrlxBSEiIsmzw/fffx7BhwwzmI6jp7NmzmDt3LgBg48aNcHR0RGRkJDZt2oSAgABNfDN+1ZDuc2XKlEHfvn0xefLkfEca/u1kKNcybBQZGRmpLGHeuHEjHBwcNPF18+LlwGHDhmH06NFISkpS914/+ZCh/D/38OFDnDp1Cnfv3kVOTo7ec7179y6UDCwx7wCt7oz6oo0bN+Kzzz5DrVq18MEHHwDIHSL18vLC2rVr0blzZ5UT5kpLS4ONjQ2A3HLo6+sLIyMj1KtXTzOFcOXKlZg4cSL69u2LOnXqQAiB06dPIzQ0FF999RX+/PNPfPfddzA3N8d///tfteNq3u3bt3H06NE8vxG/OIdLLXlNNi9TpoymJptr9eumevXqyiXB5/r376/8WQuXC1+mxdGOvPzyyy/o0aMHUlNTYWNjo/eLlU6nK7QSwzkx7wAZdkZ1d3dHz549MW3aNL3jkydPxurVqzVz5+WqVatiwIAB6NSpE7y8vLB792588MEHiIiIQJs2bZCUlKR2RDRr1gyff/65wYZSGzZswJIlS7B//36sXr0a06dPx+XLl1VKKYcVK1Zg0KBBMDMzQ4kSJQy+EWvh8/LFeVrJycm4ceMGjh49Ck9PT83MN9Hq183fKVBaGpV7+vQpzp8/n2ex1sou8RUqVMDHH3+MoKCgPH+JLjSFvKSb3oKLFy+KUqVKidatWwszMzPx6aefikqVKgkHBwdx7do1teMJIXI3aIuNjTU4fvXqVWFpaalCorz9/PPPwtTUVBgZGYkWLVoox4OCgkTr1q1VTPYXS0vLPPdfefG1vHHjhqZeV60qU6aMCAwMFNnZ2WpHeaUWLVqIRYsWCSGEePDggXBwcBBlypQRFhYWYuHChSqnyyXD140sfv31V1GqVKlX3iVaK6ysrDSxJxkvmL8DPD09cf78edSpUwctWrRQVlNFRkaiXLlyascDAPj4+ODw4cMGx48cOYIPP/xQhUR5+/TTT3Hr1i2cOXMGu3fvVo43a9ZMmSujtjJlymD58uUGx5cvXw5nZ2cAuSvWXtxngvKWlpaGbt26aXru0NmzZ5WvkefzTeLj47Fq1SrMnz9f5XS5ZPi6mTFjBn788UeD4z/++CO++eYbFRLlbejQoejcuTMSExORk5Oj99DKJS8gd9HLmTNn1I7By0lUOBYvXoyAgAB06dJFb9ngzz//jKlTp8LJyUk5VyvDpVq1fft2dO7cGe+//z5q164NnU6H06dP4/Lly9i4cSPatm2LRYsWITY2VhN7sWjZuHHjULx4cc3c+TsvVlZWuHz5MsqWLYsuXbqgcuXKmDx5MhISElCxYkWkpaWpHVEKrq6uWLt2rcHmeydPnkS3bt00s1LN1tZWU7+Avsry5csxbdo09OvXL8+J0oX1fZwl5h1w6NCh1z6vhZuvvelvumpPsGvSpMlrV/5oYW8TIPda/+LFi3HlyhUIIfD+++/j888/h6urq9rRpJKdnY22bdsiPT09z2/EWiiBWp1vIhsLCwvExMTAzc1N7/iNGzfg6emJp0+fqpRMX//+/dGgQQP4+fmpHeW1Xvc9vTC/j3N10jvAx8fH4JjW7rT98uQ0rXp5q/lnz54hKioK0dHR6NOnjzqh8uDi4oIZM2aoHUN6QUFB2LNnj7LM/+WJvVoQEBCA7t27w9/fH82aNVNW9+3duzfPO65T3pydnXH06FGDEnP06FG9kWC1LViwAJ07d8bhw4fzLNZaWDEHaOd7OkvMO+DBgwd6bz979gyRkZGYNGkSpk+frlKqV3v69CksLCzUjpGnV12/nzJlCp48eVLIaV4vLS0Nt27dQmZmpt5xrex3IYM5c+bgxx9/RN++fdWO8kqffvopGjZsiMTERFSrVk053qxZM3Tq1EnFZHIZMGAARo4ciWfPnik7re/fvx/jxo3D6NGjVU73l7Vr12LPnj2wtLREWFiYQbHWSol5eaXpi3Q6HSZNmlQoOXg56R126NAh+Pv7IyIiQu0oyM7ORlBQEBYvXow7d+7g6tWrcHd3x6RJk+Dq6qr5odNr166hTp06uH//vtpR8Oeff6Jfv3749ddf83xeCyNvsnB0dMThw4fh4eGhdhR6y4QQGD9+PObPn68UfwsLC3z55ZcICAhQOd1fHB0dMXz4cIwfP17TE85fHgV89uwZ4uLiYGJignLlyuHs2bOFkkO7rxD9z0qVKqWZO21Pnz4dK1euVG6g+VyVKlU0s+vo6xw/flwzo0cjR47EgwcPcOLECVhaWmL37t0IDQ2Fh4cHtm/frnY8qYwYMQIhISFqx6BCoNPp8M033+DPP//EiRMncO7cOdy/f19TBQbIvXFq165dNV1ggNxdml98REdHIzExEc2aNYO/v3+h5eBIzDvgxa21gdzfOBITEzFz5kw8e/YMR48eVSnZX8qXL48lS5agWbNmejexu3z5Mj744AODS2Jq8fX11Xv7+Wt55swZTJo0CZMnT1Yp2V9Kly6Nbdu2oU6dOrC1tcWZM2dQoUIFbN++HbNmzcKRI0fUjiiNTp064cCBAyhRogQqV65sMP9g8+bNKiWjt+XatWu4fv06GjVqBEtLS2XHXq3w9/dHqVKlpN1tOzo6Gm3btsXNmzcL5d/jnJh3QF5bawNAvXr18twXQQ23b9/O88ZrOTk5ePbsmQqJ8mZnZ6f3tpGRESpWrIhp06Zp5i7WqampsLe3B5B7H68///wTFSpUQJUqVQptCPddUbRoUYPiSu+me/fuoUuXLjh48CB0Oh1iY2Ph7u6OAQMGoGjRopq4US6Qezl41qxZ2LNnD6pWrarJFXOv8/DhQ6SkpBTav8cS8w54eX8DIyMjlCpVSjOXPwCgcuXKOHz4sMHW3j///LOmVlisWLFC7Qj5qlixIq5cuQJXV1dUr14dS5YsgaurKxYvXozSpUurHU8qMny8qWD4+/vD1NQUt27dQqVKlZTjXbt2hb+/v2ZKzIULF5TvidHR0XrPaWnE6OWNFp+PWq9evRqtW7cutBwsMe8ALd3z41UmT56MXr164fbt28jJycHmzZtx5coVrFq1Cjt27FA7noGIiAjlbtuenp6aKlojR45EYmIigNzXtVWrVvi///s/mJmZYeXKleqGk1BWVhbCwsJw/fp1dO/eHTY2Nvjjjz9ga2uLIkWKqB2PCsjevXuxZ88elClTRu+4h4eHZm7uCshzF+uXV3I+/+W5T58+mDBhQqHl4JwYSf2d7ca1siRvz549CAoKQkREBHJyclCjRg0EBARo5jINANy9exfdunVDWFgYihYtCiEEUlJS0KRJE6xfvx6lSpVSO6KBtLQ0ZUfXkiVLqh1HKvHx8WjdujVu3bqFjIwMZdXcyJEj8fTpUyxevFjtiFRAbGxscPbsWXh4eOjNyzt9+jRat26Ne/fuqR1Rj9bn7mgFS4ykXt6w6VW0cCferKwsTJ8+Hf3791fu7aNVXbt2xfXr17F69WplyPnSpUvo06cPypcvj3Xr1qmckApSx44dYWNjg+XLl6NEiRLKD7bw8HAMGDAAsbGxakekAtKmTRvUqFEDX3/9NWxsbHD+/Hm4uLigW7duyMnJwcaNG9WOCODVc3f8/Pw0NXdHK1hi3jHPP5xaa+xFihRBdHS05rfFt7Ozw2+//YbatWvrHT916hRatmyJhw8fqhPsBdnZ2Vi5ciX279+Pu3fvGuycqZVbI8igZMmSOHr0KCpWrKj32/nNmzfh6enJ+xK9Qy5dugQfHx/UrFkTBw4cQPv27XHx4kXcv38fR48e1cy9inr37o27d+/ihx9+QKVKlZTPyb1798Lf3x8XL15UO6KmaHshOr2x5cuXw8vLCxYWFrCwsICXl5em9l9p3rw5wsLC1I6Rr5ycHIPVAABgamqqmW22R4wYgREjRiA7OxteXl6oVq2a3oPe3KvuDPz777/DxsZGhUT0thQpUgRRUVGoU6cOWrRogdTUVPj6+iIyMjLPr3m17N27F998843m5+5oBSf2vgMmTZqEuXPnYtiwYcp9VY4fPw5/f3/cvHkTgYGBKicEPvroI0yYMAHR0dGoWbMmrK2t9Z7Xyp2rmzZtihEjRmDdunXK/VRu376t3LdGC9avX48NGzbg448/VjuK9Fq0aIHg4GAsXboUQO4I5pMnTzB58mS+vu8YNzc3JCYmYurUqXrH7927hzJlymhmp+vU1FRYWVkZHE9OToa5ubkKibSNl5PeASVLlkRISAg+++wzvePr1q3DsGHDkJycrFKyv2jljqf5SUhIQIcOHRAdHQ1nZ2fodDrEx8ejatWq2Lp1qybm9Dg5OSEsLAwVKlRQO4r0/vjjDzRp0gTGxsaIjY1FrVq1EBsbi5IlS+LQoUPKfjwkPyMjIyQlJRl8TOPj4+Hp6YnU1FSVkumTZe6OVrDEvAOKFSuGU6dOGdz/5erVq6hTp44m5nHI5rfffkNMTAyEEPD09ETz5s3VjqSYPXs2bty4gQULFmhu7pOM0tPTsX79er1Vcz169IClpaXa0agAjBo1CgAwb948DBw4UG+UIzs7GydPnoSxsbEmdjYH5Jm7oxUsMe+AYcOGwdTU1GAnxzFjxiA9PR3ff/+9Ssn+smrVKnTt2tVgODQzMxPr169H7969VUpmaP/+/a+cNKuFHZA7deqEgwcPonjx4twqnygfTZo0AQCEh4fjgw8+0Lt3m5mZGVxdXTFmzBhN3QQ0KSkJixYt0ivWQ4YM4WaWeWCJkdTz3y6A3CXMK1euRNmyZVGvXj0AwIkTJ5CQkIDevXtr4gZ3xsbGSExMNBjKvXfvHuzt7TVzOWnq1KmYNm0aatWqhdKlSxuMdGzZskWlZH/p16/fa5/nLrT/jK2tLaKiouDu7q52FHoL+vXrh3nz5sHW1lbtKFSAWGIk9fy3i/zodDpNLLk1MjLCnTt3DDaLO3fuHJo0aYL79++rlExf6dKlMWvWLPTq1UvtKFTIXlxiTaSmhw8f4tSpU3mOBmtp1FoLuDpJUrJsTe3t7Q2dTgedTodmzZrBxOSvT7ns7GzExcUV6n028pOZmYn69eurHYOI/qV++eUX9OjRA6mpqbCxsdEbDdbpdCwxL2GJobeqY8eOAICoqCi0atVK7140z69Hf/LJJyqlMzRgwACsXbsWkyZNUjvKa23cuBEbNmzArVu3kJmZqfcc72T9er6+vli5ciVsbW315mr17NmTlxpIdaNHj0b//v0RFBSU51Jr0sfLSVQoQkND0bVrV03dWfu5F+cX5eTkIDQ0FFWrVkXVqlUNJs2+PHlaDfPnz8fEiRPRp08fLFu2DP369cP169dx+vRpDBkyBNOnT1c7oqaZmZkhPj4epUuXfuVcLSK1WFtb48KFC7ys+YZYYqhQZWZm5nmdt2zZsiolkm9+0fvvv4/Jkyfjs88+05vHERAQgPv372PBggVqR9S0qlWrokaNGmjSpAn69euH+fPnv3IEhkP3VNh8fX3RrVs3dOnSRe0oUmCJoUIRGxuL/v3749ixY3rHn9+ZVSurk2RgZWWFmJgYuLi4wN7eHvv27UO1atUQGxuLevXqae5uvFpz7NgxjBo1CtevX8f9+/cN5h08p9PpNDPhnP49li9fjmnTpqFfv36oUqWKwWiwVnY31wrOiaFC0bdvX5iYmGDHjh15Ll2mN+fo6Ih79+7BxcUFLi4uOHHiBKpVq4a4uDjwd5L81a9fHydOnACQu2ru6tWrvJxEmjFw4EAAwLRp0wye4y98hlhiqFBERUUhIiIC77//vtpRpNe0aVP88ssvqFGjBvz8/ODv74+NGzfizJkz8PX1VTueVOLi4gyW/ROpSSs3mpUFLydRoahduzbmzp2Lhg0bqh1Fejk5OcjJyVGWq//88884fPgwypcvjy+++EJTd+TVovPnz7/xuVWrVn2LSYgM5TUC85xOp9P8ysnCxhJDheLAgQP46quvEBQUlOd1Xi5t/XuePn2K8+fPG0yS1ul0aNeunYrJtM/IyAg6ne6Vl96eP8ehe1KDt7e33tvPnj1DXFwcTExMUK5cOW6h8BKWGCoUL97F+sX5MPxh8fft3r0bvXr1ynMCL1/L/MXHx7/xuS4uLm8xCdGbefToEfr27YtOnTpxN/GXsMRQoQgPD3/t840bNy6kJPIrX748WrVqhYCAADg4OKgdh4gKQXR0NNq2bYubN2+qHUVTjPI/heh/17hxYxgZGWHZsmUYP348ypcvj8aNG+PWrVswNjZWO55U7t69i1GjRrHAFJDVq1ejQYMGcHJyUkZpgoODsW3bNpWTEf3l4cOHSElJUTuG5nB1EhWKTZs2oVevXujRowciIyORkZEBAHj8+DGCgoKwa9culRPK49NPP0VYWBjKlSundhTpLVq0CAEBARg5ciSmT5+uXIorWrQogoOD0aFDB5UT0r/N/Pnz9d4WQiAxMRGrV6/W1H3mtIKXk6hQeHt7w9/fH71799bbZTYqKgqtW7dGUlKS2hGlkZaWhs6dO6NUqVJ5TpIePny4Ssnk4+npiaCgIHTs2FHv8zI6Oho+Pj5ITk5WOyL9y7i5uem9bWRkhFKlSqFp06aYMGECbGxsVEqmTRyJoUJx5coVNGrUyOC4ra0tHj58WPiBJLZ27Vrs2bMHlpaWCAsLM7jLLUvMm4uLizNYDQIA5ubmSE1NVSER/dvFxcWpHUEqnBNDhaJ06dK4du2awfEjR47wRmd/01dffYVp06YhJSUFN2/eRFxcnPK4ceOG2vGk4ubmhqioKIPjv/76Kzw9PQs/EBH9LRyJoULx+eefY8SIEfjxxx+h0+nwxx9/4Pjx4xgzZgwCAgLUjieVzMxMdO3aVW/ZOv0zY8eOxZAhQ/D06VMIIXDq1CmsW7cOM2bMwA8//KB2PCLKB+fEUKGZOHEi5s6di6dPnwLIHbIfM2YMvv76a5WTycXf3x+lSpXCf//7X7WjvBOWLVuGwMBAJCQkAADKlCmDyZMnw8/PT+VkRJQflhgqVGlpabh06RJycnLg6emJIkWKqB1JOsOHD8eqVatQrVo1VK1a1WBi75w5c1RKJp/09HQIIWBlZYXk5GTcuHEDR48ehaenJ1q1aqV2PCLKB0sMkWSaNGnyyud0Oh0OHDhQiGnk1rJlS/j6+mLQoEF4+PAh3n//fZiamiI5ORlz5szBF198oXZEInoNlhgi+tcqWbIkwsPDUblyZfzwww8ICQlBZGQkNm3ahICAAMTExKgdkYhegzMDiehfKy0tTdl3Y+/evfD19YWRkRHq1av3t+6xRETqYIkhon+t8uXLY+vWrUhISMCePXvQsmVLALm3duCd1Ym0jyWGiP61AgICMGbMGLi6uqJu3br44IMPAOSOyuS1CR4RaQvnxBDRv1pSUhISExNRrVo1Ze+dU6dOwdbWFu+//77K6YjodVhiiIiISEq8nERERERSYokhIiIiKbHEEBERkZRYYohIc/r27YuOHTu+0blhYWHQ6XR4+PDhW81ERNrDu1gTkebMmzcPXHNARPlhiSEizbGzs1M7AhFJgJeTiEhzXryclJGRgeHDh8Pe3h4WFhZo2LAhTp8+bfB3jh49imrVqsHCwgJ169bFhQsXCjk1ERU2lhgi0rRx48Zh06ZNCA0NxdmzZ1G+fHm0atUK9+/f1ztv7Nix+O6773D69GnY29ujffv2ePbsmUqpiagwsMQQkWalpqZi0aJF+Pbbb/HRRx/B09MTy5Ytg6WlJZYvX6537uTJk9GiRQtUqVIFoaGhuHPnDrZs2aJSciIqDCwxRKRZ169fx7Nnz9CgQQPlmKmpKerUqYOYmBi9c5/f9wgAihcvjooVKxqcQ0TvFpYYItKs5yuUdDqdwfGXj+XlTc4hInmxxBCRZpUvXx5mZmY4cuSIcuzZs2c4c+YMKlWqpHfuiRMnlD8/ePAAV69e5Q0cid5xXGJNRJplbW2NL774AmPHjkXx4sVRtmxZzJo1C2lpafDz89M7d9q0aShRogQcHBwwceJElCxZ8o03zCMiObHEEJGmzZw5Ezk5OejVqxceP36MWrVqYc+ePShWrJjBeSNGjEBsbCyqVauG7du3w8zMTKXURFQYdILbYhKRxnz22WcwNjbGmjVr1I5CRBrGOTFEpBlZWVm4dOkSjh8/jsqVK6sdh4g0jiWGiDQjOjoatWrVQuXKlTFo0CC14xCRxvFyEhEREUmJIzFEREQkJZYYIiIikhJLDBEREUmJJYaIiIikxBJDREREUmKJISIiIimxxBAREZGUWGKIiIhISiwxREREJKX/B4nVeX1tkVwWAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.groupby(['job'])['age'].count().plot(kind='bar')" ] }, { "cell_type": "code", "execution_count": 44, "id": "55e583b2", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGtCAYAAAAWKH7cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvH0lEQVR4nO3df3zP9f7/8bv9akPZhoPKj29mO8m02cyPoaxG0dBwVsaJPigcJBzE+eBIqJM0p3zkR6uTSsjn+JWUdIjZodCisVUyk2HzYxuzX8/vH53eH4uw2vbePG/Xy8Xlwuv1fr3fj9f7tfd7t71f73lXM8YYAQAAWMDF2QMAAABUFMIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDXcnD1AZVJcXKzCwkK5uLioWrVqzh4HAABcB2OMiouL5ebmJheXq7+mQ/hcorCwUElJSc4eAwAA/AqBgYHy8PC46mUIn0v8VImBgYFydXV18jQAAOB6FBUVKSkp6Zqv9kiETwk/nd5ydXUlfAAAqGKu520qvLkZAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHyAUjLFRc4eAf/BsQBQWm7OHgCoaqq5uOrU+xNVcOpbZ49iNfc6d6hO9GxnjwGgiiF8gF+h4NS3Kjj+tbPHAACUEqe6AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWcEr4JCcna9CgQQoLC1N4eLj+/Oc/KysrS5K0b98+9e3bV8HBwYqIiNCKFStKbLt69WpFRkYqKChI0dHR2rNnj2NdUVGR5syZo/bt2ys4OFjDhg3TiRMnKnTfAABA5VXh4ZOXl6fBgwcrODhYn332mdatW6czZ87omWee0dmzZzV06FD16tVLu3bt0syZMzVr1ix9+eWXkqTExETNmDFDs2fP1q5du9SjRw8NGzZMFy5ckCQtWLBA27dv16pVq7Rt2zZ5enpqypQpFb2LAACgkqrw8Dl27Jh+//vfa8SIEfLw8JCPj49iYmK0a9cubdq0Sd7e3oqNjZWbm5vatWunqKgoLVu2TJK0YsUKde/eXSEhIXJ3d9fAgQPl4+OjDRs2ONYPGTJEDRo0UM2aNTV58mRt3bpVaWlpFb2bAACgEnKr6Bu84447tHjx4hLLPvzwQ911111KSUmRv79/iXV+fn5auXKlJCk1NVW9e/e+bH1ycrKys7N1/PjxEtvXqVNHtWrV0sGDB9WwYcPrnrGoqKi0uwWLuLq6OnsEXILHK4DSPA9UePhcyhijefPmacuWLXrrrbf05ptvysvLq8RlPD09df78eUlSbm7uL67Pzc2VJFWvXv2y9T+tu15JSUml3RVYwsvLS82bN3f2GLjEwYMHHae7AeBanBY+OTk5mjRpkvbv36+33npLAQEB8vLyUnZ2donL5eXlqUaNGpJ+/KaTl5d32XofHx9HEP38CfDS7a9XYGAgP9UDVURAQICzRwDgZEVFRdf9ooVTwufIkSMaMmSIbr31Vq1cuVK+vr6SJH9/f23fvr3EZVNTU9WsWTNJUrNmzZSSknLZ+k6dOqlWrVqqV6+eUlNTHae7Tp48qTNnzlx2+uxaXF1dCR+giuCxCqA0KvzNzWfPntVjjz2mVq1aacmSJY7okaTIyEidOnVK8fHxKigo0M6dO7V27VrH+3r69OmjtWvXaufOnSooKFB8fLwyMzMVGRkpSYqOjtaCBQuUlpamnJwcPffccwoLC1OjRo0qejcBAEAlVOGv+Lz//vs6duyYPvjgA23cuLHEuj179mjp0qWaOXOm4uLi5OvrqylTpqht27aSpHbt2mnq1KmaNm2aMjIy5Ofnp0WLFsnb21uSNGLECBUWFio2Nla5ublq06aN5s2bV8F7CAAAKqtqxhjj7CEqi6KiIu3du1dBQUG8fI6r+uG1P6jg+NfOHsNq7vXvVIOh7zl7DACVQGm+f/ORFQAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwhlPDJysrS5GRkUpMTHQsmzp1qlq0aKHg4GDHn+XLlzvWr169WpGRkQoKClJ0dLT27NnjWFdUVKQ5c+aoffv2Cg4O1rBhw3TixIkK3ScAAFB5OS18Pv/8c8XExOjIkSMlliclJWnGjBnas2eP409MTIwkKTExUTNmzNDs2bO1a9cu9ejRQ8OGDdOFCxckSQsWLND27du1atUqbdu2TZ6enpoyZUqF7xsAAKicnBI+q1ev1rhx4zRmzJgSy/Pz83Xo0CG1aNHiitutWLFC3bt3V0hIiNzd3TVw4ED5+Phow4YNjvVDhgxRgwYNVLNmTU2ePFlbt25VWlpaue8TAACo/NyccaMdOnRQVFSU3NzcSsRPcnKyCgsLFRcXp88//1w333yzevfurcGDB8vFxUWpqanq3bt3ievy8/NTcnKysrOzdfz4cfn7+zvW1alTR7Vq1dLBgwfVsGHD656vqKjot+8kbliurq7OHgGX4PEKoDTPA04Jn7p1615xeXZ2tsLCwjRgwADNnTtXX3/9tUaMGCEXFxcNHjxYubm58vLyKrGNp6enzp8/r9zcXElS9erVL1v/07rrlZSUVKrLwx5eXl5q3ry5s8fAJQ4ePOg43Q0A1+KU8Pkl4eHhCg8Pd/y7ZcuWeuyxx7RhwwYNHjxYXl5eysvLK7FNXl6efHx8HEH08yfAvLw81ahRo1RzBAYG8lM9UEUEBAQ4ewQATlZUVHTdL1pUqvD5+OOPderUKT3yyCOOZfn5+fL09JQkNWvWTCkpKSW2SU1NVadOnVSrVi3Vq1dPqampjtNdJ0+e1JkzZ0qc/roerq6uhA9QRfBYBVAaler/8THGaNasWUpISJAxRnv27NGbb77p+K2uPn36aO3atdq5c6cKCgoUHx+vzMxMRUZGSpKio6O1YMECpaWlKScnR88995zCwsLUqFEjZ+4WAACoJCrVKz6RkZGaNGmSpk2bpoyMDNWpU0cjR45Uz549JUnt2rXT1KlTHev9/Py0aNEieXt7S5JGjBihwsJCxcbGKjc3V23atNG8efOct0MAAKBSqWaMMc4eorIoKirS3r17FRQUxMvnuKofXvuDCo5/7ewxrOZe/041GPqes8cAUAmU5vt3pTrVBQAAUJ4IHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfALiKouIiZ4+A/+BYoCy4OXsAAKjMXF1cNf3D6Tp8+rCzR7FaE58mmtp1qrPHwA2A8AGAazh8+rAOnTzk7DEAlAFOdQEAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABr/KrwycrKUnx8vGbOnKmcnBxt2bKlrOcCAAAoc6UOn/379+uBBx7Qxo0btXLlSp0+fVqjR4/WqlWrymM+AACAMlPq8Jk1a5YmTpyod999V25ubmrYsKFeeeUVLVmypDzmAwAAKDOlDp9Dhw6pZ8+ekqRq1apJkjp27KiMjIyynQwAAKCMlTp8fH199e2335ZY9u2336pOnTplNhQAAEB5KHX49OvXT0888YTee+89FRYWasOGDRo9erRiYmLKYz4AAIAy41baDf74xz/K1dVVb7zxhoqLi/Xyyy8rJiZGAwcOLIfxAAAAyk6pw0eSYmNjFRsbW9azAAAAlKtSh8+kSZOuuNzd3V2+vr669957FRQU9FvnAgAAKHOlfo+Pu7u71q5dqwsXLqhOnTrKz8/XunXrlJGRoW+//VaDBg3Shg0bymNWAACA36TUr/j88MMPmjdvnu6//37Hsn/961965513FBcXp8TERD377LPq1q1bmQ4KAADwW5X6FZ99+/YpIiKixLKOHTtq9+7dkqQ2bdooPT29bKYDAAAoQ7/q//HZtm1biWUJCQny9vaWJKWlpalWrVplMhwAAEBZKvWprpEjR+pPf/qTunTpottvv11Hjx7Vxx9/rOnTp+vbb7/VY489pv79+5fHrAAAAL9JqcOne/fuuu2227Rq1SodOHBAt956q95++20FBATo6NGjmjp1aon3/wAAAFQWpQ6fI0eO6J133lFGRoaKi4v13Xff6dlnn9V3332nnTt3qkmTJuUwJgAAwG9X6vf4TJ48Wenp6br55ptVVFQkf39/paSkcHoLAABUeqUOn6+++kqvvPKKhg8frpo1a2rKlCmaO3euEhISymM+AACAMlPq8PHy8lKtWrXUqFEjHTp0SJLUqVOnyz6xHQAAoLIpdfg0atRI//rXv1SjRg0VFxcrLS1NGRkZKiwsLI/5AAAAykyp39w8dOhQjRo1SuvWrVNMTIweeeQRubq66r777iuP+QAAAMpMqcMnIiJCmzZtUu3atTV8+HA1adJEOTk56tWrVzmMBwAAUHZKHT6SVK9ePcff+UwuAABQVZT6PT4AAABVFeEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACs4dTwycrKUmRkpBITEx3L9u3bp759+yo4OFgRERFasWJFiW1Wr16tyMhIBQUFKTo6Wnv27HGsKyoq0pw5c9S+fXsFBwdr2LBhOnHiRIXtDwAAqNycFj6ff/65YmJidOTIEceys2fPaujQoerVq5d27dqlmTNnatasWfryyy8lSYmJiZoxY4Zmz56tXbt2qUePHho2bJguXLggSVqwYIG2b9+uVatWadu2bfL09NSUKVOcsn8AAKDycUr4rF69WuPGjdOYMWNKLN+0aZO8vb0VGxsrNzc3tWvXTlFRUVq2bJkkacWKFerevbtCQkLk7u6ugQMHysfHRxs2bHCsHzJkiBo0aKCaNWtq8uTJ2rp1q9LS0ip8HwEAQOXjlPDp0KGDPvroI3Xr1q3E8pSUFPn7+5dY5ufnp+TkZElSamrqL67Pzs7W8ePHS6yvU6eOatWqpYMHD5bTngAAgKrEzRk3Wrdu3Ssuz83NlZeXV4llnp6eOn/+/DXX5+bmSpKqV69+2fqf1l2voqKiUl0ednF1dXX2CLhEeT9eOd6VC8/PuJLSfF04JXx+iZeXl7Kzs0ssy8vLU40aNRzr8/LyLlvv4+PjCKKf3u9zpe2vV1JSUmlHhyW8vLzUvHlzZ4+BSxw8ePCyx31Z4XhXPuV5vGGHShU+/v7+2r59e4llqampatasmSSpWbNmSklJuWx9p06dVKtWLdWrV6/E6bCTJ0/qzJkzl50eu5bAwEB+ygOqiICAAGePgArE8caVFBUVXfeLFpUqfCIjI/XCCy8oPj5esbGx+vzzz7V27Vq9+uqrkqQ+ffpoxIgRevDBBxUSEqJly5YpMzNTkZGRkqTo6GgtWLBAgYGB8vHx0XPPPaewsDA1atSoVHO4uroSPkAVwWPVLhxv/FaVKnx8fHy0dOlSzZw5U3FxcfL19dWUKVPUtm1bSVK7du00depUTZs2TRkZGfLz89OiRYvk7e0tSRoxYoQKCwsVGxur3NxctWnTRvPmzXPeDgEAgErF6eHz89+4CgwM1LvvvvuLl+/Zs6d69ux5xXXu7u4aN26cxo0bV6YzAgCAGwMfWQEAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuFTBoqKi509Av6DYwEAuBo3Zw9wI3B1cdGUt7fpuxNnnT2K1f7f72rp2X4dnT0GAKASI3zKyHcnzio5PcvZYwAAgKvgVBcAALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGoQPAACwBuEDAACsQfgAAABrED4AAMAahA8AALAG4QMAAKxB+AAAAGsQPgAAwBqEDwAAsAbhAwAArEH4AAAAaxA+AADAGpUyfDZs2KDmzZsrODjY8Wf8+PGSpH379qlv374KDg5WRESEVqxYUWLb1atXKzIyUkFBQYqOjtaePXucsQsAAKAScnP2AFeSlJSknj17atasWSWWnz17VkOHDtWoUaMUExOjXbt2acSIEQoICFDLli2VmJioGTNmaNGiRWrZsqWWLVumYcOGacuWLfLy8nLS3gAAgMqiUr7ik5SUpBYtWly2fNOmTfL29lZsbKzc3NzUrl07RUVFadmyZZKkFStWqHv37goJCZG7u7sGDhwoHx8fbdiwoaJ3AQAAVEKV7hWf4uJi7d+/X15eXlq8eLGKiop0zz33aNy4cUpJSZG/v3+Jy/v5+WnlypWSpNTUVPXu3fuy9cnJyaWaoaioqFSXd3V1LdXlUb5Ke/xKi+NduXC87VLexxtVU2m+Lipd+GRlZal58+bq2rWr4uLidPr0aU2YMEHjx49X3bp1Lztl5enpqfPnz0uScnNzr7r+eiUlJV33Zb28vNS8efNSXT/K18GDB3XhwoVyuW6Od+XD8bZLeR5v2KHShU+dOnUcp66kH594xo8frz/84Q+Kjo5WXl5eicvn5eWpRo0ajsteab2Pj0+pZggMDOSnvCosICDA2SOgAnG87cLxxpUUFRVd94sWlS58kpOTtW7dOo0dO1bVqlWTJOXn58vFxUUtW7bUG2+8UeLyqampatasmSSpWbNmSklJuWx9p06dSjWDq6sr4VOFcezswvG2C8cbv1Wle3Ozt7e3li1bpsWLF6uwsFDHjh3TCy+8oIcfflhdu3bVqVOnFB8fr4KCAu3cuVNr1651vK+nT58+Wrt2rXbu3KmCggLFx8crMzNTkZGRTt4rAABQGVS6V3zq16+vhQsXau7cuVqwYIFuuukmde/eXePHj9dNN92kpUuXaubMmYqLi5Ovr6+mTJmitm3bSpLatWunqVOnatq0acrIyJCfn58WLVokb29v5+4UAACoFCpd+EhSWFiY3n333SuuCwwM/MV1ktSzZ0/17NmzvEYDAABVWKU71QUAAFBeCB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwCA/zBFRc4eAf9RXsfCrVyuFQCAKqiaq6u+njFD57//3tmjWK1648a68y9/KZfrJnwAALjE+e+/V86hFGePgXLCqS4AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANYgfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgjRsufDIzMzV8+HCFhoaqTZs2mjlzpgoLC509FgAAqARuuPB56qmnVL16dW3btk0rV65UQkKC4uPjnT0WAACoBG6o8Pn+++/173//W+PHj5eXl5caNmyo4cOHa9myZc4eDQAAVAJuzh6gLKWkpMjb21v16tVzLGvatKmOHTumc+fO6ZZbbrnq9sYYSVJ+fr5cXV2v+3ZdXV3VrH4tebhW+3WDo0w0rnuLioqKVFRUVK634+rqKte6/ip28SjX28HVudZuUmHH28/XT+4u7uV6O7i6xt6NK+x4ezVtKrlzvJ3Jq1GjUh3vny730/fxq7mhwic3N1deXl4llv307/Pnz18zfIqLiyVJBw4cKPVtRzWrLjWrXurtULb27t1bMTfU6GGpUcXcFH5ZWgUd7wdqPyDVrpCbwlVU2OO7S5eKuR38ogv6dcf7p+/jV3NDhU/16tV14cKFEst++neNGjWuub2bm5sCAwPl4uKiatV49QYAgKrAGKPi4mK5uV07a26o8GnWrJnOnDmjU6dOqU6dOpKkb775RvXr19fNN998ze1dXFzk4cHpCwAAblQ31JubmzRpopCQED333HPKyclRWlqaXn31VfXp08fZowEAgEqgmrmedwJVIadOndJf//pXJSYmysXFRb169dK4ceNK9WZlAABwY7rhwgcAAOCX3FCnugAAAK6G8AEAANYgfAAAgDUIHwAAYA3C5wbXvXt3rVmzxtljoIqaP3++BgwY4OwxrHPx4kUdP378V2///fffl+E0cLaJEydq4sSJzh7jhkH43ODWr1+vHj16OHsMAKXQr18/7dix41dtO2fOHC1YsMDx7+DgYO3evbusRgOqPMKnijl69KgCAgL0j3/8Q+Hh4QoJCdH48eOVk5Oj+fPn6/HHH1fv3r0VFhamXbt2KSIiQu+//74kacCAAYqLi9Ojjz6qoKAg9ejRQ19++aXGjh2rVq1aKSIiQp9++qnjtlauXKno6Gi1adNGwcHBeuKJJ5SVlSVJl93W3//+d4WEhOjixYuO7Tdu3KjOnTtf14fG2Wr+/Pm65557FBYWpt69e2vz5s2SpP3792vAgAFq3bq1unTpovj4+BL34xtvvKHIyEgFBwcrOjpaCQkJkn78nJrXXntN999/v0JCQtSnTx9t27bNsV1ERIQWLlyoXr16KTg4WL169dLOnTsd67/44gv17t1bQUFBeuSRR3T06FHHOmOMXnvtNUVFRSk0NFStW7fW2LFjlZeXJ+nHn0pHjRqlBx98UG3bttWCBQvUtWvXEvu7ZMkSxcbGlv0deYM5ffp0mW27Z88ehYaG/taR8Bv99Nx96WPqp1dU33//fT366KN69tln1bZtW7Vr106TJ09WQUHBZdeTnp6u++67T88995yMMRowYIBefPFFxcbGKjg4WA8++KA2bNhQ4vJPPfWU2rVrp/DwcI0dO1YnTpxQcXGx2rdvr48//thx2YiICD311FOOf8+ZM0d//vOflZiYqIiICC1YsEAdO3ZUWFiYRo4cqZycnPK5s8qbQZWSlpZm/P39Tf/+/U1mZqY5ceKE6du3rxk3bpyJi4szv//9782OHTtMTk6OKSgoMJ07dzarVq0yxhjTv39/0759e5OSkmIuXrxoYmNjzV133WU++ugjk5+fb2bPnm0iIiKMMcbs27fP3H333Wbfvn3GGGN++OEH06VLF/PSSy8ZY8xlt3Xx4kXTunVrs379esesTzzxhHn55Zcr9g6qQhISEkx4eLjJyMgwxcXF5p133jFt2rQxR48eNSEhIeatt94y+fn5JiUlxURGRpp33nnHGGPMqlWrTFhYmPniiy9MUVGRee+998zdd99tTp8+beLi4kynTp3MV199ZQoKCsz69etNixYtHMexc+fOJjIy0hw+fNicP3/eTJgwwXTt2tUYY0xWVpYJDQ01CxcuNPn5+Wb37t2mVatWpn///sYYY9avX2/Cw8PNd999Z4wxJjU11YSFhZn33nvPGGPMhAkTTFBQkDl48KA5e/asycjIMHfeeafZu3evY58feughs3Llyoq6i6ukQYMGmYCAANOiRQszffp089VXX5n+/fub0NBQExkZaV5//XVTXFxsjPnxcTho0CATHR1tWrdubebPn2+aN29umjdvbqKioowxxvj7+5udO3caY348ZkOHDjX33HOPCQwMNA8++KD55JNPjDH/99wya9YsExoaaiZNmmRCQ0PNmjVrHLNdvHjRhIWFmR07dlTwvVL1/XT/pqWlOZbFxcWZ/v37m1WrVhl/f3/z6quvmvz8fLNv3z4TFBRk1q1bZ4z58bE1YcIEc+TIEdO5c+cSz6v9+/c3YWFhZv/+/ebixYtm7ty5JiQkxOTl5Zn8/HzTpUsX8/TTT5tz586Zs2fPmqeffto8/PDDpqCgwEyePNn85S9/McYY880335iWLVuasLAwx9dXly5dzEcffWR27txp/P39zdSpU82FCxfM4cOHTXh4uFm4cGEF3oNlh1d8qqhJkybJ19dXdevW1ahRo7Rx40bl5+erYcOGateunWrUqHHFD2vr2rWr/Pz85OHhodDQUN1xxx26//775e7urk6dOik9PV2S5O/vr3Xr1qlly5Y6e/asTpw4IV9fX2VkZDiu69Lb8vDw0EMPPaR//vOfkqTMzEx99tlnevjhhyvmDqmCbrrpJp09e1bvvfeeDhw4oL59+yohIUEbNmxQ06ZNFRsbK3d3d/n5+em//uu/tGzZMknS6tWrFRMTo+DgYLm4uKhv375aunSpPD09tWrVKg0dOlR33XWX3Nzc1K1bN0VERGjlypWO2+3Tp48aN24sLy8vRUVF6fDhw5KkTz/9VF5eXhoyZIjc3d0VEhKi3r17O7br1KmTVq5cqSZNmigrK0unT5+Wt7d3ia+JoKAg+fv765ZbbtHvfvc7dezY0fE1sX//fh09elQPPPBABdy7VdfSpUt16623avr06XriiSf02GOP6YEHHtCOHTv06quv6u2339by5csdl09ISNC4ceO0ZcsWPfnkk4qKilJUVNQV39s3cuRI+fv766OPPtLu3bvVoUMHTZs2rcRlcnNztX37dk2cOFHdu3d3HD9J2rJli2rUqKG2bduW2/7bytPTU08++aTc3d3VsmVLBQQE6LvvvnOsT09P14ABA9SpUyeNGjWqxLZdu3ZV8+bN5eHhoYcffljZ2dnKzMzU7t27lZaWpunTp+vmm2/WLbfcounTpys5OVlfffWV7r//fm3dulWS9Nlnn6lbt24qLi7WgQMH9M033+jEiRPq0KGD43ZGjBghT09PNW7cWG3atCkxX1VyQ31IqU0aN27s+HuDBg2Un5+vs2fP6ne/+91Vt/P29nb83dXVVbVq1XL828XFxXE6xcXFRW+++abWrl2r6tWrKyAgQDk5OSVOt/z8tqKjoxUTE6PMzEytWbNGrVq1UsOGDX/Lbt7QgoODNX/+fP3jH//Q4sWL5enpqQEDBujkyZPav39/idMTxcXFjo9dOXnypG699dYS19WqVStJP35ky8/v89tvv13JycmOf//0Ab6S5Obm5jimGRkZatCggapVq+ZY36hRI3399deSfjzV9dJLL2nLli3y9fXVnXfeqYKCgmt+TUydOlWTJk3S6tWr9cADD6hGjRqlv7MstWbNGkcES3JE8FtvvaVHHnlE0v/9AHI9Fi5cqHr16skYo/T0dN1yyy0lwlWSevXqJQ8PD3l4eKh3796KiYnRyZMnVbduXa1evVrR0dElvkZQNmrXrl3ifnV3dy/x2Nq9e7fCw8O1efNmjRkzpsRzd926dR1//+kH3uLiYmVmZsrHx0c1a9Z0rK9Zs6a8vb2Vnp6uyMhInTt3TikpKdq2bZt69eqlc+fOaceOHTLGqGPHjvL09Lzi7fx8vqqE8KmiMjIydMcdd0j68dyxl5eXfHx8rvmEdL1PWPHx8dq+fbvWrl3r+Eb55JNPXvW6WrRoIT8/P3344Ydav349vw10DceOHVPt2rW1ZMkS5efnKyEhQX/60580fPhwtWnTRkuWLHFc9vTp08rNzZX0Y+j+8MMPJa7rpZdeUo8ePXTbbbcpLS2txLq0tLRrBrEk1a9fX+np6SouLpaLy48vBl/6m0V/+9vfdOzYMX3yySeOJ9KoqKgS1/Hzr4mIiAhNnTpV27dv1wcffKCXX375mnPg/6Snp181gqXLY/NqkpOTNXz4cJ08eVJNmzaVr6/vZd+8Lr2+wMBANW3aVOvXr1dUVJQ+++wzTZky5Tfskb1+OmaXvm+nNO/l6tatm55//nk9+uijmj59uubOnXvNbW677TadPn1aOTk5jsdsdna2Tp8+rbp168rDw0MdO3bU5s2b9fnnn2vOnDk6d+6cPvroI124cOGGfT8ep7qqqBdffFE5OTnKyMhQXFycevbsecVTW79WTk6O3Nzc5O7ursLCQv3zn//Utm3brvhmu0tFR0frvffe0+HDh9WlS5cym+dGlJSUpMGDBys5OVkeHh6qXbu2JCkkJER79+7VmjVrVFhYqBMnTujJJ5/U7NmzJf14Hy9fvlxffvmliouLtWrVKi1btkw+Pj7q27evXnvtNe3fv19FRUX64IMP9Mknn1zXKceIiAgZYzR//nzl5+frq6++0ooVKxzrc3JydNNNN8nV1VUXL17U0qVLdejQoat+Tbi7u6tHjx56+eWXVbNmTd5kW0r169dXmzZttHv3bsefzZs3a/Xq1Y7LXO8PMxkZGRo9erTGjBmjnTt3atmyZXrooYcuu9zPr693795av369Nm7cqNDQUN1+++2/bacsVbt2bdWqVUvr16+XMUb79+/Xxo0br3t7d3d3ubq6atasWfr4449LvIH5lwQGBsrPz09Tp05Vdna2srOzNW3aNDVq1MjxKnFkZKTi4+PVpEkT+fr6qkOHDtq9e7cOHDige++999fubqVG+FRRjRo10kMPPaQePXooODhYzzzzTJle/+OPP64GDRqoc+fO6tixo9asWaN+/frp0KFDV90uKipKqamp6tatm7y8vMp0phtN165d9fjjj2vYsGEKCgrS6NGj9cwzzygsLEyLFy/W8uXL1b59e/Xs2VN33HGHI3yioqI0cuRIjR8/XqGhoVq+fLkWLVokX19fDRo0SLGxsRozZoxCQ0O1cOFCzZ07V2FhYdec55ZbbtGSJUuUkJCgsLAwTZ48ucRvZT311FPKy8tT+/btFRERob1796pnz57X/JqIjo7WgQMHFB0d/dvuMIt4eHgoOztbUVFRV43gq237c7m5uSoqKnI8LlNTU/XKK69IkvLz83/x+nr06KHk5GStWLGCY/gbeHh4aMaMGfrggw/UqlUrzZ49W3/4wx9KfT1NmzbVyJEjNX369MtOU/6cm5ubFi5cqMLCQnXt2lWdO3dWQUGBXn/9dccPyvfee69ycnIc7+Vp2LChI7gvPUV2Q3HOe6rxa13pNwMqk8LCQtO2bdsSv8kDu50+fdq0aNHCHD9+3NmjVBmLFi0yd999txk7dqz54osvTL9+/Uzr1q1N27ZtzcSJE012drYx5v9+K+hSCQkJpm3btuaee+4xxpT8ra7Fixeb8PBw06pVK9OtWzcTHx9v7rrrLpOUlHTV55YRI0aYkJAQc+HChfLdcaACVDOmir47yVJHjx7Vfffdp82bN1e6l5xTUlL0wQcfaMuWLSVeioed8vPz9f333+vNN9/U6dOn9fe//93ZI+FXmjVrlvLy8jR9+nRnjwL8Zry5GWXmiSeekCTFxcU5eRJUBvn5+XrkkUfUoEED/c///I+zx8Gv8MMPP+jw4cP63//9X8XHxzt7HKBM8IoPAOCKXn75ZcXHx2vw4MEaMWKEs8cBygThAwAArMFvdQEAAGsQPgAAwBqEDwAAsAbhAwCXyM7OVlZWlrPHAFBOCB8AVcKAAQM0f/78cr+dyMhIpaSkSPrxQ0K7d+9e7rcJoOIQPgBwiUs/OLJHjx5av369E6cBUNYIHwBOc+TIET355JNq06aNOnfurJdeesnxuVErVqzQfffdp+DgYE2YMEEXLlxwbDdx4kRNnDixxHUFBAQoMTFRkpSVlaVx48apdevWatOmjcaMGaOzZ89Kkr744gv98Y9/VIcOHRQYGKjo6Gjt3btXkhyfTTZkyBAtWrRI77//viIiIhy3sXv3bsXGxio0NFQRERGaN2+eY9758+dr1KhRGjdunEJDQ9WpUye9+OKL5XPHAfjVCB8ATnH+/HkNHDhQzZo109atW/X2229rx44dmj9/vhISEvTXv/5Vzz77rHbt2qW7775bSUlJ133do0ePVk5OjjZt2qTNmzfr3Llzmj59uvLy8jRs2DB17dpVW7duVWJioho1aqTnn39ekvThhx9KkhYtWqQhQ4aUuM5vv/1WgwYNUpcuXbRjxw69/vrr+uSTTxzbStKmTZvUoUMHJSYmasaMGVq0aJEjqgBUDnxkBQCn+PTTT5Wfn6+nn35a1apVU4MGDTR69GiNGjVKp06dUpcuXdSuXTtJUr9+/bRixYrrut709HT9+9//1saNG+Xj4yNJmj17ts6cOSN3d3ctX75cjRs31sWLF5Weni5vb+/riqq1a9cqICBAjz32mCSpcePGGjt2rEaNGqVnnnlGktSkSRP16tVLknTPPfeobt26Onz4sIKCgkp57wAoL4QPAKdIT09XVlaWWrdu7VhmjFFBQYHS09N19913l7h8w4YNr+t6T548KUm67bbbHMvq1q2runXrSpISExM1ZMgQnT9/Xn5+fnJzc9P1/Af2mZmZl81w++23Ky8vT5mZmY7buZS7u7uKi4uva24AFYPwAeAU9evXV6NGjbRx40bHspycHGVmZmrhwoVKS0srcfnjx4+rWbNmkiQXFxddvHjRse7SXz9v0KCBJOnYsWNq0qSJJCk1NVXr1q1T586dNWPGDL377rtq0aKFJGnp0qX67rvvrjnvbbfdpk2bNpVYduTIEXl4eKhWrVql2HMAzsR7fAA4RefOnZWbm6vFixcrPz9f586d04QJEzRmzBj17t1bH3/8sbZs2aLCwkKtXr1a+/btc2zbtGlT7d69WxkZGcrLy9Mrr7yiatWqSZLq1aun8PBwPf/88zp37pxycnL0wgsvKC0tTdnZ2XJxcZGnp6ckae/evXrzzTcdb1CWJA8PD2VnZ182b/fu3fXNN9/ojTfeUH5+vo4cOaK5c+cqKipKHh4e5XxvASgrhA8Ap6hZs6bi4+OVmJioTp066f7775eLi4sWLFigkJAQPf/885o9e7ZCQ0P14YcfKjw83LFtTEyMgoOD1aNHD0VGRqpBgwa69dZbHev/9re/qWbNmnrwwQd13333ydfXV9OnT1d4eLj69eun2NhYtW7dWtOnT9eAAQOUlZWlU6dOOa577Nixeumll0rMe/vtt2vx4sX68MMP1b59e/Xr10/h4eH67//+74q5wwCUCT6dHQAAWINXfAAAgDUIHwAAYA3CBwAAWIPwAQAA1iB8AACANQgfAABgDcIHAABYg/ABAADWIHwAAIA1CB8AAGANwgcAAFiD8AEAANb4/8t6XxPOfc1WAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set_style('whitegrid')\n", "\n", "ax = sns.barplot(x='education',y='age',data=df,estimator=len)" ] }, { "cell_type": "code", "execution_count": 46, "id": "10edc7f7", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGtCAYAAAD9H8XfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABk5ElEQVR4nO3deVhUdf//8ScMIKgp4J65pCjmLSaiKO6iSKmgoqZp3KnlnttdprdLamraXlqamkoZ3RqmJbmmaZkiueZSbuWKhYpEuCAwnN8f/pyvEy6gwADzelxXVzJne58zc+a85nM+5xwHwzAMRERERAo5R1sXICIiIpIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQtOti4gr2VkZJCeno6joyMODg62LkdERESywDAMMjIycHJywtHx/tps7C70pKenc+DAAVuXISIiIvfBx8cHFxeX+5rW7kLPzXTo4+ODyWSycTUiIiKSFWazmQMHDtx3Kw/YYei5eUrLZDIp9IiIiBQwD9I1RR2ZRURExC4o9IiIiIhdUOgRERERu2B3fXpERKRwMgyD9PR0zGazrUuR+2AymXBycsrV28nYJPQcOnSI1157jSNHjuDq6soTTzzByy+/jIuLCz///DPTpk3j+PHjeHh4MHjwYLp3726ZduXKlcyZM4cLFy5QrVo1Jk6ciK+vry1WQ0RE8onU1FT++OMPrl69autS5AEULVqUChUq3Pcl6feS56EnIyODgQMHMmDAAJYsWcL58+fp06cPHh4ePPPMMwwYMIDhw4fTo0cPdu7cydChQ/H29qZu3brExsYydepUFixYQN26dYmMjGTw4MFs3rwZNze3vF4VERHJBzIyMjhx4gQmk4mHH34YFxcX3Xy2gDEMg9TUVC5cuMCJEyeoUaPGA12afid5HnqSkpK4cOECGRkZGIYB3Lh3jpubGxs2bMDd3Z3evXsDEBAQQEhICJGRkdStW5eoqCg6dOiAn58fAH369GHZsmWsWbOGrl275vWqiIhIPpCamkpGRgaVKlWiaNGiti5H7pObmxvOzs6cOnWK1NRUXF1dc3wZed6R2cPDgz59+vD666/j4+NDy5YtqVq1Kn369OHYsWPUrFnTanwvLy8OHz4MwPHjx+86XERE7FdutAxI3srt99Amp7dcXV2ZOHEi3bp149SpU7zwwgvMmjWLK1euZDpN5erqajlHe6/h2aGObiIihYPZbMYwDMt/UnDdfA/NZnOm43ROHLfzPPR8++23rF+/nnXr1gFQo0YNhg4dyvTp0wkJCSE5Odlq/JSUFIoVKwbcaPpKSUnJNNzDwyPbdej5WyIihYeTkxPXrl0jIyPD1qXYVHJyMunp6fd1XMwPrl+/TlpaWq6dwcnz0PPHH3+QmppqXYSTE87OztSsWZNt27ZZDTt+/Dg1atQAbgSkY8eOZRreokWLbNehZ2+JiBQOKSkpnDp1Cjc3t1zpB5ITwsPD8ff3Z9iwYbm6nDZt2vDee+9RsWJFoqOjmTdvHt98802uLjMnOTo64uzsjJeXV6b38uaztx5EnoeeZs2a8fbbb/PRRx/Rv39/zp07x9y5cwkJCSEoKIg333yTiIgIevfuze7du4mOjmbOnDkAdOvWjaFDh/Lkk0/i5+dHZGQkCQkJBAUFZbsOPXtLRKRwMJlMODg4WP7Lj/KqvsTERMtyQkNDCQ0NzdXl5bSbtefWMTrPe315eXkxb948vvvuOxo1asS///1vAgMDGTVqFB4eHixatIh169bRqFEjJkyYwIQJE2jcuDFw42quSZMmMXnyZPz9/Vm9ejULFizA3d09r1dDRETs3OnTpxk0aBCNGjWidevWvPvuu5YzGVFRUbRp0wZfX1/GjBnDtWvXLNONHTuWsWPHWs3L29ub2NhYAC5dusRLL71Ew4YNadSoEaNGjSIpKQmAPXv28O9//5tmzZrh4+NDWFgY+/btAyA4OBiA/v37s2DBAlasWEFgYKBlGbt27aJ37940aNCAwMBA3nvvPUu9s2fPZvjw4bz00ks0aNCAFi1a8Pbbb+fOhrMlw86kp6cbu3btMtLT021dioiI5IBr164Zv/zyi3Ht2rU8W+aVK1eM1q1bG2+99ZaRkpJinDt3zujWrZvx1ltvGdu3bzfq1KljbN++3UhLSzMiIyONmjVrGrNmzTIMwzDGjBljjBkzxmp+NWvWNHbs2GEYhmE888wzxsCBA41Lly4ZycnJRr9+/YxRo0YZ165dM/z9/Y3PPvvMMJvNxpUrV4wRI0YYTz/99G3n8+WXXxqtW7c2DMMwfvvtN6NOnTpGRESEcf36dePkyZNGSEiIMXXqVMMwDGPWrFmGt7e3sXLlSiM9Pd3YsmWL4e3tbezduze3N6WVu72XOXH81mMoJF8xZ5gxOd65SfNew0VE8sKWLVtITU3lP//5Dw4ODlSoUIERI0YwfPhwLl68SLt27QgICACgV69eREVFZWm+cXFx/PTTT6xbt87SGXnmzJn89ddfODs7s2zZMqpUqcL169eJi4vD3d09S/1coqOj8fb25tlnnwWgSpUqvPjiiwwfPpxx48YBULVqVTp37gxAy5YtKVOmDCdPnqRevXrZ3Dr5l0KP5CsmRxNT1k/hZOLJTMOqelRlUvCkvC9KROQf4uLiuHTpEg0bNrS8ZhgGaWlpxMXF8fjjj1uNX6lSpSzN98KFCwBUrFjR8lqZMmUoU6YMALGxsfTv35+rV6/i5eWFk5NTli7TT0hIyFTDI488QkpKCgkJCZbl3MrZ2bnQXQ2n0CP5zsnEkxy9cNTWZYiI3FH58uWpXLmy5fYrAJcvXyYhIYF58+Zx5swZq/H//PNPy5XIjo6OXL9+3TLs0qVLln9XqFABgHPnzlG1alXgxlXK33zzDa1bt2bq1KksXbqUOnXqALBo0SJOnDhxz3orVqzIhg0brF47ffo0Li4ulCxZMhtrXrDp9pUiIiLZ1Lp1a65cucLHH39Mamoqf//9N2PGjGHUqFF07dqVjRs3snnzZtLT01m5ciU///yzZdrq1auza9cu4uPjSUlJ4cMPP7Rc1VWuXDmaNm3KG2+8wd9//83ly5d58803OXPmDMnJyTg6Olou5d63bx+ffvqp1W1gXFxcMt3vDqBDhw789ttvfPLJJ6SmpnL69GneeecdQkJCcu3hnvmRQo+IiEg2FS9enIiICGJjY2nRogVt27bF0dGRuXPn4ufnxxtvvMHMmTNp0KAB69evp2nTppZpe/Toga+vL6GhoQQFBVGhQgUefvhhy/C33nqL4sWL8+STT9KmTRs8PT2ZMmUKTZs2pVevXvTu3ZuGDRsyZcoUwsPDuXTpEhcvXrTM+8UXX+Tdd9+1qveRRx7h448/Zv369TRp0oRevXrRtGlTXnnllbzZYPmEg5GVk4GFiNlsZt++fdSrV0/36cmn+i7te9vTWzXL1GRxz8U2qEhE8rOUlBROnDjBo48+mm9vTihZc7f3MieO32rpEREREbug0CMiIiJ2QaFHRERE7IJCj4iIiNgFhR4RERGxCwo9IiIiYhcUekRERMQuKPSIiIiIXVDoERGRQsucxw/MzOvlSfbogaMiIlJomRwdmfD5Vk6cT8r1ZT1atiTTejXP1WV06NCBgQMHEhoamqvLKawUekREpFA7cT6Jw3GX7j1iAbB69Wpbl1Cg6fSWiIiIjZw9exZvb2+WLFlC06ZN8fPzY/To0Vy+fJnZs2fTr18/unbtir+/Pzt37iQwMJAVK1YAEB4ezqxZs3j66aepV68eoaGh7N+/nxdffJH69esTGBjIli1bLMtavnw5YWFhNGrUCF9fXwYOHMilSzfC4D+X9cEHH+Dn58f169ct069bt47WrVtTkB/ZqdAjIiJiYxs2bCA6Opp169Zx6tQppkyZAkBMTAwvvfQSmzdvxtfXN9N0y5YtY+rUqfz000+UKFGCXr168eSTTxIbG0twcDBTp04FYP/+/UybNo3JkycTGxvL2rVrOXnyJJ9++qllXrcua8CAAZhMJjZt2mQZ/tVXX9GlSxccHBxyeWvkHoUeERERG/vvf/+Lp6cnZcqUYfjw4axbt47U1FQqVapEQEAAxYoVw8kpc4+U4OBgvLy8cHFxoUGDBlSrVo22bdvi7OxMixYtiIuLA6BmzZp888031K1bl6SkJM6fP4+npyfx8fGWed26LBcXFzp27MjXX38NQEJCAj/++CNdunTJmw2SS9SnR0RExMaqVKli+XeFChVITU0lKSmJsmXL3nU6d3d3y79NJhMlS5a0/O3o6Gg5FeXo6Minn35KdHQ0RYsWxdvbm8uXL1udqvrnssLCwujRowcJCQmsWrWK+vXrU6lSpQdZTZtT6BEREbGx+Ph4qlWrBtzo5+Pm5oaHh8c9TyVl9VRTREQE27ZtIzo6mtKlSwMwaNCgu86rTp06eHl5sX79elavXk14eHhWVyff0uktERERG3v77be5fPky8fHxzJo1i06dOt32dNb9unz5Mk5OTjg7O5Oens7XX3/N1q1bSUtLu+t0YWFhfPHFF5w8eZJ27drlWD22opYeEREp1B4tW/LeI9l4OZUrV6Zjx45cu3aNkJAQRo8ezfz583Ostn79+nH06FFat25NkSJFqF27Nr169WLHjh13nS4kJIQ333yTsLAw3NzccqweW3EwCvK1Z/fBbDazb98+6tWrh8lksnU5cht9l/bl6IWjmV6vWaYmi3sutkFFIpKfpaSkcOLECR599FFcXV2thpkzMjA55t1Jjewu7+zZs7Rp04ZNmzbxyCOP5GJl98dsNtOsWTM++ugjHn/88Vxf3l3fyxw4fqulR0RECq28DDy2WF5uOnbsGGvXrqV8+fJ5EnjygkKPiIiIZDJw4EAAZs2aZeNKco5Cj4iIiI088sgjHDlyxNZl3NZ3331n6xJyXOFphxMRERG5C4UeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiKFlpFhLtTLk+zJ8/v0rFq1ikmTJlm9dvOBZwcPHuTnn39m2rRpHD9+HA8PDwYPHkz37t0t465cuZI5c+Zw4cIFqlWrxsSJE/H19c3TdRARkYLBwdHExRVjSbv4e64vy7l0NUqHzcz15eSl2bNn89NPP7FkyRJbl5Ij8jz0hIaGEhoaavk7Pj6erl27Mnr0aJKSkhgwYADDhw+nR48e7Ny5k6FDh+Lt7U3dunWJjY1l6tSpLFiwgLp16xIZGcngwYPZvHlzoXgQmoiI5Ly0i7+T9uevti5D8gGbnt4yDIPRo0fTqlUrOnXqxIYNG3B3d6d37944OTkREBBASEgIkZGRAERFRdGhQwf8/PxwdnamT58+eHh4sGbNGluuhoiIyH2ZPXs2LVu2xN/fn65du7Jp0yYADh06RHh4OA0bNqRdu3ZERERw6/PBP/nkE4KCgvD19SUsLIyYmBgAMjIymD9/Pm3btsXPz49u3bqxdetWy3SBgYHMmzePzp074+vrS+fOna2etL5nzx66du1KvXr16NmzJ2fPnrUMMwyD+fPnExISQoMGDWjYsCEvvvgiKSkpAIwdO5bhw4fz5JNP0rhxY+bOnUtwcLDV+i5cuJDevXvn/IbMIps+huLrr7/m+PHjzJkzB7jxcLOaNWtajePl5cXy5csBOH78OF27ds00/PDhw9lettms8675UVaenKv3TkRuZTabMQzD8t+tHBwc8ryef9ZwJzt27GDZsmV8+eWXlClThmXLljF+/Hi8vb159tlnGTlyJAsXLuTUqVMMHTqUIkWK0LNnT1asWMGHH35oefL5l19+aTnrsWTJEr788ks+/PBDvL29+fbbbxkyZAiRkZH4+PhgGAZffvkl8+fPp2zZskyZMoXJkyezdu1aEhMTGThwIP3796dPnz4cOHCAAQMG8Nhjj2EYBmvXruXTTz9lyZIlVK1ald9//52nn36a6OhounXrhmEYbN26laVLl1K+fHlSUlKYPXs2+/btszywdOXKlfTp0+eO2+jme2g2mzN91+fEd7/NQk9GRgZz585l0KBBFC9eHIArV65kOk3l6urK1atXszQ8Ow4cOHCflUtucXNzo3bt2vcc78iRI1y7di0PKhKRgsLJyYlr166RkZFhec3R0dEmXR9SUlKs6rgTwzBISkoiMjKSFi1a0KFDB0JCQvjkk0+oWrUqXbp0IS0tjYcffphnnnmGzz77jNDQUFasWEFYWBje3t6kpKTQoUMHHnnkETIyMvjyyy/p06cPjz76KKmpqbRs2ZKWLVuydOlSqlevjmEYhIaGUqZMGQzDoF27dnz99ddcvXqVDRs24OrqSq9evUhLS6NWrVqEhoZy5MgRrl69SoMGDfj0008pW7YscXFx/PHHH7i7u3P27FmuXr2K2WzGx8eHRx55BIDixYsTEBDAl19+SY0aNfj111+Ji4ujZcuWdzxuX79+nbS0tPtqzMgKm4We2NhYzp8/T7du3Syvubm5kZycbDVeSkoKxYoVswy/2Yx263APD49sL9/HxydLrQqS/3h7e9u6BBHJR1JSUjh16hRubm64urraupws1xAQEMCsWbNYsmQJn376Ka6uroSHh3PhwgUOHz5My5YtLeNmZGRgMpkoWrQoCQkJVKlShaJFi1rNCyAhIYHq1atbDatSpQqHDx+maNGiODg4UKFCBcvwYsWKYRgGRYsWJTExkQoVKliOuQDVqlXj2LFjFC1aFLPZzFtvvcWWLVvw9PTkscceIy0tzVKXyWSifPnyVsvu3r07kydPZuLEiaxdu5YnnniC0qVL33GbODo64uzsjJeXV6btaDabH7jBwmahZ/369QQFBVltnJo1a7Jt2zar8Y4fP06NGjUAqFGjBseOHcs0vEWLFtlevslkUugpoPS+icitTCYTDg4Olv9sLas1nDt3jtKlS7No0SJSU1OJiYnhhRdeYMiQITRq1IiFCxdaxk1MTOTKlSuW0PLnn39aLefdd98lNDSUihUrcubMGathZ86coWzZslbb6ObwW/9foUIFzp07h2EYODre6PIbHx9vGf/tt9/mjz/+4LvvvrOcoQkJCck031uX3aZNGyZPnsz27dtZt24d77///l23z83pc+sYbbOOzLt376Zhw4ZWrwUFBXHx4kUiIiJIS0tjx44dREdHW/rxdOvWjejoaHbs2EFaWhoREREkJCQQFBRki1UQERG5bwcOHOD555/n8OHDuLi4UKpUKQD8/PzYt28fq1atIj09nfPnzzNo0CBmzrxxOXxYWBjLli1j//79llNakZGReHh40L17d+bPn8+hQ4cwm82sXbuW7777ji5dutyznsDAQAzDYPbs2aSmpnLw4EGioqIswy9fvkyRIkUwmUxcv36dRYsWcfToUcttZ27H2dmZ0NBQ3n//fYoXL06DBg0ecKs9GJu19Jw9e5ayZctavebh4cGiRYuYPn06s2bNwtPTkwkTJtC4cWPgRvPdpEmTmDx5MvHx8Xh5ebFgwQLc3d1tsAYiIlIQOJeuli+XExwczMmTJxk8eDCJiYmUKlWKcePG4e/vz8cff8xbb73FtGnTMJlMtGrVivHjxwM3Wlf+/vtvRo8ezYULFyzHQk9PT/r27UtGRgajRo3iwoULVKlShXfeeQd/f/971lOiRAkWLlzI5MmTWbx4MVWqVCE4OJgTJ04AMHLkSP773//SpEkTihYtip+fH506deLo0aN3nW9YWBiffPIJ//nPf7K1fXKDg5HVbuaFhNlsZt++fdSrV0+nSfKpvkv7cvRC5p2oZpmaLO652AYViUh+lpKSwokTJ3j00Ucz9QMxMsw4OObdd31eL68g+Ouvv2jevDkbN26kXLlydx33bu9lThy/bXrJuoiISG7K6wCiwPN/UlNTOXXqFJ9++iktW7a8Z+DJCwo9IiIikuNSU1Pp2bMnFSpU4KOPPrJ1OYBCj4iIiOSC4sWLs3v3bluXYUVPWRcRERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiUmiZM8yFenmSPbpkXURECi2To4kp66dwMvFkri+rqkdVJgVPytY0169fJzExkfLly9/XMk+dOkWVKlXua1p7pNAjIiKF2snEk7d9tE1+0KtXL3r37k1YWFi2p3399ddJTEy0PIjU19eXBQsW2PyhnvmZQo+IiIiNJCYm5ti0e/fufdByCj316REREbGBfv36ce7cOSZNmsSrr77KoUOHCA8Pp2HDhrRr146IiAhuPhN89uzZ9OvXj65du+Lv788HH3xAdHQ00dHRhIaGAuDt7U1sbCwAv/32GwMHDqRVq1bUrVuX9u3bs3nzZgDOnj2Lt7c3M2fOpGHDhowbN46GDRsSHR1tqS01NZVGjRoRExOTx1sld6mlR0RExAYWLVpEYGAgL7zwAk2bNqVDhw6MGjWKRYsWcerUKYYMGYKrqys9e/YEICYmhkWLFlG3bl2KFCnC2bNnASynt241bNgw2rRpwwcffIBhGLz11ltMnjyZ1q1bW8a5cuUK27ZtIyUlBRcXF77++mtCQkIA2Lx5M8WKFaNx48Z5sCXyjlp6REREbGzVqlVUr16d3r174+zsjJeXF8899xyRkZGWcSpVqkRAQADFihXDyenubRbz5s1j2LBhGIZBXFwcJUqUID4+3mqczp074+LiQokSJejatSvbt2/nwoULAKxcuZKwsDAcHBxyfmVtSC09IiIiNhYXF8ehQ4esOiFnZGRgMpksf5ctWzbL8zt8+DBDhgzhwoULVK9eHU9PT8upstvNz8fHh+rVq7N69WpCQkL48ccfmTBhwgOsUf6k0CMiImJj5cuXp1GjRixcuNDyWmJiIleuXLH8ndVWl/j4eEaMGMEHH3xAYGAgAOvXr2fDhg1W4/1zfl27dmX16tU4OzvToEEDHnnkkftdnXxLoUdERAq1qh5V8+1yXFxcSE5OJiQkhAULFrBq1Srat2/PpUuXGDZsGGXKlOGDDz6447QJCQmZXr9y5Qpmsxk3NzcAjh8/zocffgjc6KB8J6Ghobz99ttERUXRr1+/bK9LQaDQIyIihZY5w5ztGwY+6PJMjqZ7j/j/devWjXfffZcDBw7w8ccf89ZbbzFt2jRMJhOtWrVi/Pjxd5y2ffv2jBo1ilatWrFlyxbL69WqVePll19m9OjRXLt2jfLly/PUU0/x5ptvcvToUdzd3W87P09PT1q2bMmOHTto165dltehIHEw/nmSr5Azm83s27ePevXqWZ0rlfyj79K+t72RWM0yNVncc7ENKhKR/CwlJYUTJ07w6KOP4urqautyCrQZM2aQkpLClClTbLL8u72XOXH8VkuPiIiInfvjjz84efIkX331FREREbYuJ9co9IiIiNi5L774goiICJ5//nkee+wxW5eTaxR6RERE7NyIESMYMWKErcvIdbo5oYiIiNgFhR4RERGxCwo9IiIiYhcUekRERMQuKPSIiIiIXVDoERGRQsswmwv18iR7dMm6iIgUWg4mE79OncrVU6dyfVlFq1ThsYkTc305N40dOxaAmTNn5tkyCzqFHhERKdSunjrF5aPHbF2G5AM6vSUiImIjZ8+exdvbm7Nnz1pemz17NuHh4axYsYKnn36aadOm0bhxYwICAhg/fjxpaWmZ5hMXF0ebNm147bXXMAyD8PBw3n77bXr37o2vry9PPvkka9assRp/5MiRBAQE0LRpU1588UXOnz9PRkYGTZo0YePGjZZxAwMDGTlypOXv119/nZdffpnY2FgCAwOZO3cuzZs3x9/fn2HDhnH58uXc2Vg5QKFHREQkn9qzZw+lSpVi69atzJs3jzVr1rBhwwarcc6cOUN4eDidOnVi3LhxODg4ADceLTF+/HhiY2Np164dr7zyCtevXyctLY1+/fphMpnYsGEDa9euBWDQoEFkZGQQGBjIDz/8AMDvv/9OQkICMTEx3Hw++XfffWd5CntcXBzx8fF8++23REVFsXfvXj7//PO82jzZptAjIiKST7m6ujJo0CCcnZ2pW7cu3t7enDhxwjI8Li6O8PBwWrRowfDhw62mDQ4Opnbt2ri4uNClSxeSk5NJSEhg165dnDlzhilTpvDQQw9RokQJpkyZwuHDhzl48CBt27a1hJ4ff/yR9u3bk5GRwS+//MJvv/3G+fPnadasmWU5Q4cOxdXVlSpVqtCoUSOr+vIbhR4REZF8qlSpUpaWGwBnZ2dLiwvArl278PLyYtOmTSQlJVlNW6ZMGcu/nZxudOHNyMggISEBDw8PihcvbhlevHhx3N3diYuLo0mTJvz9998cO3aMrVu30qxZM/z9/dm+fTubNm2iefPmuLq63nY5/6wvv7FJ6Pnrr794+eWXadSoEQ0bNmTIkCGcP38egJ9//pnu3bvj6+tLYGAgUVFRVtOuXLmSoKAg6tWrR1hYGHv37rXFKoiIiDwwk8kEYNVPJzExMcvTt2/fnnnz5lGhQgWmTJmSpWkqVqxIYmKiVd+b5ORkEhMTKVOmDC4uLjRv3pxNmzaxe/duAgICaNasGTExMWzevNlyaqsgsknoGTZsGFevXuXbb79l8+bNmEwmJk6cSFJSEgMGDKBz587s3LmT6dOnM2PGDPbv3w9AbGwsU6dOZebMmezcuZPQ0FAGDx7MtWvXbLEaIiIiD6RUqVKULFmS1atXYxgGhw4dYt26dVme3tnZGZPJxIwZM9i4caNVZ+U78fHxwcvLi0mTJpGcnExycjKTJ0+mcuXK1K9fH4CgoCAiIiKoWrUqnp6eNGvWjF27dvHLL7/QqlWr+11dm8vzS9YPHjzIzz//zPbt2y1Na1OnTuXChQts2LABd3d3evfuDUBAQAAhISFERkZSt25doqKi6NChA35+fgD06dOHZcuWsWbNGrp27ZrXqyIiIgVA0SpV8u1yXFxcmDp1KrNmzWLhwoXUqVOHp556it27d2drPtWrV2fYsGFMmTLFcoy8EycnJ+bNm8fMmTMJDg4mNTWVJk2asHjxYstpsFatWjF27FhL351KlSpRvnx5qlatanVarKBxMPL45Nvnn3/O8uXL6dixI//73/+4du0azZs3Z8yYMcyZM4c//viD2bNnW8ZfsmQJy5cv5+uvv6Zz58507dqV8PBwy/Bhw4ZRvnx5xo8fn6Xlm81m9u3bh4+Pj6VZUfIPk8lE36V9OXrhaKZhNcvUZHHPxZh1x1MRuUVKSgqnTp3i0UcfteprAkBGBg55+F1vmM3gqO6y9yslJYUTJ05QpUqVTO+l2WzmwIED1KtX776P33ne0pOUlMSRI0eoU6cOK1euJCUlhZdffpkxY8ZQunRp3NzcrMZ3dXXl6tWrAFy5cuWuw7PjwIED978Skivc3NyoXbv2Pcc7cuSITmmKiBUnJyeuXbtGRkaG1esODg5WHYFzm2EY+bojb35385L6w4cP58r88zz0uLi4ADB+/HiKFClC8eLFGTlyJE899RRhYWGkpKRYjZ+SkkKxYsWAGwfF2w338PDIdh1q6Sm4vL29bV2CiOQjN1t63NzcMrf0SIHi6OiIs7MzXl5ed2zpeRB5Hnq8vLzIyMggLS2NIkWKAFiS+WOPPZbppkbHjx+nRo0aANSoUYNjx45lGt6iRYts12EymRR6Cii9byJyK5PJZGnRyctWHcl5N9/D3DpG5/mJxyZNmlCpUiXGjRvHlStXuHTpEu+++y5t27alY8eOXLx4kYiICNLS0tixYwfR0dGWTsrdunUjOjqaHTt2kJaWRkREBAkJCQQFBeX1aoiIiEgBk+ehx9nZmSVLlmAymQgODiY4OJjy5cvz2muv4eHhwaJFi1i3bh2NGjViwoQJTJgwgcaNGwM3ruaaNGkSkydPxt/fn9WrV7NgwQLc3d3zejVERESkgLHJU9bLlSvHu+++e9thPj4+LF269I7TdurUiU6dOuVWaSIiUkD9sxOzFDy5/R7aJPSIiIjkFBcXFxwdHTl37pzljsLq21OwGIZBamoqFy5cwNHR0XLRU05T6BERkQLN0dGRRx99lD/++INz587Zuhx5AEWLFqVy5co45tK9jhR6RESkwHNxcaFy5cqkp6frBqYFlMlkwsnJKVdb6RR6RESkUHBwcMDZ2RlnZ2dblyL5lO6VLSIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQI/IPRob5gYaLiEj+5GTrAkTyGwdHExdXjCXt4u+ZhjmXrkbpsJk2qEpERB6UQo/IbaRd/J20P3+1dRkFnpFhxsHRdN/DRURykkKPiOQatZqJSH6i0CMiuUqtZiKSX6gjs4iIiNgFm4SeNWvWULt2bXx9fS3/jR49GoCff/6Z7t274+vrS2BgIFFRUVbTrly5kqCgIOrVq0dYWBh79+61xSqIiIhIAWOT01sHDhygU6dOzJgxw+r1pKQkBgwYwPDhw+nRowc7d+5k6NCheHt7U7duXWJjY5k6dSoLFiygbt26REZGMnjwYDZv3oybm5stVkVEREQKCJu09Bw4cIA6depken3Dhg24u7vTu3dvnJycCAgIICQkhMjISACioqLo0KEDfn5+ODs706dPHzw8PFizZk1er4KIiIgUMHkeejIyMjh06BBbtmyhdevWtGjRgokTJ5KUlMSxY8eoWbOm1fheXl4cPnwYgOPHj991uIiIiMid5PnprUuXLlG7dm2Cg4OZNWsWiYmJjBkzhtGjR1OmTJlMp6lcXV25evUqAFeuXLnr8Owwm3VX3fzIZLr3PVty+73LDzUUFtqWIpJTcuK7Is9DT+nSpS2nqwDc3NwYPXo0Tz31FGFhYaSkpFiNn5KSQrFixSzj3m64h4dHtus4cODAfVQvucnNzY3atWvfc7wjR45w7dq1QltDYaFtKSL5TZ6HnsOHD/PNN9/w4osv4uDgAEBqaiqOjo7UrVuXTz75xGr848ePU6NGDQBq1KjBsWPHMg1v0aJFtuvw8fHJ0q9QyX+8vb1tXUK+qKGw0LYUkawwm80P3GCR56HH3d2dyMhISpYsSd++fTl//jxvvvkmXbp0ITg4mLfffpuIiAh69+7N7t27iY6OZs6cOQB069aNoUOH8uSTT+Ln50dkZCQJCQkEBQVluw6TyaTQU0Dlh/ctP9RQWGhbikheyfPQU758eebNm8c777zD3LlzKVKkCB06dGD06NEUKVKERYsWMX36dGbNmoWnpycTJkygcePGAAQEBDBp0iQmT55MfHw8Xl5eLFiwAHd397xeDRERESlgbHKfHn9/f5YuXXrbYT4+PnccBtCpUyc6deqUW6WJiIhIIaXHUIiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC7cV+i5dOkSERERTJ8+ncuXL7N58+acrktEREQkR2U79Bw6dIgnnniCdevWsXz5chITExkxYgRffvllbtQnIiIikiOyHXpmzJjB2LFjWbp0KU5OTlSqVIkPP/yQhQsX5kZ9IiIiIjki26Hn6NGjdOrUCQAHBwcAmjdvTnx8fM5WJiIiIpKDsh16PD09+f33361e+/333yldunSOFSUiIiKS07Idenr16sXAgQP54osvSE9PZ82aNYwYMYIePXrkRn0iIiIiOcIpuxP8+9//xmQy8cknn5CRkcH7779Pjx496NOnTy6UJyIiIpIzsh16AHr37k3v3r1zuhYRERGRXJPt0PPf//73tq87Ozvj6elJq1atqFev3oPWJSIiIpKjst2nx9nZmejoaK