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Pseudo-Conventional N-Gram Representation of the
Discriminative N-Gram Model for LVCSR
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Abstract—The discriminative n-gram modeling approach
re-ranks the IN-best hypotheses generated during decoding and
can effectively improve the performance of large-vocabulary
continuous speech recognition (LVCSR). This work recasts the
discriminative n-gram model as a pseudo-conventional n-gram
model. The recast enables the power of discriminative n-gram
modeling to be conveniently incorporated in a single-pass de-
coding procedure. We also propose an efficient method to apply
the pseudo model to rescore the recognition lattices generated
during decoding. Experimental results show that when the test
data is similar in nature to the training data, applying the pseudo
model to rescore the recognition lattices can achieve better perfor-
mance and efficiency, when compared with discriminative IV -best
re-ranking (i.e., re-ranking the N -best hypotheses with the dis-
criminative n-gram model). We demonstrate that in this case,
applying the pseudo model in decoding can be even more advanta-
geous. However, when the test data is different in nature from the
training data, discriminative [N -best re-ranking may offer greater
benefits than pseudo-model based lattice rescoring or decoding.
Based on the pseudo-conventional n-gram representation, we also
investigate the feasibility of combining discriminative n-gram
modeling with other recognition post-processes and demonstrate
that cumulative performance improvements can be achieved.

Index Terms—Discriminative n-gram modeling, large-vocabu-
lary continuous speech recognition (LVCSR).

1. INTRODUCTION

HE use of discriminative training approaches to improve

LVCSR performance has received increasing interest in
recent years. While state-of-the-art recognizers estimate param-
eters under the framework of maximum-likelihood estimation,
discriminative training approaches adjust the parameters with
the aim to directly minimize recognition error rates. Previous
approaches include discriminative acoustic modeling [1]-[5],
language modeling [6]-[9], or adjustment of the transition
weights in the recognition network [10], [11]. In particular,
discriminative n-gram modeling [9] has been shown to be
effective for both English and Mandarin LVCSR, especially
when the test data is similar in nature to the training data [9],
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[12]. Typically, the IV-best hypotheses generated by a baseline
recognizer are re-ranked, using a discriminative n-gram model
that linearly interpolates the recognition scores with a set of
n-gram-based features.

In this paper, we recast the linear discriminative n-gram
model as a pseudo-conventional n-gram model. The pseudo
model captures the power of the discriminative n-gram model
in the sense that integrating the baseline recognizer with the
pseudo model generates the same results as the discriminative
n-gram model in scoring/ranking utterance hypotheses. The
pseudo model can be applied in decoding or lattice rescoring
(i.e., rescoring the recognition lattices generated by the baseline
recognizer), just like a conventional n-gram model. In this
way, the discriminative n-gram modeling can be conveniently
extended from distinguishing among the /V-best hypotheses to
distinguishing among the utterance hypotheses in the decoding
search space or in the recognition lattices.

We explore two possible ways to compute the pseudo-con-
ventional n-gram model: offline computation and online com-
putation. The offline computation method builds a complete
pseudo model, which is directly applicable in decoding or lattice
rescoring. The online method computes pseudo-conventional
n-gram likelihoods as needed during application. In this study,
we propose an efficient method to compute the pseudo likeli-
hoods online for lattice rescoring. The online computation of
the pseudo model for decoding can be similar.

We conduct experiments based on Mandarin dictation. Re-
sults show that the effect of discriminative n-gram modeling is
sensitive to differences between the training and test sets, which
is consistent with previous observations [12]. We demonstrate
that when the test data is similar in nature to the training data,
applying the pseudo-conventional n-gram model in decoding or
lattice rescoring can be advantageous. If the test data is different
from the training data, the original approach of using the dis-
criminative n-gram model to re-rank the N-best hypotheses may
be more beneficial.

One additional benefit of the pseudo-conventional n-gram
representation is that it can conveniently combine discrimina-
tive n-gram modeling with other post-processing techniques
for recognition. This is illustrated by the use of an error detec-
tion and correction framework to post-process the recognition
lattices that have been rescored by the pseudo-conventional
n-gram model. Our experimental results show cumulative
improvements when the training and test data are of similar
nature.

