Neural Networks and Clusterting in Weka

Chulun Zhou

clzhou@link.cuhk.edu.hk

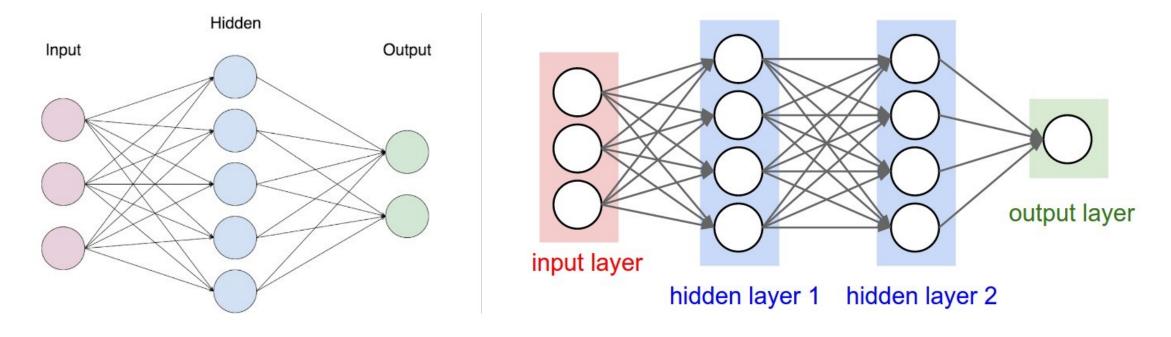
Overview

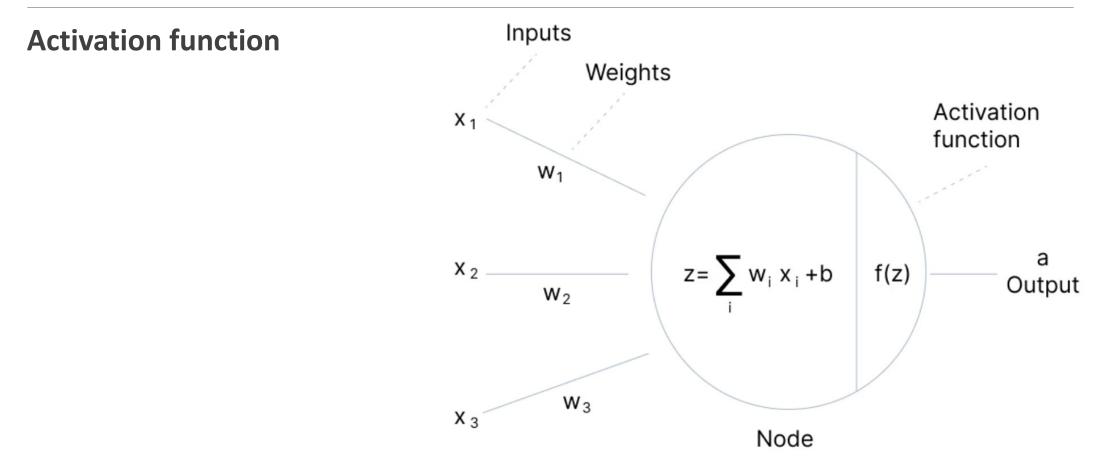
What is Neural Network?

25-min Neural Network demo20-min Practice, QA25-min Clustering Demo & Assignment 220-min Practice, QA

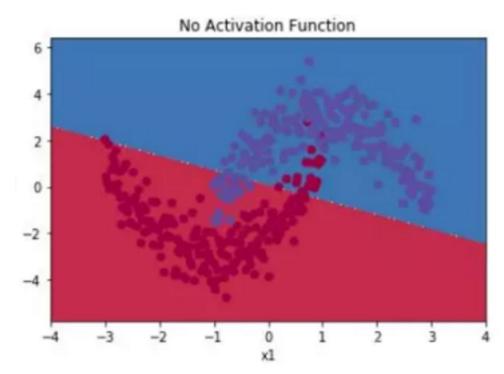
- Building Neural Network with Weka
- Interpreting output (evaluation metrics)
- Visualizing Neural Network using GUI (graphical user interface)
- Clustering Algorithms with Weka

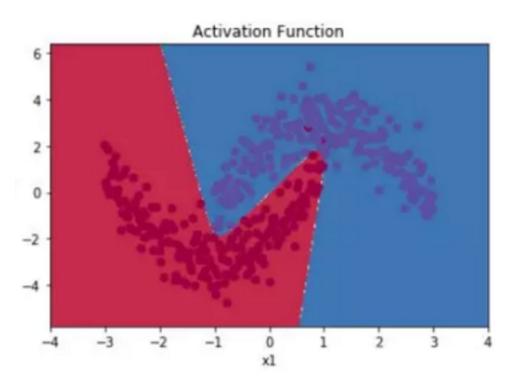
Neural Network is a machine learning model inspired by the biological neural networks that simulate what our brain does.

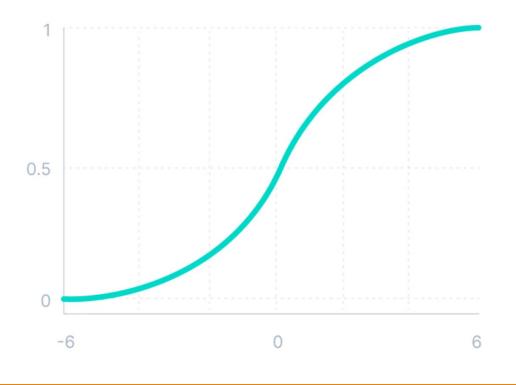

Neural Network has several components including the Input Layer, Hidden Layers and Output Layer:

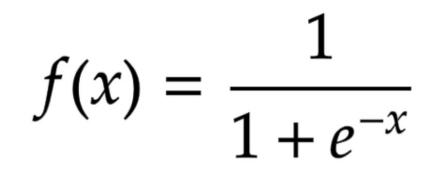

(1) Input Layer denotes the input variables that will be fed into the network,

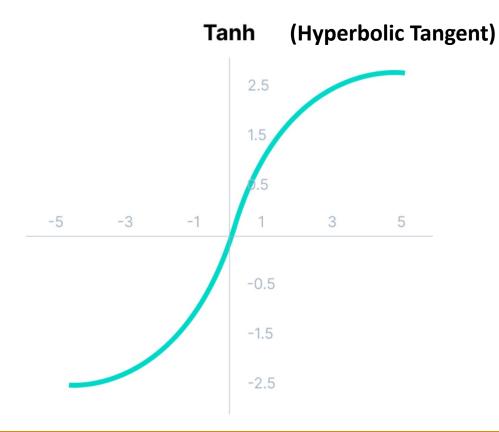
(2) Hidden Layers are the computation layers (or parameters) that will be trained,


(3) **Output Layer** denotes the output of the model. For example, the class label in classification task or the real number in regression task.