5du0bp0qVJTU3lm2++IT4+nt9//52+ffuyZs2a3KhVRERE5L5lu6Xnjz/+4L333qNt27aW177//nv+97//MWvWLGJjY5k2bRrt27fP0UJFREREHkS2W3p+/vlnAgMDrV5r3rw5u3btAqBRo0bExcVlaV5ms5nw8HDGjh1rNf/u3bvj6+tLYGAgUVFRVtOsXLmSoKAg6tWrR1hYGHv37s3uKoiIiIgduq/79GzdutXqtZiYGNzd3QE4c+YMJUuWzNK8PvjgA0tYAkhKSmLAgAF07tyZnTt3Mn36dGbMmMH+/fsBiI2NZerUqcycOZOdO3cSGhrK4MGDuXbtWnZXQ0REROxMtk9vDRs2jBdeeIF27drxyCOPcPbsWTZu3MiUKVP4/fffefbZZ3nmmWfuOZ+YmBg2bNhAu3btLK9t2LABd3d3y5VhAQEBhISEEBkZSd26dYmKiqJDhw74+fkB0KdPH5YtW8aaNWvo2rVrdldFRERE7Ei2Q0+HDh2oWLEiX375Jb/88gsPP/wwn3/+Od7e3pw9e5ZJkyZZ9fe5nYSEBMaPH8+cOXOIiIiwvH7s2DFq1qxpNa6XlxfLly8H4Pjx45nCjZeXF4cPH87uamA2m7M9jeQ+k8l0z3Fy+73LDzUUFtqWIpJTcuK7Ituh5/Tp0/zvf/8jPj6ejIwMTpw4wbRp0zhx4gQ7duygatWqd50+IyOD0aNH07dvX2rVqmU17MqVK7i5uVm95urqytWrV7M0PDsOHDiQ7Wkkd7m5uVG7du17jnfkyJFcO6WZH2ooLLQtRSS/yXboGT9+PIZh4OHhwaVLl3jsscf46quvsnxH5nnz5uHi4kJ4eHimYW5ubiQnJ1u9lpKSQrFixSzDU1JSMg338PDI7mrg4+OTpV+hkv94e3vbuoR8UUNhoW0pIllhNpsfuMEi26Hn4MGDbNmyhXPnzvHee+8xYcIEWrRowbx583jhhRfuOf3XX3/N+fPnadCgAYAlxGzcuJGXX36Zbdu2WY1//PhxatSoAUCNGjU4duxYpuEtWrTI7mpgMpkUegqo/PC+5YcaCgttSxHJK9m+esvNzY2SJUtSuXJljh49CkCLFi0yPXn9TtatW8eePXvYtWsXu3btomPHjnTs2JFdu3YRFBTExYsXiYiIIC0tjR07dhAdHW3px9OtWzeio6PZsWMHaWlpREREkJCQQFBQUHZXQ0REROxMtlt6KleuzPfff0/Lli3JyMjgzJkzuLi4kJ6e/sDFeHh4sGjRIqZPn86sWbPw9PRkwoQJNG7cGLhxNdekSZOYPHky8fHxeHl5sWDBAsvl8iIihZGRYcbB8e4tYlkZR8TeZTv0DBgwgOHDh/PNN9/Qo0cPevbsiclkok2bNvdVwMyZM63+9vHxYenSpXccv1OnTnTq1Om+liUiUhA5OJq4uGIsaRdv36LuXLoapcNm3naYiPyfbIeewMBANmzYQKlSpRgyZAhVq1bl8uXLdO7cORfKExERgLSLv5P256+2LkOkQMt26AEoV66c5d96xpaIiIgUBNnuyCwiIiJSECn0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUesTvmjAxblyAiIjZwX/fpESnITI6OTPh8KyfOJ2Ua1sT7YYY+Wd8GVYmISG5T6BG7dOJ8EofjLmV6vWqZEjaoRkRE8oJObxUSRoY5R8YREREprNTSU0jogYQiIiJ3p9BTiOiBhCIiInem01siIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInZBoUdERETsgkKPiIiI2AWFHhEREbELCj0iIiJiFxR6RERExC4o9IiIiIhdUOgRERERu6DQIyIiInbBJqEnJiaG7t27U79+fZo2bcrUqVNJSUkB4Oeff6Z79+74+voSGBhIVFSU1bQrV64kKCiIevXqERYWxt69e22xCiIiIlLA5HnouXTpEgMHDuTpp59m165drFy5kp9++on58+eTlJTEgAED6Ny5Mzt37mT69OnMmDGD/fv3AxAbG8vUqVOZOXMmO3fuJDQ0lMGDB3Pt2rW8Xg0REREpYPI89Hh6erJ9+3bCwsJwcHDgr7/+4vr163h6erJhwwbc3d3p3bs3Tk5OBAQEEBISQmRkJABRUVF06NABPz8/nJ2d6dOnDx4eHqxZsyavV0NEREQKGCdbLLR48eIAtGzZkvj4eBo0aEBYWBjvvfceNWvWtBrXy8uL5cuXA3D8+HG6du2aafjhw4ezXYPZbL7P6vMnk8mUpfHy+3pnZT0edB2yuq1yswZ7kRfvpz0oLPu3yIPIic+3TULPTRs2bCApKYmXXnqJ4cOHU65cOdzc3KzGcXV15erVqwBcuXLlrsOz48CBA/dfeD7j5uZG7dq1szTukSNH8u3pwKyux4OsQ3a2VW7VYC/y4v20B4Vl/xbJD2waelxdXXF1dWX06NF0796d8PBwkpOTrcZJSUmhWLFiwI2d/2aH51uHe3h4ZHvZPj4+OfKLv6Dx9va2dQkPLD+sQ36oobDQtsw52pZSmJnN5gdusMjz0LNnzx7GjRvHqlWrcHFxASA1NRVnZ2e8vLzYtm2b1fjHjx+nRo0aANSoUYNjx45lGt6iRYts12Eymewy9BSGdc4P65AfaigstC1zjralyN3leUdmb29vUlJSePvtt0lNTSUuLo7XX3+dbt26ERwczMWLF4mIiCAtLY0dO3YQHR1t6cfTrVs3oqOj2bFjB2lpaURERJCQkEBQUFBer4aIiIgUMHne0lOsWDE+/vhjXnvtNZo2bcpDDz1ESEgIQ4cOxcXFhUWLFjF9+nRmzZqFp6cnEyZMoHHjxgAEBAQwadIkJk+eTHx8PF5eXixYsAB3d/e8Xg0REREpYGzSp8fLy4tFixbddpiPjw9Lly6947SdOnWiU6dOuVWaiIiIFFJ6DIWIiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSJiE47FSmHOMN91nHsNFxHJDidbLPTw4cO8/vrrHDp0CGdnZ5o2bcrYsWPx9PTk559/Ztq0aRw/fhwPDw8GDx5M9+7dLdOuXLmSOXPmcOHCBapVq8bEiRPx9fW1xWqIyANwdC2BydHElPVTOJl4MtPwqh5VmRQ8Ke8LE5FCK89belJSUnj++efx9fXlxx9/5JtvvuGvv/5i3LhxJCUlMWDAADp37szOnTuZPn06M2bMYP/+/QDExsYydepUZs6cyc6dOwkNDWXw4MFcu3Ytr1dDRHLIycSTHL1wNNN/twtCIiIPIs9Dz7lz56hVqxZDhw7FxcUFDw8PevTowc6dO9mwYQPu7u707t0bJycnAgICCAkJITIyEoCoqCg6dOiAn58fzs7O9OnTBw8PD9asWZPXqyEiIiIFTJ6f3qpWrRoff/yx1Wvr16/nX//6F8eOHaNmzZpWw7y8vFi+fDkAx48fp2vXrpmGHz58ONt1mM2Fq6+AyWTK0nj5fb2zsh4Pug5Z3Va5WYO90LbOGYVl/xZ5EDnx+bZJn56bDMPgvffeY/PmzXz22Wd8+umnuLm5WY3j6urK1atXAbhy5cpdh2fHgQMH7r/wfMbNzY3atWtnadwjR47k29OBWV2PB1mH7Gyr3KrBXmhb54zCsn+L5Ac2Cz2XL1/mv//9L4cOHeKzzz7D29sbNzc3kpOTrcZLSUmhWLFiwI2dPyUlJdNwDw+PbC/fx8cnR36FFjTe3t62LuGB5Yd1yA812Att66zTtpLCzGw2P3CDhU1Cz+nTp+nfvz8PP/wwy5cvx9PTE4CaNWuybds2q3GPHz9OjRo1AKhRowbHjh3LNLxFixbZrsFkMtll6CkM65wf1iE/1GAvtK2zTttK5O7yvCNzUlISzz77LPXr12fhwoWWwAMQFBTExYsXiYiIIC0tjR07dhAdHW3px9OtWzeio6PZsWMHaWlpREREkJCQQFBQUF6vhoiIiBQwed7Ss2LFCs6dO8fatWtZt26d1bC9e/eyaNEipk+fzqxZs/D09GTChAk0btwYgICAACZNmsTkyZOJj4/Hy8uLBQsW4O7unterISIiIgVMnoeevn370rdv3zsO9/HxYenSpXcc3qlTJzp16pQbpYmIiEghpsdQiIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHpERETELij0iIiIiF1Q6BERERG7oNAjIiIidkGhR0REROyCQo+IiIjYBYUeERERsQsKPSIiImIXFHokTxkZZluXICIidsrJ1gWIfXFwNHFxxVjSLv6eaZirVzM8AofboCoREbEHCj2S59Iu/k7an79met2p1KM2qEZEROyFTU9vXbp0iaCgIGJjYy2v/fzzz3Tv3h1fX18CAwOJioqymmblypUEBQVRr149wsLC2Lt3b16XLSIiIgWQzULP7t276dGjB6dPn7a8lpSUxIABA+jcuTM7d+5k+vTpzJgxg/379wMQGxvL1KlTmTlzJjt37iQ0NJTBgwdz7do1W62GiIiIFBA2CT0rV67kpZdeYtSoUVavb9iwAXd3d3r37o2TkxMBAQGEhIQQGRkJQFRUFB06dMDPzw9nZ2f69OmDh4cHa9asscVqiIiI5LisXPChi0Luj0369DRr1oyQkBCcnJysgs+xY8eoWbOm1bheXl4sX74cgOPHj9O1a9dMww8fPpz7RYuIiOSBu13wAeBcuhqlw2bmcVWFg01CT5kyZW77+pUrV3Bzc7N6zdXVlatXr2ZpeHaYzYUrJZtMpiyNZ+v1zmqdd/Og65AfarAX2tY5o6Ds35IzTCbTHS/4uJW9vd85sb756uotNzc3kpOTrV5LSUmhWLFiluEpKSmZhnt4eGR7WQcOHLj/QvMZNzc3ateunaVxjxw5YrM+UNmp824eZB3yQw32Qts6ZxSU/Vtyht7v3JWvQk/NmjXZtm2b1WvHjx+nRo0aANSoUYNjx45lGt6iRYtsL8vHxydHfoUWNN7e3rYu4YHlh3XIDzXYC23rrNO2si/29n6bzeYHbrDIV6EnKCiIN998k4iICHr37s3u3buJjo5mzpw5AHTr1o2hQ4fy5JNP4ufnR2RkJAkJCQQFBWV7WSaTyS5DT2FY5/ywDvmhBnuhbZ112lb2Re939uWr0OPh4cGiRYuYPn06s2bNwtPTkwkTJtC4cWMAAgICmDRpEpMnTyY+Ph4vLy8WLFiAu7u7bQsXERGRfM/moefIkSNWf/v4+LB06dI7jt+pUyc6deqU22WJiIhIIaMHjooUUuZ73MfjXsNFRAobm7f0iEjuMDmamLJ+CicTT2YaVtWjKpOCJ+V9USIiNqTQI1KInUw8ydELR21dhohIvqDTWyIiImIXFHpERETykDkjw9Yl2C2d3hIpgIwMMw6OukeHSEFkcnRkwudbOXE+KdOwJt4PM/TJ+jaoyj4o9IgUQPd6IKGrVzM8AofncVUiklUnzidxOO5Spterlilhg2rsh0KPSAF1twcSOpV6NI+rKbzMGWZMd2lVu9dwEck/FHpERO5Cl/6LFB4KPVlwr/4T6l8hUrjp0n+RwkGhJwvu1n/CuXQ1SofNtEFVIiIikh0KPVl0t/4TIiIikv/pPj0iIiJiFxR6RMSuGXrwqojd0OktEbFrd+uzp/sdFTzmjAxMjnf+PX+v4VK4KfSIiN27U5893e+o4Lnb3Y4fLVuSab2a26AqyS8UekREpFC5092ORdTGJyJSwDkWK4X5Hn2T7jVcxB6opUdEpIBzdC2RL+4crRu5Sn6n0CMiUkjY+s7RupGr5HcKPSIikmN0I1fJz9SnRySHGeZ7953IyjgiIpKz1NIjOUb3v7jBwWTi16lTuXrq1G2HF61ShccmTszjqkRERKFHcszd7o8B0MT7YYY+WT+Pq7KNq6dOcfnoMVuXISIit1DokRx1t/tjVC1TIo+rERER+T86F/GAdH8MERHJSzru3D+19Dyg/HJ/DBERsQ867tw/hZ4cYuv7Y9gDz6KeGGYzDqa73PzsHsNFxH6Vesi1UN1AUced7FPooWBcdVQQasxtDxV56K5XRumqKLkd7Tty00OuLrqBop1T6OHuVx3llyuOCkKNeUVXRtmHnGrZ074j/3SnGyje7CtjuktLz72GS/6m0PP/3emqo/x0xVFBqFEkp+Rky572HckK9ZUp/BR6RCRfU8te4VCQWlHUV6bwUuixEwXpC0fE3uR2v6P8cBHAvVpR6laoy8hmw+86D12oIA9KocdOqNm2YCkInW8LQo0FRW73O8pPFwHcqRWlikeVfFNjQZcfQm5W2KJGhR47c6cvnIKyk9haVlrMckJB6Hyrx45kbb+BrO07edHvqCCcKiwINeZ3+Snk3o0taiyQoSchIYGJEyfy008/YTKZCA0NZcyYMTg5FcjVyRcKyk5ia/dqMWtcuTEDmwzMkWUVhM639v7YkXvtN6B9R2ynIATIvK6xQKaEkSNHUq5cObZu3crFixcZPHgwERERPP/887YurcArCDtJfnC3JnqxP9pvpLDJyunre93IMT/2Ey1woefUqVP89NNP/PDDD7i5uVGpUiWGDBnCm2++qdAjIiK5JidPZ+Z3WT19facbPbp6NcMjcHietIpnR4ELPceOHcPd3Z1y5cpZXqtevTrnzp3j77//pkSJuzepG4YBQGpqKqb//6E0mUzUKF8SF5NDpvErlSqG2WzGVKYmGY4umYY7elTGbDbj5emFs6NzpuF1ytUhPTU1SztJxl2GP0iNWamz4kMVMZvNuFWvDs6Zh7tVvjG92Xznh9jdrcas1JkXNd6rztyuMat15vb7nZXP5YN8JrNSp97vnKkxJ+rM0rZ0cMhSx/XC/H7XKl2LDOD0kiVcjz9/2+UXKVeWyr16YU5NzZUas1JnTn2fOzlyx/3b5GBgNpvJcHC6bZ0ZmDCbzTg5ON22Rkccs13jzX/fPI7fDwfjQaa2ga+//pp3332XLVu2WF47ffo0QUFBfP/995QvX/6u06empnLgwIFcrlJERERyg4+PDy4utw+E91LgWnqKFi3KtWvXrF67+XexYsXuOb2TkxM+Pj44Ojri4HD7BCsiIiL5i2EYZGRkPNBFSwUu9NSoUYO//vqLixcvUrp0aQB+++03ypcvz0MPPXTP6R0dHe87IYqIiEjBVeDuLFa1alX8/Px47bXXuHz5MmfOnGHOnDl069bN1qWJiIhIPlbg+vQAXLx4kVdffZXY2FgcHR3p3LkzL730kqVjsoiIiMg/FcjQIyIiIpJdBe70loiIiMj9UOgRERERu6DQIyIiInZBoUdEuH79On/++aety5B8Ljk5mUuXbv+A2bx2/vx5rl69ausyct3JkydtXUKhotCTS8LDw5k9e3aeL3f27NmEh4ffcXiHDh1YtWpVHlaUO86ePYu3tzdnz57NNGzFihUEBgbm6PJO3eEJ2lk1e/ZsWrdubXlvnn/+eWrVqkWjRo3466+/cqDC+xcYGMiTTz7J9u3bH2g+Y8eOZezYsfc1/rlz5/D19eXcuXN3neZO4xX2A8P9fp9kdbtmVVBQEMeO3f+DVb29vYmNjb3j8Lvt17e6ePEiwcHB+SaAZYevry+7du267bDY2Fi8vb0tf0dGRjJx4kTL3zn9/Z3dz1V29/H8qMDdnFAezOrVq21dQoHz+uuvk5iYyMyZM3Nsntu2bcPDw4OYmJgcm+eDuHLlik2X//DDD7N37977Gu+7775j+vTpbNq0KbfKK7Cyul2zKjExMcfm9SBSUlIKbCtPdt6Pf4Y6fX8/uALX0nO7XwI3WzdWrFjB008/zbRp02jcuDEBAQGMHz+etLQ04MYtrD/99FOCg4Np0KABvXr14uDBg5b5BAYGsnjxYkJDQ3n88cd5+umnOXToEP3798fX15f27duzf/9+4EZrwlNPPcUrr7xC/fr1adasGXPmzLntg9AyMjKYP38+bdu2xc/Pj27durF161bgxofYz8+P69evM3v2bFq2bImvry916tRh06ZNXL58mZEjR+Lj40OtWrXw9fXlgw8+sCxn3Lhx1K9fn1q1alG7dm02btzI3r17ycj4v0dFfv7553To0MGyjitWrADg6tWrvPrqqwQEBNCgQQP69+9PXFwcAJcvX+bVV1+lZcuWBAQEMGrUKC5evGi1zVu2bIm/vz9du3a12QHnq6++om3btjRp0oQJEyZw+fJlq+H//OUEmX+trF69mpCQEPz8/AgLC+PHH3+0Gv+fX/QTJ07Ex8cHb29v/vWvfzFy5EgMw+DQoUN07tyZ2rVrU6tWLfz9/Xn33XdJveXBg2lpafj6+pKRkcGlS5csdSxfvpywsDAaNWqEr68v/fv3Z+bMmbRp04a6devSuHFjOnbsiL+/Pzt37sTb25tly5YRHBzM448/zqBBgzh48CA9e/bE19eXrl27WlqnZs+ezZAhQxg2bBj16tUjMDCQZcuWWWq6ePEiSUlJTJo0iVdeeYWXX37Zsn5169bltddewzAM5s+fT3BwMJ988glBQUH4+vrSokULQkJCgBsHom3btlk+q48//jgLFy60LCcgIICAgABq1arFY489xrfffsuFCxeAzPv1mTNnGDRoEH5+fgQEBDB58mRSU1Mzjbdnzx7efPNNzp07h4+PD2FhYezbt8/y3gcGBjJ37lyaN2+Ov78/w4YNy/QZsZXvvvuOnj17EhAQwOOPP84zzzxjabGKioqiTZs2+Pr6MmbMGKtH74wdO5ZXX32VgQMH4uvrS1BQEDExMUydOpWGDRvStGlToqKigMzb1dvbmyVLlhAcHIyvry89e/bkyJEjmWq73f4dHBwMQP/+/VmwYMFtW1RvbTlIS0tjxowZNGrUiMaNG/Pxxx9bjXu775ib+1pkZCTe3t7UqVOHunXr4uvrS9++fYmKiqJLly60adMGgCeeeIJvvvnGsl3+2Qpxa8vS+vXr6dChA35+fjz55JPMmTPHMt7Fixd56aWXaNq0Kc2aNeOVV16xfE5ufo4+/vhjmjZtip+fH++8845lm/j6+jJs2DDLfh4fH8/IkSMJDAzk8ccfp02bNixfvtzq/RgxYgQNGzZk7NixdOnShVq1alGrVi3+85//WGpauXIl8+bNY9euXTRo0ACw/v4ODw9n7NixtG7dmlatWnH58mVOnz7NoEGDaNSoEa1bt870/RMVFUXLli3x9vbmhRdesHyusnoMvVVcXBxt2rSxfD+Eh4fz9ttv07t3b3x9fXnyySdZs2aN1fgjR44kICCApk2b8uKLL3L+/HkyMjJo0qQJGzdutIwbGBjIyJEjLX+//vrrvPzyyzmyTxe40HMve/bsoVSpUmzdupV58+axZs0aNmzYANw4+C9evJj333+fmJgYwsLC6Nu3r9XBPCoqivnz57Nt2zYuXbpEeHg4Q4YMITY2lpo1a/LWW29Zxv35559xc3MjJiaGuXPn8sknn1g+3Lf68MMPiYyM5P333yc2NpZ+/foxZMgQ9u/fT1BQECaTiY8++ohly5YRFRWFv78/TZo0Yfz48YwaNYoNGzYwbNgwduzYQfPmzZk/fz5Lly4lMTGR6Ohorl69yscff8yCBQs4c+YMZrPZqgVh5cqVljtWp6en89///pevvvqKJk2a8Pnnn+Pv788HH3zAzz//TNu2bXn22Wd56aWX+O2332jYsCHFihVj/fr1tGrVirlz57Jjxw7LQbNfv35cvHiRIUOG0KlTJ3bs2GFZ7t2+1OFG2LgZQJ977jkmTpxo+dK6V0Dt1asXAAsXLuT8+fM8/PDD7Nu3j/bt2zNp0iTi4+MtARVg+/btdOvWjQYNGrBx40ZOnz4NwPfff8+YMWOoWLEiDRo04Pjx4zz//PO8/fbblvcuOjqa6OhoQkND2bhxI1FRUTzzzDPs37+foUOHsm7dOubNm0d4eDhHjx7lpZdeYuXKlRQrVoyVK1fyxhtvWOpwdna2/NIrXbo0M2fOZP/+/UybNo3JkycTGxvL2rVr2bdvH9HR0URERNC3b1/++usv/vrrL9atW4evry8A0dHRLFu2jG+//Zbdu3czZMgQpk+fzrZt23BxceGjjz6yLHfTpk3Ur1+fnTt38uqrrzJ16lTLZ6R06dKULFmSKVOmkJSURHR0NAMGDGDPnj38+9//5tNPP2XevHl07tyZU6dOMWvWLN544w12794NwIkTJ7h06RI7duzg4sWLvPfee2zfvp2qVavyxhtvEB8fz++//86lS5dwdHRk9erVvP3221y5csUSUG4aP348jRo1Ijg4mD///JNNmzYxePBgvvrqK55++mnCwsIAeOutt0hOTub555/n1KlTGIaByWSibNmyPPfcc4wdO5ZRo0YRFxfH2bNnWbRoEbVq1eLbb7+lVatWVgeDe/2Aye7BJSs/vj744AMGDx7M4cOHefTRR/noo48wDIMPP/yQpk2bMnnyZKZNm8bOnTspWbKk5SHJZ8+eZeXKlSxdupSffvqJTp06UbduXZ577jmqVq1KTEwMAwcO5NVXX7U62N1q9erVfPbZZ/zwww+4ublZfT4By/4dFRVFbGws3bt3Z/z48ZZwsWDBAvr373/bed9qzpw5bNmyheXLl/Pdd99x9OhRq+Hjxo3j1KlTrFixgo0bN1K8eHFeeeUVAMu4TZo0oWrVqgQFBXH69GleeeUV+vfvb/lOd3d3t/r+vpOUlBRGjx7NK6+8wu7du3n77bdZsGAB+/fvJyMjgyFDhuDo6Mj69euJjo7m/PnzllrgxgH7woULbNmyhXfeeYd58+YRGRnJF198wapVq4iNjbUc4CdMmICzszOrV69mz549PPPMM0ydOtWqNfXmD4R9+/Zx9OhR5s+fz8aNG3F1dQXg2LFjdOnShYEDB9KgQYM7ng7bvn07S5cuZdWqVTg6OtKnTx9q1KjBDz/8wOeff8727dstITQmJoZXX32VF198EYDatWvf9uHbdzuG3nTmzBnCw8Pp1KkT48aNszzH8osvvmD8+PHExsbSrl07XnnlFa5fv05aWhr9+vXDZDKxYcMG1q5dC8CgQYPIyMggMDCQH374AYDff/+dhIQEYmJiLPvgd999R7t27SzvRXx8PN9++y1RUVHs3buXzz///J6fgZsKXehxdXVl0KBBODs7U7duXby9vTlx4gRw49fDwIEDqVWrFs7OznTr1o3q1atbnSPt2rUr5cuXp3jx4tStW9fyy9vFxYVmzZpZWkLgxg730ksvUaRIEXx8fOjRo8dtz7d++eWXDBgwgH/96184OTnRvn17AgMDWb58OS4uLnTs2JGYmBiSkpKIiIjgxx9/ZNy4cXzzzTf88MMP1KhRgwEDBuDu7s7rr79OWloaixYtYsuWLTg7O1O5cmWaNWtG06ZN6datG6VKleKrr74CbjyX7Ndff6VTp05WNW3evJn09HQmT57Mt99+y4wZM/j888/5+OOPOXv2LJs3b6ZUqVJcvHiRFStWsGvXLsxmM++99x6JiYkkJSVx5coVli5dyuLFi9m7dy+PPfYYkydPBuDPP/9kxIgRDBgwgJiYGLZs2WL5UocbTbxjxoxhzJgx7Nixg549e1p+wUDWAirc+IWyfft2kpOTOX36NJcuXbJ86dwaUAcPHsyAAQOIjY3F19eXAwcOsHXrVj777DMeffRRfvzxR/7973+zZ88e6tSpw4IFC4iPj2fo0KGEhIQQEhLCqlWrOHjwIIZhULRoUY4fP87AgQNZvXo1V69epXjx4tSuXZt+/frx2GOPMWjQIEwmE1FRUbdtAbypZs2afPPNN9StW5ekpCTi4+O5fPky3t7eVKpUCScnJypVqoSjoyM7d+60PGzvmWeewd3dnbJly1KjRg3atWtH9erVKVq0KI0bN7b6rHp7e9O3b1+cnZ1p1qwZwcHBfP3111Z1pKens2HDBqpWrcqwYcMoVqwYL730Eg8//DBLliyhbNmylCxZkipVquDr68uvv/5KcnIy8+fP57fffuOvv/6iadOmtGnTBk9PT958800AfvnlF9asWYOLiwvPPvss1atXp3379tSrV8/yC+3mL85HH33UEjhNJhMLFy6kePHiXLt2jQYNGvDFF19YPr9btmxhxYoVTJ06lQoVKhAVFUX58uVJTU1l+/btlr4QAwcOZODAgTz++OM88cQTNG3a1OpgAPf+AZOdgwvc+8fX8uXL+eijj9i5cycdOnRg6NChFC1alPj4eK5evcq//vUvAgICcHJysrRq3Kps2bLExsbyn//8h8aNG1O0aFHCw8NxcnKidevWpKam3jEMhIeHU6ZMGR566CGefPLJTP2hihQpQlJSEl988QW//PIL3bt3JyYmBmdn59vO706+/vprnnvuOSpVqkTRokWZMGGC5eCYkJDA+vXrGT9+PKVKlaJYsWKMGzfO0urUu3dvAIYMGUKrVq04f/48RYsWxd3dnfbt21vuvv/000+zdOnSLNXj6urK8uXLiYmJoXr16uzevZu6dety8OBBDh06xKRJkyhevDgeHh6MGTOG1atXW7XyDhw40LL/3Fx2yZIlqVSpEjVq1LC0pk2bNo1Jkybh7OzMuXPnKFasGCkpKSQlJVnm1axZMy5cuMCJEyfo2rUrLVq04JFHHuG///0vQJbXqUWLFpQrV44SJUqwZcsWUlNT+c9//kORIkWoUKECI0aMIDIyEoBVq1bRrl076tevD0BoaCi1a9e+7Xa60zEUboSO8PBwWrRowfDhw62mDQ4Opnbt2ri4uNClSxeSk5NJSEhg165dnDlzhilTpvDQQw9RokQJpkyZwuHDhzl48CBt27a1hJ4ff/yR9u3bk5GRwS+//MJvv/3G+fPnLdsdYOjQobi6ulKlShUaNWpkVd+9FLo+PaVKlbJ6erqzs7PlgBMXF8frr79udTBMT0+nTp06lr/d3d0t/zaZTJQsWdLyt6Ojo9XBq2LFilZfBBUqVGD9+vWZarp48SKVKlWyeu2RRx7h8OHDAISFhbFs2TJmzJjBnDlzyMjIoGfPnpZke/jw4UynaC5cuEB8fDzFixenbNmyltcrV65MmTJl2LhxI1euXLE0QXt6elpN361bN9atW4e/vz9lypShS5cueHl54eXlRbVq1Th79ixbtmzBwcGB1q1bYxgGjo6OZGRkULp0aWbPns3w4cO5cOECvXr1Ijw8nA4dOljClqenJ6tXr6Zy5cpcvnyZP//8Ew8PD+Lj44EbQbBdu3aW5vGgoCDatm1rqe/WgHqz3uXLl7Nq1Sr69etnGa9evXqWgFquXDliY2NJTk6mSJEiVgf9Nm3aWLZnqVKlqFq1KpGRkcTFxVm+9EeMGAHc+EwYhsGePXsYN24c169fB8DFxYVHHnmERx99lH379rFw4UJcXV0JDw/n77//5sKFCyQkJFiaojMyMnBwcLhn/4ObLYnp6ek4ODjQrFkzMjIyiI2NpUGDBly/fh2z2Yyzs3Om0H3TvT6rVatWtVpmhQoV+PXXX61eu3r1KhkZGZw+fdqyDjdfd3R0tGyDEydOkJaWxsqVK3niiSdo0qQJa9aswTAMYmJirKaFGwE4Pj4ek8lkeUgwQPny5S3/vnkK4rnnnmP//v14enoyatQohg8fzoQJE3B1dWXs2LGW9a9evTqnTp3i6tWrvPfee/z1119MmzbNEghbtGhh+cwfPHjQcjC4eVAZMWIEw4cPt/zqvfkDxtnZ2eoHTPfu3S3zK1euHABr1qyxzM/BwcFycLl1fjcPHA4ODnf88fXrr78yadIkHBwcMJlM/Pbbb1SsWBGz2Wz13t6Ol5cXLi4uuLi4YDKZKFGihGXYze+/W09x3+rW98DJySlTIPf19WX27NksWbKEjz/+2PIZHzx48F1r+qfz589ToUIFy98lSpSwfEZvvo9PPfWU1TQmkwmz2WxZn9KlS+Ps7IzZbObatWsUKVLEavzy5ctb7RN34urqyv/+9z/mzJnDiy++yOXLlwkODmbChAmcPXsWs9lMy5YtraZxcXHhzJkzlr89PDwsNd5cn5tu3d/OnDnDG2+8wcmTJ6latSpVqlQBrN+PW78Lv/76a0sr0c1xstrx/Nbv/ri4OC5dukTDhg0trxmGQVpaGgkJCcTHx/Ovf/3Lavp/Hpfg7sdQgF27dtG0aVM2bdrEqFGjrL53ypQpY/n3zX0xIyODhIQEPDw8KF68uGV48eLFcXd3Jy4ujqCgIP7++2+OHTvG1q1b6dy5M3///Tfbt2/HMAyaN29uaQX753L+Wd+9FLjQc/MDd+s5xqx2ritfvjzDhw+39G8BOH36tNUXzK1v9r2cP38ewzAs05w9e5aHH34403gVK1a02nngxo5x8wNbp04dqlSpwtGjRylevDjTpk2jdOnSvPDCCwD4+/uzZMkSy7R79uzB3d2d/fv3k5ycbDXfP//8k+LFi1OlShW+/fZboqOjmTZtWqaaqlSpgouLC3/88YflSzMhIYEFCxZQtGhRAObOncucOXP45ZdfeOSRR6hUqRLr16/nwoULVKpUidKlSzNo0CDKlSvHCy+8wAsvvGD58Dk7O/PNN9+wdOlSHBwcqFmzJpcvX7bsCH/88UemXxmVKlWy/DrNSkAFLMHPZDLh6OhI0aJFLQe7m6c8ADZs2GA5GN8MII6OjpQvX54iRYrg7e1t6ah87tw5WrdujaenJ3v37rWccnv11Vf55JNPSEpKYu3ataSlpRETE8OQIUNo06YNlSpV4qGHHuLLL78EbnwuN27cyKuvvmq1w/5T48aNiY+P55NPPqF06dJkZGTwr3/9i6ZNmzJ//nxmz57NTz/9xJQpUywHXsjeZ/XmF+xNZ8+etTogATz00EOYTCZq1qzJypUrLa+HhobSuHFjAKpVq8a+ffvYtm0ba9eu5f333+fdd9/Fy8sLk8lEx44def311wFITU3Fx8eHKlWqcOnSJdLT062Wd2snzZuXy3fq1AnDMLh69SojRoywfGEXL16cTz75xBKMnZyc+OOPP/joo48YMGAAX331FZ988gmLFi3ip59+uuPBICUlBYBvv/3WMm+49w+Y7Bxc4N4/vl577TXS0tIoWrQojo6OpKenWw4IJpPpnlclubm53XX4gzh37hylSpVi4cKFpKamEhMTwwsvvJDpgOno6JjpFNqt38Xly5e3+t67evWq5fvq5ud47dq1Vgewbdu2Wf2ouVWJEiUyhYE//vjDMr2jo6PlBwpYf74uX77M+fPnLa2Iv/76K//5z3/46KOPCAoKwtXVldjYWMv3RWpqKmfOnKFKlSqW07hZ2d/S0tIYOHAg//nPf+jVqxcODg4cPHjwtmcAbob+nj17WsL4Dz/8QP/+/Zk+ffo9l/XPmsqXL0/lypVZt26d1XonJCTg6elpeT9uPYb++eef1KhRI1sd1Nu3b88bb7zB008/zZQpU3jnnXfuOU3FihVJTEzk8uXLls95cnIyiYmJlClTBhcXF5o3b86mTZvYvXs3r7/+On///Tfffvst165ds7T85YQCd3qrVKlSlCxZktWrV1s6j976Jt/NU089xdy5c/ntt98A2Lp1Kx06dGDnzp33VcuFCxeYP38+aWlp7N+/n6ioKMsvw1t1796d+fPnc+jQIcxmM2vXruW7776jS5culnEef/xxFi1axG+//Ub79u0pVaoUcKMlY8+ePfzvf//j2rVrvPXWW/Tq1YsZM2YQGBiIYRjExcWRmprKwYMHLR0Yu3fvzqxZs3B0dLRqFrzp5oNaZ8+ejdlsJj09nffee499+/bh5uZGuXLlGDx4MF5eXvzwww+0a9eO77//HrhxzvX5558nLS0NJycnS60PPfSQZf5r167ls88+Y8mSJXz//fcsWLDAKuRUrFgx0xfYrX+XL1+eadOmsWvXLst/q1atytSc+uabb5KUlMS1a9f49ddf6dGjh9XwypUr4+DgYLlMdNasWTg7OxMUFMT8+fN56qmn+P333y07/YEDByz9Rm6nZMmSJCYmMnXqVODGF0d6ejoPP/wwFy9e5MiRIyxevJi4uDj69u3LzJkzCQkJuevDcG+GQWdnZ9LT04mOjsYwDA4cOMCff/6JYRhcuHCBjh073vel8/v27ePrr7/GbDbz/fffs2nTJrp27WoZ7uzszOXLl+nYsSOHDx9m0aJFXL16lQ8//JCjR49aLlPu1q0bhmEwc+ZMihUrxqlTp4iMjKRRo0YUK1aMAwcOcOXKFVJSUnjttdeAG7/0QkNDSUtL46effiI9PZ0ff/zRqp/CzQPXqlWr+Omnn/Dy8uKJJ56wnAJOSkrKFARSU1NxdHS0hJV9+/bx6aefWv0Qgf87GOzatYuOHTvSsWNHvv/+e7755htLQL75A+amf/6AudP8bv73z/ndTfny5enUqROlS5dm7dq17Ny5k4kTJ3L27FnS0tIoXrw4v/zyi+UU9O1aj3PTgQMHeP755zl8+DAuLi6W/dvDwwMXFxdLcKlevToXL15kx44dGIbB119/bfluhRvfQR9//DG//fYb169fZ+bMmZjNZuBG6GnVqhXTp08nMTGRtLQ05s6de9fWpMcee4y//vqLtWvXWn48ff7555bPcfXq1dm1axfx8fGkpKTw4YcfWt63K1eu0L9/f8u+VbZsWRwdHfHw8KBu3bpUqVKFmTNnWn12+/TpY6k3q9LS0khJScHV1RUHBwfOnTtnOc37z87ADz/8MLVq1eLzzz8nJiaGCxcuWPpX3ew/VaRIES5fvpyllozWrVtz5coVPv74Y1JTU/n7778ZM2YMo0aNwsHBga5du7Jx40YOHjxIiRIleOutt/j55585f/58lo+hcOO7wmQyMWPGDDZu3GjVWflOfHx88PLyYtKkSSQnJ5OcnMzkyZOpXLmy5XRbUFAQERERVK1aFU9PT5o1a8auXbv45ZdfaNWqVZbru5cCF3pcXFyYOnUqa9eupX79+sycOTNTE+md9OnTh86dOzNkyBB8fX2ZPn06r7zyym3PmWdFmTJlOHv2LM2aNWPkyJGMGDGC9u3bZxqvb9++9O7dm1GjRtGgQQPmzZvHO++8g7+/v2Wc0aNHWz7YAQEBjBgxgnHjxjF//nxatmzJ9OnTqVevHosXL6ZFixa8++67lChRgk6dOvH333/j7+/P+PHjLVdYhISEkJCQQFhYmOXUxD+NHTuWOnXqcP78eV577TUSExN5//33AWjQoAFms5mVK1fStGlTNm7caOlAW69ePfr160dCQgKvvPKKpdbq1atb5p2cnIyjoyOurq4YhsEPP/zAV199Zdnxu3fvzrfffsvWrVstB+JbO8tlNaD6+vryxBNPWPogjRo1ymp42bJl6devHzt37uTxxx/ns88+IygoiK1bt7Jo0SKeeOIJateuze7du6lfvz4jRoygT58+VvO49Yu+c+fO9O7dm6ioKHx8fBg+fDht27Zl7NixLFy4kGrVqvHmm2/Spk0bTpw4QadOnaw6RN5Ov379qFChAq1bt6Z58+asWrWKXr16YRgGvXr1Yv78+cTHxzNr1qzbnoPPiscee4xNmzbRuHFjZs6cyZtvvml5P+HG+/3uu++SlpZG+/bteffdd/H19WXOnDk0b97c0l8lJCSEZ599lhMnTvDHH3+wbNkyFixYQNmyZWnSpAkpKSm0a9eOZs2aWTqLOzs7U6lSJUqVKkVMTAx+fn7MmTPH6jTYzZakZcuWYRgGb731Flu2bKFLly7MmjWLIkWKZAq8lSpVsmyfc+fOMXnyZMLDw0lLS7M6nXjrwcBsNpOammp1MICs/4D55/xud3C5l6eeeoo9e/bg4+NDhw4daNCgAePHj6dly5acOHGCWrVqUbNmTV577TX8/PwsB8C80KFDB06cOEG/fv0YPHgw9erVs+zfjz/+OD169ODFF1/k3XffxcfHh8GDBzN27Fj8/f3ZsWOH5fsHblzlFRoayjPPPEOzZs146KGHrFrV33jjDUqUKEHnzp1p3Lgx33//vaWV8HbKly+Pl5cXCxYs4Mknn8TV1ZWkpCTLPHv06IGvry+hoaEEBQVRoUIFS3AtV64cs2bNYsGCBdSvX5+OHTvSuHFj+vTpg5OTE/PmzePixYtWn93FixdnOp12L0WLFuW1117jww8/xNfXl3//+980bdqU0qVLZ+rIDfDJJ59Qq1Yt+vbtS/PmzS0tnjfv59W6dWv++usv/Pz8+Pvvv++67OLFixMREUFsbCwtWrSgbdu2ODo6MnfuXAD8/Px44403eOutt0hJSWH79u04Ojqybdu2LB9Db1W9enWGDRvGlClTMrUk/9PNbZyenk5wcDCtW7cmLS2NxYsXWwLszYsEbv5Ir1SpEuXLl6dRo0ZWp8UemCH35csvvzRat26dY/NLT083GjdubOzbty/H5nk7Z86cMWrWrGmcOXPG8lrr1q2NL7/80vL3mDFjjDFjxhg//PCD8cQTTxj16tUzWrZsabz++utG586djYULF952uh07dhg1a9Y0DMMwrl+/bowePdrw8/Mz/P39jZ49exrvv/++4e/vb1y/ft0wDMNYsWKFERgYaPj6+hr9+/c3nn/+eWPChAmW7bFgwQKjXbt2Rr169Yzg4GDjiy++uGfNN/3z/dm8ebPRpUsXo379+kbTpk2NGTNmWOr457SGYRg1a9Y0duzYYRiGYcTExBiNGzc2WrZseR9b3PZmzZplPPPMMzk2v8TERKNOnTrGn3/+mWPzNAzDOH78uPH8888bjRo1Mho2bGi88MILxp9//nnbfe2ZZ54xZs2aZRiGYcTHxxsdOnQw6tWrZxw+fNhq2L3mbRg3PitNmzY1JkyYYPj7+xutW7c2Pvvss9suK6vzu1u99/psHz161OjVq5dRv35944knnjD+97//Wfar2+2/IpJ1DoaRjR5AYrFixQo++OADvvvuuwee17Fjx1i7di2bN2+26ktRmJ04cYKMjAyr1qFhw4ZRrVq1TK018mBu9gm6tV/Y/UhNTeXUqVN8+umnJCYm8sEHH+RQhbaVk/uyiORvBe70VmE0cOBAvvrqK0s/EXtw/Phxnn32WcspkNjYWLZu3ZrpCgrJP1JTU+nZs6dV524RkYJELT1iM3PnzmXZsmUkJSVRsWJFBg4caLm7r0heUUuPiP1Q6BERERG7oNNbIiIiYhcUekRERMQuKPSIiIiIXVDoEREREbug0CMiBca5c+fw9fW95wMZY2NjMz2kV0SkwD1wVETs18MPP8zevXttXYaIFFBq6RGRAuPs2bN4e3tz9uxZ4uLiGDlyJAEBATRt2pQXX3yR8+fPW41/89l1LVq04M0338z0VHARsS8KPSJS4KSnp9OvXz9MJhMbNmxg7dq1AAwaNIj09HTLeEePHmXNmjUsWbKEDRs2sGDBAluVLCL5gEKPiBQ4u3bt4syZM0yZMoWHHnqIEiVKMGXKFA4fPszBgwcBcHBw4JVXXqFYsWJUqVKF559/nlWrVtm4chGxJYUeESlwEhIS8PDwoHjx4pbXihcvjru7O3FxcQCUKFGCEiVKWIZXqFCB+Pj4PK9VRPIPhR4RKXD8/f1JTEzk8uXLlteSk5NJTEykTJkyAFy+fJmrV69ahp85c4aKFSvmea0ikn8o9IhIgePp6YmXlxeTJk0iOTmZ5ORkJk+eTOXKlalfvz4AZrOZmTNncvXqVX777TcWLlxIz549bVy5iNiSQo+IFDgmk4l58+aRnp5OcHAwrVu3Ji0tjcWLF+PkdONOHO7u7ri7u9OyZUuee+45nnrqKXr37m3jykXElvSUdREpMM6cOUPbtm3ZsmULFSpUsHU5IlLAqKVHRAqE69evc+TIEUwmE+7u7rYuR0QKIN2RWUQKhA8++IDIyEj69++Pm5ubrcsRkQJIp7dERETELuj0loiIiNgFhR4RERGxCwo9IiIiYhcUekRERMQuKPSIiIiIXVDoEREREbug0CMiIiJ2QaFHRERE7IJCj4iIiNiF/wfdOPBN5h1qTwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = sns.barplot(x='job',y='age',hue='education', data=df, estimator=len)" ] }, { "cell_type": "code", "execution_count": 