The remainder of this paper is organized as follows. Section II
briefly reviews discriminative n-gram modeling. Section III
presents the pseudo-conventional n-gram model that represents
the discriminative n-gram model. An algorithm that efficiently
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applies the pseudo model to rescore the recognition lattices
generated during decoding is proposed in Section IV. Related
experiments are discussed in Section V. We investigate the
combination of discriminative n-gram modeling with other
approaches in Section VI. In Section VII, we present the
conclusions and future research directions.

II. DISCRIMINATIVE N-GRAM MODELING

A. Linear Framework

Discriminative n-gram modeling defines a linear framework
that re-ranks the N-best utterance hypotheses generated by a
baseline recognizer [9], [13]. The linear framework can be de-
scribed as follows.

e The training data set contains m speech utterances and [;
(¢ = 1...m) hypotheses for each utterance. Define z; ;
as the jth (j = 1...l;) hypothesis of the ith utterance.
Define z; g as the hypothesis with lowest character error
rate (CER) among {z; ;}.

* A separate test set of y; ; is defined in a similar way as the
training set.

* Define D + 1 features f4(h), where d = 0...D and h is
an utterance hypothesis.

* Define a discriminant function as

D

g(h,@) = aifi(h) =a- f(h). ()

=0
The task of discriminative training is to find the weight vector
a that satisfies the following conditions on the test set:

9(yi,r. @) > g(yi,j, @) ViVj# R. )

B. Features

For each utterance hypothesis h, the base feature fo(h) is the
recognition score of h. The recognition score is the weighted
summation of acoustic and language model (LM) likelihoods
that are assigned to the hypothesis in focus by the baseline rec-
ognizer. It can be written as follows:

k k

fo(h) = QZPAJ\,[(wi)—l—ﬁZPLA[(’wi|’lU1./ wa, ... ’lUi_l) —kr

i=1 i=1

3)
where wjws...w, is the corresponding word se-
quence of the utterance hypothesis h, Pap(w;) and
Pryr(wi|wy, wa, ..., w;—1) are the acoustic and LM likeli-
hoods (i.e., probabilities in the log domain in this case) for the
word w;, a and (3 are the acoustic and LM weights adopted
by the recognizer, and 7 refers to the word insertion penalty
weighted by the number of words k. The remaining features
are the n-gram counts. Given a set of selected n-grams (i.e.,
n-word sequences), we assign a unique index u (1 < u < D)
to each of the n-grams. For an utterance hypothesis A, f,,(h) is
the count of the uth n-gram in h. For example, assuming that
the index of the unigram “new” is v and that of the bigram
“new solutions” is w, then for the hypothesis “There are new
ideas and new solutions,” f,(h) = 2 and f,,(h) = 1.

1 Initialize the weight vector a
2 Fort = 1...T (T is the total number of iterations)
3 For the i™ speech utterance, i = I...m

For x;; (i.e., the /"

4 hypothesis of the i utterance), j = 1...1;
5 Calculate g(h,a), where h=x;;

6 Choose the x;; with the highest g(h,a) value

7 Ford = 0...D (7 is the size of the learning step)

8

ag = a, +1(8 (% g, @) = 8 @Sy (¥ ) = S (X))

Fig. 1. Standard perceptron algorithm with delta rule.

A discriminative M -gram model normally includes all the
n-grams with order n < M into the calculation of f;(h) (1 <
1 < D). For instance, a discriminative bigram model can utilize
both unigrams and bigrams. In addition, since the base feature
fo(h) depends on acoustic likelihoods, discriminative n-gram
models are acoustically relevant.

C. Training Algorithm

The weight vector @ can be trained by different algorithms,
including perceptron [14], boosting [15], ranking support
vector machine [12], [16], and minimum sample risk [17].
These training algorithms attempt to minimize the training
error directly or minimize various loss functions. In this paper,
we use the perceptron algorithm as an example of all possible
training methods. The perceptron algorithm optimizes a min-
imum square error (MSE) loss function [18] to approximate the
minimum training error. The loss function can be written as

1

floss(a:) =3

5 Z (9(wi,r, @) — g(wi 1, @))° “)

i=1l...m

where z; i, is the utterance hypothesis having the highest g(h, @)
value among all the candidate hypotheses for the +th speech ut-
terance.