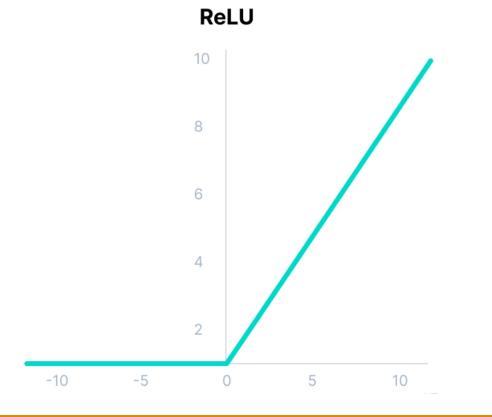

A typical neural network model can be represented as follow:


Activation function

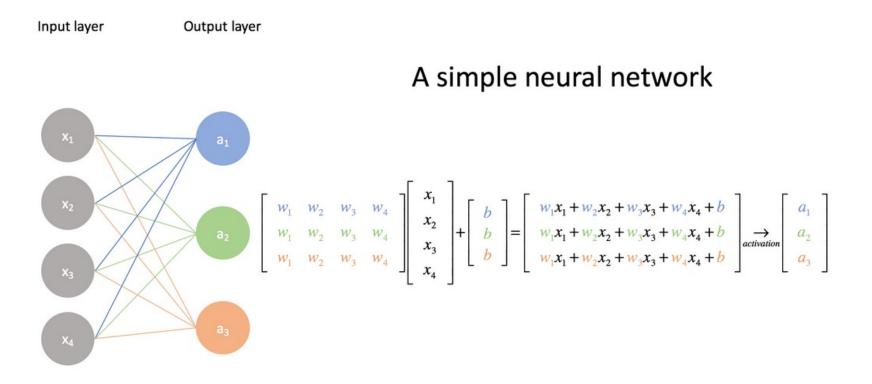



Typical non-linear activation functions

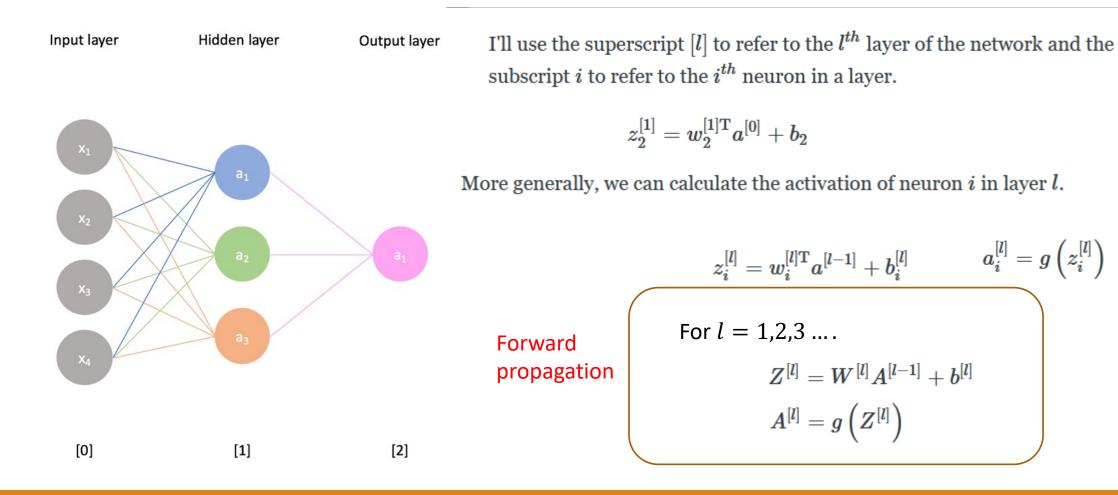
Sigmoid / Logistic

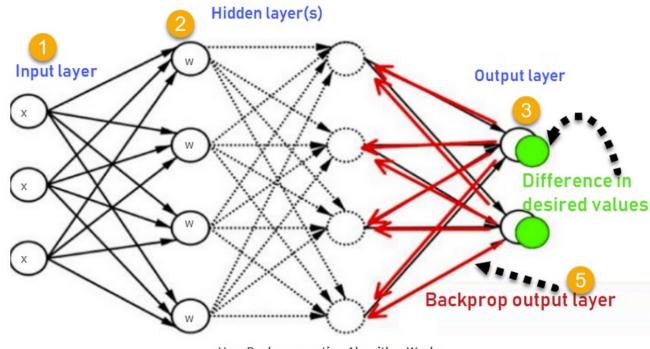


Typical non-linear activation functions


 $\frac{\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)}$

Typical non-linear activation functions




 $f(x) = max \ (0, x)$

In this figure, the network with this structure is called **Feed-Forward network** or **Multi-layer perceptron**. Neural network is essentially matrix multiplication+activation function

What is Neural Network?

How Backpropagation Algorithm Works

Backpropagation: optimizing parameters

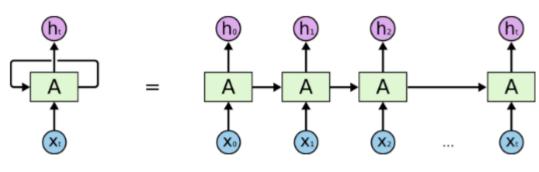
Difference in desired values is evaluated using the cost function.

For example, for regression

$$J(W,b,x,y) = \frac{1}{2} ||a^L - y||_2^2$$

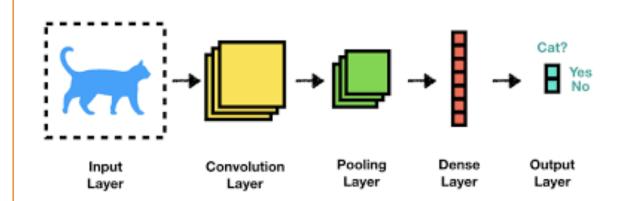
For classification, cross entropy loss function

$$J(W,b,a,y)=-[ylna+(1-y)ln(1-a)]\\$$


$$w^{k} = w^{k-1} - \eta \frac{\partial J}{\partial w^{k-1}}$$

k means the kth interation

A general training procedure:


```
training data: {(x1,y1),(x2,y2),...}
for i = 1,2,3...n (n is the number of training epoches):
    for j = 1,2,....:
        output = Model.forward(xj) #forward propagation
        loss = f(ouput, yj) # f is a cost function
        loss.backward() #backward propagration to optimize the parameters in the Model
```

Generally, we input b samples in the forward process. b is also called the batch size.

There are some advanced neural networks with special structure. For example, the **recurrent neural network (RNN)** that can be used to handle time-series (weather of each day) or sequential data (text). Or **convolutional neural network (CNN)** that is widely used for handling image.