50, "id": "25d98cec", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGsCAYAAADNFOOlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACb5klEQVR4nOzdeXhTZdo/8G/WJuneBsoiZUsrS4uUVra2rHYUWVq2GZWfr4DIDAUd3vdlk11KCwyzaFWYcUGcEcUBBmRTGUd9KcimVigI2CBCoUBpuiZpmu38/ggJTc7SpqRt2t6f6/K6JKcnOXmSnHOf57mf+xExDMOAEEIIIYRwErf0ARBCCCGE+DMKlgghhBBCBFCwRAghhBAigIIlQgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAqQtfQCtid1uh9VqhVgshkgkaunDIYQQQkgDMAwDu90OqVQKsdj7fiIKlrxgtVpRUFDQ0odBCCGEkEaIj4+HXC73ej8KlrzgjEbj4+MhkUia5TVtNhsKCgqa9TX9FbWFA7WDA7WDA7XDfdQWDtQODnXbAQAKCgoa1asEULDkFefQm0QiafYvYEu8pr+itnCgdnCgdnCgdriP2sKB2sGhbhs0NoWGErwJIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEUDBEiGEEEKIAAqWCCGEEEIEULBECCGEECKAgiVCCGmlKo1mXNUZYQvthl90Nag0mlv6kAhpk2htOEIIaYWKK2qwdM855BWWuh4bEaPGxqkD0CVM2YJHRkjbQz1LhBDSylQazaxACQCOFpZi2Z5z1MNEiI9RsEQIIa1Mqd7MCpScjhaWolRPwRIhvkTBEiGEtDJVJovg9up6thNCvEPBEiGEtDIhCpng9uB6thNCvNPswdL+/fuRkJDg9l9cXBzi4uIAAGfPnsX06dORkJCAMWPGYNeuXW777927F2lpaRg4cCCmTJmC/Px81zabzYZNmzZh+PDhSEhIwLx581BSUuLartPpkJmZiaSkJAwZMgTZ2dmwWq3N88YJIcRH1EFyjIhRc24bEaOGOkjezEdESNvW7MHSpEmTkJ+f7/rvs88+Q1hYGLKzs1FZWYm5c+ciIyMDZ86cQXZ2NjZs2IBz584BAE6dOoWsrCxs3LgRZ86cwaRJkzBv3jzU1NQAALZu3Yrjx49jz549yMvLg0KhwMqVK12vvXDhQqhUKuTl5WH37t04ceIEtm/f3txNQAghDyRUJcfGqQNYAdOIGDU2TR2AUBUFS4T4UouWDmAYBosXL8aoUaOQnp6OXbt2ISwsDDNmzAAADBs2DBMnTsSOHTswYMAA7Nq1C+PHj0diYiIAYObMmfj4449x+PBhTJ06Fbt27cKiRYvQuXNnAMCKFSuQkpKCoqIi2O12nD59GkePHoVSqUS3bt2QmZmJzZs3Y86cOV4dt81m821DNOC1mvM1/RW1hQO1g0N7b4eoYDlee2ogdAYzyqpqEBGiRGSgHCEKabttk/b+nXCidnDwZTu0aLD0ySefQKvVYsuWLQCAwsJCxMbGuv2NRqPB7t27AQBarRZTp05lbb906RKqq6tx+/Ztt/3VajVCQ0Nx+fJlAEBYWBiioqJc23v37o3i4mJUVVUhJCSkwcddUFDg3Rv1gZZ4TX9FbeFA7eBA7QBIAFRWApUtfSB+gr4TDtQODr5ohxYLlux2O7Zu3Yrf/e53CAoKAgAYDAYole7F1BQKBYxGY73bDQYDAEClUrG2O7d57uv8t9Fo9CpYio+Ph0QiafDfPwibzYaCgoJmfU1/RW3hQO3gQO3gQO1wH7WFA7WDQ912AB4saGqxYOnUqVMoKSnBtGnTXI8plUpUV1e7/Z3JZEJgYKBru8lkYm0PDw93BT7O/CXP/RmGYW1z/tv5/A0lkUia/QvYEq/pr6gtHKgdHKgdHKgd7qO2cKB2cPBFG7RY6YDPP/8caWlpbj1BsbGxKCwsdPs7rVaLmJgYAEBMTAzv9tDQUERFRUGr1bq23b17FxUVFYiNjUVMTAwqKipQWnq/kNuVK1fQqVMnBAcHN8VbJIQQQkgb0GLB0nfffYdHH33U7bG0tDSUlpZi+/btsFgsOHnyJA4cOODKU5o2bRoOHDiAkydPwmKxYPv27dDpdEhLSwMATJkyBVu3bkVRURH0ej1ycnIwePBgREdHo0ePHkhMTEROTg70ej2KioqwZcsWt54tQgghhBBPLTYMd+PGDXTs2NHtsfDwcGzbtg3Z2dnIzc1FREQEVq5ciaFDhwJwzI5bs2YN1q5dizt37kCj0eDtt99GWFgYAGD+/PmwWq2YMWMGDAYDhgwZgldffdX1/Lm5uVi3bh3Gjh0LsViMjIwMZGZmNtdbJoQQQkgr1GLBUt1iknXFx8dj586dvPulp6cjPT2dc5tMJsOiRYuwaNEizu1qtRq5ubneHywhhBBC2i1a7oQQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEUDBEiGEEEKIAAqWCCGEEEIEULBECCGEECKAgiVCCCGEEAEULBFCCCGECKBgiRBCCCFEAAVLhBBCCCECKFgihBBCCBFAwRIhhBBCiAAKlgghhBBCBFCwRAghhBAigIIlQgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEdAiwVJFRQWWLFmCIUOG4NFHH0VmZiZKSkoAAGfPnsX06dORkJCAMWPGYNeuXW777t27F2lpaRg4cCCmTJmC/Px81zabzYZNmzZh+PDhSEhIwLx581zPCwA6nQ6ZmZlISkrCkCFDkJ2dDavV2jxvmhBCCCGtUosESy+++CKMRiP+/e9/46uvvoJEIsGqVatQWVmJuXPnIiMjA2fOnEF2djY2bNiAc+fOAQBOnTqFrKwsbNy4EWfOnMGkSZMwb9481NTUAAC2bt2K48ePY8+ePcjLy4NCocDKlStdr7tw4UKoVCrk5eVh9+7dOHHiBLZv394STUAIIYSQVkLa3C94/vx5nD17Ft988w2CgoIAAFlZWbh79y6OHDmCsLAwzJgxAwAwbNgwTJw4ETt27MCAAQOwa9cujB8/HomJiQCAmTNn4uOPP8bhw4cxdepU7Nq1C4sWLULnzp0BACtWrEBKSgqKiopgt9tx+vRpHD16FEqlEt26dUNmZiY2b96MOXPmePUebDabD1ukYa/VnK/pr6gtHKgdHKgdHKgd7qO2cKB2cPBlOzR7sHTu3DloNBr885//xEcffYSamhqkpqZi6dKlKCwsRGxsrNvfazQa7N69GwCg1WoxdepU1vZLly6huroat2/fdttfrVYjNDQUly9fBgCEhYUhKirKtb13794oLi5GVVUVQkJCGvweCgoKvH7fD6olXtNfUVs4UDs4UDs4UDvcR23hQO3g4It2aPZgqbKyEpcvX0ZcXBz27t0Lk8mEJUuWYOnSpVCr1VAqlW5/r1AoYDQaAQAGg4F3u8FgAACoVCrWduc2z32d/zYajV4FS/Hx8ZBIJA3++wdhs9lQUFDQrK/pr6gtHKgdHKgdHKgd7qO2cKB2cKjbDsCDBU3NHizJ5XIAjiGygIAABAUFYeHChfj1r3+NKVOmwGQyuf29yWRCYGAgAEdww7U9PDzcFfg485c892cYhrXN+W/n8zeURCJp9i9gS7ymv6K2cKB2cKB2cKB2uI/awoHawcEXbdDsCd4ajQZ2ux0Wi8X1mN1uBwD07dsXhYWFbn+v1WoRExMDAIiJieHdHhoaiqioKGi1Wte2u3fvoqKiArGxsYiJiUFFRQVKS0td269cuYJOnTohODjY5++TEEIIIW1DswdLw4cPR7du3bB8+XIYDAaUlZXhL3/5Cx577DFMmDABpaWl2L59OywWC06ePIkDBw648pSmTZuGAwcO4OTJk7BYLNi+fTt0Oh3S0tIAAFOmTMHWrVtRVFQEvV6PnJwcDB48GNHR0ejRowcSExORk5MDvV6PoqIibNmyBdOmTWvuJiCEEEJIK9LswZJMJsM//vEPSCQSPP7443j88cfRqVMn5OTkIDw8HNu2bcNnn32GIUOGYOXKlVi5ciWGDh0KwDE7bs2aNVi7di0GDx6MQ4cO4e2330ZYWBgAYP78+Rg5ciRmzJiBkSNHora2Fq+++qrrtXNzc2G1WjF27Fj8+te/RmpqKjIzM5u7CQghhBDSijR7zhIAREVF4S9/+Qvntvj4eOzcuZN33/T0dKSnp3Nuk8lkWLRoERYtWsS5Xa1WIzc31/sDJoQQQki7RcudEEIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEUDBEiGEEEKIAAqWCCGEEEIEULBECCGEECKAgiVCCCGEEAEULBFCCCGECKBgiRBCCCFEAAVLhBBCCCECKFgihBBCCBFAwRIhhBBCiAAKlgghhBBCBFCwRAghhBAigIIlQgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEUDBEiGEEEKIAAqWCCGEEEIEULBECCGEECKAgiVCCCGEEAEULBFCCCGECKBgiRBCCCFEAAVLhBBCCCECWiRYOnz4MPr164eEhATXf4sXLwYAnD17FtOnT0dCQgLGjBmDXbt2ue27d+9epKWlYeDAgZgyZQry8/Nd22w2GzZt2oThw4cjISEB8+bNQ0lJiWu7TqdDZmYmkpKSMGTIEGRnZ8NqtTbPmyaEEEJIq9QiwVJBQQHS09ORn5/v+m/z5s2orKzE3LlzkZGRgTNnziA7OxsbNmzAuXPnAACnTp1CVlYWNm7ciDNnzmDSpEmYN28eampqAABbt27F8ePHsWfPHuTl5UGhUGDlypWu1124cCFUKhXy8vKwe/dunDhxAtu3b2+JJiCEEEJIKyFtiRctKCjAuHHjWI8fOXIEYWFhmDFjBgBg2LBhmDhxInbs2IEBAwZg165dGD9+PBITEwEAM2fOxMcff4zDhw9j6tSp2LVrFxYtWoTOnTsDAFasWIGUlBQUFRXBbrfj9OnTOHr0KJRKJbp164bMzExs3rwZc+bM8er4bTbbA7aA96/VnK/pr6gtHKgdHKgdHKgd7qO2cKB2cPBlOzR7sGS323HhwgUolUq88847sNlsGDlyJBYtWoTCwkLExsa6/b1Go8Hu3bsBAFqtFlOnTmVtv3TpEqqrq3H79m23/dVqNUJDQ3H58mUAQFhYGKKiolzbe/fujeLiYlRVVSEkJKTB76GgoMDr9/2gWuI1/RW1hQO1gwO1gwO1w33UFg7UDg6+aIdmD5bKysrQr18/PP7448jNzUV5eTmWLl2KxYsXo0OHDlAqlW5/r1AoYDQaAQAGg4F3u8FgAACoVCrWduc2z32d/zYajV4FS/Hx8ZBIJA3++wdhs9lQUFDQrK/pr6gtHKgdHKgdHKgd7qO2cKB2cKjbDsCDBU3NHiyp1Wrs2LHD9W+lUonFixfj17/+NaZMmQKTyeT29yaTCYGBga6/5doeHh7uCnyc+Uue+zMMw9rm/Lfz+RtKIpE0+xewJV7TX1FbOFA7OFA7OFA73Edt4UDt4OCLNmj2BO9Lly7hj3/8IxiGcT1mNpshFosxYMAAFBYWuv29VqtFTEwMACAmJoZ3e2hoKKKioqDVal3b7t69i4qKCsTGxiImJgYVFRUoLS11bb9y5Qo6deqE4ODgpnirhBBCCGkDmj1YCgsLw44dO/DOO+/AarWiuLgYmzdvxuTJk/H444+jtLQU27dvh8ViwcmTJ3HgwAFXntK0adNw4MABnDx5EhaLBdu3b4dOp0NaWhoAYMqUKdi6dSuKioqg1+uRk5ODwYMHIzo6Gj169EBiYiJycnKg1+tRVFSELVu2YNq0ac3dBIQQQghpRZp9GK5Tp07429/+hj//+c/YunUrAgICMH78eCxevBgBAQHYtm0bsrOzkZubi4iICKxcuRJDhw4F4Jgdt2bNGqxduxZ37tyBRqPB22+/jbCwMADA/PnzYbVaMWPGDBgMBgwZMgSvvvqq67Vzc3Oxbt06jB07FmKxGBkZGcjMzGzuJiCEEEJIK9IipQMGDx6MnTt3cm6Lj4/n3QYA6enpSE9P59wmk8mwaNEiLFq0iHO7Wq1Gbm6u9wdMCCGEkHaLljshhBBCCBFAwRIhhBBCiAAKlgghhBBCBFCwRAghhBAigIIlQgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoGCJEEIIIUQABUuEEEIIIQIoWCKEEEIIEUDBEiGEEEKIAAqWCCGEEEIEULBECCGEECKAgiVCCCGEEAEULBFCCCGECKBgiRBCCCFEAAVLhBBCCCECKFgihBBCCBEgbekDIIQ0rUqjGaV6M6pMFoQoZVAHyhGqkrf0YRFCSKtBwRIhbVhxRQ2W7jmHvMJS12MjYtTYOHUAuoQpW/DICCGk9aBhOELaqEqjmRUoAcDRwlIs23MOlUZzCx0ZIYS0LhQsEdJGlerNrEDJ6WhhKUr1FCwRQkhDULBESBtVZbIIbq+uZzshhBAHCpYIaaNCFDLB7cH1bCeEEOJAwRIhbZQ6SI4RMWrObSNi1FAH0Yw4QghpCAqWCGmjQlVybJw6gBUwjYhRY9PUAVQ+gBBCGohKBxDShnUJU+L1pxNQqjej2mRBsEIGdRDVWSKEEG9QsERIGxeqouCIEEIeRIsOw9lsNjz77LNYtmyZ67GzZ89i+vTpSEhIwJgxY7Br1y63ffbu3Yu0tDQMHDgQU6ZMQX5+vtvzbdq0CcOHD0dCQgLmzZuHkpIS13adTofMzEwkJSVhyJAhyM7OhtVqbfo3SgghhJBWq0WDpTfeeAPffvut69+VlZWYO3cuMjIycObMGWRnZ2PDhg04d+4cAODUqVPIysrCxo0bcebMGUyaNAnz5s1DTU0NAGDr1q04fvw49uzZg7y8PCgUCqxcudL1/AsXLoRKpUJeXh52796NEydOYPv27c36ngkhhBDSurRYsHTixAkcOXIEv/rVr1yPHTlyBGFhYZgxYwakUimGDRuGiRMnYseOHQCAXbt2Yfz48UhMTIRMJsPMmTMRHh6Ow4cPu7a/8MIL6Ny5M4KCgrBixQocPXoURUVFuHbtGk6fPo3FixdDqVSiW7duyMzMdD03IYQQQgiXFslZ0ul0WLFiBbZs2eLWs1NYWIjY2Fi3v9VoNNi9ezcAQKvVYurUqaztly5dQnV1NW7fvu22v1qtRmhoKC5fvgwACAsLQ1RUlGt77969UVxcjKqqKoSEhDT4+G02W4P/9kE5X6s5X9NfUVs4UDs4UDs4UDvcR23hQO3g4Mt2aPZgyW63Y/HixZg1axb69Onjts1gMECpdF/cU6FQwGg01rvdYDAAAFQqFWu7c5vnvs5/G41Gr4KlgoKCBv+tr7TEa/oragsHagcHagcHaof7qC0cqB0cfNEOzR4s/e1vf4NcLsezzz7L2qZUKlFdXe32mMlkQmBgoGu7yWRibQ8PD3cFPs78Jc/9GYZhbXP+2/n8DRUfHw+JROLVPo1ls9lQUFDQrK/pr6gtHKgdHKgdHKgd7qO2cKB2cKjbDsCDBU3NHix98sknKCkpQVJSEgC4gp8vvvgCS5YswfHjx93+XqvVIiYmBgAQExODwsJC1vYRI0YgNDQUUVFR0Gq1rqG4u3fvoqKiArGxsbDb7aioqEBpaSnUakeRvitXrqBTp04IDg726j1IJJJm/wK2xGv6K2oLB2oHB2oHB2qH+6gtHKgdHHzRBs2e4P3ZZ5/h+++/x7fffotvv/0WEyZMwIQJE/Dtt98iLS0NpaWl2L59OywWC06ePIkDBw648pSmTZuGAwcO4OTJk7BYLNi+fTt0Oh3S0tIAAFOmTMHWrVtRVFQEvV6PnJwcDB48GNHR0ejRowcSExORk5MDvV6PoqIibNmyBdOmTWvuJiCEEEJIK+JXRSnDw8Oxbds2ZGdnIzc3FxEREVi5ciWGDh0KABg2bBjWrFmDtWvX4s6dO9BoNHj77bcRFhYGAJg/fz6sVitmzJgBg8GAIUOG4NVXX3U9f25uLtatW4exY8dCLBYjIyMDmZmZLfBOCSGEENJaPFCwVFZWhoiIiAc6gI0bN7r9Oz4+Hjt37uT9+/T0dKSnp3Nuk8lkWLRoERYtWsS5Xa1WIzc3t/EHSwghhJB2x+thOKvVir/85S9ITEzEmDFjUFRUhKlTp7pVyiaEEEIIaSu8DpZef/11nDx5Eq+99hpkMhkiIyPRqVMnZGdnN8XxEUIIIYS0KK+H4Q4cOICPPvoIUVFREIlEUKlU2LBhgyvJmhBCCCGkLfG6Z8loNLrylBiGAeAo/CgWt+gyc4QQQgghTcLrCGfgwIF44403AAAikQgA8I9//MNV9IkQQgghpC3xehhuxYoVeO6557B3714YDAY8+eSTMBgMeO+995ri+AghhBBCWpTXwVK3bt1w6NAhfP3117h58yY6deqEUaNGISgoqCmOjxBCCCGkRXk9DGc2m/HXv/4VcXFxmDNnDnQ6Hd555x3Y7famOD5CCCGEkBbldbC0YcMGHD161LXWSv/+/XHs2DH88Y9/9PnBEUIIIYS0NK+DpSNHjuDdd99Fly5dAABJSUn461//iv379/v84AghhBBCWprXwVJtbS1UKpXbY0FBQbBarT47KEIIIYQQf+F1sJSUlIQNGzbAbDYDcARPf/jDHzBo0CCfHxwhhBBCSEtrVOmAOXPmYNCgQQgPD0d5eTl69uyJv/71r01xfIQQQgghLapRpQMOHz6M7777DqWlpejUqRMGDBgAqdTrpyKEEEII8XuNinBsNhuio6Px0EMPAQBKSkoAwJX0TQghhBDSVngdLH366adYvXo19Hq96zGGYSASiXDx4kWfHhwhhBBCSEvzOlh6/fXXMWPGDEyePJmG3gghhBDS5nkd7dy6dQsLFiygQIkQQggh7YLXpQP69+8PrVbbFMdCCCGEEOJ3vO4eGjRoEGbOnIknnngCarXabduCBQt8dmCEEEIIIf7A62ApPz8fMTExuHLlCq5cueJ6XCQS+fTACCGEEEL8gdfB0j/+8Y+mOA5CCCGEEL/UqCztkydP4s6dO2AYBgBgsVhw+fJlrFy50qcHRwghhBDS0rwOltavX4+dO3ciMDAQgKNApcFgQGpqqs8PjhBCCCGkpTWqKOUHH3yAmpoa7N+/Hzk5Odi0aROMRmNTHB8hhBBCSIvyOliqqanBwIEDcffuXVy4cAEikQgLFizAk08+2RTHRwghhBDSoryus9SpUyfodDp06NABt2/fhsVigUKhcFv+hBBCCCGkrfC6Z2nkyJGYOXMm3n//fTz66KNYvnw5AgIC0KNHjyY4PEIIIYSQluV1z9L//M//ID09HTKZDKtXr0Z5eTm0Wi2ysrKa4vgIIYQQQlqU1z1LMpkMc+bMAQAEBwfjnXfe8flBEUIIIYT4iwYHSy+//HK9f7Nhw4YHOhhCCCGEEH/j9TAcIYQQQkh70uCeJeo1IoQQQkh75HXOktlsxoEDB3Dnzh3Y7XYAjuVOfvrpJ2zdutXnB0gIIYQQ0pK8DpaWL1+OvLw8hIeHw2KxQKVSobCwEBkZGU1weIQQQgghLcvrnKW8vDx89NFHWL9+PQYOHIgDBw5gyZIlMJlMDX6OEydOYPr06Rg0aBCSk5ORlZXl2v/s2bOYPn06EhISMGbMGOzatctt37179yItLQ0DBw7ElClTkJ+f79pms9mwadMmDB8+HAkJCZg3bx5KSkpc23U6HTIzM5GUlIQhQ4YgOzsbVqvV2yYghBBCSDvidbBkt9vRq1cv9OrVCxcvXgQAzJgxA99++22D9i8rK8Nvf/tbPP300/j222+xd+9enD59Gm+99RYqKysxd+5cZGRk4MyZM8jOzsaGDRtw7tw5AMCpU6eQlZWFjRs34syZM5g0aRLmzZuHmpoaAMDWrVtx/Phx7NmzB3l5eVAoFFi5cqXrtRcuXAiVSoW8vDzs3r0bJ06cwPbt271tAkIIIYS0I41a7qSoqAgRERHQ6XQwGo1gGAYGg6FB+0dEROCbb77BlClTIBKJUFFRgdraWkRERODIkSMICwvDjBkzIJVKMWzYMEycOBE7duwAAOzatQvjx49HYmIiZDIZZs6cifDwcBw+fNi1/YUXXkDnzp0RFBSEFStW4OjRoygqKsK1a9dw+vRpLF68GEqlEt26dUNmZqbruQkhhBBCuHidszRx4kQ888wz2L17N0aNGoV58+YhICAAcXFxDX6OoKAgAI6lU+7cuYOkpCRMmTIFr776KmJjY93+VqPRYPfu3QAArVaLqVOnsrZfunQJ1dXVuH37ttv+arUaoaGhuHz5MgAgLCwMUVFRru29e/dGcXExqqqqEBIS0uDjt9lsDf7bB+V8reZ8TX9FbeFA7eBA7eBA7XAftYUDtYODL9vB62Bp7ty56NatGwIDA7Fw4UL87W9/g16vx6pVq7x+8SNHjqCyshKLFi3CSy+9hKioKCiVSre/USgUMBqNAACDwcC73dmzpVKpWNud2zz3df7baDR6FSwVFBQ0+G99pSVe019RWzhQOzhQOzhQO9xHbeFA7eDgi3bwOlgyGAw4duwYli1bBrPZDKVSid/85jduPTYNpVAooFAosHjxYkyfPh3PPvssqqur3f7GZDIhMDAQgCO48UwkN5lMCA8PdwU+zvwlz/0ZhmFtc/7b+fwNFR8fD4lE4tU+jWWz2VBQUNCsr+mvqC0cqB0cqB0cqB3uo7ZwoHZwqNsOwIMFTV4HSxs3boRWq8WWLVvQuXNnFBUV4bXXXsNf/vIXLF26tN79v//+eyxfvhz79++HXC4H4KjdJJPJoNFocPz4cbe/12q1iImJAQDExMSgsLCQtX3EiBEIDQ1FVFQUtFqtayju7t27qKioQGxsLOx2OyoqKlBaWgq1Wg0AuHLlCjp16oTg4GCv2kAikTT7F7AlXtNfUVs4UDs4UDs4UDvcR23hQO3g4Is28DrB+6uvvsLWrVuRnJyMXr16YeTIkdiyZQsOHDjQoP0ffvhhmEwm/OlPf4LZbMbNmzexadMmTJs2DY8//jhKS0uxfft2WCwWnDx5EgcOHHDlKU2bNg0HDhzAyZMnYbFYsH37duh0OqSlpQEApkyZgq1bt6KoqAh6vR45OTkYPHgwoqOj0aNHDyQmJiInJwd6vR5FRUXYsmULpk2b5m0TEEIIIaQd8bpnSalUsqI0lUrlquZdn8DAQLzzzjvIyclBcnIygoODMXHiRMyfPx9yuRzbtm1DdnY2cnNzERERgZUrV2Lo0KEAgGHDhmHNmjVYu3Yt7ty5A41Gg7fffhthYWEAgPnz58NqtWLGjBkwGAwYMmQIXn31Vddr5+bmYt26dRg7dizEYjEyMjKQmZnpbRMQQgghpB1pcLBUXFwMAMjIyMB///d/Y9myZejatStKSkqwefNmzJw5s8EvqtFosG3bNs5t8fHx2LlzJ+++6enpSE9P59wmk8mwaNEiLFq0iHO7Wq1Gbm5ug4+TEEIIIaTBwdKYMWMgEonAMAwAYNKkSRCJRAAAhmHw1VdfYe7cuU1zlISQJlFpNKNUb0aVyYIQpQzqQDlCVfKWPixCCPErDQ6W/vOf/zTlcRBCmllxRQ2W7jmHvMJS12MjYtTYOHUAuoQpBfYkhJD2pcHBUteuXZvyOAhptVpj70yl0cwKlADgaGEplu05h9efTvD790AIIc3F6wRvQvxJSwcqrbV3plRvZgVKTkcLS1GqN1Ow1ERa+jtLCPEeBUuk1WrpQKU1985UmSyC26vr2U4ap6W/s4SQxvG6zhIh/qC+QKXSaG7yY2hI74y/ClHIBLcH17OdeM8fvrOEkMahniXSKvnDMFJr7p1RB8kxIkaNoxxtOCJGDXWQf/aIOVUazbirr4UttBt+0dVAHdR0Q1m+Gjbzh+8saVo0xNp2UbBEWiV/CFRac+9MqEqOjVMHYNmec24B04gYNTZNHeDXJ/jmHMry5Wv5w3eWNB0aYm3bKFgirZI/BCqtvXemS5gSrz+dgFK9GdUmC4IVsibtofGF5swT8/Vr+cN3ljSN1py/SBqGcpZIq+QMVLg0V6Di7J3xPI7W0DvjFKqSo3fHIAyMDkfvjkF+d8yVRjOulOiRf70cV+7qUVJd22x5Yr7OSfOH7yxpGq05f5E0DPUskVbJX4aRWmPvTGvBNazx7nNJgvv4cijL18Nm/vKdJb5HQ6xtHwVLpNXyl0AlVEXBka/xDWvUx5dDWU0xbOYv31niWzTE2vZRsERaNQpU2ia+YY38ogokayJxXKtjbfP1UFZT5aTRd7btae35i6R+lLNECPE7fMMa245dxazknkhthjyxtpCTRpoHfVfaPupZIoT4Hb5hDaPZhpc+ysenL6XCYrejrKoGESFKdAgKaJILEg2bkYai70rbRsESIcTvCA1rJHUPR5hKhqAACSqLfkLPngMhkUia7Fho2Iw0FH1X2i4ahiOE+B0a1iCE+BPqWSKE+CUa1iCE+AsKlki7Q+s3tR40rEEI8QcULJF2hdZvIoQQ4i3KWSLtRn3rN1UaaUkCQgghbBQskXaD1m8ihBDSGDQMR9qNlli/ifKjCCGk9aNgibRq3gQjzb1+E+VHEUJI20DBEmm1vA1GmnP9pvryo15/OoF6mPwI9QASQoRQsET8hjcXrMYEI85Ch8v2nHMLmJqi0GFD8qPoYuwfmqIHkIIvQtoWCpaIX/D2gtXYYKS5Ch22RH4U8V5T9ADS8CshbQ/NhiMtrjFT+h8kGAlVydG7YxAGRoejd8egJrnjb+78KNI4vp4hSeUpCGmbKFgiLa4xFyx/D0ac+VFcfJ0fBTgu0ldK9Mi/Xo4rd/V0UW4gX/cAUnkKQtomGoYjLa4xF6zmTNZujObMj6JhH3ctOUOyskY4GKqsoeFXQlojCpZIi2vMBas5g5HGao78KJp1566lZ0iq5MKnVJVc4tXzEUL8AwVLpMU19oLVGlalb+qFYGnW3X3+MENSLBYhWROJ41oda1uyJhISscir5yOE+AcKlkiLe5ALVntflZ5m3d3nDzMkpWIRZiX3BAC3gClZE4lZyT0pWCKklaJgifiF1tBL1BhNXW/H3xPdm9ODzpD0xecSGSjHhsMXkRAdjtnJPVFrtSNAKkZ+UQU+Pn0df5z+yAO/BiGk+VGwRPxGW+slao7Ea39PdG9O/hA4hqrkeCU9Dsv2nMMbX2pdj/tTLh0hxHstUjrg0qVLmDVrFgYPHozk5GQsWbIEZWVlAICzZ89i+vTpSEhIwJgxY7Br1y63fffu3Yu0tDQMHDgQU6ZMQX5+vmubzWbDpk2bMHz4cCQkJGDevHkoKSlxbdfpdMjMzERSUhKGDBmC7OxsWK3W5nnTpF1prno7ziFMzzIF7fHi3NzlGvg4e0n/8z8jsS9zOP7zPyPx+tMJ6NwOZyYS0lY0e7BkMpkwZ84cJCQk4NixYzh48CAqKiqwfPlyVFZWYu7cucjIyMCZM2eQnZ2NDRs24Ny5cwCAU6dOISsrCxs3bsSZM2cwadIkzJs3DzU1NQCArVu34vjx49izZw/y8vKgUCiwcuVK12svXLgQKpUKeXl52L17N06cOIHt27c3dxOQdqA56+3QxdnBnwLH5ih8SghpPs0+DFdcXIw+ffpg/vz5kEgkkMvl+M1vfoMlS5bgyJEjCAsLw4wZMwAAw4YNw8SJE7Fjxw4MGDAAu3btwvjx45GYmAgAmDlzJj7++GMcPnwYU6dOxa5du7Bo0SJ07twZALBixQqkpKSgqKgIdrsdp0+fxtGjR6FUKtGtWzdkZmZi8+bNmDNnTnM3A2njmjvxuq0NYdan0mjGXX0tbKHd8IuuxpXf1lZz3wghLavZg6VevXrhnXfecXvs888/R//+/VFYWIjY2Fi3bRqNBrt37wYAaLVaTJ06lbX90qVLqK6uxu3bt932V6vVCA0NxeXLlwEAYWFhiIqKcm3v3bs3iouLUVVVhZCQkAa/B5vN1uC/fVDO12rO1/RHVSYrdAYzbKHdcFVnRGSgHCEK/025C67n2IIU0kZ/pu39O3Gnmj3E6cwFiwqWIyhAgqAAJYD7PWttua3a2vfB+VuvNlkRopAhIlDW4N96W2uLxqJ2cPBlO7To1YZhGLz66qv46quv8MEHH+Dvf/87lEr3oQOFQgGj0QgAMBgMvNsNBgMAQKVSsbY7t3nu6/y30Wj0KlgqKCho8N/6Sku8pj8Qi8UI6dQdaw/9hLw6U7FTNZFYOz4WVbevwW63t+ARcguK7IhUTaTbMTulaiJhM1bgh6KfHug12uN3IiiyI9Z/cZPVrkcLS7F091msfKwr9LoSnr3bttb+ffDlb721t4WvUDs4+KIdWixY0uv1ePnll3HhwgV88MEHePjhh6FUKlFdXe32dyaTCYGBgQAcwY3JZGJtDw8PdwU+zvwlz/0ZhmFtc/7b+fwNFR8fD4mkeSrx2mw2FBQUNOtr+pMqkxUv7fyBdXHM0+rwyuFCvPbUQL/tYdo0Tc1ZO8rZA4JuXRr1vO35O3FVZ0Se9hzntjytDpJJ/TGwke3aWrWV74MvfuttpS0eFLWDQ912AB4saGqRq8z169fxwgsvoEuXLti9ezciIiIAALGxsTh+/Ljb32q1WsTExAAAYmJiUFhYyNo+YsQIhIaGIioqClqt1jUUd/fuXVRUVCA2NhZ2ux0VFRUoLS2FWu1IAL1y5Qo6deqE4OBgr45fIpE0+xewJV7TH5QZagQTpcsMFoQHBjTzUTVMU+fPtMfvRLVJePaq3mRtd23i1Nq/D778rbf2tvAVagcHX7RBs8+Gq6ysxHPPPYdBgwbh3XffdQVKAJCWlobS0lJs374dFosFJ0+exIEDB1x5StOmTcOBAwdw8uRJWCwWbN++HTqdDmlpaQCAKVOmYOvWrSgqKoJer0dOTg4GDx6M6Oho9OjRA4mJicjJyYFer0dRURG2bNmCadOmNXcTEC80RaJ0pdGMKyV65F8vx5W7ep9N4+dCs6J8yx9qKZGmQdXoiT9r9p6lf/3rXyguLsann36Kzz77zG1bfn4+tm3bhuzsbOTm5iIiIgIrV67E0KFDAThmx61ZswZr167FnTt3oNFo8PbbbyMsLAwAMH/+fFitVsyYMQMGgwFDhgzBq6++6nr+3NxcrFu3DmPHjoVYLEZGRgYyMzOb662TRvD1xbE5CkWSpkNFONsuCoSJP2v2YGnWrFmYNWsW7/b4+Hjs3LmTd3t6ejrS09M5t8lkMixatAiLFi3i3K5Wq5Gbm+vdAZMW5cuLY2MWWiX+xdcL3xL/QYEw8Wf+mRlLyD2+vDg2dqFV4l+cuWB39bUoq6pBRIgSHYIC6LNr5SgQJv6MgiXi93x1caScCLamXui3qYSqHPWUKot+Qs+eAymJtY2goqLEX1GwRFoFX1wcKSfCHV/+1qapA6CSS1plEEVav/ZWjZ60DhQskXZDHSRHWt+OeLhzCBK6haHWaodCJsH318tx+VZVu8qJ4Mvf+vZaOa6VGfHml1rkaSkJnhBCAAqWSD1a6zANl1CVHKsm9MPLewvwxpda1+MpmkjkTI5v9vfVkm3Ll781O6UnXv+yEMc5KmRTEnzDtaXfDSGEgiUioK1Ns680mrFi33lWIHBMq8PKfeebNRBo6bbly99K6BbmFkjWRUnwDdPSny0hxPeavSglaR3qm2bflIUcm0pDZsM1hrdFLv2hbfnyt2qtwmtvtcckeG/4w2fbWjRncVhCHhT1LBFObXGafVPMhmtML4I/tC1fTZsAqfD9U3tLgvfWg3y27WnojnrfSGtDPUuEU1ucZu/r2XCN7UXwh7Z11rQZEaN2e7zMYEaqx2NOqVQYsF71fbaGWgtnj8qtihos+CgfY//8f5i85RuM/dP/4cWP8lFcUSP4fK0R9b6R1oh6lgintjjN3tcVghvbi+AvbctV0yZYIUW3CBXsDOOW25WsicT80ZpmOa7WTOizVcklCFHKseCjfFaPSuZoDb67Vu729201qb6pelYrjWbc1dfCFtoNv+hqqD4T8SkKlginllh6oKmHIXxdIbixPUT+tKyDZ02bKyV6zN5+BrNTemJ2ck/UWu0IkIqRX1SB2dvP4MCCFLoACRAqT9E9QoVV+867lWQAHAGCjWEwO6UnK7m+tQ55C/GX4XBCvEHBEuHU3EsPNNfJzpcVghvbQ+TPyzpUmSwwmm28M+Ja4/Brc3KWp1jhUZ4iVROJiQM6Y/Huc5z7HdfqMDu5J+e2ttbmzT0c3tZ65kjLoGCJ8GqupQea+2TnqwrBD9JD1CVMic3TH0G5wYwqkxUhSinCVXJEhSge+LgehL8MEbZWlUYzVuw9jzyP8hR5Wh1ulAvnH/HNRGxrbe4vw+GEeIOCJSKoOZYeaK0nuwfpIWrOYQNvhjf9aYiwNSqprmUNszUU10zEttjm/jIcTog3KFgiLa6pTnbNMRW7Mb1vzdmT5m1Q5s9DhK1BRQ3/dzW/qAKpMWrOG4PUGDVKqmvdHmvLbe4Pw+GEeIOCJdLimuJk15w9N972vjVXT1pjgzJ/WvndlwFvcwTPgXL+BZ63HbuKQy+mYM3+C5yBqEQswme/T/WrYdmm5A/D4YQ0FAVLpMX5+mTn7wmfzTVs8CBBmT+s/O7LgLe5gudAuRTJmkjWkjoAkBAdBolIxJmrZrcz+N9dZ2k2VyMI9Yb+YeoAAI5Znu2h2CdpOhQskRbn66Eff8+BClHIoJJLMDulJ2t6+bZjV302bPAgQVlLV5NuSMAbFMDfi+Ptc/nqvYWpZHhxTAwAsOpUvTgmBlKJCIs8gqINU+Jx+NwtzpIC/hDctwbO3tC7+lqUVdUgIkSJDkEBMJhtnHWtKAgl3qJgifgFXw79VJksgsFIY4MEXwUQ6iA5ts18FK9/Weg2vTxZE4ltMx8V7EnzpvBeY4c3/aFmTUMC3qCAhh1LcwbPoSo5ukeoMGFAF7c6VSXVtegWpsTq/RdYx9IxOIA3KdwfgvvWIlQlR1CABJVFP6Fnz4HQ19r8uoeZtC4ULBG/4auhn1ClDLlPJ+C941dZwUju0wkIUkg5u+WFggQRgCU+DCDe/FLLGqo5rtVBLBLhjacTOPfxNohpzPCmvwxhNqxXrGHt3tyzpTqHKfFkXCe3wD+pezh0BjO+uFjC+ntavLhp+HsPM2ldaG040uYEBkjx3vGrnMHI9uNXUao3s9bgulluFAwSvv7prs/WsirVm3l7EvLuncQ9NWY9Lb713+oOb3quU1ZSXVvvBaY5+DLpvyVmS4Wq5OjdMQgDo8PRu2OQo615ZsrR4sVNg0oKEF+iniXS5uhNVs4EWwA4ptVhdkovt8eOFpbieplRMEiYyVNduTF3qI0ZJmzsXbLQ8GZxRQ2W7j7nFri9+1yS4LE7F4Jt6nwmdZBccJq9N0n//jJbii9oyy+q4E0Kp9lcjUclBYgvUbBE2pz67ihNFhvrMYuNEdxHKhHxbvP2DjVUKcObzwzCrUr3is5dQhV485lBCFGyT+IPcpfMNbxZaTSzAqX6CC0E2xT5TPNHa3yyoK+/1I7iC9q2HbuKbTMfhUQkotpWPuQvQTJpGyhYIq0aZy8HR7BRF9ewR3ig8D7hKv7t3t6hBgVIoZCJcajgFisQWDBag6AA9s/S13fJfJWmhXo5Vk3ox7sQrK/zmUr15noX9G1ogjfgH7Wj+IK2pO7h6BGhavHja2v8JUgmbQMFS6TV4kt4zpkcj8f6duRMpk3WRCK/qIL1uNXG8AYJyZpIMDwdT425Q60x2/DGV9wJ3gCQnRHHSkD39V0yX6XpbceuIvfpBIhFIla7DooOw8v/KuDcz9cJs/Ut6FtZY8FVHdOgWYFO/lA7qr6graWPr63xhyCZtA0ULJFWSSjhefneArz8ZF/UWGxuAUmqJhKZo2Pw/PtnWM9Xa7Fh1r28JM/enlnJPaGQiVnBSmPvUA1m/pyq41odqmutmPj6cdbrNPYumav3ja9GkdFsw0sf5ePgghQwgNsF5udSg+D7qjb5Lp+Jq3etLrFYhMf+fNT179ZUO8cfgrb2hNqb+AIFS6RVqi/heWalCQnR4W5DOAU3K2Gy2JDYPZzVa9ItQoW1+y+w9skvqsDHp6/jj9Mf8dkdqsHMzply217rvv1oYSmW3hvm4iq815gFe7PS4zCmTwd8eekua5+E6DBIxCJ0Vwe6PR6iEJ4Jp5RLfJbPJJeIBXv6xB4pZFQ7hxDSlChYIq1SfQnPFpt77RqRSASrncHi3Wfx0QtDIRaJWEHPK+lxWLbnnNvQj2fPjS8uxGH15FRJPSMB3B/m6t0xyK3wnkTCX8VaqPdt1Sfn8fKTfVFrtXNWmg7jyNGqbyjw++sVPqvPVFFjFuzpu1VpYu1DtXMIIU2FgiXSrHxVIVso4Vkll6BnZCD+fuIXVlHKjfcWLO3VIYi1X3PlN4QoZUjVqDkTrFM1ahzjmaHm7ay7+nrfVojAWWm6R4SK8z0LJcyuS4/Dk7l5vK/lbRATFCDD02+f4kzwfumjfLzOU7izNdTOaemlZAgh3qNgiTQbviGhTVMHgAF8Vp161YR+yDp4gTOBWgTgT78eyHuMQvkNjbnIce1jrLViVkoPAAzy6uZUxagxK7kHFnyYz/lc3s54q6/3rcZsw5g+Hd0WdY3rGiq40j1fQPmLzgCjwPCit0GMOkiOpO7hnAnefEn6gP/XzvH1UjLeLH9DCGk8CpZIsxAaEvr6p7teLyQaqpJjfUYclu8twLE6AUeKJlJw1tYxrQ56kxVRId4df2Mucnz7rJnUH0t2n8NTg6Mxs06vCQB8cPIaZ9DhnPHmy7XhlHIJa1HXhly4uQLKoHoqe3sbxAj1YmWO1mD2dnaSvr/XzvH1UjL+sIYfIe0FBUtEkK+GDISGhBqzkGil0YxNn13CrOSeWDquD/QmG4IVUtypMuE2Rz5LXd72cjTmIie0z9r9F/DU4GhWr4lKLkHu0wmw2BjWBfAPUwfAaLbh65/uomNwAGqtduitRpz+pQyjYztAKZewPid1kBxpfTvi4c4hrErhl29V4dyNSjzSLQwzh/dw25Zz6EesmtgfepO1wZ97UxQA5OvFMpptSOoezjsr0F+HuXy5Vpm/rOFHSHtBwRLh5cs7V6EhocYsJKozmDF50EPY5rEGXLImEmsm9IdKLuEdFvK2l6MxFzmhffIKSzFvZG9WsGQ021wz7/Qmq1uAAAAXb1fj4Llit/c7pk8HPNojAos9qnE7A6xVE/rh5b0Fbq+VoolEdkY8ruoM2PfDTVZe1+oJ/bHiX+fwRZ2ZcvV97g9SAFAouOHqxQpVgXdWoD/3tvhyrTJaJJaQ5kXBEuHk6ztXoSGhxiwkarUzvIvlZh284AgSOIbiGtPL0ZiLXH37BPDUbVqXHoeoEAVrmPBaqQGvf1nIer/9uoRizf7zrMePFpbiq3vDm57bjml1+OZnHQ55BF7A/fYbGB3uFiw15HNvTIJ8Y4ObUJWcNSvQ33tbfFmFnRaJJaR5UbBEOPn6zlVomKakutbrIRy7neEt7Jin1WHFhH4+KyLZmItcffuEKeVeBRZ8hSwTuoXxVrkWGt7sGBzglutV1zGtzjVtv66GfO7eFAD0dXBTqjfju2vlWDBGw7lAcUv3tvhyqLK1LBLrr0OihHhL+Ja+iZWVlSEtLQ2nTp1yPXb27FlMnz4dCQkJGDNmDHbt2uW2z969e5GWloaBAwdiypQpyM+/P3PIZrNh06ZNGD58OBISEjBv3jyUlNxf8kKn0yEzMxNJSUkYMmQIsrOzYbVam/6NtkK+vnN1DtOMiFG7PT4iRo3RsR14t/EFN0az8OdmMFkxLr4z3n0uCVtmDMK7zyVhXHxnr47ZyXmR48J3kWvIPqEqOXp3DMLA6HD07hgkeBHhK2QpNITZ2G1C233ZY9GQgNwb+loLcp9OQP71cjz//rfI3PE9Zm8/g/zr5ch9OgGG2pbtbRH6DTRkqPJKiR7518tx5a4eQQop0vp25Pxbf0l0L66owYKP8jH2z/+HyVu+wdg//R9e/CgfxRU19e9MiJ9psZ6l7777DsuWLcP169ddj1VWVmLu3Ll46aWX8Jvf/AZnzpzB/Pnz8fDDD2PAgAE4deoUsrKy8Pbbb2PAgAHYsWMH5s2bh6+++gpKpRJbt27F8ePHsWfPHgQHB2PVqlVYuXIl3nrrLQDAwoULERUVhby8PJSWlmLevHnYvn075syZ01LN4Lea4s61vmEab3paQpXCF4Naq513GE6ox4LvTtjbfBxfL+IZrOD+qQoNYTZ2m9B2X/ZY+DogD1PK8YfPL/OuuZeTEe/dAdajMb0mjR6q5MhJW58RBwD4d501EP1lkVh/HxIlxFstEizt3bsXubm5WLx4Mf77v//b9fiRI0cQFhaGGTNmAACGDRuGiRMnYseOHRgwYAB27dqF8ePHIzExEQAwc+ZMfPzxxzh8+DCmTp2KXbt2YdGiRejc2dGDsGLFCqSkpKCoqAh2ux2nT5/G0aNHoVQq0a1bN2RmZmLz5s0ULHFoitlNgPAwjTdDOELHlxqjxjc/cw8xHS0sRUl1LedFrr78GW8vcr4scikRiTgLWeYXVSBFE8k5pFZmMCM1Rs3ZeyM09JnCU8fI1z0Wvg7IzTa74Jp7Zptwb5o3HiSR3OuhSo9ACbhXVHTfefxx+iNYOs7S4OVvmgsloJO2pkWCpZSUFEycOBFSqdQtWCosLERsbKzb32o0GuzevRsAoNVqMXXqVNb2S5cuobq6Grdv33bbX61WIzQ0FJcvXwYAhIWFISoqyrW9d+/eKC4uRlVVFUJCGl54x2YTXtvLl5yv5YvXrDJZoTOYUW2yIkQhQ0SgDCE8PRZBARLenpGNUwcgKEDSrO0AuLeF0PGtmdQfE18/xvs8d6trUWOxodZqR7nRgtNXyzAyRo2l/yrgvRN+7amBCFFIERSgBHD/Ymiz2VCqN6PcaHEVdgxX3p/BFhQg4dxHCNfnJBYDc1J74sn4TugYonDl4+iqTUgf2AXrDvzIunAn945EtwgV7AzDmjHYu0MgsifHY8XeAlb7rc+IQ9bBH92OqaGfuzffsYhAmWBAHhEoE3wtz9+GvtYKlVyC2Sk9OXOW9LVWn/2OhHpNnN+VxjyvZ9vd1Zt5887yCktRWWNBj/AAVBb9hOjoeEgkzf+75FJfr2GVydIkx+nL82VrRu3g4Mt2aJFgqUOHDpyPGwwGKJXud2UKhQJGo7He7QaDY0V0lUrF2u7c5rmv899Go9GrYKmggLvgYVN6kNcUi8UI6dQdaw/95F4xWhOJteNjUXX7Gux29l23WCzGirFdsPRXGhhqbQgMkEBqM+LO1Uu4xfH3zcXZFnzHZ66tFawmzQB4/v1vXf9O1kTi0e7h+O5aOeffHy0sRXGZHj+X/OL2uFQqRWjX3li17zyrXbMy4lB584pXOXFisRihnbvj1LVqV0DkCOZqkNIrHAqZBIcKbrn1IqVqItFdHYisCRoYzO7tUKGvweztZziXDJn53hnsmfsoZ/uV39Bi0chOWDimV4M/98Z8x6RSKdZN6o+Vn5xnFRZdl94f17WXGtR+zu+DKqoHcp9OwHvHr7LKIeQ+nQCF2I4ffviB89hV4WpYJSoYah2BuMRmhLG8lPN3oejYQ7DXhOu7IkSo7V56LFZgT0fPU8GNnwC0zHmJj6JjD8HtchH3Z+Er/tQWLYnawcEX7eBXs+GUSiWqq6vdHjOZTAgMDHRtN5lMrO3h4eGuwKempoZzf4ZhWNuc/3Y+f0PFx8cLLmDqSzabDQUFBQ/0mlUmK17a+YPbiRhwzBp75XChl3fCYUC3Lo06jgfVsLYIQ5XJKjjEdMJjiO64VodXDlzA7JSevDPLzIwYvfrEud35K+Xie0Mk7HZdte8C/jh9gOCwlWdPQlCABNfKjDhYcIvVE5QQ7Vj6w3O4LU+rA0Qi5D41EN3cPsMwnLtZBaPZxvueTHYxBrA+yzCez5fv8fvvxdvvWJXJisW7z2FgdDhmeQRz2Ycu4g/TBgh+Lz2/D6V6M9Z/dpZ/mZvpjyC280DW89ypZufXOHvSooLZn9+5m1W8xwQ4visDB7Jfh49Q280bJXxTEhgghSY+/oHPEb4m9BscEaNGl4gghHQZ6PPX9cX5si2gdnCo2w7AgwVNfhUsxcbG4vjx426PabVaxMTEAABiYmJQWFjI2j5ixAiEhoYiKioKWq3WNRR39+5dVFRUIDY2Fna7HRUVFSgtLYVa7ZiNcuXKFXTq1AnBwcFeHadEImn2L+CDvGaZoQYXb1Xh3eeS0DEkwK3a9dI951BmsCA8MMDHR9x06muL8EDuIbrUGDWeG94DL33EXnstT6vDTI7p8k6BARJ8dv4OOoYEuHp8OoUE4LvrFZx/n6ctRXmNBVGhAkuheOSipMaosWC0Bvkez3lcq0OZUXg4huszDAoQ/nkHBUh99j0uM9QI9rZwHV+ZoQZfXCzBF3USlN23WyAWiepNonZ+H/S1Nt6cpWNaHfS1NkSFur/fxiQi15drFaKQedWuQm33zc863kWXkzWRCJTf/wxb4rzEh+836ExAb+rzjT+1RVNo6OSCtt4ODeWLNvCrYCktLQ2bN2/G9u3bMWPGDHz33Xc4cOAAtmzZAgCYNm0a5s+fj3HjxiExMRE7duyATqdDWloaAGDKlCnYunUr4uPjER4ejpycHAwePBjR0dEAgMTEROTk5GDdunUoLy/Hli1bMG3atBZ7v83FaLbgwxeG4pUD7ovLpmgi8eELQ1Fj9v2U6uaqr8L3Ol3ClNg8/RG3RWIBYMqWbwSH6Lik9e0Iq43BwQL3Io6p94Z3Xvoon/M5q2u4h5D4knbzCksBBpg7ohde/cL9psBqYwSPsaKGPc1eLhEjWRPJGUAkayIhl/iuckh9OSqVNRZcKdG7fU717VNRY8baAxcanETdmNl1jUlEDlJIeZPqUzSRCPIyX0nouLcdu4p9mcl4xWNh6GRNJF4cE4MwlX/UU+LiywkO5D5/rlLflvlVsBQeHo5t27YhOzsbubm5iIiIwMqVKzF06FAAjtlxa9aswdq1a3Hnzh1oNBq8/fbbCAsLAwDMnz8fVqsVM2bMgMFgwJAhQ/Dqq6+6nj83Nxfr1q3D2LFjIRaLkZGRgczMzBZ4p80rTCnHsr0FnJWc1x24gA2TfTulurl+zEKvIwKwxGPbvvnJgoHSQ+FKbJgS71p7TSGT4E6VCSm9IznbL0+rgx3gHb5TBXDfzZRU1/L3EmlL8fvHYljBUnig8EVRJZdyBCNmzEnphfHxnRFVJyn8dmUNOocqUW0yo9Io4ww2vQ126+ttMVlsmLL1G9e/R8SosWJ8X8F9ai12zh6fNZ+cx/rJ8ag2WdwWFG7M7LqGBFiebSETiTA7pScYgBXAzEzuCUOtd7XbQhQywcR0iBhMGNDFLe+spLoWPSJUCFXJ/TqJ15uZf6R+DekJNVntKDeYYQ3vgcK7BoSr5IgKUbTQEbcdLR4sOWeqOcXHx2Pnzp28f5+eno709HTObTKZDIsWLcKiRYs4t6vVauTm5jb+YFspg1l4eIKv4GFjNFd9lfpeZ1x8Z9a2ry+X4LG+HdGHY2HZS7eqEBwgdWR/ezBY+NvvuFaH2RzDd8maSATKJJxBR5XJInhxtNrZB2G1MYK9RBabHeNey3M9NiJGjaz0OOgMFhzmSAp/PrUXQhRyHD5/2xUclhst+P5aOYb2jMDyfee9CnaFSjmkaCJZpRyOFpZi3PUK3tIGqTFqnP6ljPW4Si7BbwZHY9E/3XN8RsSosWFKvNflLuoLsJRyCRZ8lO92jKkxasxO7olHe0SwEudf+igfH84ZIvicntRBcmyb+She/7KQlZi+beajiApW4Mm4Tm49NEndw5u1p5b4h/p6Qm9XmbDu4I+sEYScyfGIjvQuN5e4a/FgiTS9hkzj9ZWmqq9SaTTjrr7W1ZMgFYtw8VYV79IWzw3vwXqOw+du4a3/SsKKfRwLy06Ox82KGtZQW7ImEr3U3p1kkjWR+P2YGIglYtaFdkSMGusm9ccbzyTg3WPcs7aCOHqkai021xIknsc3K7knrDY73n0uya0dTv9Shv0/3OROCgewYnw/HDpX7BFIqREdoWLNDKwv2OUrwimUJ5Z18Efsn5+MNQfYQ0zzR2tw6io7MJyd0pNzTcCjhaVYu/8CcibHYzlHOQS+Qo311RM7d6MSj3QLw8zhPdza9h8nf0G/LqFusyqdAuvJFePy5pdazsR0sUiEN55OcD3GAIDI66dvEBreaRneBKj1natvlNdwjiAs31uAP/16IPUwPQAKltqB+or7+XNVZoA/GfrDF4Zi46cXOQMOrt6ZP/76Eazcxz0cuXLfeYyL68R5wcocpRE8vq5hSlegEiAVo6TKhM6hCizfy1236cTVMhzmWcRWBGDdpDi3x1M0kegapsQrB35EQnQ4qzdj5+nr+FW/KCzZc3+mR7ImEpMGdMGa/Rc4jzlPq0OZwcwRSJUiQCrGG88kgGHg1fpqXDkqNoZBxpvHOYc/jWYbrpQaON/T7O1n8HqdIMFJaC28f18swctP9vWuErxApfV16XG4WmrAvh9usr5js5J7QipiRy2NyQUrraeW0u0qE9YfutikQQxV3G4Z3gao9fWE8jmm1aHcYKZg6QFQsNQOBMklwgmpct/NlvB1VWahZOisAz8isUc4vrx01/W4MwBZ+kQf1nNJJWLexWPzCksxk6M3CgBO/KzjHy7SqBGskKJrmNKRSK6QIq5rKPQmK28Pm2OBW/5h0do6vUTO4OH7onLMSe2F179iD9UsGB2D07+wA6+sg8LlECpq2IGrSi7BU0Oi8d6xq27H6AxCDbXsHB6uO2FXD4gdgnliUrGI9/i41LemXVWNBb06CK+z54lrMkC4yjFc+s6xn3mXT/H8jjmDqMoaM4CG90bWd4Nxs4I9W04od6sxQQ1V3G5+jQlQ61u5gKvyvlOVidZBfRAULLUDIUoZ1k6Kw9r97OJ/ayfFIUTpu54lXy+T0phk6ONaHTg6llDNERzUxXch3nbsKvYvSMEr+9nFJ9dM6o+gACm6hrsXQy2u4C5wKfQ6ruOsc/EU3eu9CFbIMft97gKTz7/P3QtTXzkErvXf+Ia5nP9enxHHynM6fbUMo2M7wA6wTv4bpsTzTn1P1ahxvriSdyi1WwQ74b5zSABUcglvANaYXlK+u/uXn+wrmKsmEYtYQe1LH+XjwIIUwdfzDDYD5cKnYa4bEKHcrcb0ODVFjzAR1pgAVagn9JX0/hify79yQWOqypP7qPVaKW/GuUNVctSYbVgwJgZLx/WB3mRDkEICQ60NwXKJT+8Yfb2ALFfvR11cw20AYLPbWUFbfUEh3+KxRrMN1SYzZib3xJI67VdSVYun3jqBj+cO46zFw5fErZIJ9+Qp5RL8+m8nXf9O1kQipbdasMBkfQGYp9QYNQpuVrIeFxrmOq7VodZqB8O4tznDMKgwWZB98CIrKMo6+CPefS4JAMPqqVo9qR/K9GbkciQ2vzfzUShlUhw+d4s1/Pruc0l4/v1vWQFTfdP2uX4zALD6k/OceUmVRnY5BieVR2+sM6hN7h0peEPAFZgdfilFuMSDF0FtY4fNmmLh7Obmmdfo72UKGhug8pVkqLXaMSg6jHcEITzQf9uiNaBgqRVqTCJmpzAllHJHlWObjYFKJkV0uKpJTia+rK8SWM8QYSDP9PwwpZx1DAqZmL+XI0aNkupazudKjVHjmys6bP78J87tlRwBndAMpyfjOuGxPh3wRZ3hw7rbPXNejmt1mD+aP29KJZegW7iKleC97dhVdApRsC7EyZpIzB+lQVGZkfVctVY7b5C38/R1SEQiHOKoMP5ojwh8d53dm2Y02/DiR/n4aO5QmCw2t4KoUhHwxpeFvInNT8Z14q1FtXJ8Xyzfe97tGISm7fP9ZrLS4/DMkGjOZPvJA7ty9mKp5BLkPp2AjYcvugWAzllHfN9zvmGXovIaweT9W5XuqxYAwkGts1cCQINvqJpq4ezm0hqT0x8kQOUryeCc4OA5gpAzOZ7ylR4QBUutzIMkYrZEzZMHnb0THCBcADCYY+aR58ndeQwyiRjzR/eGHeyFZReM1iBEKUWqJpI11LZgtAYnOWZmOXn2MgCAyWrHmzyBwIZPLyE7Iw4mK/uktj4jHjUWdvBVY7ZxtoNKLsG7zyXhD59dZPXcbJv5KL7+qYQ7gfr9M9gzbzgrkIpQyXjXV9s281Gs85i55nxP63iWi1HJHZWc1+2/wDq+9elx/BXQBXLInMOvXENgXNP2hX4z3/yswyGeZPu1By6wgjKAv1fHOVGA7zfIN+wik4ix4MPvOYdYX/ooH+88l8Tap76eRG8Levq6R9ipOUoRtNbk9KYIUKMjA/GHaY+gssaC6hoLgpUyhCplfhswtiYULLUyrSERk+8ub9PUAVDd691q6MnTaLFhZjJ/AUCT1X3K/J0qE8bEdoDBbGMlhn84Zwjm/P1bzovSrO1nsOWZQXgkOhwzOba981/sCxbgyLuRiNnRYLnBzJvEnVdYipsVNZxromUdvIBl49jFGiUiEWc7rBzfF1u+0rJey9k7k9g9nLcHoqrGgvHxnd3aolOoAiv2necMHqpNVv73xJMfJZQDtfoT4QR0oYCgpLoWmTu+Zz3OdTcu9JvpGBwgmPS/5ImHWQHlsF6R9fbqcH2n+eprqYPkGBTN3VOUoolEh+AA1jGE1jOkzFfQUyh48HXF7ebq7WkN50QuTRGgtsYettaCgqVWxt8TMfnu8r69Vo5rZUa8+aXWLYCp+0PmugutNlnw0kf5vHfd78181K3WTaomEim9I/HKgQt4JDoMM5Pv56Eo5RLeXBPAEZjxXQSlYhFyJsexKmE/HBUEpVSMS7eqPGZSCc88KTdaeF/rfx9nz+QzWmxYtOssqx1ClTJWz4eTUO8MANgZBsWVJrfueaNAAVOu4cb6CA0X5WlLMTOZ//j4csj4tvHdjQv9Zsw24R6am+UmVs+cjSdPzonvNxiq5O61e6xPR6ya0B/rOJY0mZncE8Ucx2Cy2HjznFJj1KwioE71BQ++6n1uzt4efzonetuT5ssAtbX2sLUWFCy1Mv6eiMl3lzc7pSde5xiWck6BXjOxP172qEs0IkaNVyb1BwDeC65n0naeVodyowVPDenOeVH68IWhWHfggtvjqZpIvPFMAsQC44WBCglrq0wsQkRQAJZx5AisnNCP97kA/kBAJZdADLDyjyJUMs4E7y0zBgm+jkgEztlmF4sr0S1chXNFV9yec4dA9Wmh4AVwnPj5LuDeStVECuaQeW6rezfuecESWlC4Y7Dwgq6dQxX43QffuT32LsewWF18v8HAACm2c/SyfXGpBHYwmJ3MfUOw5Rn3z1gkEqHgZgVeGhMDMcAa3lw1oR8y3nRfkLyu5ggemrO3x1/OiY3t1fFVgNpae9haCwqWWhl/SsTkuovS13KfiBO6hWHbsaucF26pWISX/3WONcRztLAUq/dfwKrxffEyR+9JiibSlbNT9/nkUjHn0E+fLiGsxYQB58VGhN8/puE8vqt39RBBhIMeic05k+Owet951jDOMa0O+dfKWflPTqka7noozsTh7EM/shKHpyc+hLS+HfHviyVu+zQkgHnPI3k5VROJ9ZPj8VCEinVXa2cY3gTvgpuVgsuTfHnpDqsHpL7hoq5hSlbSfapGjTWT+kEmFrHytFI0kchKj8P318rdC4FW10IE7gvWhinxvMcdopQJljYIVkhZAeCdKhPvPkK/Qb3Jiu+vV/CWSpgxpDurIrhKLkF3tQpvH/uZVXU+/ZEuSInpwBo21pssgrWtGlNh3FvN2dvjD+dEf+jV8acetraIgqVWpqkSMb3Fdxe1Lj2OcwaR1c7wJg4vG9eHVSvJKa+wFMuf7Mt90cyIR9aBC26zypI1kZia0BX5HInD9Q0JrZzQF11C3WeMdA1V4DeJD2HNgQtugYAz12T9oYucz5d16CIOvZSCVfvYta3WT47Dpk8vsi6aDMPgveNXOYOvFXsLsHHKANRa7W6fe0l1rcDFPhL518pZAVvevUTkN+6dwOt+Z0qqTHj3uSS88ZWW9Tm9NEaDKQldsWLveVZw88qk/pjw+jHW575gjEZwuEgpl+DJ+E6u4VJnBXSpSIRXv/iJN6+rb5dQvLHL/bPcMCWeVWoAcJQv2DbzUYgA1m/GbmeQyZP0nzlaA7PNzgoAzxdXYlZKD0AEzrw8vt9gtcnM+xvgqzq/anxfrObIIXMmk89K7skKsH7VL0q4FIGXFcYbozl7e/zhnOgPvTr+0sPWVlGw1Ar5OhHTW0J3Uas+OY9V4/vh5b0Fbts6hyqw6bNLnIm+JVXcwy1OtypNmJXc061GFMMA6w9ewH88pt8f1+qwev8FzB3RC1Y74xaMhKtkggUNq01WzoE4i92O/ze0O2t6eeq9i9xLH+WzntNotqHMYMaCMRqP2lZWVBlNWPpEXyz3WKNux5whvMnGx7Q66M1WvP50Au7qa1FWVYOIECVsdgaJ3cOx7sAFVlC2Lj0O41/nLlKXV1iKO/favW7voEQEbPmKZ50yiJCV3h/zx/TGknEP33tPUhhqLeBcgRjAztPXsWPOUGQdZB/f+ow4vPbvy+gSEYiO9/KmRCIRblaasP7wRcwYEo1Z29lrrwHAM0O6sx6LClHgu+vlnD03Cz78Hnt+NxxWO+P2mymuNOH597mT/p9//wx2/244Z4Ctkkvw6UuprOcT+g2GKuXYfOQn3oKfWZPi3CcrVNZgUI9wzl5VwPGd4JoMcLvKJFiKwNsK443R3L09znNi3d9Gh6CAZjsn+kOvjj/0sLVlFCy1Ui1RBsBJ6C4qr7AUy8f1YSVDK2USzt6ehugcEuAatqq12lFjkaBTSAB+uqPHu88loWNIgFv9nqV7zmHpE32wyWPduNQYNd58ZhDO3qhAfNdQ1jBIoFzCuuQzAMxWBtuOsYf18rQ62AHeGV21FjueeecU6/HNUwdg/1l2/lZ9CdR6kxUIuf9vEURQysTY8OlFzh6Yazqj4HBMpcmCrEM/un2WB19MEZjxVgqT1Y7XPRZ9TdZE4sXRGmyYEo+gAKnb52FnGPzhM+7j+8Nnl/DCiN7Y/PklzrXXOgvkeXDNlAuQinh7bjZOHYByoxkDo8Pd9iks0QsW++Sr25TcOxIKuQR6k7XB5TFqrXbBiuC3q0ysyQqP9owUDPBNFhsOvJjs9v3vGByA37x1kndSxCfzk+s/2AfUEr09oSo5ggIkqCz6CT17DoRE4rtlnOrjD706/tDD1pZRsEQEceUlOe5MuankEkglYhwuuMVazZ6vFya/qII3pyStb0eoAqT4tOCW20V8fFwn/P35wVjpMUSRoonEjjlDUVJpYl30v7tWjsxRvfHtL2Vuw37OitEQgbPg4iMPcVfFBRwXudkcU+ZTNfwzknp2COQMSAKkYsGCkJFBciz4MJ9V0fq54T0427W+RGSlTMJq8xoLf3AFONYp4+sZ2TA5Hi/vdV+oeMecIfjPpbusHkDAMUT3p8+5exsBYJVAkjxXrlbnECVW7ecuewAA69PjWPsIVVrfduwqQpRS1t16Wt+OWDWhHxbtOutVMm81T+Dl5FmtPk+rwys89auclDKJW+9hiiYS2ZPjMbRXBOc+TTUMx3WeEAMYF98Zzw3v4ZZb1tyao9bTg/TqNOb4+PZp6R62toyCJQKA+8dnNNuwhGfNLD6zU3qyhoQAR6+EHQzniX/bsas49FIK1nxygXVHtGZifyz71znW801JfIgVKAGOoYmsgxew5t4sOs9je4NviEkkwri4TpzbblexKygLSb03G27yFu4ZSVYb95DV+eJK3nyhf8wejNX7LnBWtLYzjGttuLoX+/PFlbz5TCmaSATI2BfNoACpYPDA57hWhxscgZTQ8ER9S6swPDP0H+vTESIRe8ag2S7cc8PVG6WSifEeR6X11HsBdLDMUVSzssaCqhoLQpUyBCukyDl80etk3rBGLLeTV1iK343szRv4eJY+cOa3rZnYn9WT1VTDcHz5i5mjNcg6+CMriB8Ro26ShGeu5U4MZpvgDDVfBVKN7dVpzAy6+vZpyR62toyCpTamMT9+oZPdd9fcl7A4WliKRTY7bwKpUME+vl6YQdFhkItEnCu/lxvNnL06HUMCeC+Mx7Q6mDkujIIJ3vXUJBLSKUThGgpx5vAI3byrAiScAQnA4N087lXuK2osvAsKH9fq8OLoGDz1tvt6cs+n9MSkAV2w+hP2AsCzUnpyLiwsvheEcAVs255LwqlfynjfF1eCstDU/PqqUOtNVtb3bEyfDlj2ZF/ORY1HxnYQfD6uwM3CMHjjy0KO4F4HiETIzojDy7vPsnovV0/sj/5dQ/BwVAgroORL5g1Rynir0SdrInlXjJeIRZxL1jyf0hMyiYhzmZtaKzsx3TkMty/Td8NwQvmLNob75qi+hGdfncP4Ev6dQe3GKfH4v8JS1qLQo2I7CA4B8/E2l7QxM+j8YdZde0XBUhvSmLuUxpzsyvRm3gRSici7tU0cJ/1eMDMMlv3zLKtg5YtjYzj305uEh4uqa6ysfCZ9PYUi+S7eQsOEqRo1zt2ocEvCTdVEYsGYGGyYHI8ghZSVUxUUIOEMSFI1asxK6YH4bmGI6+KeU8W3YLCLR7Mf1+ogApA9OR7j4ju7TS+/U2WCCCKUGy2sZGilTMKf4C0SYWivCN6p7+Eqds+JUIBQX1mBIIWUdcEHgDUcQ215Wh3mjRIOvrjySmqtdsFK60Xl7N6yY/eWd1kwRoOn3rqfk+ac1WaotaC4osatNypEKYOJpxp9qkaN55IdQ6lcRPdqMC27N1EgWCFFSbUJwQESbPz0klvbOo/BaLby9kbJJPy/UW8DFaH8Rb6bI4A/4dmX57COwQG8NxjfXiuH0WzDQY+lbpI1keipDoRKYIFxoTbyJpe0MTPo/GHWXXtFwVIb0dg7jsac7L69Xo5Lt6o471wZ8Nfp2XbsKkKVMtaaXmdvVGDbsZ856yz9bmRvzmMLUgh3LYcFyvD6V+5J1EIFFwH+mkXOYULPYb/UGDXmj9Jg9vtn3P4+T6tDiEKGxU/0wYp9BaxeiZzJ8ZwBifPEPi6+k1uib7ImEhPiOwseu2dxTsBxUb9ZXsNZ4XtMnw5YNb4ftnkkQ384Z4hg8LDsiT44e6PC7fEuoQq8NzMJdo6ArtZiw/MpvfBkfGdW9fMQhYw3CHXU0HL/PEQiEdRBct6JAqd/KROsA8W16np1jXAAzZd0f0yrw9Jx7pXW6+ZuLebojVr4WCxnNXoA2HHqGmcS92N9O6JjiAJv7PPsSVNjwRgNvvdoC9fMuvQ4zt6oWck9oTOY0ZOjE64xgUp9s8D4bkC4Ep4f5Bz23TX2LEih2a+zU3py1lxz/jsng3tB5Pra6E6VidU7zreAbWNm0PnDrLv2ioKlNoLvhFHf0EBjTnaf5N/EB88PwTdX7p8wRCIRuoYqEB2mxDaOHJBkTSTefS4Jx6+U4i//dq+p9O5zSbx1lr75Wcd5ASypquXtsXDWF/I8EZ74WSe4D1/yaWL3cNgZO9ZO6g+rjXEtUBkgFXPWFgIcOVWegRLguMgWldcIzjjzXALkuFaH/Ov8RS6TNZEQ8XQ8VZrYvUfOQqB//PwSq8eivt43fa2VMwn+xdExnMGmyWIDA4Yj4T8SXcOUWDuxP9bsZ9eiWjOxPxg7WHWvLtysxJvPDML8D79ntbtcKsKaif2wdj+7TMGaif0hAnClRO/WIxCkED4FChX9NNbaOIfAbvD0RmWOsnPOvFPJJXjzmUFI69sJHUMC3ALKxO7hyD74o9uahc7Xevvoz5g7ohfrt3Ncq4PRbOMdhvvXvOGs99LYQKW+WWDeLEvT2F4Tfa2Fcxak0KSS+vLlDGb276C+NsrOiMOyvdw3R9GR7Byxxsyg84dZd+0VBUttBN8Jo+7QAJf6ZgN1DA5gXRBGxapxp9qEwx4z1FI1agztHYl3jl7hrdOT2CPc8xAEbTt2Ffsyk/GKx7pZB87exPqMeKzcx15qZF1GHMbnsusLbTt2FblPJ0AkErmd8FI0kVg1sT/EIrACs9QYNX43shekIgmWf+J+Ivznb4fxTukWyqmqL0DlWq8s69BFznZw9haIxeyE523HruKhcCU+OHmN9Z1YOb4PnozvzLq7rq/3zWpneO/G12fEYcPkOHSs04PUIViBLV9zJfw7yi5kp8dhyRN9sFwiRnWNI4ix2OzIKyxB/y5hnEHWwrRYHFiQjNp7gatzH5kEyDnMLlNQcLMSOr0Jr+x3X3B4RIwaayf15y+ayVNp3SkoQIrfvOWeJ5b7dAKMFhtngHrmWhlvwn1ggASHC4rZv6dekZgxtAfe8ajg7fzcI1QyzhuNqhrutQdTNJGcPWyNDVSEZoHVtywN65gb2WsSppTjD59f5uypZXgmldSH63ddXxtd5wmSl+8twJ9+PZDVw9SYGXRUS6nlULDURvCdMOp2K3NRB8l5e4K2zXwUP9/VY8me+wUmUzSRmDqoK1Z7DAsAjpPT6k8u4JFuYW5VtetunzfKfVgt+V4PAx+j2YbiihrO3JVNn11kFassqarF9VLu+kJGs811Z32zosbtjnvjpxexbFwfzB/dG0uecC+42ClYgVcOsit4RwbK0S1cibWT+rPykgwCOVUdgoTXI+PaztcO+UUV+PDUNSz61cOsobttMx/FxeIqzu+EXCLFao7cH8Hetxg1TvCUQziu1aHWYschz+DmXmmDkz+XsT6T41odam12nL9Z6RqiM5htuF1Zg1EPd8SaT9hB1nfXK2CxMVi7/wJrSZj1GfG4UVaDfl1CXY+LRCLEdw3F345yD/OWG2qxekJ/zqKZr6T3x58+v8z5flM0kaxZknVLFHDdtDyf0hPj4jrhlQM/urX7KxP74/X/FHL+ntbsv8A7SxMAVo3vxxkkhwfKOave50yO5xwWamygUt8sMJVcgsE9IhqU8NzYXhOzjX8WpKNHT+P2WYyIUeOhcOEEbq58uvraSGjIttxgZrV7Y2bQUS2llkPBUhshdMI4rtUJrq7+5pf8FZs9e4KOaXWoMQsnxQrNKpNLxawiegFSscDwmBrfXi9n3Rm++1wSPj1/B5+ev8PaR6i+kNFsgx3gXINLJhbj6l2Dq2ekxmLDncoadApW4L+G9cA7ee5396kxavzj+cE4c9UxQ8y5T0mViVX80LMNBJej4Bn66RSmQJfK+ydckUiELqEKJEaHo6i8xu1vnQnZid25j4Pv+8LX+5Z6byhr0hvcFcEBRw0mVg/SvdIGXHf3KrkEErGYc1hvUPdwzu8Y34LMjuU/CvDWfyU6lnLx+JxmJXMHbAEyKTbxFM1cf+hHrJnYH5UmCyvoWD2xP56pM/vQ6bhWh+JKE29w8/ITfVkBb9dwJRbvOcfZpkK/J67Pz5k/JhWL8Idpj7CSzPlyjxoSqNRX24dvFlhDL+CN7TXRC9SvUsklUAcF4LPfp7rlESmkYsH8Nq5ZnI0ZcnSq4hnebsxqDC29gkN7RcFSGyF0wgD4KxGX6s28M0a48mca8lpCU8LNVjum/fWE69+pGjWyMvpjdgp7llCyJhKrJnKvoC70GvlFFYL1haRi9myg347shVI9d85SjdWGD078whkIrNp3gTMhe0ivSN4AUGg24azknpx1ncb06QA5Z7FPRxmAAI5aBUIXWq6yAYB775v93t85kscZ2Bm7YEVwPse1Oiwb1weP949yC5Iv36nCKzxFJG96BH9OQrkmx7Q61FjsnJ8TGODNZxJgZ9xrUTFg8OWlu/iSoycUAJY8YWMtWaOQSTD7vTN4anA059A1Xw/Dca0OVjvDOv5//nYY5987CX3Xb1bUsKp+LxgTA5lE5FWydn2BikImxoKP8gVr+zzoxbqxvSZ8QYxzYeqsgxdYw6+bpg7AJi9fq74hR6Eh21CllDfYfJC2a2j1ePLgKFhqpTx/ePUVE+Trwq6va1kmFbO6+QMD6pmJxjMlPEUTyapqnactxapPLmBorwjOIaZPz99CYnQYq5dB6C5u27GrOPhiCtZw1BdaNbE/7lSwg5G0PlGoMllwkKOXo2eHIMQLDC1yJWRv/vwSb05VpzAFpmz5hnc5ig/nDHV7vmRNJBY/3gdrPjnPmfvDAK7gy5PZZufMnwkWmLZvNNtgszOsytDrM+IE78aFLhZVNVaYLDa33rcn4zpj27FfePfhUn9tJu6E9m3HruJ/VQ8jo06h0GRNJEbGCNdmulVhwqzt7rMd3581GGsm9efND5QKlM+otdpYSwHV93sS+q57cnzfRVg9sZ9XydqhKjnWZ8Rh+V729zUrI65RRTgbozG9JkEKKeeNyeyUnnjvOHuZoqOFpVh677i9eS2hYG795Hi8sp97Db+xfTpAKZcKBpveaMysRfLgKFhqhbh+LJunDRDMPeLrwhbqWlbJJVAHynGr8n5w0SVUAaVMIjiM1DVcydped1kOT3mFpfj92Bi3Hqe6x3DoxRSc/FnnljiskvN3oyd2D4fFZseTHvWFSqpMqDSa8f2NctY+CpkE2Z9e5B0+WTGuL+K6hHKuQ8d1Af/0/B28NEbDmVNlszFIiObuIUnWRCLwXh2munWR7AzDO/R5TKvD7JRenNt6RKhQbnBfnqZLqAKBcglvzxdXPo6jMvqPyEqPw6p9592XXNGo8cqk/pjAs2ivk2fvWw91IP447RHM9AhGAEfv4GN9OqBPl1C3wEcdJOedDu4ccvnBY9g2VROJLTMGQSFnB/71zYYLUUpZwVeXcAVe2c897VwE/sAVcJS88AylVAK/J6FZmsmaSADcif0WnmF3vmTtSqMZ6w7+yDkcmXXwR/TpHML7fLp73y+uXhOhqfSN6WnhXGmg1spZv0qoQK6zHXp3DPIq0BMK5hxV09nB5tqJ/bF8b4FPgk0qStlyKFhqZSqNZqz+5Dwe6RaGmffWXHJWf36TI5fDmbvyxr3lMDzxdS2r5I4Lds7hi6yid6kaNRaM1riev+62BaNjYLWzqwd3CVVi6l+/4R3GsfEUXRzeOxI1FhsrcfixPh2QlR7H2XOzPiMOf/j0Ig5x5DONj++EF8fEYEyfjveny9daUGO18eZ85V+vgFIuwTaPu9S669BxMZrtyC+qcF1oaywS5BdVIOneBYmr/WYl98Rdj4tjcaUJ4YFGwZ5DE8eabo/17QgG3OvdJfeKxNpJcVjLMW2fLx/nP5fuYumTNiwf3wcMRG5DdCI4KrHzBV+eieHO43llUhxn2+08fR27fzccK/YVsAKfbTMfxeztZ1jfpVXj+2E1T+8bRCI8GdfJo3ioGtMTHxIM/CMD5azg68M5Q3jXCjym1WH+vd+Gp8f6doQIIlbv5eZpA/Di6Bi3dnG+/otjYxAVrOBM1s7KiEfWwQtuQ4j3i1LyD5dyJWuX6s344mIJvrhYwrnP04OjOR9X3Vt8mqvXZH1GHE7+rENkkKMcgr7Wivxr5UjVqCGWiH22zMeaSf2xbM85PDU42u2cw3dOEWqHhuAL5qIjA/GnXw+8HxwqpAgPlENvsvqskCQVpWw5FCy1MjqDGU8NjmYNAeyop5gg348oVCXHpqkD8PVPd11l/x09NxK8c/QK66JwXKvDKwd/xMLHYvDiGI2rRo9z5pjZYofFxiDf4wJz4MVkwRN4kELKGp64XVmDZI0ay/ey6xV9cekuGFzArOSeAnfC7sGSOkiOl8bGYp3H9HtnwUA+s1N6YvUnwuvQed7d7zx9HRFBcpzl6OWYMKCz4DDc32cPxjPvnHJ7rfdnDRYsDREkdx/KSdVEYvWEfqyFbQHHZ7jyk/PYMDmelY+jlEnw1FsnUapnL5askksghhhZh9jDm+vS4/BCai+IAPdtAj2Kjhl03N+J/0mLxSqOOlXOYaaV4/u6FdtM1kRiwEOheHlvAbjkFZayenzytKXIOvgjFj/eB8AlVqCy5PE+WH/wR9ZvwHPBW09SCXvCQoomEivH98NKjve0Zv8FvDczCRPiu7h9H0qqTAgKkCLr4AVWjw8AVqAE3A+21vEEoQB3sraNYXh77AD+4c/ZKT2x9hP2zNhvr5XjZkUN9p8tZt1sPdItDH8+8pPPlvlYu/8CnhoczTkJREhT1CSKClGwZr0VV7B7suvyJmijopQth4KlVsZqZzjH4fmSSp2EfkQMwFpDyXmR+4ZjBtE3V3RY8kQfvOGx1IIz2dhYa2UFUkFy4aG7oAApZ/LyoOhw3h6f/1y6i3mjNK73LrqXK/LNFR3nnfCmqQNYgRJwv2AgX8/NoOhwwaRis8XOGmL6++zByD74I8d0cB3yr1cgsTv3cz7WpyPCVXJW8NUxWI7NRy6zyhd8f70c//quCC+P64tPf5+Kqnu9PQFSMWrtNuRfr+DN4blaZkSnUAWsNgZikQ1SsRgSkYj3gjk7pSdrTTbne1q9/wKWPN6HtbRK1zAlpmzl71E0mm2clabjHwrlrDzueL1S/P6xGFYl+OvlRs6/d5JyLPPxxcUSPDu0B2e+nM1u58xTqy+HKEgudRt+dQ7Z3q6qwfc8n8f8Dx1Bct0hbwaO7/QXl+6yjuPd55J4k9Kds1+5XufyrSrOZO3UGDXefGYQzt6oQHzXUNZ3JUIl43y+5N7cQ11Ci1ZvOHwJj0SH4YtL7F6sxizzkVdYinkciw3nF1XwDjU3Z00iXxaSbOisRc8Fhf2pt8lXixc3NwqWWhk7R1FAoP4TON8P0nXH5sVq9lKxCFkH+AsNrpsUx6rK/PX/jsQrk/pzVlfOSo/jfb6bFdyzolzHX2NhBSq5TydwL+oqUCjyzLUy3pyvVI1a8Bg8pwUf1+qw4dNLvPWmsg7+iAMvprB6q5yLxK71CEiS79W2em5YD7ztUb7gsT4dsGRcX0dOhEeguT4jHm8/m4hrZe5BRJdQBf46IxFRIQqcuVrmVuPoTpUJf5/9KPQmGyKD5W4X+0C5VHAh4t+NtLACnPp6FIM51n/LL6rAzXLuoU2nu/pazPvge7fH6utJCOc5IUslIs73xfe55xdV8Ab+KZpIqALYQ7bJmkisntAff52RiBsV7M9j87RHUFReg9/+4zu3bR/PdU/2d6ov0d1Qa2X17qZoIpE9OZ4zWfu7a+XIHNUb3/5S5lbkMlkTifdmPorOoQrO5xvFs3ix4KLVPLNsnRqzzEeATMxKJ7h8qwo5k+Oxct/5RtUkasxFnWsfXxaSfNBZiy2tNSenU7DkB/h+lFx3CEaOMvyA8Anc+YPkW9xTaG24zFEazHjHfbHQl8f15V2e5LhWB0OtlRX4mKx2vP6fnzjvuO9WmziDivp0C1eid4dAHP59qlsl523HfsZvR/Zm3QlLRWLeoQaGAW/O1/xR3DkoTlzr1AlN2zeabSg31LKWGrEzDHIOs3ujjmt1WP3JBUwa0NltOEYhk4BhGGz69CJnb8/KT85jxZN9WMESAESFylGmr+XMZ/r92BioAhzJ6HVnrz3cKViwHbh6N4/+dFdwBp1Cyl7/DWAvc+KJq3Bnwc1KwQWPZWIRZzJ0RKCcs3eLb4Zpwc0KPJ/SE2JWLSo11qX3RxbPmmPrD/2IFU/2xVt5V1g9qAvGxKBDAPuiqZRzz5Sr7+bIamM4eyH5krWFeoLEIhGejO/M2yPLpb5gTmh7Y5b5CFPKsXn6Iyg3mFFZY0GoSuZKJm9MTaLGXNT59tk0dYDPCkkKzcjLmRyPNfsv+Dz521c9Qa09OZ2CpRbG9wNbnxGHdQd/dEu4HBGjxorxfTmfx1lMUAyRWy9RiiYS2RlxqKixYCVH78PaSXGCs4ucid51T7hV9Qz51Vrt+HrRSNRY7K5hIYiAyYndeO64+/Eew6XbVZwXwG7hSvzj+cFY4bG4rXOqswTsC+4PNyrw9rOJCFXKIZaI3AKsSqNFeH06gbpNJVXcs5X4hkJ2nr6OiMAA/OUL9+DMufo8V/HE766VY9X4fth3tpi1/tVzyT1wgmcfqYS76OOwXpF4K49d8T3/egVsdgZbvtKyerce7RkBdZCct76QY6KBuze/uoItMwYBACuw+P1YDURiEWde17RBD2FMnw6cQ018hTu7hioxZFQE7AzDer+ZozVgwLB6IR29UQxn7xbg6K164ystq7dxWM9IvDhG45pk4cwxMtu4h+6c77/MYOZOQIcIqyZw/7a5boKEhphSNWoEKSSs77+zgKlULMIbHvsI9gQVluL5lJ5497kk1mzQ/KJyzt9GfcEcX3mRxi7zoZCJsWjXWcE6UFy4AgEAnJNovr9ejj9+fgmLHu+DqhoLq8gl3z6rPzmPP05/xGeFJPlm5OkMZt4E/cYmf/uyJ6i1J6dTsNSChCLt5XsLMDA63O3Lf7SwFOOuVyCtb0c83DmEdcE6dPYmFj/xMJaIHnY7odVYbMjiyZ9Ze+ACb3Xl3KcT8Ocjl1kXzSfjO6NbuBJvzhgEqceaXvN3fI8ghZQVxBx+KYUz1+q4Vof1By9i/uje6NMphHUyDpKL8Xj/Tqzhu7f/K4n1GoDjbnfVvvNYnx6HXh0CERggdT1fUIBjarln/aWUeoLGbceuYv+CFM6ZY2sm9ceRC7c5eyz4pu1/8PxgrOFIGM/TlsLOs5bV7JSeyOLIt6pvn42HL3L2MGQfvogBD4Whn8fUfIZheHsYXtn/I/4xezDWH77IuUiy1cpwBoeLdp3FezMHY+Zwk1swckyrw3e/lHF+L1d9ch6LH38YtVY7K/CZldwTZR4J6KmaSMR3C+VNnH/+/TP4++zBrPckhgivTOrPGSiMiFFji0Bvy6w6Q0kikQg3K03oWskdODvxLWy87dhVzqHjry6XcM6U+7G4EmsnxeGVAxc8gtBIrEvvj5Jq7l7DBaM1iAiUs3tdOQq11hUYIMWrX/zEujFZPbE/HuvbiZULWFJlEuxR7B6hws65QxEYIKkzK9WKnhEqwWU+PM+Xqfd6VHIOX+QMVNbcC1S4nvNWRY3bxJZyowWnr5ZheK9IzBjSnbUe37i4KCx5og8W7z7Laof1GfH4r6E98Le8K5xr+OkMZvTqwF2mgKvHv75AhGtG3s+lBsF9vE3+bkhPEMBdMoJLa09Op2CpBQlF2se0Os56LX86cplzSvXYPh2wakI/nLiic1uuo6TKhIfClYIz5X7HkRzJV9DNUUvGztur84/nB8PC2FkXaIhEvPlCedpSrBjfF9mHfmT1fGVlxGPL14WsxVYh4l7uAQC+v14BiICf7xpc+TjOpUsig+S4eLua1dav7OcOGgHHsFmZwcQ6BpVMjBK9Gd9c0WHz5z+5/t6Z5xEg4767tjHg/TyOa3V4nqNmUn2rpM/m+K482j0CA7uFcc6gm5XcE51DA5Bz+BJrVqXQ51RutHB+J5RSCVaM74u/5bF7id58ZhB0+lrWEjPvPpfE25vnnL3G1ePz0kf52PW7YW4J3iVVJug5lpQQ1SkQWWOxcQa1ZrudtQDwncoahCplgr+beSN7u81aTNWoMTWhq+CsMr6Fjfmm+xfcqMSkAV0wIb4za6acSMRg3aT+0JutbmUwRAByeYaUAcfadZ69TvUNc5mt7OVxjml1WHfgAtanx7GGlFUyCR7tGcGZo7h6Qj/Y7Axr2RpnThUfu83utnaj8/2abFZMHvQQ73p8FUYzblWaWD1B18qMOHiumF2EVh2IckMt6xymDpIj6+CPnO2wcl8BFozR8Lb52on9Od/TNZ2BNdvX2Q7dIwMFUzRYjwsUmgW8n/1XX0/Q7SoT1h+62OBeJ18murcECpZaUH2RNte4/lODo7GeY1FXMYA7VSZ43psycFRPFiIRi5CqiXS7MAzvFYltx65y3gUHymWc0/kdJw3HlPQUTaRbr46xniVSiitr8Eh0uGsmlfO1Nn9+Cf/7q4exyqMnRiiZ97cje+F2pYnzzrpXhyBsn/Uo7tzLx6l70Zw/2rHIr+f7vXpXj6gQJb7RlrouqAazDSq5RLC21Yon++LTglusleRjOgrn/nANfQoUhQbA/V3pECxH9mH+QptLn+jj9axKvmnzfbqECNY4Wp8Rx1oTkKsnpS6pSISEbmFuvY0J3cLwRP8ohARIIQpTugLXDsEBMFtsguUVpGIRnvUYhnvjmQQESMTo6dELqZJL6l3Wx7Mt8rSlWL3/AlaN78dZwiA1Ro2fS/RY+kQfVo/stmM/48Ux7uUrUjWRWDauL177z0+Y+EhXt3aQiEQoM1iQ+8VPrBuMV9LjkH+9gvOYj2t1qLXaWb+NnMnC1dn5FlD+/noFGADbj19llYx4cYwGc1J61SlNIUVJlQmv/vsnJMeoOc8fK/YW4A/THmFdbEuqTLhZacIbX2pZ+V6vpMfhw1PXuH+HEOHJeM/6Wo6bsLeOXuHcJ0Aqxsrx/fCv/JusNQb5FoU+ptVh6bg+nG10XKvjrPlUXFHDex5dsbcAG6cOQN5PpegYcr/n6/tr5RjSMwIr9p1nBSk5k+PxWN+OnENxqY2Y/Vff9elGeY1X+UdCQ6lpfTsiSCHFlRK9386Sa3fBkk6nw6pVq3D69GlIJBJMmjQJS5cuhVTa/E1RX6TNlQOSFB2OxOhw3Kp0nyXWPVKF21XcAcLycWGCrxMUIMX8MRosqXNSs1ht2DpjEIo9ZqN1DVXAYLYJFuXTm22sBWmjQtgJuXV1CA5gzbZJ1kRi6RN9OIeshIx+uCM2fXapwSdP50WzQwj3jJ+sjDjcraphBaIKqUSw56HMYOZcSX7eqN6Cx2+3u+fWpNyrzSTEMwckVaOGSKA377hWxxmA1Zdrwre9vpyXcoPFbamRFE0kVk7ox/s6KrkE3SKVWL2PXdNpfUY8XjlwwS03KFUTifWT47Hl/7iTqxVSMV5+si8rYDty/hZ+O1KD1z0Wk3bO0hTqJeJqi7zCUix7og9nwnjWpP5gRMBKnjw7MQO3yQoAYGNsyEh4CO/m/ezWDhsmx+PwsWLOIcw1Ar2kgOPGxPNmq+BmhaPQrEel+GRNJFZN4F6fEbhfg4x1HPfW4xsX38mtQruzV5NvSZhjWh0qayysYMlgtuKNLws5g/E1+y/gkW5hnPltXDPvnMO8id3DOffp1yWUe2khgUWhAUBv4p/1abLYWL1BFoHFz49pdag2WXGwoJgV1K7wyD0F7qduLB/fF2P6dGTVq9N0DALgXbJ2UEDjrol8+Ud8yelpfTti1YR+gjln/qDdBUsLFy5EVFQU8vLyUFpainnz5mH79u2YM2dOsx8L35pGgOMECtblGVAHy1FtsrKCosMvpfDmmpy9UcF715iiiYRKJsEGj6U+Pvt9CsxWO+daaZp6ekb0tVbWfl8tGil453qxuIrz2KtNVs6ApOBmJW/StUhgiO676+VY/MTDrJ6bD09ew9i+UZx3eas/uYDl4/qw2ry+qep8vTD1JYx7rp93TKtzVD4WaD+pRNSgYSm34zOyj09oVmWqhn/9t/pmP5ms7DtxZzVnrnZYOb4vK1AC7s3y23ceiT3C3YIl5+NcF02VXIIZQ7vjlf0X2IHX5His4Lm7X/3Jeawa39ctsHZK1kTytkWZ0cw5fCgSQTDPbuFjMZj21/uV01M1kciZHI9389izHTuGBAgG6nwzMQH+G5MBXcOw9Im+mFntnltWXF7DGzB6WyLA+d4X/eph3uPjyl0xWeyNfr9c303nEktcw8CNGfIGuGfFAo7vX5hKzprSX9/5o7KGPeQdFaLgbYdvr5VDLBLxLrZ9p9qErIMNHzaTS8W8v8/UGDUKblbyHjtf/hFXcnqQQsoKlAD/myXX8BUa24Br167h9OnTWLx4MZRKJbp164bMzEzs2LGjRY6nqsaCmck9XWs8OSVrIjEzuSfUgQGsx1VyKWdQZOWpvwQA6w9dxCuT+nO+zuLH+yDnMHscXioR43We4CtYKRxjBwdIWfuJGCBzVG/OY5g/WoNbVdx1dfiGhUQiIHM09/PVmLkv3M6k9c2fXcLz73+LzB3fY/b2M8i/Xo6nhnRH51DuO5i8wlKUceTq1IevF2bbsatYOaEv69hTNWrMTO6JbceusvbJOnQRayb2QyprH0fS7omfda739Pz73+Llvefr/ZwC5ezt245dxazknkiNca8xlKKJxCvp/XGpuIrzufhmNzmpOKbAZx26iFfSub+XA7uF818ctaVI4aiBlFdYioRuYazH547ohfeOXeUMvG6W1/D2kuZpdUiIDmd/TjFqzOL5nAAgTCXDG19q3T6PN77UwmgR7klQBbi3YZ5WB53RwtkO9QWnfFJj1Ci4Ucn5u37n2M+w2O2s4/72enm9tcb4cB3nca2Os0CoE1fuSn2Bv1B78P0O+YaBG1P2IEUTCUMtd0C5akI/x3qKPPk/fLgWWBY6ttkpPXnr1b177Koj4OQJSCqN7Ir9ZquN9xw7f5RGMDVAKP8oVCVH745BGBgdjt4dgxq0HIw/aFc9S4WFhQgLC0NUVJTrsd69e6O4uBhVVVUICeFeLNKTzcbf3eqNCqMFL32Uz7vsxfZZj7KqFNdYuNcwM/L8UAFHgnKpvpbzbrfcYOac6uw5C6kumVgsWI1bJmGfnGqsjpMw13udvf2Ma2aFJ74TXVyXUN7n43h5AMJJ64Dw3S5X0NbYXhhHnSV270NEoBwz3jnFeRfvSDI3sypk36kywWi24ZGuYax9VDLhxXK5Ahyj2YYPT13D6on9cF1ndGvXzZ9fwsvj+7LW0eNbPLnudr52uFvN/b2sL1/CmwtdikbNm0he39IllTUW1vF1i1Bh46cXOT+nZE0krDbuY6uu57X0XD0qXgwB1tUljP15JGsiBRc8Pq7VYdk49hVw27GrOHiviKpnsnbXcOEhEr7jrObJo0zRRCJUKWWdY1UcgUNdfMG6UA8gVzAi9Fx821Pu9QDKJezCmCNi1BgUHYaX/8XOYauvuClXSRKhz72+HjG+4OZoYSnu6msR5NEeVjv4z9nvn8E7/8XdMzYiRo2IQFmDr5P1/darTJZGX3Od+/nimt2ugiWDwQCl0v3H7fy30WhscLBUUMC9/pS3VJ00MJptvF9whUyCX//NfUHTETHcd3hCd2oAHIvpcryOswaOJ767JADQGWoFF4LVGdg/8mqTRfC98t0x5RdxDyHWWu28zycVizj3qe9kwnWhcOI6Sd2vbQVWnseixx/G6//5ibWPc3unUCVrKOTDOUMEq11bbAznEiDJmkjOQM/Asxq7s+ey1sq91MgzQ7rj57sGVjVpAI6Ef47gxlBrEVxc+avL3PVfggK4q4I/3j+K46/v4+qpAsA5I4gveAHqDzpClDLW57TzhSF4Zkh33rIGfOvdBTdithJfkCB0oU3WRMJm464dVVzBP6QGAOUcQ7MJ0WEQA6x1BA21VgRIhW+c+AKViCA55/p52ZPjoSu6gltm996EiG6xgq/zULiSNUklNUaNzFEaPP/+Gc59guRSpMZEIq+w7j6O5xJ6ra7hSnz6UgqqTVYEK6RQiK0ov6GF3W7HirFdsPRXGhhqbQgMkEBqM6LSwN1rLlQbLysjHtP/+g1rH6HPvT5cn61TWVUNKovcz1f2iJ6C52zHMF0ka2h7zZMx+OWnH2G3N6z3U9Gxh+B2uciOH374oUHPxccX1+x2FSypVCrU1LgnLDv/HRgY2ODniY+Ph0QifKfTENfLary+Gw+Qcr/uMW2p4Pjy1bvcNTj47qJCFPxfDbFIJNgj5lnPBqh/WijfcVy6VYVFv3qYVWhQ6O7vraM/Y/+CZFaOSn347nZTY7h7iYxmG176KB875w7FzOpaVl2fD+cMRQ3PBdVksbIuZh1DAvgLDQrMSOIL9PS1NsHPadvMR3mn5vP19OkMFs6Tp0wiwrBekRjPMcVdLAL+9n8/s/ZJ0URCLmNfbJM1kQiUSb3+baRq1AhWsPcL5MklAfiDcefxBcklrPcUFaLA24d+5Gy7j05dw+qJ/Tnfk0ou3NOn5Ck1wdUO245dxbvPJbGqiCdrIvHi6Bj85/Idzs9p0MxHedsCAKveUrImEi+OicGRi7fRu0MwAusk/RpqbbhRVsMZJKdqIpE5OoYzUBkRo0ZUcAD+MG0AKmusrtyVUKUUUcEBQBg78b/KZMWLY9j1ppzHF6yQIvfpBOgMZpRV1SAiRIngACmulRmREB3GuU+YSobcpxz7OAOfyEA5qmqEA3+GYRAbFeR+gB3CeFo0DFd13GsWOs8fezOHw2yzu4LQkqpafHq+GH07h7C+l9uOXcW25x5lfe4jYtR4qJ5ePqGbhogQJXr2HOj2WCHPNcMpqE6b122/EIUU6DhAcN+6qkxWwYKjXSKCENJlIHvHBrDZbCgoKEB8fDyABwua2lWwFBMTg4qKCpSWlkKtdvTQXLlyBZ06dUJwsHDScl0SicQnwVJggJT3R/ni6Bhc9qgHNCJGjQ5Bcs6T+1tHf8Z7906EbgviaiKxPiPOUSSO4y6gU6iCM8iSSUS8wdfVUgPvQrCpMWpc5SiOdrfaJHihcBwH+/iWjeuDP3ssIBsgFcNqt/Ne5BK7h0MmFrGGrNQcS2TUFaqUcR7Dkif64LUvuHuJBkWH4ciP7AtTqiYSZ29UcF5Qd56+jjUT+rF6LKYkdMH6jHis3FfAuuNeO7E/Jr7BPXwCcN81Bimkwj2XUgnnNqEeARlP8cJzRRWYMKALtCV6t8clYhE6hQRgUHQY6z2tnxyP3C9+4myjguIKwYvjpVvuuVPJmki8/GQfvPmVlvV8Shn/Is4/FlciKz2Os81XT+wPE0f3/bkbFVg1oT9WetQ6c/aMvH30Cud7MttsWMuzPuLaSXEo0rHXQbx8qwovcpwjEqLDIBGJWFXE71SZEKqSouAGd/LtHY7zgFNqjBpikcdEgepadAtT4t28n5Fz+DJrnwnxnbDkiT6sOlA6fS26himQ1D2cc4mP8MAAhAPoEsZ5mCzhgRJ0j7BjwoAu7sF4dS16RKgQfi+/M0QhRWXRT+jZcyAkEgnsDOrdJ9wjN1QsEuFOdS0rSL5TZYJE7Fhj0Jvzf4egAN5gYFB0GA6cu8X6Hab17Yj1GXGsVRcSo8PQNUyBNzgqeAMQDDru8OSFOq4rAaz3FK5i9/45pWgiEa6SOz7HQOHzan3CAyWCy8E86PMD8Mn1ul0FSz169EBiYiJycnKwbt06lJeXY8uWLZg2bVqLHE/HEAVqLTbOgnNdwxTo2zkYCf8zwnWn1CEoAKEqOTZxfLGSuoejS6gCkwZ2wczkHm4nhgCRCB2DA/CkR/BQUmWCXCzCmkn9WavJny2q4Hw8VROJxO7h6BAcwJpmnKpxFIHrytEl/vHp67yBQPbkeIgZcB6fQiLGkif6si5MY/t0QFZ6f6z6xKOCcYwaL6T2QrnRDM/Leo3FKjij7EJxpVutJ+dFbutXhVg1vh9qrXbWa63PiMO6AxfcnsvZjS4WAft/YC9Psn5yHN7/5hfWBVVboocUwIrxfcHAsRxLsFIGERjYGLvg8IlnEJOiiUSwXCL4fiMDZayTYaomEvPHxGD2dnaPQGqMGp1CFZzDJ8vG9YVMBFab2+wMJCIRVk/oBysDt/fE2O34/dhY1mebqonEbxIfAsOA87fRJVSBojKjx+y/WgQHSLH48Yexat95t+f78/QBvIHX3BG98eWl225rFjrv7p95+yT++v8SWe/JaLYBDIMNk+OhN9tc70kll0DGABMe6cq5IPOkgZ0hEnEPZ8nFInx45prb6yRrItFDHYioEAVnO3QKVeDbX8rcZgqJAATJpVg1vh/MVjvr4jM6tgOG947Eir3s3+H6jDiEKWVuF+Gk7uEIVcnxSnocaq3si9mK8f3QOUyJAJkE5Qazo/CjQoq4rqGNXpeNT+cwJZ6M68R5fL7cJ1QlR7dwFa549KyIRCJEh3NXGBcitJ7b+ow4ZB380e3vR8SosS49Dp3DlPjjrwe6tWt4oGO9O+fzehIKOpz/39D16aJCFMiZHI/lHN+VnMnxruPwBb4lXPxhFpyTiGEY4cpwbUxpaSnWrVuHU6dOQSwWIyMjA4sWLWpQ5Gmz2fDDDz9g4MCBPolUne5UmXh/EHyv6ayX4fnF4nv8ps6AKrOVdREOk0thA3CjssZVlC9IIUGN2YoOQQrcqa51LUngOLHbEKaSuZaVcBZwdAYW245dxd75w/H9tQrXMgLOoG1kr0jYRUB1nQtMkFwCs90ECeSosTJgUPeCCoTIJcj9qhBzRvSG1ca4tillYjz77mmkJ3TlPobM4bAzcHs+sQgIkIix+pMLHr1vaixMi0G4Ss6ZxLp6Yn+YLRaEKgPcLo4SEVBaXYvwIDmrXXXVZnQIlkAld98nSC6ByG7DjSoz3vz6Civ4+t80DSIDFax9Tv6sw/5zt3gWiXUEnIY6+yhlYnx8ughPDY7Gyk/Os4O89DgoRQxqIXJ7rWC5BCX6Wvzli0LWPi8/0QfvHPsZ4wd0cRVIdAYW//r+Bgb3iMDwGLXb5xQkl+B/d/2A347UsPZZuuccdrwwGCqplPV+9bW1MFnsCFU56sU4twVIxTBbaqGQB6DGYnd7v3cqarBoT4HbMjzBShnsdjv0tVZcLTWyvpNDekZgwuvHeAPRQy+moLrWyvoNdAqWo0RfC6Vc6hb0yMQiqIMU+OZnHeu1NB2DMO+D77Bp6gC3trhbXQu5WIyiihrWPqNjO6BTmBI3yo2oNt0fsgpWSHHwhxsY27+zW3tLJSK8m/czXh7nWGeO7+LjXGLj/hBY/Uts8J1b/Ikvz9G+fr/enrMf5HXu6mtZN9mNfU9C1yd/V/f7AOCBvhvtLlh6EE0VLDXXawp96T23hShluFVhxOU7eleBM2dXdGL3cFaZe6fUGDVSNGpoOgaxLo5r91/AmzMG4W6d/B7nBQEAvqqzTpNz26M9w2CziZB10H3oYsPkOBw+f5v3GJY90Qdnb1S4HbtOX4ukHuE4dbWc9TopvSPx539fxoQ6lZJdgcB3RUiJ7cia0bJn3jA8++5p3qDxk/nJCAyQsi5KErEIy/91Dn3rrMvm3O9icSWeGdKdtTTIY307YvmTfTmDuayMeGQfcl902VlD6HaFESEqdjBXpjfDbgdOXStzO4bYjkFYe+AC57H9XFKNpeP6YuXe86xgc11Gf4zPZQcd+xckcxYIBRw9J+vT47CK4z3lZDhyDI5fuV813fkZDukZieX7Cli9RMvH9cV4npleKrkEO+cOdfvu5RdVIDpciQN8QWiMGhMHdMb18hq3thCLgKAACQpLDKzfRu8OQYgKDsA3P+tY2wY8FMY7E00ll+DTl1JhtTMNvpAVV9Tw9iJ09pNCfs2tJc7R/ojawcGXwVK7GoZr76JCFLx3BFzbRAB+KmF3RQfLpY5hDY5huDUT+2HSG8d579SVMgl6RAZydolzdZcDwPK9BaxhEl21Gb8f6xha8ewByUqPw7S/foOnBke7vafr5TX4w+eX8c+5w1Bru98rER2pwvvf/IKFaQ9zDk/kTI6HTCJmDWn9fFc4d6tjsOOOjuuOfc3E/li+lzvn5Q+fXnJ/Lo0aqyb0w1/+fZlzuOi1Ly5jzYR++N9fPewWlJVW12DW+9+5BXP6WqsrmPvj9EdYx37oxWS8/GRfrN1/gXVsayfFwWS1YvETD+NlSV9X+1ltdpgsNlYiLeBYCFYoWVYkAlaM78fqUZSJRXjty0I8M7S7Wy9RVIgCdobhHJYKUUj589iiw3H+ZqXbbMJkTSQSo8OxZmI/rNl/gXV8Lz/ZF3qTBZ+cdR9KfaxPB7w8vh9Qws7NE4mAIxdvo8pkc/vuFVeaUFJ9h/f4krqHI0wl86pHwTl0wdeLQAjxHQqWCC+h8X6RWIQnB3RxzzGqroVKJmEldTqNqBNAcOFaSRtwXEy5VhvfPHUAb6Jj384hvEHMqV/K3HqJ6t6N/0kgR4DrtZI1at67e6GLVnRkIO9rrZjQDwvGxrgFPoFyCZ4a3J21+Kgz4TlEKUO3SPcZnTVmm2CCN9eMQjuAp946iU1TB7CCsqfeOoF/PD8Ef/z8Euv9rpzQl7OcxNmiCoyL64wJ8V14k2XD4RguMkvFCJCIoQ6SQ2cwY+e3N7Dz2xusY1QHybF33nAYzDZU3VsaJK5rKBRSMeaP1rBmTqZq1JiV0gMFNytZdcvmf/g99s0fzpkEHKmUIVwpY20rM5gRIBa5LdILOG4kuoYq8fbRn/FvjvW50vp2xIZ7OSDefl/4hKrkCAqQuCU1E0J8j4IlIogvgBEKpISSDBtzQegSpsQbAnfQXM/JlQTvPAaVXILBPSI4hzuEet+42iJUhUYnJvK9VpcwJWdvVPcIFe/MHq7XE1q4ckSMGt0jVaztVTVWlOrNrGFApxqzjfP9AsDmz9izFvOLKvDaFz/h2WE9YKizMK1nsqzn8f/MMaPSqVRvhs5gRnzXEPzwww+I6e4IEq6U6DF7+xlWqQQA+ODkNc51wBzT2BWCScB82570MhnambTr74mshBA2CpZIo/EFUk0xs8HbO+j6jsGXFye+dvA1Z4BaN2gUmtlTX+DKdeG215PCGKqU8b7fV9LjsGzPObeerLoBqjczkupbZJqrblcVT+FT5zI3FhvDqk1TN4D3tsezsd//5vq+EEJ8h4Il0iT84YLgD8fga00RNNZto0qjWbA3ytmL1NjXaqj6esW4joMvwHIW//M2gfpBtMXvHiHtGQVLhLRx3ly4H3QY1VdBQkOOw3O9J6EAqzEJ1E3FOX27yuTIt1IHUmBFiL+jYIkQ4sZfCsR5exxNkS/na8UVNazJCiNi1Ng4dUC9dY4IIS2HgiVCCIu/DCN5exz+EuhxqTSaWYES4Fj1fdmec3j96QS/OE5CCBsFS4SQNsVfAj1PpXozZ40lwBEwlerNfnnchBCAe5lrQgghPlVlYi92XFd1PdsJIS2HgiVCCGkGjSmHQAjxDxQsEUJIM3DO1uNSX1kGQkjLomCJEEKagXO2nmfA5E+z9Qgh3CjBmxBCmok/z9YjhPCjYIkQQpqRv87WI4Two2E4QgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQARQsEUIIIYQIoOVOvMAwDADAZrM122s6X6s5X9NfUVs4UDs4UDs4UDvcR23hQO3gwNUOzuu4t0RMY/dsh8xmMwoKClr6MAghhBDSCPHx8ZDLvV+bkYIlL9jtdlitVojFYohEopY+HEIIIYQ0AMMwsNvtkEqlEIu9z0CiYIkQQgghRAAleBNCCCGECKBgiRBCCCFEAAVLhBBCCCECKFgihBBCCBFAwRIhhBBCiAAKlgghhBBCBFCwRAghhBAigIIlP3Lp0iXMmjULgwcPRnJyMpYsWYKysjIAwNmzZzF9+nQkJCRgzJgx2LVrVwsfbdM5ceIEpk+fjkGDBiE5ORlZWVkwmUwA2lc7ONlsNjz77LNYtmyZ67H21g6HDx9Gv379kJCQ4Ppv8eLFANpXW1RUVGDJkiUYMmQIHn30UWRmZqKkpARA+2qH/fv3u30XEhISEBcXh7i4OADtqy0uXLiAGTNmICkpCSkpKVi/fj3MZjOA9tUOV65cwfPPP4+kpCSMGjUKW7duhd1uB+CjdmCIX6ipqWGSk5OZ1157jamtrWXKysqYF154gfntb3/LVFRUMIMHD2Y++OADxmKxMN988w2TkJDAnD17tqUP2+d0Oh0THx/P7Nmzh7HZbMydO3eYCRMmMK+99lq7aoe6Xn31VaZPnz7M0qVLGYZh2mU7bNy4kVm2bBnr8fbWFv/v//0/Zv78+UxlZSVTXV3NLFiwgJk7d267awdPt2/fZpKTk5l9+/a1q7aw2WxMcnIy8/777zM2m425desW8/jjjzNvvPFGu2oHvV7PjBo1ilmxYgVjMBiYGzduMBMmTGBef/11n7UD9Sz5ieLiYvTp0wfz58+HXC5HeHg4fvOb3+DMmTM4cuQIwsLCMGPGDEilUgwbNgwTJ07Ejh07WvqwfS4iIgLffPMNpkyZApFIhIqKCtTW1iIiIqJdtYPTiRMncOTIEfzqV79yPdYe26GgoMDVa1BXe2qL8+fP4+zZs9i4cSNCQkIQFBSErKwsLFq0qF21gyeGYbB48WKMGjUK6enp7aotKisrcffuXdjtdtcCsWKxGEqlsl21w3fffQedTofVq1dDpVKha9eumDdvHj766CN8/vnnPmkHCpb8RK9evfDOO+9AIpG4Hvv888/Rv39/FBYWIjY21u3vNRoNLl261NyH2SyCgoIAACNHjsTEiRPRoUMHTJkypd21g06nw4oVK/CnP/0JSqXS9Xh7awe73Y4LFy7g66+/xujRozFixAisWrUKlZWV7aotzp07B41Gg3/+859IS0tDSkoKNm3ahA4dOrSrdvD0ySefQKvVuoap21NbhIeHY+bMmdi0aRPi4+MxcuRI9OjRAzNnzmxX7WC32yGTySCTyVyPiUQilJaWIj8/3yftQMGSH2IYBn/5y1/w1VdfYcWKFTAYDG4XSwBQKBQwGo0tdITN48iRIzh69CjEYjFeeumldtUOdrsdixcvxqxZs9CnTx+3be2pHQCgrKwM/fr1w+OPP47Dhw9j586d+OWXX7B48eJ21RaVlZW4fPkyfvnlF+zduxf79u3DnTt3sHTp0nbVDnXZ7XZs3boVv/vd71w3We2pLex2OxQKBVatWoUffvgBBw8exJUrV5Cbm9uu2mHQoEFQKBT405/+hJqaGty8eRPvvvuua7sv2oGCJT+j1+vx0ksv4cCBA/jggw/w8MMPQ6lUuhKcnUwmEwIDA1voKJuHQqFAVFQUFi9ejLy8vHbVDn/7298gl8vx7LPPsra1p3YAALVajR07dmDatGlQKpXo0qULFi9ejKNHj4JhmHbTFnK5HACwYsUKBAUFQa1WY+HChfi///u/dtUOdZ06dQolJSWYNm2a67H29Pv497//jc8//xzPPPMM5HI5YmJiMH/+fHz00Uftqh1CQkLw9ttv4+zZsxg1ahQWLlyIjIwMAIBEIvFJO1Cw5EeuX7+OqVOnQq/XY/fu3Xj44YcBALGxsSgsLHT7W61Wi5iYmJY4zCb1/fff44knnnDN5gAAs9kMmUwGjUbTbtrhk08+wenTp5GUlISkpCQcPHgQBw8eRFJSUrv6PgCOWaJ//OMfXTkZgOM7IRaLMWDAgHbTFhqNBna7HRaLxfWYc7ZP375920071PX5558jLS0NKpXK9Vh7+n3cunXL7VwJAFKpFDKZrF21g9lshtVqxd///necOnUKu3btglgshkaj8d05wudp6aRRKioqmFGjRjHLli1jbDab27aysjImKSmJee+99xiz2cycOHGCSUhIYE6cONFCR9t09Ho9M3LkSCYnJ4epra1lbty4wUybNo1Zs2ZNu2oHT0uXLnXNhmtv7XDr1i1m4MCBzFtvvcVYLBbm5s2bzK9//Wtm+fLl7aotzGYzk5aWxrz44ouMXq9ndDod81//9V/M/Pnz21U71DVhwgTmn//8p9tj7aktCgsLmbi4OGbr1q2M1Wplrl+/zkyYMIHZuHFju2qH2tpaJikpifnnP//J2O12pqCggElNTWU+/vhjn7UDBUt+Ytu2bUxsbCzzyCOPMAMHDnT7j2EY5ty5c8xvfvMbJiEhgRk7diyzZ8+eFj7iplNYWMjMmjWLSUpKYkaPHs38+c9/ZmpraxmGaV/tUFfdYIlh2l87nDp1yvV+hw4dymRlZTEmk4lhmPbVFrdv32YWLlzIJCcnM0lJScySJUuYyspKhmHaVzs4DRw4kPn6669Zj7entjh+/Dgzffp0JjExkRk1alS7PV+ePn2amTx5MjNw4EBm7NixzN///nfXNl+0g4hh6vRtE0IIIYQQN5SzRAghhBAigIIlQgghhBABFCwRQgghhAigYIkQQgghRAAFS4QQQgghAihYIoQQQggRQMESIYQQQogACpYIIYQQQgRQsEQIIYQQIoCCJUIIIYQQAdKWPgBCCGlqX375Jd566y1cu3YNRqMR8fHxWL9+PXr06IFDhw4hNzcXOp0OjzzyCLp06QKLxYKNGzeCYRj84x//wI4dO6DT6RAbG4vly5cjLi6upd8SIaQZUc8SIaRNu337Nn7/+99j7ty5OHHiBL7++mswDIM333wT+fn5WLp0KZYuXYqTJ0/iqaeewr/+9S/Xvh9++CHee+89vPbaazhx4gSmTJmCWbNmobS0tAXfESGkuVGwRAhp0yIiInDo0CGMGTMGer0et2/fRnh4OO7cuYM9e/bgV7/6FcaMGQOpVIq0tDQ89thjrn137NiB3/72t+jTpw9kMhmmTZuG3r17Y//+/S34jgghzY2G4QghbZpMJsPBgwexc+dOiEQixMbGQq/XQyqV4v+3Z/8u54VxGMev76NktFEnKTazxeQPkPFYDQYTZbeZlFEZLSRZLFKU4kzyH4iUQlkkm1/n2dSznO37HD3er/H+Ude9Xd2fw+GgWCz243woFHr9HO12O1WrVdVqtdf+/X5nDAd8GMoSgD9tOByq1Wqp0+koHA5LkiqVipbLpQzD0H6//3F+v9/L6/VKkoLBoIrFolKp1Gt/u93K7/f/Wn4A7mMMB+BPu1wu+vr6ks/nk23bms1m6vf7ut1uMk1T4/FYlmXp8XhoOp1qNBq97mYyGTUaDa3Xa0mSZVlKpVJaLBZuPQeAC/7Ztm27HQIA/pfr9apyuazJZCKPx6NIJKJEIqF2uy3LsjQYDFSv13U6nRSPx2XbtoLBoCqVih6Ph5rNpnq9no7HowKBgHK5nEzTdPtZAH4RZQnAx9psNno+n4pGo6+1QqGgSCSiUqnkYjIA74QxHICPtVqtlM1mtd1uJUnz+VyWZSmZTLqcDMA74WcJwEdrNBrqdrs6n88yDEP5fF7pdNrtWADeCGUJAADAAWM4AAAAB5QlAAAAB5QlAAAAB5QlAAAAB5QlAAAAB5QlAAAAB5QlAAAAB5QlAAAAB9+R915p9eC7QAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Scatterplot in seaborn\n", "sns.scatterplot(x='age', y='balance', data=df)" ] }, { "cell_type": "code", "execution_count": 49, "id": "85fb028b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGvCAYAAAB8Tl4/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9NUlEQVR4nO3dfVgVdf7/8dfhAB7SClGz0qyrELc2SBTxBjUlldUCDWPdOlrZjZZsduvNlruuW6xmmeZNZpqxFWVJ2ypZSrW1lXeLloL2a9PuFHJR0fD2gJwzvz/6clYSFZRzhjnn+biurmBmmHnPfM7Ny5nPfMZmGIYhAAAACwgxuwAAAIC6IrgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLILgAAADLMCW4fPPNN7rzzjuVkJCgPn36aP78+fJ4PJKkzZs3KyMjQ/Hx8UpOTtbSpUvNKBEAADRCof7e4OHDh3XXXXcpKSlJc+bM0f79+3XPPffI7XZrxIgRGjVqlMaOHathw4apoKBAmZmZ6tChg+Li4uq0fo/Ho6qqKoWEhMhms/l4bwAAQEMwDEMej0ehoaEKCTn5eRW/B5eNGzeqrKxMf/rTnxQeHq5zzjlH9957r7KysnTBBRcoMjJSTqdTktS9e3elpqYqJyenzsGlqqpKRUVFvtwFAADgI7GxsQoPDz/pfL8HF4/Ho7CwMIWFhXmn2Ww27d27V1988YViYmJqLB8dHa3c3Nw6r786pV111VWy2+0NUzQAAPApt9utL7/88pRnWyQTgkunTp3kcDg0Y8YMZWZmat++fXrxxRe98yMiImos73A4dOTIkTqvv/ry0JdfftkwBQMAAL85XTcPvweX8847TwsXLtTUqVPVp08ftWvXTkOGDFFRUZHsdrsOHz5cY3mXy6WmTZvWezuxsbGccQEAwCLcbnedunr4PbhUVlaqqqpKL7/8sjdVvfbaa4qOjlZcXJxeeumlGstv375d7du3r/d27HY7wQUAgABjyu3Qd955p3Jzc2UYhrZs2aLnn39et912m/r376+9e/cqOztbx44d07p165SXl6ehQ4eaUSYAAGhkbIZhGP7eaEFBgaZOnarvvvtOLVq00G233aYRI0ZIkoqKipSVlaWvv/5aUVFRGjNmjNLT0+u8brfbrU2bNqljx46ccQEAwCLq+v1tSnDxJYILAADWU9fvb4b8BwAAlkFwAQAAlkFwAQAAlkFwAQAAlkFwCRCrV69WRkaGVq9ebXYpAAD4DMElALhcLs2YMUOlpaWaMWOGXC6X2SUBAOATBJcA8Oqrr6qsrEySVFZWppycHJMrAgDANwguFldcXKycnBxVD8djGIZycnJUXFxscmUAADQ8gouFGYahmTNnnnR6gI0tiOPQpwlAsCK4WNgPP/yggoICud3uGtPdbrcKCgr0ww8/mFQZfIk+TQCCGcHFwi699FJ16dLlhKGR7Xa7EhMTdemll5pUGXyJPk0AghnBxcJsNpsefPDBk0632WwmVAVfok8TgGBHcLG4tm3byul0ekOKzWaT0+lUmzZtTK4MDY0+TQBAcAkIw4cPV4sWLSRJLVu2lNPpNLki+AJ9mgCA4BIQHA6HHn74YbVu3VoPPfSQHA6H2SXBB+jTBAAEl4CRlJSkpUuXKikpyexS4CP0aQIAggtgKfRpAhDsCC6AxdCnCUAwI7gECEZSDR70aQIQzELNLgBnr3ok1b1792rGjBnq3LkzX2YBLikpif5MAIISZ1wCACOpAgCCBcHF4hhJFQAQTAguFsZIqgCAYENwsTBGUg1edMYGEKwILhZWPZLqL9lsNkZSDWDVnbFLS0s1Y8YMuVwus0sCAL8huFjYyUZSNQyDkVQDGJ2xAQQzgovFFRUV1Tq9sLDQz5XAH+iMDSDYEVwszO12a/r06bXOmz59+gl9X2BtdMYGAIKLpS1fvvyk4cTtdmv58uV+rgi+RGdsACC4WFpaWprsdnut80JDQ5WWlubniuBL1Z2xf9nmdrudztgAggbBxcLsdrvGjx9f67yJEyeeNNTAmk7WGbt6Op2xAQQDgovFDRw4UK1ataox7YILLtCAAQNMqgi+1LZtWzmdTm9IsdlscjqdatOmjcmVAYB/EFwCwHPPPVfj93nz5plUCfxh+PDhatGihSSpZcuWcjqdJlcEAP5DcAkArVu3Vt++fSVJffv2VevWrU2uCL7kcDg0aNAghYSEaODAgTwJHEBQsRkBdg+l2+3Wpk2b1LFjR/p4ICC5XC7dcsst2rt3r1q2bKnXXnuN8ALA8ur6/c0ZF8BiGDkXQDAjuAAWwsi5AIIdwQWwCEbOBQCCS8CYPHmyevfurcmTJ5tdCnyEkXMBwKTgsnXrVjmdTiUkJKhnz5564oknVFlZKUnavHmzMjIyFB8fr+TkZC1dutSMEi2ltLRUH330kSTpo48+UmlpqckVwReqR86tDSPnAggWfg8uHo9Ho0ePVkpKiv79738rNzdXn332mRYuXKjy8nKNGjVKQ4YMUUFBgbKysjR16lSedHwaY8aMqfF7ZmamSZXAl042cq4kRs4FEDT8HlzKy8u1Z88eeTwe7zX5kJAQRUREKD8/X5GRkXI6nQoNDVX37t2VmprKXROn8N5772nPnj01pu3evVvvvfeeSRXBl4qKimqdTrgHECxMGcdl6tSpevnll2Wz2eR2u3Xddddp7ty5mjZtmnbt2qU5c+Z4l33llVeUm5urZcuW1Wnd1feBx8bGBvw4Lm63WykpKbU+Idput2vVqlUBfwyCCe0NIJC53W4VFRWddhyXUD/WJOnnS0UOh0N//OMfddNNN+mHH37Q73//e82ePVuHDx9WREREjeUdDoeOHDlS7+2c7F+mgeSzzz6r9UtM+vkFMH/+fPXs2dPPVcFXaG8AMCG4vP/++1q1apVWrlwpSWrfvr0yMzOVlZWl1NRUHTx4sMbyLpdLTZs2rfd2guGMS2xsrP7xj3/U+mUWGhqqe++9N+CPQTChvQEEsuozLqfj9+Cya9cu7x1E3iJCQxUWFqaYmBitXr26xrzt27erffv29d6O3W4P+A9xu92u8ePHa+rUqSfMmzhxosLDw02oCr5CewOACcGlZ8+emjFjhp5//nndfffd+vHHHzV//nylpqaqf//+euqpp5SdnS2n06mNGzcqLy/vhKcfW41hGHK5XD5Zd58+fbRw4ULt3bvXO61Vq1bq1auXjh492uDbczgc3L1iotjY2FqnX3XVVX6uBAhOvvw8P34bknz+WWvVz3NTOueuWbNGs2bN0rfffqtzzz1XaWlpyszMVHh4uIqKipSVlaWvv/5aUVFRGjNmjNLT0+u87sb2kEXDMJSZmaktW7aYXUqDiI2N1dy5cy35Yrc6wzD0yCOPaMOGDTVGybXZbEpISNDTTz9NuwA+xOe5b9X1+9vvZ1wkqUePHurRo0et82JjY7VkyRI/V+RbjeVFAWurHjn3lwzD8I6ce9lll/m/MPjc6tWrNWvWLD3wwANKSkoyu5ygxue5+UwJLsHEZrNp7ty5Pj216HK5NHjwYEnSsmXL5HA4fLYtq55aDATVI+du3LhRHo/HO91ut6tz586MnBugXC6XZsyYob1792rGjBnq3LmzT9/jODk+zxsHgosf2Gy2E27z9hWHw+G3bcG/qkfOdTqdNaYbhsHIuQHs1VdfVVlZmSSprKxMOTk5uvPOO02uKnjxeW4+HrIIWJxhGDwZOkAVFxcrJyfH276GYSgnJ0fFxcUmVwaYh+ACWIRhGJo5c+YJZ1ZsNptmzpxJeAkw1e19sum0N4IVwQWwiOrOucf3b5F+Ho26unMuAkd1e/9ywEG32017I6gRXACLqO6cGxJS820bEhKixMREOucGGNobqB3BBbCI6s65v7xEQOfcwFTd3rWdYaO9EcwILoDF2Ww2+jsEqJM9t6WwsNDPlQCNB8EFsIjqTpm/vHRA59zA5Ha7NX369FrnTZ8+/aRPCgcCHcEFsAg6awaX5cuXnzScuN1uLV++3M8VAY0DwQWwiOrOmr98hofdbqezZgBKS0s76fNaQkNDlZaW5ueKgMaB4AJYRHVnzZNNp7NmYLHb7Ro/fnyt8yZOnNgoHiILmIHgAlhI27Zt5XQ6vSHFZrPJ6XSqTZs2JlcGXxg4cKBatWpVY9oFF1ygAQMGmFQRYD6CC2Axw4cPV4sWLSRJLVu2POHZRQgszz33XI3f582bZ1IlQONAcAEsxuFwqGnTppKkc845hycFB7jWrVsrNjZWkhQbG6vWrVubXBFgLoILYDE7duzw3kH0ww8/aMeOHSZXBF9yuVzatWuXJGnXrl1yuVwmVwSYi+ACWMyoUaNO+TsCy6uvvqqysjJJUllZmXJyckyuCDAXwQWwkJycHB05cqTGtCNHjvBlFqCKi4uVk5PjHVzQMAzl5OSouLjY5MoA8xBcAIuoqqrSggULap23YMECVVVV+bki+FL1SMknm85IyQhWBBfAIrKzs89qPqyFkZKB2hFcAIu4/fbbz2o+rIWRkoHaEVwAiwgNDdXo0aNrnTdmzBiFhob6uSL4EiMlA7UjuAAWEhUVVev0888/38+VwB8YKRk4EcEFsAi3263p06fXOm/69OknfZIwrI2RkoGaCC6ARSxfvvyk4cTtdmv58uV+rgj+4HA49PDDD6t169Z66KGHGCkZQY/gAlhEWlraSZ8IHBoaqrS0ND9XBH9JSkrS0qVLlZSUZHYpgOkILoBF2O12jR8/vtZ5EydOPGmoAYBAQnABLKT6YXu/dNVVV/m5EgAwB8EFsIjqEVN/eRuszWZjJFUAQYPgAlhE9UiqvwwohmEwkiqAoEFwASyieiTVkJCab9uQkBBGUgUQNAgugEVUj5ha2xkXRlIFECwILoDF2Ww2+rcACBoEF8Aiqjvn/vJSEZ1zAQQTggtgEdWdc385eq7b7aZzboDLzMxU7969lZmZaXYpgOkILoBFnKxzrt1up3NuANuxY4eKiookSUVFRdqxY4fJFQHmIrgAFkHn3OA0atSoU/4OBBuCC2BxhmHQvyVA5eTk6MiRIzWmHTlyRDk5OSZVBJiP4AJYBCPnBpeqqiotWLCg1nkLFixQVVWVnysCGgeCC2AR1Z1zPR5Pjekej4fOuQEoOzv7rOYDgcrvwWX58uWKj4+v8d/VV1+tq6++WpK0efNmZWRkKD4+XsnJyVq6dKm/SwQaperOubWhc27guf32289qPhCo/B5c0tLS9MUXX3j/W7lypSIjI5WVlaXy8nKNGjVKQ4YMUUFBgbKysjR16lQVFhb6u0yg0anunFsbOucGntDQUI0ePbrWeWPGjFFoaKifKwIaB1MvFRmGoXHjxqlPnz4aPHiw8vPzFRkZKafTqdDQUHXv3l2pqal0RAP+z7/+9a9ap3/88cf+LQR+ce2119Y6vWfPnn6uBGg8TI3sy5Yt0/bt2/Xcc89JkrZt26aYmJgay0RHRys3N7fe6/7lIF2B7Ph9dbvdQbXvweR0nTVvuukm/hUeQKo7Y9dm5syZevLJJznLFoCC+fO8rvtq2qecx+PR/Pnzdc8996hZs2aSpMOHDysiIqLGcg6H44TbAeuiesCmYFBRUeH9ubCwUE2aNDGxGvjKu+++e8r506dP16BBg/xUDXyttLRUBQUFtc4rKChQfn6+Wrdu7eeq4Gt8np+eacFl/fr12r17t2666SbvtIiICB08eLDGci6XS02bNq33+mNjY2W328+6Tis4evSo9+e4uLgTwh8Cw9VXX63333//pPPHjx/PGZcAYhiGPvzww1rDS2JiogYMGMAZlwAUzJ/nbre7TicdTPuUW7Vqlfr3769zzjnHOy0mJkarV6+usdz27dvVvn37eq/fbrcHTXA5fj+Dab8bK8Mw5HK5fLLuO+64Q4sXLz5h+t133y2Px6PKysoG3Z7D4eDL0UT9+vWrNbj069ePkBqg+Dw/PdNe+Rs3btStt95aY1r//v311FNPKTs7W06nUxs3blReXp63DwzQ2BmGoczMTG3ZssWv2124cKEWLlzY4OuNjY3V3LlzCS8m8Hg8mjdvXq3z5s6dqwEDBpzw3CogGJj2qi8uLtYFF1xQY1rz5s21ePFirVy5Ul27dtWkSZM0adIkdevWzaQqgfrjSx4NYe3atTpw4ECt8w4cOKC1a9f6uSKgcTDtjMsXX3xR6/TY2FgtWbLEz9UADcNms2nu3Lk+u1Qk/dzva/DgwZKkK6+8UrNmzfLZtrhUZJ7u3bvrvPPOqzW8nH/++erevbsJVQHm4yIp0MBsNpvfOtTNmjUrqDrvBZOQkBD9+c9/1kMPPXTCvClTpnCZCEGLVz4ANFIJCQmKjY2tMS0uLk6dOnUyqSLAfAQXAGjEsrKyvGdXQkJC9MQTT5hcEWAuggsANGKRkZEaPny4QkJCNHz4cEVGRppdEmAq+rgAQCN311136a677jK7DKBR4IwLAACwDM64AMBZ8OVIycdvQ/L9GEHc/g4rILgAwBkya6RkX2GkZFgBl4oA4CzwJQ/4F2dcAOAM+Xuk5GXLlsnhcPhsW1wqghUQXADgLPhzpGSHw8FIyQh6XCoCAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWQXABAACWYUpw+emnnzR+/Hh17dpVXbp00ZgxY7R7925J0ubNm5WRkaH4+HglJydr6dKlZpQIAAAaIVOCy3333acjR47o/fff10cffSS73a4//vGPKi8v16hRozRkyBAVFBQoKytLU6dOVWFhoRllAgCARibU3xvcsmWLNm/erDVr1qhZs2aSpMcff1x79uxRfn6+IiMj5XQ6JUndu3dXamqqcnJyFBcX5+9SAQBAI+P34FJYWKjo6Gi9+eabev3113X06FH16tVLEyZM0LZt2xQTE1Nj+ejoaOXm5tZ7O263u6FKbvSO31e32x1U+x6MaO/gQnsHl2Bu77ruq9+DS3l5uf7zn//o6quv1ttvvy2Xy6Xx48drwoQJatmypSIiImos73A4dOTIkXpvp6ioqKFKbvQqKiq8PxcWFqpJkyYmVgNfo72DC+0dXGjv0/N7cAkPD5ckPfbYY2rSpImaNWumBx54QL/97W+Vnp4ul8tVY3mXy6WmTZvWezuxsbGy2+0NUnNjd/ToUe/PcXFxJ4Q/BBbaO7jQ3sElmNvb7XbX6aSD34NLdHS0PB6Pjh075k2SHo9HknTllVfqtddeq7H89u3b1b59+3pvx263B01wOX4/g2m/gxXtHVxo7+BCe5+e3+8q6tGjhy655BI9+uijOnz4sPbt26eZM2eqX79+uuGGG7R3715lZ2fr2LFjWrdunfLy8jR06FB/lwkAABohvweXsLAwvfLKK7Lb7UpJSVFKSoouvPBC/fWvf1Xz5s21ePFirVy5Ul27dtWkSZM0adIkdevWzd9lAgCARsjvl4okqXXr1po5c2at82JjY7VkyRI/VwQAAKyAIf8BAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlEFwAAIBlhJpdgJkMw5DL5TK7jLN2/D4Ewv44HA7ZbDazywAANEJBHVxcLpdSUlLMLqNBDR482OwSztqqVasUERFhdhkAgEaIS0UAAMAyzuiMy759+7R8+XKVlJTo/vvvV0FBgfr27dvQtfnV4U5OKcTCJ6AM4+f/W/USi6dKTT/PMbsKAEAjV+9v6q1bt2rkyJG6/PLL9Z///Ee33nqr7r//fk2ePFlDhw71RY3+ERIq2cPMrgIAAJxCvYPL1KlTNXHiRKWnp6tLly665JJLNG/ePE2dOtXawQUAYFncbNE4+eJmi3oHl6+//trbAbS6mF69eumBBx5o0MIAAKgrbrZonHxxs0W9O+dGRUXp22+/rTHt22+/VcuWLRusKAAAgNrU+4zLLbfcotGjR+uee+5RVVWV3n33Xc2fP1/Dhg3zRX0AANTLBEnhZhdxFv7vVgtZ9FYLVUp60ofrr3dwufXWW2W32/W3v/1NHo9Hzz77rIYNG6bbb7/dB+UBAFA/4ZLCLfu1HwiM0y9yFs7o/l+n0ymn09nQtQAAAJxSvYPLH/7wh1qnh4WFKSoqSn369FHHjh3Pti4AAIAT1LtzblhYmPLy8nT06FG1bNlSlZWVeuedd1RaWqpvv/1WI0eO1LvvvuuLWgEAQJCr9xmXXbt2adasWerXr5932r/+9S+9/vrrmj17ttavX68nnnhCgwYNatBCAQAA6n3GZfPmzUpOTq4xrVevXtqwYYMkqWvXriopKWmY6gAAAI5zRuO4fPrppzWmrV27VpGRkZKknTt36vzzz2+Q4gAAAI5X70tF9913n37/+99rwIABatu2rYqLi/XBBx9oypQp+vbbb3Xbbbdp+PDhvqgVAAAEuXoHl+uvv15t2rTRW2+9pS+//FIXX3yxXnvtNXXo0EHFxcWaPHlyjf4vAAAADaXewWXHjh16/fXXVVpaKo/Ho++++05PPPGEvvvuO61bt06XXXaZD8oEAAA4gz4ujz32mEpKSnTuuefK7XYrJiZG27Zt4/IQAADwuXoHly1btmjevHkaM2aMmjVrpkmTJumZZ57R2rVrfVEfAACAV72DS0REhM4//3y1a9dOX3/9tSSpd+/eJzwxGgAAoKHVO7i0a9dO//rXv9S0aVN5PB7t3LlTpaWlqqqq8kV9AAAAXvUOLqNGjdLYsWO1c+dODRs2TL/73e+UkZGh6667rs7rePfdd3XVVVcpPj7e+9+4ceMk/TzAXUZGhuLj45WcnKylS5fWt0QAABCg6n1XUXJysvLz89WiRQuNGTNGl112mQ4dOqQhQ4bUeR1FRUUaPHiwpk6dWmN6eXm5NxgNGzZMBQUFyszMVIcOHRQXF1ffUgEAQICpd3CRpNatW3t/PpNnEhUVFWngwIEnTM/Pz1dkZKScTqckqXv37kpNTVVOTk69g4vb7W6QZeB/brebtjmF448Nxyrw0d51w3FpnOrzmq3rcmcUXM6Gx+PR1q1bFRERoUWLFsntduvaa6/VI488om3btikmJqbG8tHR0crNza33doqKik67TEVFRb3XC98rLCxUkyZNzC6j0Tr+dcuxCny0d93wed44+eI16/fgsm/fPl111VVKSUnR7NmztX//fk2YMEHjxo1Tq1atFBERUWN5h8OhI0eO1Hs7sbGxstvtp1zm6NGj9V4vfC8uLu6E1wH+5/jXLccq8NHedcPneeNUn9es2+2u00kHvweXli1bKicnx/t7RESExo0bp9/+9rdKT0+Xy+WqsbzL5VLTpk3rvR273X7a4HK6+TBHXdoumB1/bDhWgY/2rhuOS+Pki9dsve8qOltfffWVnn76aRmG4Z1WWVmpkJAQxcXFadu2bTWW3759u9q3b+/vMgEAQCPk9+ASGRmpnJwcLVq0SFVVVfrxxx/11FNP6cYbb1RKSor27t2r7OxsHTt2TOvWrVNeXp6GDh3q7zIBAEAj5PfgcuGFF2rBggX68MMPlZiYqKFDhyo2NlZ/+tOf1Lx5cy1evFgrV65U165dNWnSJE2aNEndunXzd5kAAKAR8nsfF0lKTEzUkiVLap0XGxt70nkAACC4+f2MCwAAwJkiuAAAAMsguAAAAMsguAAAAMsguAAAAMsguAAAAMsw5XZowAyGYZzwSAkrOn4fAmF/HA6HbDab2WUggFRKkozTLAVfqfTx+gkuCBoul0spKSlml9GgBg8ebHYJZ23VqlU8OBBn7fjHyDxpYh2o6fh2aShcKgIAAJbBGRcEpXm9f1ITu3VPJVf/I8aqV1gq3DZlfhJpdhkIIMdfbpwgKdy8UoJepf531ssXl4EJLghKTeyGHA37pHXUi3VDIxq/cEnhsmiqDwi+fX8TXKq5j5ldQXDj+KOB0Rm7caIzNs5WUAeX4zsNNf3iNRMrwfF80ZkLwYfO2I0TnbFxtuicCwAALCOoz7gcf7rycPwtkj3MxGqCnPuY96wXp5HR0Nypbmt/2lWfhLTqW6NKsufRqQwNw8pv5YZlDyO4AIEqVHzaAQGCS0UAAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyCC4AAMAyTA0ubrdbI0aM0MSJE73TNm/erIyMDMXHxys5OVlLly41sUIAANCYmBpc5s6dqw0bNnh/Ly8v16hRozRkyBAVFBQoKytLU6dOVWFhoYlVAgCAxsK04LJ27Vrl5+drwIAB3mn5+fmKjIyU0+lUaGiounfvrtTUVOXk5JhVJgAAaERCzdhoWVmZHnvsMT333HPKzs72Tt+2bZtiYmJqLBsdHa3c3Nx6b8PtdjfIMvA/t9vtk7ahvRsn2ju40N7BpT7tXdfl/B5cPB6Pxo0bp5EjR+pXv/pVjXmHDx9WREREjWkOh0NHjhyp93aKiopOu0xFRUW91wvfKywsVJMmTRp8vbR340R7BxfaO7j4or39HlwWLFig8PBwjRgx4oR5EREROnjwYI1pLpdLTZs2rfd2YmNjZbfbT7nM0aNH671e+F5cXNwJAbYh0N6NE+0dXGjv4FKf9na73XU66eD34LJs2TLt3r1bCQkJkn4OJpL0wQcfaPz48Vq9enWN5bdv36727dvXezt2u/20weV082GOurTdma4XjQ/tHVxo7+Dii/b2e3BZuXJljd+rb4WeNm2a9u/fr6eeekrZ2dlyOp3auHGj8vLy9Nxzz/m+ME+V77fhS4bx8/9tNnPrOFNWP/4AAL8wpXPuyTRv3lyLFy9WVlaWZs+eraioKE2aNEndunXz+babfs6dSwAANHamB5dp06bV+D02NlZLliwxqRoAANCYmR5czORwOLRq1SqzyzhrLpdLgwcPlvRzHyKHw2FyRWfH6vUDAHwnqIOLzWbzSe92MzkcjoDbJwAAqgV1cEHwqmCsKlNx/AGcKYILgoZRfeeVpMxPmptYCY53fLsAwOmY+pBFAACA+uCMC4KG7bgxbub13q8mjFdlmgr3/8562aw69hAAUxBcEJSa2CUHwQUALIfgAiDwMTCzufx8/CslSdbtO1VduVXPRVb6eP0EFwAB6fhOv/Y8Tq81Fv7ojP2kz7cAM9E5FwAAWAZnXAAEpOM7/bpT3Xzamanqf2e9fNUZm5HQGydf1M9bGUDgCxWfdgGOkdCDB5eKAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZYSaXQBghgq3TZJhdhlnzPi/0m02c+s4Uz8ffz+q8u/mGlz1S9Wi7W35449GheCCoJT5SaTZJcCP7Hl2s0sA0EC4VAQAACyDMy4IGg6HQ6tWrTK7jLPmcrk0ePBgSdKyZcvkcDhMrujs+Kp+2rtxsnr9MB/BBUHDZrMpIiLC7DIalMPhCLh9aii0NxCYuFQEAAAsg+ACAAAsg+ACAAAsw5TgsnbtWmVkZKhTp05KSkrS448/LpfLJUnavHmzMjIyFB8fr+TkZC1dutSMEgEAQCPk9+Cyb98+jR49WjfffLM2bNigt99+W//+97/1wgsvqLy8XKNGjdKQIUNUUFCgrKwsTZ06VYWFhf4uEwAANEJ+v6soKipKa9asUbNmzWQYhn766SdVVFQoKipK+fn5ioyMlNPplCR1795dqampysnJUVxcnL9LBQAAjYwpt0M3a9ZMknTttdeqtLRUCQkJSk9P16xZsxQTE1Nj2ejoaOXm5tZ7G263u0FqtYLj99XtdgfVvgcj2ju40N7BJZjbu677auo4Lvn5+SovL9cjjzyisWPHqnXr1ieMUeBwOHTkyJF6r7uoqKihymz0KioqvD8XFhaqSZMmJlYDX6O9gwvtHVxo79MzNbg4HA45HA6NGzdOGRkZGjFihA4ePFhjGZfLpaZNm9Z73bGxsbLbg+P5JEePHvX+HBcXxwBVAY72Di60d3AJ5vZ2u911Oung9+Dy+eef69FHH9Xy5csVHh4uSaqsrFRYWJiio6O1evXqGstv375d7du3r/d27HZ70ASX4/czmPY7WNHewYX2Di609+n5/a6iDh06yOVyacaMGaqsrFRJSYmefPJJ3XTTTUpJSdHevXuVnZ2tY8eOad26dcrLy9PQoUP9XSYAAGiE/H7GpWnTplq0aJH++te/KikpSeeee65SU1OVmZmp8PBwLV68WFlZWZo9e7aioqI0adIkdevWzd9lAgCARsiUPi7R0dFavHhxrfNiY2O1ZMkSP1cEAACsgCH/AQCAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZRBcAACAZYSaXQAAWJlhGHK5XD5b//Hr9uV2JMnhcMhms/l0G8DZIrgAwBkyDEOZmZnasmWLX7Y3ePBgn64/NjZWc+fOJbygUeNSEQCcBb7kAf/ijAsAnCGbzaa5c+f6/BKOYRje7fkSl4pgBQQXADgLNptNERERZpcBBA0uFQEAAMsguAAAAMsguAAAAMswJbh89dVXGjlypBITE5WUlKTx48dr3759kqTNmzcrIyND8fHxSk5O1tKlS80oEQAANEJ+Dy4ul0t33XWX4uPj9dlnn+mdd97RTz/9pEcffVTl5eUaNWqUhgwZooKCAmVlZWnq1KkqLCz0d5kAAKAR8ntw+fHHH/WrX/1KmZmZCg8PV/PmzTVs2DAVFBQoPz9fkZGRcjqdCg0NVffu3ZWamqqcnBx/lwkAABohv98Offnll2vRokU1pq1atUq//vWvtW3bNsXExNSYFx0drdzc3Hpvx+12n1WdVnL8vrrd7qDa92BEewOBK5jf33XdV1PHcTEMQ7NmzdJHH32kV199VS+//PIJ4yE4HA4dOXKk3usuKipqqDIbvYqKCu/PhYWFatKkiYnVwNdobyBw8f4+PdOCy6FDh/SHP/xBW7du1auvvqoOHTooIiJCBw8erLGcy+VS06ZN673+2NhY2e32hiq3UTt69Kj357i4OAbDCnC0NxC4gvn97Xa763TSwZTgsmPHDt199926+OKLlZubq6ioKElSTEyMVq9eXWPZ7du3q3379vXeht1uD5rgcvx+BtN+ByvaGwhcvL9Pz+/Bpby8XLfddpu6deumrKwshYT8r39w//799dRTTyk7O1tOp1MbN25UXl6ennvuOX+X2aB47H1wob2BwMX723w2o/rpXX7y0ksvadq0aYqIiDjhgH3xxRcqKipSVlaWvv76a0VFRWnMmDFKT0+v8/rdbrc2bdqkjh07Noqk6u/H3vsaj70/NdobCFy8v32rrt/ffj/jMnLkSI0cOfKk82NjY7VkyRI/VuR7jeVFAf+gvYHAxfvbfH4/4+Jrje2Mi+T7U4vV25B47H1jQHsDgYv3t+802jMuwYjH3gcX2hsIXLy/zcdDFgEAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUQXAAAgGUE3EMWq5+q6Xa7Ta4EAADUVfX3dvX3+MkEXHDxeDySpKKiIpMrAQAA9VX9PX4yNuN00cZiPB6PqqqqFBISIpvNZnY5AACgDgzDkMfjUWhoqEJCTt6TJeCCCwAACFx0zgUAAJZBcAEAAJZBcAEAAJZBcAEAAJZBcAEAAJZBcAEAAJZBcAEAAJZBcAEAH6ioqNB///vfM/77H374oQGrAQIHwcUCrr/+ei1fvtzsMmBBc+bM0YgRI8wuIyjdcsstWrNmzRn97ZNPPqn58+d7f4+Pj9eGDRsaqjSYYOLEiZo4caLZZQSEgHtWUSBasWKF2SUAqKf9+/c32N9+8cUXZ1sOEDA442KC4uJidejQQa+88oqSkpLUuXNnjRs3TocOHdKcOXN0xx13aOjQoUpMTFRBQYGSk5P197//XZI0YsQIzZ49WzfffLM6duyotLQ0FRYW6uGHH1anTp2UnJysjz/+2Lut3Nxcpaenq2vXroqPj9fo0aO1b98+STphW3PnzlXnzp1VUVHh/fuVK1eqb9++p31aZ7CaM2eOrr32WiUmJmro0KH68MMPJUlbt27ViBEj1KVLFw0YMEDZ2dk1juHf/vY39e/fX/Hx8UpPT9fatWsl/fysrRdeeEH9+vVT586dddNNN+nTTz/1/l1ycrIWLFigIUOGKD4+XkOGDNG6deu88z///HMNHTpUHTt21O9+9zsVFxd75xmGoRdeeEGpqalKSEhQly5d9PDDD8vlckn6+V+EY8eO1cCBA9WtWzfNnz9fKSkpNfb3xRdflNPpbPgDGWDuuOMO/fjjj5o8ebL+8pe/nPL1UNv7MC8vT3l5eUpLS5MkdejQQevXr5ckffPNNxo9erT69OmjuLg4DRo0SB999JGk/322TJs2TV26dNGjjz6qLl26KC8vz1tbZWWlunbt6n3Noe6qj+/x76vqs5p///vfdfPNN+uJJ55Qt27d1L17dz322GM6duzYCespKSnRddddp7/+9a8yDEMjRozQjBkz5HQ6FR8fr4EDB+rdd9+tsfwDDzyg7t27KykpSQ8//LB2794tj8ejHj166IMPPvAum5ycrAceeMD7+5NPPqnx48dr/fr1Sk5O1vz589WrVy8lJibqvvvu06FDh3xzsHzJgN/t3LnTiImJMYYPH26UlZUZu3fvNjIyMoxHHnnEmD17tvGrX/3KWLNmjXHo0CHj2LFjRt++fY233nrLMAzDGD58uNGjRw9j27ZtRkVFheF0Oo1f//rXxvvvv29UVlYa06ZNM5KTkw3DMIzNmzcb11xzjbF582bDMAxj165dxoABA4yZM2cahmGcsK2KigqjS5cuxooVK7y1jh492nj22Wf9e4AsYu3atUZSUpJRWlpqeDwe4/XXXze6du1qFBcXG507dzZeffVVo7Ky0ti2bZvRv39/4/XXXzcMwzDeeustIzEx0fj8888Nt9ttvPnmm8Y111xj7N+/35g9e7bRu3dvY8uWLcaxY8eMFStWGFdffbW3Dfv27Wv079/f+P77740jR44YEyZMMFJSUgzDMIx9+/YZCQkJxoIFC4zKykpjw4YNRqdOnYzhw4cbhmEYK1asMJKSkozvvvvOMAzD2L59u5GYmGi8+eabhmEYxoQJE4yOHTsa//nPf4zy8nKjtLTUuPLKK41NmzZ59/mGG24wcnNz/XWILa36ffvf//73lK+H2t7zEyZMMCZMmOBdV0xMjLFu3TrDMAxj4MCBxtNPP21UVlYaFRUVRlZWltG7d2/DMP732TJp0iSjoqLCKC8vNyZPnmzceeed3nWtXLnS6Nu3r+HxePx4NAJD9fHduXOnd9rs2bON4cOHG2+99ZYRExNjPPfcc0ZlZaWxefNmo2PHjsY777xjGIbhbdMdO3YYffv2rfG5Onz4cCMxMdHYunWrUVFRYTzzzDNG586dDZfLZVRWVhoDBgwwHnroIePAgQNGeXm58dBDDxk33nijcezYMeOxxx4z/vjHPxqGYRjffPONERcXZyQmJnrbd8CAAcb7779vrFu3zoiJiTEmT55sHD161Pj++++NpKQkY8GCBX48gg2DMy4m+sMf/qCoqCi1atVKY8eO1cqVK1VZWalLLrlE3bt3V9OmTRUaeuLVvJSUFEVHRys8PFwJCQm6/PLL1a9fP4WFhal3794qKSmRJMXExOidd95RXFycysvLtXv3bkVFRam0tNS7ruO3FR4erhtuuEHLli2TJJWVlemzzz7TjTfe6J8DYjFNmjRReXm53nzzTX355ZfKyMjQ2rVr9e677+qKK66Q0+lUWFiYoqOjdeeddyonJ0eS9Pbbb2vYsGGKj49XSEiIMjIytHjxYjkcDr311lsaNWqUfv3rXys0NFSDBg1ScnKycnNzvdu96aabdOmllyoiIkKpqan6/vvvJUkff/yxIiIidPfddyssLEydO3fW0KFDvX/Xu3dv5ebm6rLLLtO+ffu0f/9+RUZG1ng9dOzYUTExMTrvvPN0wQUXqFevXt7Xw9atW1VcXKzf/OY3fji6gWP58uWnfD1IOu17/ngLFizQfffdJ8MwVFJSovPOO69GG0rSkCFDFB4ervPOO09Dhw7VmjVrtGfPHkk/v/7S09Nls9kafmeDnMPh0D333KOwsDDFxcWpQ4cO+u6777zzS0pKNGLECPXu3Vtjx46t8bcpKSm66qqrFB4erhtvvFEHDx5UWVmZNmzYoJ07d2rKlCk699xzdd5552nKlCn66quvtGXLFvXr10+ffPKJJOmzzz7ToEGD5PF49OWXX+qbb77R7t271bNnT+92MjMz5XA4dOmll6pr16416rMK+riY6NJLL/X+fNFFF6myslLl5eW64IILTvl3kZGR3p/tdrvOP/987+8hISHeU9AhISF6+eWXlZeXp3POOUcdOnTQoUOHalyy+OW20tPTNWzYMJWVlWn58uXq1KmTLrnkkrPZzYAVHx+vOXPm6JVXXtGiRYvkcDg0YsQI7dmzR1u3blVCQoJ3WY/HI7vdLknas2ePLr744hrr6tSpkyRp7969Jxzvtm3b6quvvvL+3rJlS+/PoaGh3vYsLS3VRRddVOMLqV27dvp//+//Sfr5UtHMmTP10UcfKSoqSldeeaWOHTt22tfD5MmT9Yc//EFvv/22fvOb36hp06b1P1hBrKSk5JSvB+nE434qX331lcaMGaM9e/boiiuuUFRU1AmXco9fX2xsrK644gqtWLFCqamp+uyzzzRp0qSz2COcTIsWLWq8/8LCwmq0zYYNG5SUlKQPP/xQDz74YI3P7latWnl/rg6vHo9HZWVlat68uZo1a+ad36xZM0VGRqqkpET9+/fXgQMHtG3bNn366acaMmSIDhw4oDVr1sgwDPXq1UsOh6PW7fyyPqsguJiotLRUl19+uaSfr51GRESoefPmp/2XUF3/pZSdna3Vq1crLy/P+2V3zz33nHJdV199taKjo7Vq1SqtWLGCO1JO4ccff1SLFi304osvqrKyUmvXrtXvf/97jRkzRl27dtWLL77oXXb//v06fPiwpJ9D6q5du2qsa+bMmUpLS1ObNm20c+fOGvN27txZpy+2Cy+8UCUlJfJ4PAoJ+flk6vG34z799NP68ccf9c9//tP7IZiamlpjHb98PSQnJ2vy5MlavXq13nvvPT377LOnrQM1XXjhhad8PUh1f0+Xlpbq/vvv19y5c5WcnCxJWrVqlfLz82ss98v1DR06VCtWrFBYWJgSEhLUtm3bM92doFYdNo/vt1KfTtiDBg3S9OnTdfPNN2vKlCl65plnTvs3bdq00f79+3Xo0CHv+/bgwYPav3+/WrVqpfDwcPXq1UsffvihNm7cqCeffFIHDhzQ+++/r6NHjwZknzQuFZloxowZOnTokEpLSzV79mwNHjz4tKeJ6+PQoUMKDQ1VWFiYqqqqtGzZMn366ae1dhY7Xnp6ut588019//33GjBgQIPVE2iKiop011136auvvlJ4eLhatGghSercubM2bdqk5cuXq6qqSrt379Y999yjadOmSfr5+L7xxhsqLCyUx+PRW2+9pZycHDVv3lwZGRl64YUXtHXrVrndbr333nv65z//WafLdcnJyTIMQ3PmzFFlZaW2bNmipUuXeucfOnRITZo0kd1uV0VFhRYvXqyvv/76lK+HsLAwpaWl6dlnn1WzZs1qnDXAqYWHh+vgwYNKTU095evhVH/7S4cPH5bb7VZERIQkafv27Zo3b56knzvdnkxaWpq++uorLV26VOnp6We5Z8GrRYsWOv/887VixQoZhqGtW7dq5cqVdf77sLAw2e12TZ06VR988EGNDrgnExsbq+joaE2ePFkHDx7UwYMH9ec//1nt2rXznqnt37+/srOzddlllykqKko9e/bUhg0b9OWXX6pPnz5nuruNFsHFRO3atdMNN9ygtLQ0xcfH69FHH23Q9d9xxx266KKL1LdvX/Xq1UvLly/XLbfcoq+//vqUf5eamqrt27dr0KBB3g9InCglJUV33HGH7r33XnXs2FH333+/Hn30USUmJmrRokV644031KNHDw0ePFiXX36594sqNTVV9913n8aNG6eEhAS98cYbWrhwoaKiojRy5Eg5nU49+OCDSkhI0IIFC/TMM88oMTHxtPWcd955evHFF7V27VolJibqscceq3FX0AMPPCCXy6UePXooOTlZmzZt0uDBg0/7ekhPT9eXX37JF1493XTTTZo5c6Zmzpx5ytdDbQYNGqTPP//8hC+dyy+/XOPHj9e4cePUuXNn3X///Ro6dKjCwsJO2Y5RUVG69tprVVxczD9GzkJ4eLgef/xxvffee+rUqZOmTZum3/72t/VezxVXXKH77rtPU6ZMOaF/0i+FhoZqwYIFqqqqUkpKivr27atjx47ppZde8v5Dt0+fPjp06JC3L8sll1ziPdN3/CWmQGEzrHiBy+KKi4t13XXX6cMPP2yUp2zdbrd69uyp559/Xtdcc43Z5cBkP/30k3r16qUPPvhArVu3NrscnKGpU6fK5XJpypQpZpcCnBX6uKCGbdu26b333tOFF15IaAlylZWV+uGHH/Tyyy/r2muvJbRY1K5du/T999/rH//4h7Kzs80uBzhrBBfUMHr0aEnS7NmzTa4EZqusrNTvfvc7XXTRRXr++efNLgdn6M0331R2drbuuusuXXnllWaXA5w1LhUBAADLoHMuAACwDIILAACwDIILAACwDIILAACwDIILgIBy8OBB7du3z+wyAPgIwQWAX4wYMUJz5szx+Xb69++vbdu2Sfr5yczXX3+9z7cJwH8ILgACyvEPvUtLS9OKFStMrAZAQyO4ADhjO3bs0D333KOuXbuqb9++mjlzpvdhf0uXLtV1112n+Ph4TZgwQUePHvX+3cSJEzVx4sQa6+rQoYPWr18vSdq3b58eeeQRdenSRV27dtWDDz6o8vJySdLnn3+uW2+9VT179lRsbKzS09O1adMmSfI+m+nuu+/WwoUL9fe//937FGVJ2rBhg5xOpxISEpScnKxZs2Z5650zZ47Gjh2rRx55RAkJCerdu7dmzJjhmwMH4IwRXACckSNHjuj2229X+/bt9cknn+i1117TmjVrNGfOHK1du1Z/+ctf9MQTT6igoEDXXHONioqK6rzu+++/X4cOHVJ+fr4+/PBDHThwQFOmTJHL5dK9996rlJQUffLJJ1q/fr3atWun6dOnS5JWrVolSVq4cKHuvvvuGuv89ttvNXLkSA0YMEBr1qzRSy+9pH/+85/ev5Wk/Px89ezZU+vXr9fjjz+uhQsXekMRgMaBIf8BnJGPP/5YlZWVeuihh2Sz2XTRRRfp/vvv19ixY7V3714NGDBA3bt3lyTdcsstWrp0aZ3WW1JSon//+99auXKlmjdvLkmaNm2afvrpJ4WFhemNN97QpZdeqoqKCpWUlCgyMrJOoSgvL08dOnTQbbfdJkm69NJL9fDDD2vs2LHeJ7NfdtllGjJkiCTp2muvVatWrfT999+rY8eO9Tw6AHyF4ALgjJSUlGjfvn3q0qWLd5phGDp27JhKSkpOeEjnJZdcUqf17tmzR5LUpk0b77RWrVqpVatWkqT169fr7rvv1pEjRxQdHa3Q0FDV5cklZWVlJ9TQtm1buVwulZWVebdzvLCwMHk8njrVDcA/CC4AzsiFF16odu3aaeXKld5phw4dUllZmRYsWKCdO3fWWP6///2v2rdvL0kKCQlRRUWFd97xty9fdNFFkqQff/xRl112mSRp+/bteuedd9S3b189/vjjWrJkia6++mpJ0uLFi/Xdd9+dtt42bdooPz+/xrQdO3YoPDxc559/fj32HICZ6OMC4Iz07dtXhw8f1qJFi1RZWakDBw5owoQJevDBBzV06FB98MEH+uijj1RVVaW3335bmzdv9v7tFVdcoQ0bNqi0tFQul0vz5s2TzWaTJLVu3VpJSUmaPn26Dhw4oEOHDumpp57Szp07dfDgQYWEhMjhcEiSNm3apJdfftnbwVaSwsPDdfDgwRPqvf766/XNN9/ob3/7myorK7Vjxw4988wzSk1NVXh4uI+PFoCGQnABcEaaNWum7OxsrV+/Xr1791a/fv0UEhKi+fPnq3Pnzpo+fbqmTZumhIQErVq1SklJSd6/HTZsmOLj45WWlqb+/fvroosu0sUXX+yd//TTT6tZs2YaOHCgrrvuOkVFRWnKlClKSkrSLbfcIqfTqS5dumjKlCkaMWKE9u3bp71793rX/fDDD2vmzJk16m3btq0WLVqkVatWqUePHrrllluUlJSkP/3pT/45YAAahM2oy8VhAACARoAzLgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDIILgAAwDL+P3qIeJqNaRHDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(x='education', y='age', data=df)" ] }, { "cell_type": "code", "execution_count": 52, "id": "f844a3ab", "metadata": {}, "outputs": [], "source": [ "import sklearn\n", "from sklearn import datasets\n", "iris = datasets.load_iris()\n", "digits = datasets.load_digits()" ] }, { "cell_type": "code", "execution_count": 53, "id": "f70b40f1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5. 