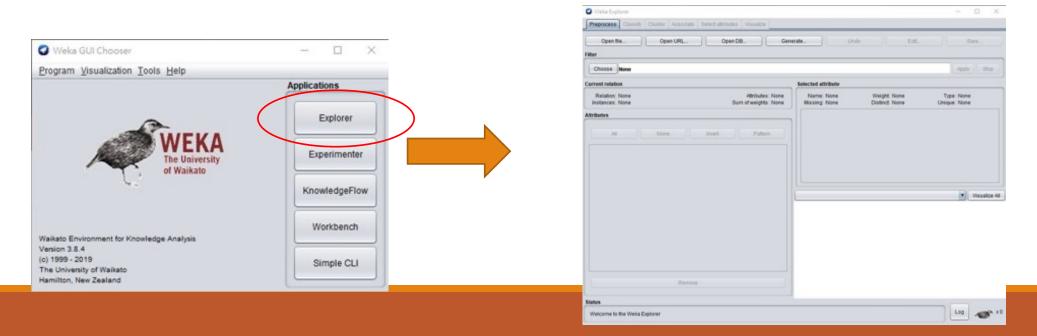
An unrolled recurrent neural network.

Convolutional Neural Network

Recurrent Neural Network

Neural Network in Weka

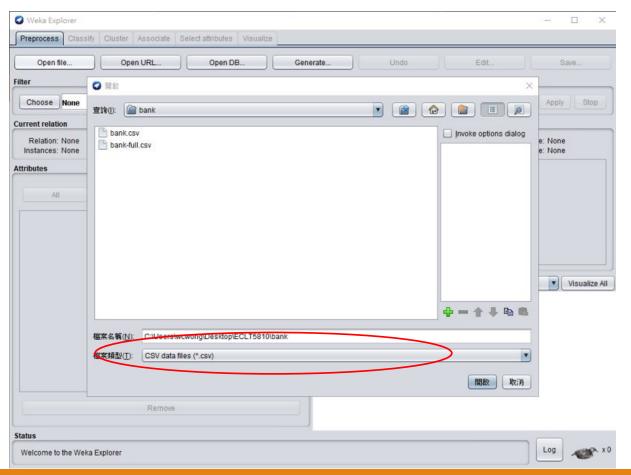
In this tutorial, we will focus on building the Multi-layer perceptron using Weka.


You can use Weka to easily construct a neural network and it will help you to configure most of the setting of it like the activation function and cost function.

All you need is to prepare the data for it.

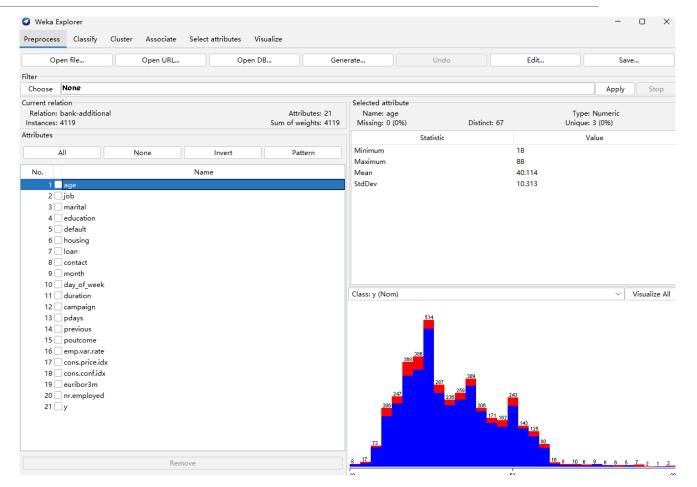
Preparation for building Neural Network

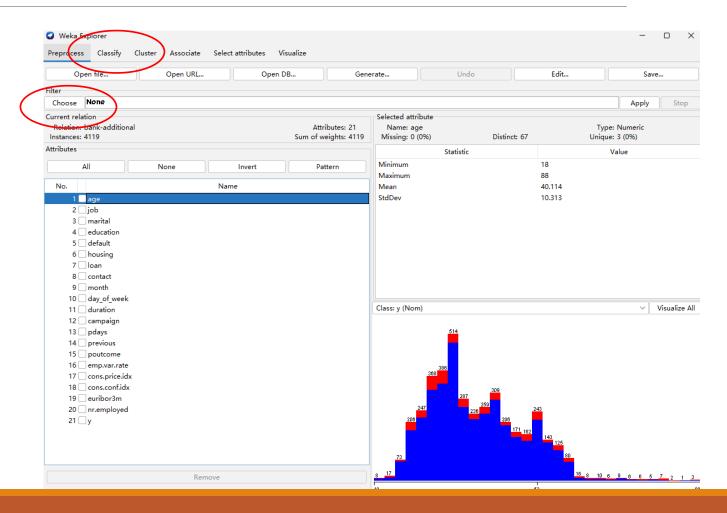
Before constructing our neural network, again, we first need to prepare our training data.


Open Weka, choose Explorer in the Weka GUI Chooser

Preparation for building Neural Network

Click **Open file**, then open the bankadditional.csv used in the Assignment 1


Again, please remember to change to **CSV data files(*.csv)** in file type.


Preparation for building Neural Network

Now, data is loaded into Explorer.

And then we can perform feature engineering before building the Neural Network but this time we simply use the original dataset to do it.

Click Classify Click Choose

Under

classifiers->functions

select MultilayerPerceptron

🔻 🚞 weka	-E 20 -H a -G -R							
V → dassifiers V → bayes	put							
▼ 🚰 functions □ GaussianProcesses □ LinearRegression	nation on test split ===	ation on test split === en to test model on test split: 0.01 seconds						
Logistic MultilayerPerceptron	ary ===							
SGD SGDText SimpleLinearRegression SimpleLogistic SMO SMOreg VotedPerceptron Azy Comparison Moreg More	<pre>/ Classified Instances tly Classified Instances atistic blute error h squared error absolute error ative squared error aber of Instances iled Accuracy By Class ==</pre>	0.3646 0.1248 0.2925 60.9491 % 90.949 % 1537	89.3299 % 10.6701 %					
▶ (i rules ▶ (i trees	TP Rate FP Rate 0.968 0.672 0.328 0.032 Avg. 0.893 0.597		0.941 0.382					
	b < classified as la a = no Solution b = yes							
	-1			· · · · · ·				

Click on the text near Choose to access to the configuration

← → C 🟠 https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
OVERVIEW PACKAGE CLASS TREE DEPRECATED INDEX HELP
PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED FIELD CONSTR METHOD DETAIL: FIELD CONSTR METHOD
weka.classifiers.functions
Class MultilayerPerceptron
java.lang.Object weka.classifiers.AbstractClassifier weka.classifiers.functions.MultilayerPerceptron
All Implemented Interfaces:
java.io.Serializable, java.lang.Cloneable, Classifier, IterativeClassifier, BatchPredictor, CapabilitiesHandler, Capabiliti
public class MultilayerPerceptron extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, Randomizable, IterativeClassifier
A classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The network can be built by hand or set up using a simple heuristic when the class is numeric, in which case the output nodes become unthresholded linear units).

Preprocess Classify C	ter Associate Select attributes Visualize	
Classifier		
Choose MultilayerPerce	tron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a	
Test options	Classifier output	
 Use training set 		
Supplied test set	Set	
Cross-validation Folds	10	
Percentage split %	56	
More options		
Nom) y	~	
Start	Stop	
Result list (right-click for opti	s)	

Valid options are:

-L <learning rate> Learning rate for the backpropagation algorithm. (Value should be between 0 - 1, Default = 0.3).

-M <momentum>

Momentum rate for the backpropagation algorithm. (Value should be between 0 - 1, Default = 0.2).

-N <number of epochs> Number of epochs to train through. (Default = 500).

-V <percentage size of validation set> Percentage size of validation set to use to terminate training (if this is non zero it can pre-empt num of epochs. (Value should be between 0 - 100, Default = 0).

-S <seed>

The value used to seed the random number generator (Value should be $\geq = 0$ and and a long, Default = 0).

-E <threshold for number of consecutive errors> The number of consecutive increases of error allowed for validation testing before training terminates. (Value should be > 0, Default = 20).

-G GUI will be opened. (Use this to bring up a GUI).

-A

Autocreation of the network connections will NOT be done. (This will be ignored if -G is NOT set)

-B

A NominalToBinary filter will NOT automatically be used. (Set this to not use a NominalToBinary filter).

-H <comma separated numbers for nodes on each layer>
The hidden layers to be created for the network.
(Value should be a list of comma separated Natural
numbers or the letters 'a' = (attribs + classes) / 2,
'i' = attribs, 'o' = classes, 't' = attribs .+ classes)
for wildcard values, Default = a).

-C

Normalizing a numeric class will NOT be done. (Set this to not normalize the class if it's numeric).

-I

Normalizing the attributes will NOT be done. (Set this to not normalize the attributes).

-R

Reseting the network will NOT be allowed. (Set this to not allow the network to reset).

-D

Learning rate decay will occur. (Set this to cause the learning rate to decay).

Here is the configuration of Multilayer Perceptron.

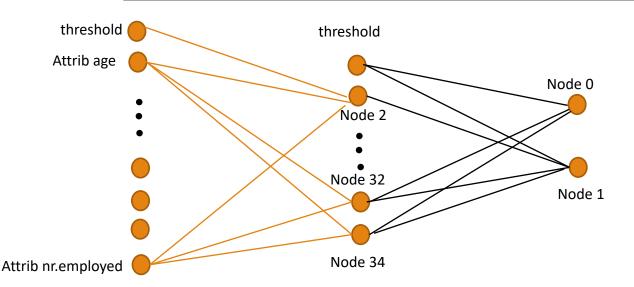
The default value of **HiddenLayers** is "a" which means Weka will help you to setup the hidden layers. You can also specify how many layer and how many nodes of each hidden layer. For example, type in 10,5,2 means 3 hidden layers with 10, 5, 2 nodes respectively.

trainingTime means how many iterations we want to train through. Let set it from 500 to 100.

		_	weka.gui.GenericObje			×	
		'	weka.classifiers.functions.N	MultilayerPerce	ptron		
C	uster	Asso	About A classifier that uses bac	ckpropagation to learn a multi-layer More stances.			
erce	eptron -L	0.3 -	perceptron to classify ins				
			GUI	True		~	
	Set		autoBuild	True		~	
lds %	10 66	_	batchSize	100			
% ns		_	debug	False		~	
		_	decay	False		~	
		~	doNotCheckCapabilities	False		~	
	Stop		hiddenLayers	а			
opti	ons)						
			learningRate	0.3			
			momentum	0.2			
			nominalToBinaryFilter	True		~	
			normalizeAttributes	True		~	
			normalizeNumericClass	True		~	
			numDecimalPlaces	2			
			reset	False		~	
			resume	False			
						~	
			seed	0			
			trainingTime	100			
			validationSetSize	0			
			validationThreshold	20			
			Open	Save	OK	Cancel	

Then, click OK

In the Test options here, we simply use percentage split 80% as our testing option.


Using 80% of the dataset for training and 20% for evaluation

Classify	Cluster	Associa	ate	Select attributes	Visualize
MultilayerPo	erceptron	-L 0.3 -M	0.2 -	N 100 -V 0 -S 0 -E	20 - Ha-G-R
			Clas	sifier output	
ng set					
est set	Set				
dation Fold	ds 10				
e split	% 80				
More optio	ns				
		~			
	Stop				
nt-click for o	ptions) —				
	MultilayerPo ng set est set dation Fold e split More option	MultilayerPerceptron ng set est set Set dation Folds 10 e split % 80 More options	MultilayerPerceptron -L 0.3 -M ng set est set Set dation Folds 10 e split % 80 More options	MultilayerPerceptron -L 0.3 -M 0.2 - ng set est set Set dation Folds 10 e split % 80 More options	MultilayerPerceptron -L 0.3 -M 0.2 -N 100 -V 0 -S 0 -E ng set est set Set dation Folds 10 e split % 80 More options

Click Start to start our neural network training

• Since neural network requires much more computation power compared with decision tree and logistic regression. We need to wait Weka to train our model. The training time depends on the number of parameters (number of layers and number of nodes in each layer), number of iterations and number of data we have.

Interpreting the output

Variable Transformation

Convert Nominal Attributes to Dummy Variables

Some machine learning algorithms prefer to use real-valued inputs and do not support nominal or ordinal attributes.

Nominal attributes can be converted to real values. This is done by creating one new binary attribute for each category. For a given instance that has a category for that value, the binary attribute is set to 1 and the binary attributes for the other categories is set to 0. This process is called creating dummy variables.

1. architecture of the network

2. Nominal Attributes are converted to Dummy Variables

Interpreting the output

After the training is finished. The result is shown on the right panel.

	ary ===									
Correctly	y Classi	ified Inst	ances	734		89.0777	8			
Incorrect	tly Clas	ssified In	stances	90		10.9223	8			
Kappa sta	atistic			0.40	53					
Mean abs	olute en	rror		0.11	.7					
Root mean	n square	ed error		0.31	.24					
Relative	absolut	te error		58.27	39 %					
Root rela	ative so	quared err	or	96.4335 %						
Total Nu	mber of	Instances		824						
	TTEG ACC	curacy By	CIASS ===							
Deta.						F-Measure 0.939				
Deca.		0.957	0.602	0.922	0.957		0.412	0.854	0.976	no
		0.957 0.398	0.602 0.043	0.922 0.557	0.957 0.398	0.939	0.412 0.412	0.854 0.854	0.976 0.443	no

=== Evaluation on test split === Time taken to test model on test split: 0.04 seconds === Summary === 734 89.0777 % Correctly Classified Instances 10.9223 % Incorrectly Classified Instances 90 0.4053 Kappa statistic Mean absolute error 0.117 Root mean squared error 0.3124 58.2739 % Relative absolute error 96.4335 % Root relative squared error Total Number of Instances 824 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.957 0.602 0.922 0.957 0.939 0.412 0.854 0.398 0.043 0.557 0.398 0.464 0.412 0.854 Weighted Avg. 0.891 0.536 0.878 0.891 0.883 0.412 0.854 === Confusion Matrix === <-- classified as b 695 31 I a = no59 39 | b = ves

Why not use mean squared error for classification problems?