0. 0. 3.\n", " 15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8. 8. 0. 0. 5. 8. 0.\n", " 0. 9. 8. 0. 0. 4. 11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12.\n", " 0. 0. 0. 0. 6. 13. 10. 0. 0. 0.]\n" ] } ], "source": [ "print(digits.data[0])" ] }, { "cell_type": "code", "execution_count": 54, "id": "80c5cd71", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 ... 8 9 8]\n" ] } ], "source": [ "print(digits.target)" ] }, { "cell_type": "code", "execution_count": 59, "id": "4fc0bf25", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGiCAYAAAA1GLugAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAe7UlEQVR4nO3df2yV9f3+8euc01N6zqkUiT8aFxKiGAhykoIFMn4IRpF1/iDyqzELMxiNo84NshYVoltCZBo1NY5gcJWQKUwNk5VgCzqjTiMBi1aOJBjUYNUmMqmt6Tmtbe9zvn98ckjhC+256/3q6V2fj2QhdKfX+wrpua/ep7UNZDKZjAAAMBDMdwEAwOjFyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMOP7kTl9+rSqqqpUXl6u2bNn69FHH1VfX1++a7nS1tamRYsW6dChQ/mukpPjx49r9erVmjVrlubOnav169erra0t37VycvDgQa1YsUIzZszQ3LlztWnTJnV3d+e7Vs4cx9GqVav04IMP5rtKzhoaGjR16lRNnz79zP9qamryXWtQ7e3tWr9+vWbPnq2ZM2eqqqpKp06dynetQe3du/esf+vp06dr2rRpmjZtWl76+H5k1q5dq2g0qnfffVe7d+/WwYMHtWPHjnzXytmRI0dUWVmplpaWfFfJSXd3t+6++25Nnz5d7733nvbt26f29nZt2LAh39UG1dbWpnvvvVd33HGHmpqatGfPHh0+fFjPPfdcvqvlbMuWLWpqasp3DVcSiYSWLFmijz766Mz/nnjiiXzXGtT999+vVCqlN954Q2+99ZZCoZAefvjhfNca1G233XbWv/X+/fs1btw4Pfroo3np4+uR+fLLL3X48GHV1NQoEolowoQJqqqq0s6dO/NdLSd79uxRdXW11q1bl+8qOWttbdWUKVN03333qbCwUBdffLEqKyv1wQcf5LvaoMaPH6/3339fS5cuVSAQUHt7u3788UeNHz8+39VycvDgQb3++uu66aab8l3FlUQikbfPoofqk08+0ccff6zHHntMY8eOVXFxsTZt2qTq6up8V3Mlk8mopqZGCxcu1JIlS/LSwdcjc+LECY0bN06XX375mbddddVVam1t1Q8//JDHZrmZN2+e3njjDf3617/Od5WcXXnllaqrq1MoFDrztgMHDuiaa67JY6vcFRcXS5IWLFigW2+9VZdeeqmWLl2a51aDO336tDZu3KinnnpKkUgk33Vylk6ndezYMb399tu6/vrrdd111+nhhx9WR0dHvqsN6OjRo5o0aZJeeeUVLVq0SPPmzdPjjz+uSy+9NN/VXKmvr9dnn32W15dXfT0yyWTy/3vCZf+eSqXyUcmVSy+9VAUFBfmuMWSZTEa1tbV66623tHHjxnzXceX111/Xf//7XwWDQf3hD3/Id50BpdNp1dTUaPXq1ZoyZUq+67jS1tamqVOnavHixWpoaNBLL72kkydPjvivyXR0dOjTTz/VyZMntWfPHv373//Wt99+qwceeCDf1XKWTqf17LPP6ne/+92ZT67ywb9XOEnRaFRdXV1nvS3791gslo9KPxudnZ166KGHdOzYMb344ouaPHlyviu5UlRUpKKiItXU1GjFihXq6OhQSUlJvmud17Zt21RYWKhVq1blu4prl1xyyVkvX0ciEdXU1GjlypXq7OzM68VvIIWFhZKkjRs3asyYMSouLtbatWu1cuVKJZNJX1xfDh06pFOnTmn58uV57eHrO5mrr75a7e3t+u6778687fPPP1dpaakuuuiiPDYb3VpaWrRs2TJ1dnZq9+7dvhmYDz/8UL/61a/U09Nz5m09PT0Kh8Mj+iWo+vp6HT58WOXl5SovL9e+ffu0b98+lZeX57vaoI4fP64nn3xS/X9tVU9Pj4LB4JkL+Ug0adIkpdNp9fb2nnlbOp2WJPnlV3AdOHBAixYtUjQazWsPX4/MxIkTde2112rz5s3q7OzUV199pa1bt+Z9uUezjo4O3XnnnZoxY4aef/5533zRXJImT56s7u5uPfXUU+rp6dE333yjxx9/XMuXLx/RF7z9+/frww8/VFNTk5qamnTLLbfolltu8cV3mY0bN047d+5UXV2d+vr61NraqieeeEK33377iP43nzNnjiZMmKANGzYomUyqra1NtbW1uvHGG0fs3de5jhw5opkzZ+a7hr9HRpKeeeYZ9fX16YYbbtDKlSs1f/58VVVV5bvWqPXqq6+qtbVVjY2Nuvbaa8/6XvyRLhaLqa6uTidOnNDcuXO1atUqzZkzxxfffu1XpaWl2rZtm958803NmjVLy5YtUzwe1yOPPJLvagMKh8N64YUXFAqFtHjxYi1evFilpaXavHlzvqvl7Ouvv9Zll12W7xoK8OuXAQBWfH8nAwAYuRgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAmVEzMj09Pfrb3/521n/N7Qd+7S35t7tfe0v+7e7X3pJ/u4+U3qNqZLZs2ZL3f1C3/Npb8m93v/aW/Nvdr70l/3YfKb1HzcgAAEYeRgYAYGbYftR/Op1WX1+fgsGgAoGA5/mO4ygSichxHDmO43m+Fb/2lvzb3a+9Jf9292tvyb/dLXtnMhml02kVFBQoGBz4XmXYfnZZT0+PEonEcBwFABgG8Xh80J+mPWx3Mtm1q6ioMPmtldFoVI2NjWb5VvzaW7Lt/tprr3mad67i4mJ1dnaaZFv+8rPsZ5AWrwhY/oThwsJCrVu3TrW1tSZfiG5oaPA8M8uvz1HL3tnswe5ipGEcmewTIpVKKZlMmp1jnW/Fr70lf3e3YPFy8PnO8Pqc4fgupJ6eHpNzhuPjz68f55a9c/kY5Av/AAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMy4HpnTp0+rqqpK5eXlmj17th599FH19fVZdAMA+JzrkVm7dq2i0ajeffdd7d69WwcPHtSOHTsMqgEA/M7VyHz55Zc6fPiwampqFIlENGHCBFVVVWnnzp1W/QAAPlbg5sEnTpzQuHHjdPnll59521VXXaXW1lb98MMPGjt27KAZ0WjUfcscZHOt8q34tbfk7+6WMpmMebbFGYWFhZ5nnpttdUYsFjPJlfz7cW7Z201mIOPio7W+vl61tbV6++23z7ytpaVFixYt0jvvvKPS0tILvq/jOGpubs65GABgZCsrK1MoFBrwMa7uZKLRqLq6us56W/bvuX4mUVFRoVQq5ebYnLs1Njaa5Vvxa2/Jtvtrr73mad65iouL1dnZaZJdUlJikiv93x1MOp1WMBhUIBDwNHvz5s2e5vVXWFiodevWqba2Vj09PZ7nNzQ0eJ6Z5dfnqGXvbHYuXI3M1Vdfrfb2dn333Xe65JJLJEmff/65SktLddFFF+WUkUqllEwm3RzrinW+Fb/2lvzd3YLXF/8LneH1ORYX//OdYXHOcHz8+fXjPN+9XX3hf+LEibr22mu1efNmdXZ26quvvtLWrVu1fPlyq34AAB9z/S3MzzzzjPr6+nTDDTdo5cqVmj9/vqqqqiy6AQB8ztXLZZJ0ySWX6JlnnrHoAgAYZfixMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOufzMmMBza29vNsgOBgIqLi9XR0aFMJuN5/oIFCzzPzHIcR83NzYrH4wqFQp5mX3/99Z7m9Zftet1118lxHM/z6+vrPc+EN7iTAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgJkhj0xbW5sWLVqkQ4cOedkHADCKDGlkjhw5osrKSrW0tHjdBwAwirgemT179qi6ulrr1q2z6AMAGEUK3L7DvHnzdOutt6qgoGBIQxONRl2/j5tcq3wrfu0t2XYPBAKeZ56bbXWG4zgmuf2zLc4IhUKeZ56bbXVGLBYzyZX8+xy17O0mM5DJZDJDPWjy5Mn6xz/+odmzZw/6WMdx1NzcPNSjAAAjTFlZ2aCfOLi+k/mpKioqlEqlPM+NRqNqbGw0y7fi196Sbfddu3Z5mtdfIBDQFVdcodbWVv2Ez7Eu6Oabb/Y8M8txHCUSCcXjcc/vCp599llP8/oLhUKaNWuWDh8+bHIX9uCDD3qemeXX56hl72x2LoZ9ZFKplJLJpG/zrfi1t2TT3eLif74zLM6xfNmp/xlen2P5Ml//MyzOGY7njl+fo/nuzX8nAwAww8gAAMz8pJfLPv30U696AABGIe5kAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZn7Sb8bEyFdWVmaWXVRUJEmKx+Pq7u72NHvhwoWe5vWXTqf1xRdfaP78+QoG+Twrq7m52Sw7HA7rl7/8pY4ePare3l6zczDy8AwDAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGZcjczx48e1evVqzZo1S3PnztX69evV1tZm1Q0A4HM5j0x3d7fuvvtuTZ8+Xe+995727dun9vZ2bdiwwbIfAMDHch6Z1tZWTZkyRffdd58KCwt18cUXq7KyUh988IFlPwCAjxXk+sArr7xSdXV1Z73twIEDuuaaa1wdGI1GXT3eba5VvhXr3kVFRSa5/bMtzkin055nnpttdYbjOCa5/bMtzgiHw55nnpttdUYsFjPJlbi2DJSdi0Amk8m4PSCTyejpp5/Wrl279OKLL2ry5MmDvo/jOGpubnZ7FABghCorK1MoFBrwMTnfyWR1dnbqoYce0rFjx3IemP4qKiqUSqXcHjuoaDSqxsZGs3wr1r3j8bjnmVlFRUV68sknVV1dre7ubk+zGxoaPM3rL51O6+TJk5o4caKCQe+/wXLs2LGeZ2Y5jqNEIqF4PD7ok9utNWvWeJrXXzgc1l133aXt27ert7fX8/xdu3Z5npnFteXC2blwNTItLS265557dMUVV2j37t0aP36863KpVErJZNL1+42UfCtWvb2++F/oDK/Psbj4n+8Mi3O8vvhf6Ayvz7G4+J/vDItzhuM5z7VlaHJ+hnV0dOjOO+/UjBkz9Pzzzw9pYAAAPy8538m8+uqram1tVWNjo/bv33/W//fRRx95XgwA4H85j8zq1au1evVqyy4AgFGGHysDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAwk/Nvxvw5W7t2rVl2OByWJFVVVam3t9fz/L/85S+eZ2al02l98cUXamhoUDDo7ecrJSUlnub15ziOJGns2LEKhUJm5/jN22+/bZYdiUR077336r333lNXV5fZORh5uJMBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGdcjc/DgQa1YsUIzZszQ3LlztWnTJnV3d1t0AwD4nKuRaWtr07333qs77rhDTU1N2rNnjw4fPqznnnvOqh8AwMcK3Dx4/Pjxev/991VcXKxMJqP29nb9+OOPGj9+vFU/AICPuRoZSSouLpYkLViwQN9++63Ky8u1dOnSnN8/Go26PdJVrkV+OBz2PDOroKDgrD+9lk6nTXL7Z1uc4TiO55nnZlueYcWyeyQS8Twzq6io6Kw/vRaLxUxyJdtriyXL3m4yA5lMJjOUQ7q7u9XR0aHq6mqNGTNGdXV1Az7ecRw1NzcP5SgAwAhUVlamUCg04GOG/OlzUVGRioqKVFNToxUrVqijo0MlJSWDvl9FRYVSqdRQj72gaDSqxsZGk/yqqipP8/orKCjQsmXL9K9//Ut9fX2e5z/00EOeZ2al02mdPHlSEydOVDDo7Tcqjh071tO8/hzHUSKRUDweH/QJMtJYdo/H457m9VdUVKS///3vuueee0y+UailpcXzzCzLa4sly97Z7Fy4GpkPP/xQGzZs0N69e1VYWChJ6unpUTgczvlWO5VKKZlMujnWFYv83t5eT/POp6+vz+Qcry/+FzrD63OG4+IfCoV8NzJZFt27uro8zTuf7u5uk3MsrylZ1tcuK/nu7erKMHnyZHV3d+upp55ST0+PvvnmGz3++ONavnz5mdEBACDL1cjEYjHV1dXpxIkTmjt3rlatWqU5c+Zow4YNVv0AAD7m+msykyZN0vbt2y26AABGGX6sDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwIzr34z5c/T000+bZcdiMVVWVmrr1q1KJpOe5+/YscPzzKxoNKq9e/dq2rRpSqVSnmZ///33nuZhcOPGjTPLLioqkiSVlJRozJgxZudg5OFOBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYGdLIOI6jVatW6cEHH/S6DwBgFBnSyGzZskVNTU1edwEAjDKuR+bgwYN6/fXXddNNN1n0AQCMIgVuHnz69Glt3LhRW7du1Y4dO4Z0YDQaHdL75ZprlW/Furflv0ckEjnrTy85juN55rnZlmdYsexeVFTkeea52VZnxGIxk1yJa8tA2bkIZDKZTC4PTKfTuvvuu3X99def9fWYxx57LKeDHMdRc3NzzsUAACNbWVmZQqHQgI/J+U5m27ZtKiws1KpVq35SqYqKCqVSqZ+UcT7RaFSNjY1m+Vase5eUlHiemRWJRPTyyy+rsrJSXV1dnma3tLR4mtef4zhKJBKKx+ODPkFGGsvu8+bN8zSvv6KiIj355JOqrq5Wd3e35/mJRMLzzCyuLRfOzkXOI1NfX69Tp06pvLxcks58oPznP/9x9U0AqVRKyWQy58e7ZZ1vxap3OBz2PPNcXV1dnn8QD8fFPxQK+W5ksiy6W1z8z3eGxTnD8Zzn2jI0OY/M/v37z/q725fLAAA/P/zHmAAAM66+u6w/7mAAAIPhTgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGBmyL8ZE8DoUlZWZpYdDoclSfF4XL29vZ7nNzc3e54Jb3AnAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOuR6ahoUFTp07V9OnTz/yvpqbGohsAwOcK3L5DIpHQkiVL9Ne//tWiDwBgFHF9J5NIJDRt2jSLLgCAUcbVnUw6ndaxY8cUiURUV1cnx3G0YMECVVdXq6SkJKeMaDQ6pKK55lrlW7HubfnvEYlEzvrTS47jeJ55brblGVYsu4fDYc8zz822OiMWi5nkSlxbBsrORSCTyWRyffB3332nP/7xj7r99tt188036/vvv9cDDzygSCSi5557bsD3dRxHzc3NORcDAIxsZWVlCoVCAz7G1cicz9GjR7Vy5Uo1NTWpuLj4go/LjkxFRYVSqdRPOfK8otGoGhsbzfKtWPfO9Q5zKCKRiF5++WVVVlaqq6vL0+yWlhZP8/pzHEeJRELxeHzQJ8hIY9l9zZo1nub1Fw6Hddddd2n79u3q7e31PH/Xrl2eZ2Zxbblwdi4j4+rlsuPHj2vfvn3605/+pEAgIEnq6elRMBhUYWFhThmpVErJZNLNsa5Y51ux6m35EkhWV1eX5x/Ew3HxD4VCvhuZLIvuFhf/851hcc5wPOe5tgyNqy/8jxs3Tjt37lRdXZ36+vrU2tqqJ554QrfffnvOIwMA+PlwNTKlpaXatm2b3nzzTc2aNUvLli1TPB7XI488YtUPAOBjrv87mVmzZumll16y6AIAGGX4sTIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMuBqZ9vZ2rV+/XrNnz9bMmTNVVVWlU6dOWXUDAPicq5G5//77lUql9MYbb+itt95SKBTSww8/bNUNAOBzBbk+8JNPPtHHH3+s999/X8XFxZKkTZs26X//+59ZOQCAv+U8MkePHtWkSZP0yiuv6J///Ke6uro0f/58PfDAA64OjEajrku6ybXKt2Ld2/LfIxKJnPWnlxzH8Tzz3GzLM6xYdg+Hw55nnpttdUYsFjPJlbi2DJSdi0Amk8nk8sBnn31WW7Zs0bJly7R+/Xp1d3dr/fr1CofD2rZt26Dv7ziOmpubcy4GABjZysrKFAqFBnxMzncyhYWFkqSNGzdqzJgxKi4u1tq1a7Vy5Uolk8mcP5OoqKhQKpXK9dicRaNRNTY2muVbse5dUlLieWZWJBLRyy+/rMrKSnV1dXma3dLS4mlef47jKJFIKB6PD/oEGWksu69Zs8bTvP7C4bDuuusubd++Xb29vZ7n79q1y/PMLK4tF87ORc4jM2nSJKXTafX29mrMmDGSpHQ6LUnK8WZIkpRKpZRMJnN+vFvW+Vaselu+BJLV1dXl+QfxcFz8Q6GQ70Ymy6K7xcX/fGdYnDMcz3muLUOT83eXzZkzRxMmTNCGDRuUTCbV1tam2tpa3XjjjWe+EQAAgP5yHplwOKwXXnhBoVBIixcv1uLFi1VaWqrNmzdb9gMA+FjOL5dJ0uWXX67a2lqrLgCAUYYfKwMAMMPIAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADDj6jdjwn/a29vNsnt7eyVJHR0dSiaTnmbX19d7mtdfIBDQL37xC7322mvKZDKe5y9ZssTzzOGwcOFCs+xg8P8+n50/f77S6bTn+Tt27PA8E97gTgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYIaRAQCYYWQAAGYYGQCAGUYGAGCGkQEAmGFkAABmCtw8eO/evfrzn/981tuyv+f9k08+8a4VAGBUcDUyt912m2677bYzf//222+1bNky1dTUeF4MAOB/Q365LJPJqKamRgsXLtSSJUu87AQAGCVc3cn0V19fr88++0xbt2519X7RaHSoR+aUa5Vvxa+9JdvugUDA88xzs63OcBzHJLd/tsUZwaDdl2iz2VZnxGIxk1zJv89Ry95uMgOZTCbj9oB0Oq2Kigr95je/0W9/+9uc3sdxHDU3N7s9CgAwQpWVlSkUCg34mCHdyRw6dEinTp3S8uXLXb9vRUWFUqnUUI4dUDQaVWNjo1m+Fb/2lmy779q1y9O8/gKBgK644gq1trZqCJ9jDermm2/2PDPLcRwlEgnF4/FBn9xuWf6bB4NBTZkyRcePH1c6nfY8f82aNZ5nZvn1OWrZO5udiyGNzIEDB7Ro0aIh3YalUiklk8mhHDsi8q34tbdk093i4n++MyzO8frif6EzvD7H4uJ/vjMszhmO545fn6P57j2kF0iPHDmimTNnet0FADDKDGlkvv76a1122WVedwEAjDJDernso48+8roHAGAU4sfKAADMMDIAADOMDADADCMDADDDyAAAzDAyAAAzjAwAwAwjAwAww8gAAMwwMgAAM4wMAMAMIwMAMMPIAADMMDIAADOMDADADCMDADAzpF9aNhTZ36UejUZN8rO5VvlW/Npbsu0eCAQ8zzw32+oMx3FMcvtnW5wRDNp9zpnNtjojFouZ5Er+fY5a9s5mZq/rAwlkcnmUB3p6epRIJIbjKADAMIjH4yosLBzwMcM2Mul0Wn19fQoGgyafQXZ2dmrBggV65513VFxc7Hm+Fb/2lvzb3a+9Jf9292tvyb/dLXtnMhml02kVFBQMenc6bC+XBYPBQRfvpwiFQurq6lIoFFIoFDI7x2t+7S35t7tfe0v+7e7X3pJ/u4+U3nzhHwBghpEBAJgZNSNTWFio3//+96YvyVnwa2/Jv9392lvyb3e/9pb8232k9B62L/wDAH5+Rs2dDABg5GFkAABmGBkAgBlGBgBghpEBAJhhZAAAZhgZAIAZRgYAYOb/AbO/v80jescJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.gray()\n", "plt.matshow(digits.images[1])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 36, "id": "864e67dd", "metadata": {}, "outputs": [], "source": [ "from sklearn.neural_network import MLPClassifier\n", "mlp = MLPClassifier(hidden_layer_sizes=(5,), \n", " activation='logistic',\n", " solver='sgd',\n", " random_state=1,\n", " learning_rate_init=.3,\n", " verbose=True)" ] }, { "cell_type": "code", "execution_count": 37, "id": "ca7572a4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iteration 1, loss = 2.20438383\n", "Iteration 2, loss = 1.80364476\n", "Iteration 3, loss = 1.47148064\n", "Iteration 4, loss = 1.21869988\n", "Iteration 5, loss = 1.05839722\n", "Iteration 6, loss = 0.94305271\n", "Iteration 7, loss = 0.83043636\n", "Iteration 8, loss = 0.87757144\n", "Iteration 9, loss = 0.81725934\n", "Iteration 10, loss = 0.76473438\n", "Iteration 11, loss = 0.70457646\n", "Iteration 12, loss = 0.71429983\n", "Iteration 13, loss = 0.73324129\n", "Iteration 14, loss = 0.65132214\n", "Iteration 15, loss = 0.64838322\n", "Iteration 16, loss = 0.65695702\n", "Iteration 17, loss = 0.67163797\n", "Iteration 18, loss = 0.59148684\n", "Iteration 19, loss = 0.62239836\n", "Iteration 20, loss = 0.58864679\n", "Iteration 21, loss = 0.61760314\n", "Iteration 22, loss = 0.59257353\n", "Iteration 23, loss = 0.59566456\n", "Iteration 24, loss = 0.56819851\n", "Iteration 25, loss = 0.59090410\n", "Iteration 26, loss = 0.54037896\n", "Iteration 27, loss = 0.57815911\n", "Iteration 28, loss = 0.58750538\n", "Iteration 29, loss = 0.59961106\n", "Iteration 30, loss = 0.59672668\n", "Iteration 31, loss = 0.54230944\n", "Iteration 32, loss = 0.56032793\n", "Iteration 33, loss = 0.57144061\n", "Iteration 34, loss = 0.50356978\n", "Iteration 35, loss = 0.69647005\n", "Iteration 36, loss = 0.61485652\n", "Iteration 37, loss = 0.53864018\n", "Iteration 38, loss = 0.53249233\n", "Iteration 39, loss = 0.52179451\n", "Iteration 40, loss = 0.54591283\n", "Iteration 41, loss = 0.53004563\n", "Iteration 42, loss = 0.48346504\n", "Iteration 43, loss = 0.56397888\n", "Iteration 44, loss = 0.57394650\n", "Iteration 45, loss = 0.55375376\n", "Iteration 46, loss = 0.50182727\n", "Iteration 47, loss = 0.55050483\n", "Iteration 48, loss = 0.48343410\n", "Iteration 49, loss = 0.47332420\n", "Iteration 50, loss = 0.46585139\n", "Iteration 51, loss = 0.49599948\n", "Iteration 52, loss = 0.50004735\n", "Iteration 53, loss = 0.52581290\n", "Iteration 54, loss = 0.51529807\n", "Iteration 55, loss = 0.44677931\n", "Iteration 56, loss = 0.53060090\n", "Iteration 57, loss = 0.56040882\n", "Iteration 58, loss = 0.50201388\n", "Iteration 59, loss = 0.57190931\n", "Iteration 60, loss = 0.53798140\n", "Iteration 61, loss = 0.51627490\n", "Iteration 62, loss = 0.52523340\n", "Iteration 63, loss = 0.48136251\n", "Iteration 64, loss = 0.48415836\n", "Iteration 65, loss = 0.47174397\n", "Iteration 66, loss = 0.47836200\n", "Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.\n" ] }, { "data": { "text/html": [ "
MLPClassifier(activation='logistic', hidden_layer_sizes=(5,),\n",
       "              learning_rate_init=0.3, random_state=1, solver='sgd',\n",
       "              verbose=True)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "MLPClassifier(activation='logistic', hidden_layer_sizes=(5,),\n", " learning_rate_init=0.3, random_state=1, solver='sgd',\n", " verbose=True)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mlp.fit(digits.data[:-1], digits.target[:-1])" ] }, { "cell_type": "code", "execution_count": 38, "id": "8637fa27", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([8])" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mlp.predict(digits.data[-1:])" ] }, { "cell_type": "code", "execution_count": 39, "id": "32a877bb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Iteration 1, loss = 1.17206257\n", "Iteration 2, loss = 1.10565258\n", "Iteration 3, loss = 1.06260063\n", "Iteration 4, loss = 1.04042225\n", "Iteration 5, loss = 1.02360573\n", "Iteration 6, loss = 0.99344124\n", "Iteration 7, loss = 0.94400055\n", "Iteration 8, loss = 0.88343177\n", "Iteration 9, loss = 0.81658181\n", "Iteration 10, loss = 0.74552360\n", "Iteration 11, loss = 0.67592432\n", "Iteration 12, loss = 0.61620894\n", "Iteration 13, loss = 0.57142612\n", "Iteration 14, loss = 0.53838988\n", "Iteration 15, loss = 0.51226575\n", "Iteration 16, loss = 0.49049097\n", "Iteration 17, loss = 0.47174299\n", "Iteration 18, loss = 0.45526426\n", "Iteration 19, loss = 0.44051221\n", "Iteration 20, loss = 0.42672639\n", "Iteration 21, loss = 0.41306630\n", "Iteration 22, loss = 0.39889631\n", "Iteration 23, loss = 0.38389647\n", "Iteration 24, loss = 0.36830208\n", "Iteration 25, loss = 0.35239890\n", "Iteration 26, loss = 0.33604320\n", "Iteration 27, loss = 0.31914864\n", "Iteration 28, loss = 0.30205538\n", "Iteration 29, loss = 0.28523395\n", "Iteration 30, loss = 0.26905518\n", "Iteration 31, loss = 0.25362447\n", "Iteration 32, loss = 0.23887371\n", "Iteration 33, loss = 0.22492031\n", "Iteration 34, loss = 0.21203529\n", "Iteration 35, loss = 0.20038413\n", "Iteration 36, loss = 0.19025102\n", "Iteration 37, loss = 0.18440091\n", "Iteration 38, loss = 0.21341784\n", "Iteration 39, loss = 0.55950073\n", "Iteration 40, loss = 0.99670784\n", "Iteration 41, loss = 1.15698540\n", "Iteration 42, loss = 0.94340534\n", "Iteration 43, loss = 0.66349687\n", "Iteration 44, loss = 0.53630654\n", "Iteration 45, loss = 0.58440078\n", "Iteration 46, loss = 0.61025185\n", "Iteration 47, loss = 0.57662292\n", "Iteration 48, loss = 0.52093588\n", "Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.\n" ] }, { "data": { "text/html": [ "
MLPClassifier(activation='logistic', hidden_layer_sizes=(5,),\n",
       "              learning_rate_init=0.3, random_state=1, solver='sgd',\n",
       "              verbose=True)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "MLPClassifier(activation='logistic', hidden_layer_sizes=(5,),\n", " learning_rate_init=0.3, random_state=1, solver='sgd',\n", " verbose=True)" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.neural_network import MLPClassifier\n", "mlp = MLPClassifier(hidden_layer_sizes=(5,), \n", " activation='logistic',\n", " solver='sgd',\n", " random_state=1,\n", " learning_rate_init=.3,\n", " verbose=True)\n", "X, y = sklearn.datasets.load_iris(return_X_y=True)\n", "mlp.fit(X,y)" ] }, { "cell_type": "code", "execution_count": 40, "id": "30815c16", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0])" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pickle\n", "s = pickle.dumps(mlp)\n", "mlp2 = pickle.loads(s)\n", "mlp2.predict(X[0:1])" ] }, { "cell_type": "code", "execution_count": 41, "id": "56737d3f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "print(y[0])" ] }, { "cell_type": "code", "execution_count": null, "id": "5bc92a9f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 5 }