I would like to show it using an example. Assume a 6 class classification problem.

Assume, True probabilities = [1, 0, 0, 0, 0, 0]

Case 1: Predicted probabilities = [0.2, 0.16, 0.16, 0.16, 0.16, 0.16]

Case 2: Predicted probabilities = [0.4, 0.5, 0.1, 0, 0, 0]

The MSE in the Case1 and Case 2 is **0.768** and **0.62** respectively.

Although, Case 1 is correctly predicting class 1 for the instance, the loss in Case 1 is higher than the loss in Case 2.

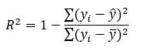
0.976

0.443

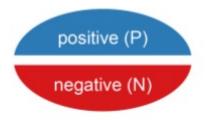
0.913

no

yes

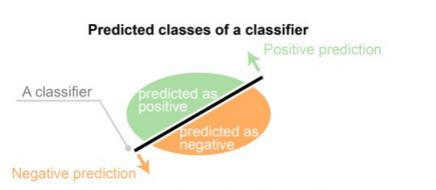

You can omit these evaluation metrics in the red rectangle since they are generally used for the evaluation of regression model instead of classification model.

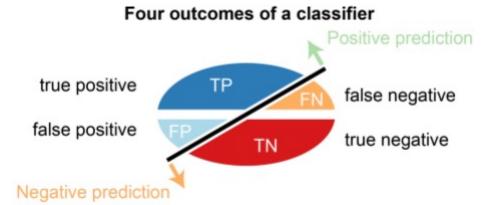
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$


$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y})^2}$$

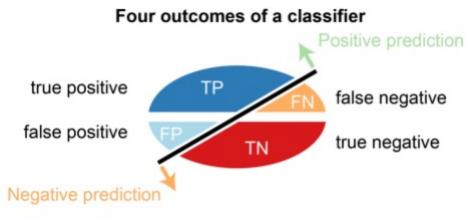
The RMSE can be calculated by taking the square root of above mentioned Mean Squared Errors (MSE) / L2 Loss.

Where, \hat{y} – predicted value of y \overline{y} – mean value of y

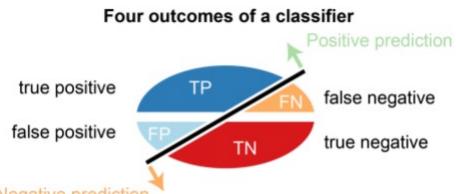

Two actual classes or observed labels


In binary classification, a test dataset has two labels; positive and negative.

The class of interest is usually denoted as "positive" and the other as "negative". So in this task, yes should be positive or negative?


yes: client subscribed a term deposit no: client does not subscribe a term deposit

The predicted labels of a classifier match with part of the observed labels.



Classification of a test dataset produces four outcomes – true positive, false positive, true negative, and false negative.

Classification of a test dataset produces four outcomes – true positive, false positive, true negative, and false negative.

		Predicted		
		Positive	Negative	
Observed	Positive	TP (# of TPs)	FN (# of FNs)	
	Negative	FP (# of FPs)	TN (# of TNs)	

Negative prediction

Classification of a test dataset produces four outcomes - true positive, false positive, true negative, and false negative.

If class no is the positive class, this row TP=695, FN=31, FP=59, TN=39

TP Rate = TP/(TP+FN) = 695/(695+31)=0.957FP Rate = FP/(FP+TN) = 59/(59+39) = 0.602Precision = TP/(TP+FP) = 695/(695+59) = 0.922Recall = TP Rate F-Measure= 2*Precision*Recall/(Precision+Recall) = 1.765/1.879=0.939

=== Evaluation on test split ===

Time taken to test model on test split: 0.04 seconds

=== Summarv ===

	Correctly Classified Instances	734	89.0777 %
	Incorrectly Classified Instances	90	10.9223 %
1	Kappa statistic	0.4053	
	Mean absolute error	0.117	
	Root mean squared error	0.3124	
	Relative absolute error	58.2739 %	
	Root relative squared error	96.4335 %	
	Total Number of Instances	824	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.957	0.602	0.922	0.957	0.939	0.412	0.854	0.976	no
	0.398	0.043	0.557	0.398	0.464	0.412	0.854	0.443	yes
Weighted Avg. === Confusion Ma a b < c	lassified	0.536 as	0.878	0.891	0.883	0.412	0.854	0.913	
695 31 a = 59 39 b =									
14		voc ir	tho n	ocitiv	class	thic r	0)1/		

If class yes is the positive class, this row TP=39, FN=59, FP=31, TN=695

Weighted Avg. TP (695+31)/824*0.957 +(59+39)/824*0.398 = 0.891

Refer to this link: https://classeval.wordpress.com/introduction/basic-evaluation-measures/

Using which metric to judge two classification models?

It depends on the task

Accuracy is usually not a good metric when the dataset is unbalanced (as bank-additional)

In cancer detection system (Check whether a person has cancer), recall is a better evaluation metric. (A higher recall means more cancer patients have been detected)

In email detection system (Detect whether it is a spam email), precision is a better evaluation metric. (We would rather mark spam as normal mail than put normal mail directly into the dustbin)

Under what circumstances F1 OR ROC is better?

https://www.analyticsvidhya.com/blog/2020/10/how-to-choose-evaluation-metrics-forclassification-model/

Save Neural Network Model

Suppose we want to save the trained multilayer perceptron model.

In the result list, right click the model

Click Save model

Select a location and enter a filename such as mlp, click

Save Our model is now saved to the file "mlp.model".

lassifier		
Choose	MultilayerPerceptron -L 0.3 -M	0.2 -N 100 -V 0 -S 0 -E 20 -H a
est options		Classifier output
O Use train		Node 1
 Supplied Cross-va 	lidation Folds 10	Time taken to build model: 7.51 seconds
Percenta		=== Evaluation on test split ===
	More options	Time taken to test model on test split: 0.0
(Nom) y Start	Stop	=== Summary === Correctly Classified Instances 1357 Incorrectly Classified Instances 180 Kappa statistic 0 Mean absolute error 0
	ht-click for options) functions MultilaverPerceptron View in main window	Root mean squared error Ø. Relative absolute error 62 ive squared error 96 er of Instances 1537
	View in separate window Save result buffer	ed Accuracy By Class ===
<	Delete result buffer(s) Load model Save model Re-evaluate model on curree	TP Rate FP Rate Precisio 0.946 0.594 0.923 0.406 0.054 0.500 vg. 0.883 0.531 0.874
	Re-apply this model's config Visualize classifier errors	uration Matrix ===
	Visualize tree Visualize margin curve Visualize threshold curve	<pre>< classified as a = no b = yes</pre>
	Cost/Benefit analysis Visualize cost curve	•

Weka Explore

Load Neural Network Model

Suppose we want to use our trained model to make prediction.

Right click on the Result list and click Load model, select the model saved in the previous slide "mlp.model".

Preprocess Classify Cluster Associate Select attributes Visual Classifier Choose MultilayerPerceptron -L 0.3 -M 0.2 -N 100 -V 0 -S 0 -H **Test options Classifier output** Use training set Node 1 Supplied test set Set... O Cross-validation Folds 10 Time taken to bui Percentage split % 66 === Evaluation on More options... Time taken to tes === Summary === (Nom) y Correctly Classif Incorrectly Class Start Stop Kappa statistic Mean absolute err Result list (right-click for options) Root mean squared Relative absolute 16:19:35 – functions.MultilayerPerceptron Root relative squ umber of I View in main window View in separate window ailed Accu Save result buffer Delete result buffer(s) Load model Avg. Save model Re-evaluate model on current test set fusion Mat Re-apply this model's configuration b <---Visualize classifier errors 73 I а Visualize tree 73 İ Visualize margin curve Visualize threshold curve Cost/Benefit analysis Visualize cost curve Status OK

.

Load Neural Network Model

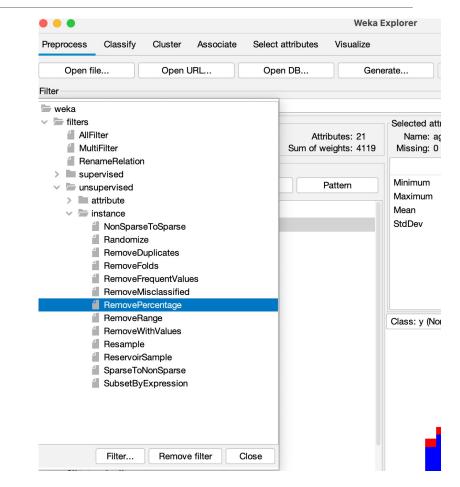
Now, the model is loaded, and we can see some information on

the right panel.

		Set	Attrib day_of_week=wed -2.9018837295636133
Cross-validation	Folds	10	Attrib day_of_week=mon 3.5919313835420605
Percentage split	%	80	Attrib day_of_week=thu 0.2941242040013639
C rereentage spire			Attrib day_of_week=tue -0.9703924890604473
	More	options	Attrib duration -5.008266765912082
			Attrib campaign 0.8116024334606574
(Nom) y			Attrib pdays -0.3688265643895745
			Attrib previous -0.38612762154364144
Start		Stop	Attrib poutcome=nonexistent 0.5765494234299603
Result list (right-click f	for optic	ons)	Attrib poutcome=failure 0.7925338139790056
16:20:38 - functions.N			Attrib poutcome=success -0.9380931765518941
			Attrib emp.var.rate 4.0395383019085305
20:33:57 - functions.N	luitilaye	rPerceptron from file 'mlp.mod	e' Attrib cons.price.idx 2.764074695810803 Attrib cons.conf.idx -3.4654050674544328
			Attrib euribor3m 3.0735332402611584
			Attrib nr.employed 3.091997569138057
			Sigmoid Node 34
			Inputs Weights
			Threshold 0.014435498997236978
			Sigmoid Node 35
			Inputs Weights
			Threshold 0.017655901255304668
			Node 34 -0.03305892751047364
			Class no
			Input
			Node 0
			Class yes
			Input
			Node 1

mooren aag_or_meen ere

Evaluate Model on New Data


We want to evaluate our model on a new dataset.

Select the Supplied test set option in the Test options pane.

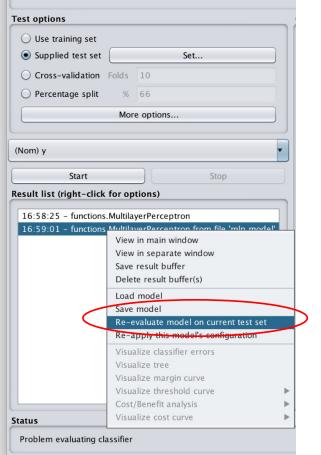
Classifier Choose Multilayer	Perce	eptron -L 0.3 -M 0.2 -N 100 -V	0-S0-E20-H a
	reice		
Test options			Classifier ou
 Use training set 			Attri
			Attri
Supplied test set		Set	Attri
O Cross-validation Fo	olds	10	Attri
O Percentage split	%	80	Attri
O Percentage spin	70	00	Attri
	More	options	Attri
·			Attri
(NI =)			. Attri

You can use the RemovePercentage filter to split a dataset. ("bank-additional-test.arff")

- training set:
 - Load the full dataset
 - select the RemovePercentage filter in the preprocess panel
 - set the correct percentage for the split
 - apply the filter
 - save the generated data as a new file
- test set:
 - Load the full dataset (or just use undo to revert the changes to the dataset)
 - select the RemovePercentage filter if not yet selected
 - set the invertSelection property to true
 - apply the filter
 - save the generated data as new file

Click Set, click the Open file on the options window and select the new dataset we just created with the name "bank-additional-test.arff".

For the Class, select y


Then, Click Close

Preprocess Classify	Cluster As	sociate Select attributes Visualize	
Classifier			
Choose Multilayer	Perceptron -L 0.3	3 -M 0.2 -N 100 -V 0 -S 0 -E 20 -H a -G -R	
Test options	+TII	Classifier output	×
OUse training set	🖸 打开		~
Supplied test set	Look In: 📒	data	
O Cross-validation Fo			
O Percentage split		it-1-answer.arff tional-test.arff	Invoke options dialog
(Nom) y			
Start			
Result list (right-click for			
16:20:38 - functions.Mul			
20:33:57 - functions.Mul			
	File Name:	bank-additional-test.arff	
	Files of Type:	Arff data files (*.arff)	~
			打开取消

Right click on the list item for our loaded model in the Results list.

Choose Re-evaluate model on current test set

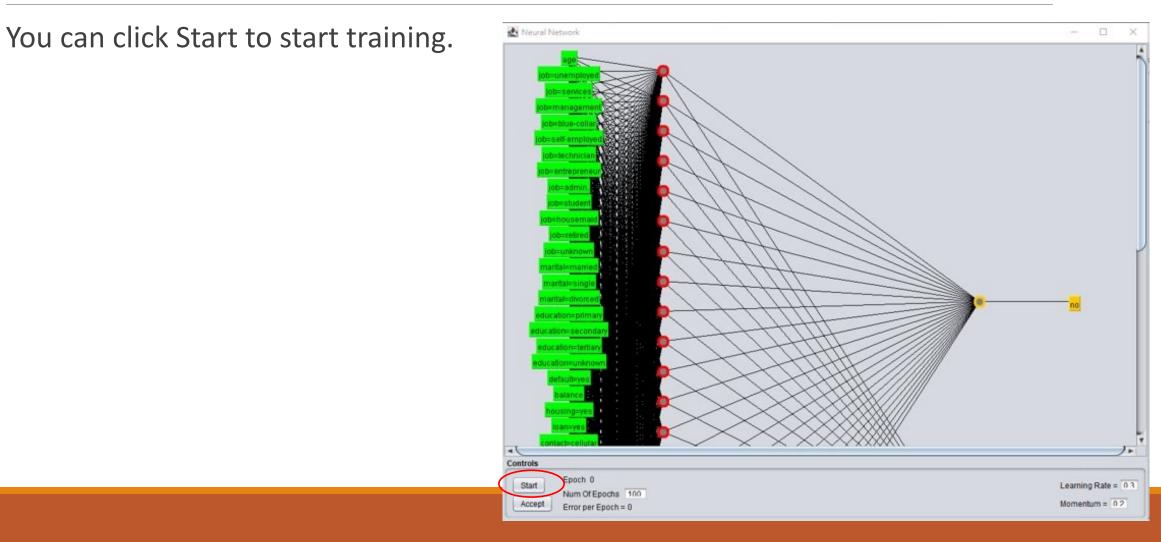
Choose MultilayerPerceptron -L 0.3 -M 0.2 -N 100 -V 0 -S 0

After the evaluation is finished. The result is shown on the right panel.

Classifier output								
Node 1								
De eveluati								
=== Re-evaluatio	on on test	; set ===						
User supplied to	est set							
Relation: b		onal-new						
Instances:	unknown (y	yet). Read	ling increme	entally				
Attributes: 2	1							
=== Summary ===								
G					70.7			
Correctly Class: Incorrectly Clas			1414 586		70.7 29.3	:)		
Kappa statistic		Iscances	0.41	4	29.3			
Mean absolute e:			0.29					
Root mean square			0.50					
Total Number of	Instances	3	2000					
=== Detailed Ac	curacy By	Class ===						
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Ar
					0.765			
	0.459	0.045	0.911	0.459	0.610	0.477	0.876	0.868
Weighted Avg.	0.707	0.293	0.775	0.707	0.688	0.477	0.876	0.866
=== Confusion M								
=== Confusion M	atrix ===							
a b < (classified	i as						
955 45 a :	= no							
541 459 b :	= yes							

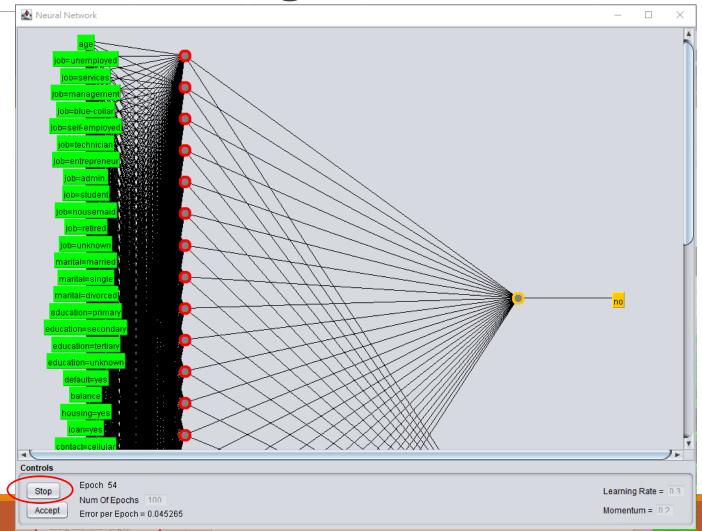
Let us investigate more configuration of the neural network.

Change GUI from False to True. This will provide a GUI windows after clicking Start.

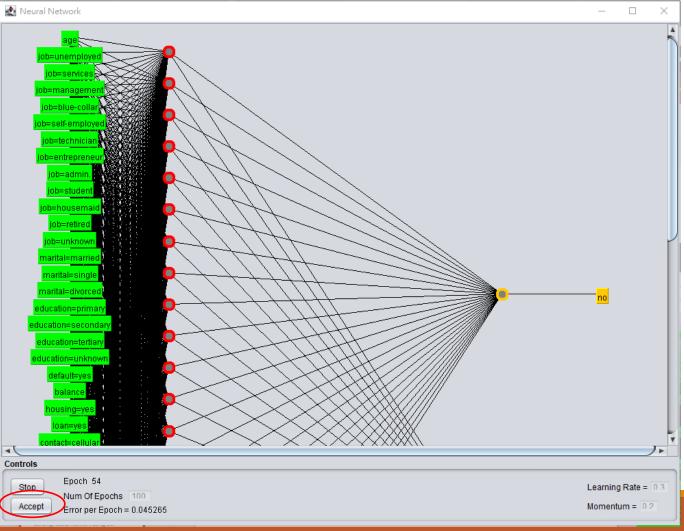

Click OK to close the configuration.

🥥 weka.gui.GenericObje	ctEditor ×
veka.classifiers.functions.l	lultilayerPerceptron
About	
A classifier that uses b perceptron to classify i	ackpropagation to learn a multi-layer More nstances. Capabilities
GUI	True
autoBuild	True
batchSize	100
debug	False
decay	False
doNotCheckCapabilities	False
hiddenLayers	a
learningRate	0.3
momentum	0.2
nominalToBinaryFilter	True
normalizeAttributes	True
normalizeNumericClass	True
numDecimalPlaces	2

Leave other setting as the same as previous slides.


Click Start

Preprocess Classify Cluster Associate	Select attributes	/isualize								
Choose MultilayerPerceptron -L 0.3 -M	0.2 -N 100 -V 0 -S 0 -E :	20-Ha								
Test options	Classifier output									
◯ Use training set	=== Evaluation	on test sp)lit ===							
O Supplied test set Set	Time taken to t	est model	on test s	plit: 0.01	seconds					
Cross-validation Folds 10 Percentage split % 66	=== Summary ===									
More options	Correctly Class			1357		88.2889				
	Incorrectly Cla		stances			11.7111	90			
	Kappa statistic			0.38						
(Nom) y 🔻	lom)y Mean absolute error 0.1272 Root mean squared error 0.3118									
Relative absolute error 62.0979 %										
Start Stop Root relative squared error 96.966 %										
Result list (right-click for options)	Total Number of	-		1537						
Result list (right-click for options)										
15:15:46 - functions.MultilayerPerceptron	=== Detailed Ad	curacy By	Class ===							
15:16:02 - functions.MultilaverPerceptron				.				202.2		~
15:16:14 - functions.MultilayerPerceptron		1P Rate 0.946	PP Rate	Precision 0.923	Recall 0.946	F-Measure 0.934	MCC 0.386		PRC Area 0.968	no
15:16:34 - functions.MultilayerPerceptron		0.946	0.594		0.946		0.386		0.988	yes
15:16:44 - functions.MultilayerPerceptron	Weighted Avg.	0.400	0.531	0.874	0.883		0.386		0.904	уса
·	Weighted Avg.	0.000	0.001	0.074	0.000	0.070	0.000	0.000	0.004	
15:21:02 - functions.MultilayerPerceptron	=== Confusion N	Matrix ===								
	a b <-	- classifi	ed as							
		a = no								
	107 73	b = yes								
										7 1

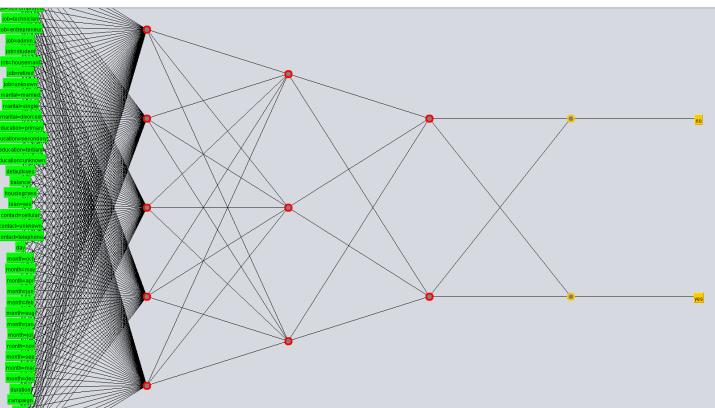


You can click Stop to stop training.

Also, the current epoch and error per epoch will be updated continuously after each epoch.

You can click Accept to finish training although the training has not reached the 100 epochs.

After you click Accept, the result will be shown on the right panel, just like previous slides.


As mentioned in previous slides, you can specify the number of hidden layers and the nodes of each layer. If you turn on the GUI mode, you can easily to verify it.

Let's change the hiddenLayers to 5,3,2

Click OK

weka.gui.GenericObjectEditor							
weka.classifiers.functions.M	MultilayerPerceptron						
About							
A classifier that uses b perceptron to classify in	nstances. More Capabilities						
GUI	True	•					
autoBuild	True	•					
batchSize	100						
debug	False	•					
decay	False	V					
doNotCheckCapabilities	False	•					
hiddenLayers	5, 3, 2						
learningRate	0.3						
momentum	0.2						

After clicking Start, you can see now your network has 3 hidden layers where 5 nodes in layer 1, 3 nodes in layer 2 and 2 nodes in layer 3.

Remarks on Neural Network

The performance of the neural network can be easily affected by the setup of the **hyperparameters**. The hyperparameters include the number of hidden layers, number of nodes, learning rate, momentum, batch size, etc. To achieve a better performing neural network always requires tons of hyperparameters tuning. You can play with different hyperparameters setting and investigate which combination can achieve a better result. 20-min practice, QA

A clustering algorithm finds groups of similar instances in the entire dataset. WEKA supports several clustering algorithms such as EM, FilteredClusterer, HierarchicalClusterer, SimpleKMeans and so on. You should understand these algorithms completely to fully exploit the WEKA capabilities.

As in the case of classification, WEKA allows you to visualize the detected clusters graphically.

After loading data into Explorer, click Cluster.

If the dataset has a label, you need transform the label to nominal attribute (if the label originally is a numeric attribute)

Click Choose

Under clusterers choose EM

Set the numClusters to 2.

In the **Cluster mode** sub window, select the **Classes to clusters** evaluation option.

Click on the **Start** button to process the data. After a while, the results will be presented on the screen.

About	ovinciantian) ala		
Simple EM (expectation m	aximisation) da	55.	More Capabilities
	debug	False	~
displayMode	InOldFormat	False	~
doNotChe	kCapabilities	False	~
	maxIterations	100	
maximumNuml	berOfClusters	-1	
minLogLikelihoodIm	provementCV	1.0E-6	
minLogLikelihoodImprove	mentIterating	1.0E-6	
	minStdDev	1.0E-6	
	numClusters	2	
numE	xecutionSlots	1	
	numFolds	10	
num	KMeansRuns	10	
	seed	100	

From the output screen, you can observe that –

There are 2 clustered instances detected in the database.

```
Time taken to build model (full training data) : 0.13 seconds
=== Model and evaluation on training set ===
Clustered Instances
0
      1717 ( 42%)
1
      2402 ( 58%)
Log likelihood: -38.72291
Class attribute: y
Classes to Clusters:
   0 1 <-- assigned to cluster
 1385 2283 | no
 332 119 | yes
Cluster 0 <-- yes
Cluster 1 <-- no
Incorrectly clustered instances :
                                   1504.0 36.5137 %
```

		Cluster		previous		
	Attribute	0	1	mean	0.4258 0.	0003
		(0.45)	(0.55)	std. dev.	0.746 0.	0164
			========			
	age			poutcome nonexistent	1245.5124 2279.	1076
	mean	39.9539	40.2426	failure		6128
	std. dev.	11.3329	9.4056	success	143	1
				[total]	1842.8996 2282.	1004
	job			emp.var.rate		
From the output screen, you can	blue-collar	296.8006	589.1994	mean	-1.309 1.3	2103
observe that –	services	152.5899	242.4101	std. dev.	1.3353 0.3	3747
	admin.	533.4917	480.5083			
	entrepreneur	63.6811	86.3189	cons.price.idx mean	93.1373 93.	9369
For the nomimal attributes, each	self-employed	73.1585	87.8415	std. dev.		3471
type of a specific attribiute is	technician	289.4264		554. 451.	011500 01	01/1
	management	180.7106		cons.conf.idx		
assigned a value.	student	60.3143	23.6857	mean	-41.8112 -39.	4398
	retired	97.305	23.6657	std. dev.	5.7312 3	.019
For the numerical attributeds						
some statistics like the mean and	housemaid	36.7198	75.2802	euribor3m		
	unemployed	56.0478	56.9522	mean		.869
standard deviation are given.	unknown	11.6538	29.3462	std. dev.	1.5275 0.3	2491
	[total]	1851.8996	2291.1004	nr.employed		
	marital			mean	5107.9808 5213	.709
	married	1025.1569		std. dev.	74.3682 18.	6448
	single		533.6643			
	divorced	191.2261	256.7739			
	unknown	6.1808	6.8192			
	[total]	1843.8996	2283.1004			
	education					
	basic.9y	210.7787	365.2213			
	high.school	393.0232	529.9768			

Visualize Clusters with Weka

To visualize the clusters, right click on the **EM** result in the **Result list**. You will see the following options

Select Visualize cluster assignments.

 Supplied test set Percentage split Classes to clusters evaluation 	Set % 66	otner succes [total				
(Nom) y		Time tak				
	(Nom) y					
Ignore a	ttributes	Clustere				
Start	Stop	0 1 3 2				
Result list (right-click for	options)	2				
11:56:39 - EM		Log like				
	View in main window View in separate window Save result buffer Delete result buffer(s)	t				
	Load model Save model Re-evaluate model on current Re-apply this model's contigui					
	Visualize cluster assignments					
	Visualize tree					
Status						
ОК						

Explain Assignment2

20-min practice, QA