In this paper, we follow [17] to use the averaged perceptron
algorithm [14], [19] to train the weights. This method first uses
the standard perceptron with a delta rule to iteratively update @,
as shown in Fig. 1. The weights are then averaged to increase
model robustness. For each weight a4(0 < d < D), we define
afi’t as the value of a4 after processing the «+th utterance in the
tth iteration. The average weights are calculated as

(4) g = <Z

t=1 i=1

aj’f) /(T-m), d=0...D (5
where 1 is the total number of iterations.

III. PSEUDO-CONVENTIONAL N-GRAM REPRESENTATION

In this section, we first prove that the linear discriminative
n-gram model can be recast as a pseudo-conventional n-gram
model [20] in Section III-A. We then discuss the computation
of this pseudo-convention n-gram model in Section III-B.

A. Theory

For each speech utterance, the discriminative n-gram model is
applied to score/rank the N-best hypotheses using (1). The top-
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ranking hypothesis is the new recognition result for the utter-
ance in focus. If ag is larger than zero, we can modify the scoring
method as (6) without changing the ranking of the N-best hy-
potheses. Note that given a reasonably good baseline recognizer,
ay is always positive since fo(h) (i.e., the recognition score) is a
reliable source of information to distinguish among competing
N-best hypotheses:

D
o (@) = fo(h) + 37 L filh) ©)
=1

For a discriminative M-gram model that utilizes all the
n-grams with order n < M, the second part of (6) can be
expanded into the equation below:

D
a; 1
E —ft(h) = (awl + Qg +...+ Ay, + Qg wo
— @0 ao
1=
+ Gwowy + oot Qwp_jwy, + - - -
+ awlwg...wM + awzwg...wj\j+1 R

(N
is the weight of the (j + 1)-gram

+awkﬂw+1wkﬂw+2---'wk)

where awpprrl"-prrJ
(WpWp1 - - - Wp5).- .
Based on (3) and (7), (6) can be rewritten as

o (h) = foh) + 37 2 filh)

k
=« Z PAM(wi)
i=1

k
+ ﬂZPLJ\I(wi|w17w27 coowisq) — k-
i=1
1
+ Cl_ (aml + Qapyy +...+ Ay, + Qapyqwo + Qs
0
+ .ot Qw, w, T eee s Gwws . wyy
FOwrws..wpr gy - T awk—l\1+1wk—l\l+2---wk)
k
= Z PA]\/[(U)Z')
i=1
k
+/BZP£]\,[(wi|w17w27---wifl)_k'T (8)
i=1
where
Prar(wilwy, ... wio1) = Poar(wilwy, ... wi 1)

©)

1

+m (a/w, + a'w,,lw, + ... + aw,,M+11177,M+2...w,) .
Comparing (3) and (8), we can see that the only difference in
scoring between the baseline recognizer and the discriminative
n-gram model lies in the LM likelihoods (i.e., the LM scores
assigned to the hypotheses). This means that the discriminative
n-gram model can be recast as a pseudo LM (9), and scoring
an utterance hypothesis by the discriminative n-gram model is
equivalent to scoring the hypothesis by the “upgraded” baseline
recognizer that replaces the original LM with the pseudo LM.
Hence, the power of the discriminative n-gram model can the-
oretically be incorporated in a single-pass decoding procedure.
While the discriminative n-gram model distinguishes among the

N-best hypotheses generated by the baseline recognizer, the up-
graded recognizer can directly apply the discriminative knowl-
edge to distinguish among different paths in the decoding search
space. Note that the IV-best hypotheses are only a subset of the
paths in the active decoding search space. Applying the discrim-
inative knowledge to the decoding search space can generate
greater benefits, as long as the discriminative knowledge is ef-
fective in distinguishing among the /V-best hypotheses.

In the discussions above, the Dbaseline LM
Pry(wi|wy, ..., w;—1) (e, the one in the baseline
recognizer) can theoretically be any LM. State-of-the-art
recognizers typically adopt conventional n-gram LMs,
which estimates the probability of the appearance of a word
based on the previous n — 1 words and can be expressed as
P, _gram(Wi|Wi—nt1, - .., w;—1). In the case that the baseline
LM is a conventional L-gram model, if M < L, the discrimi-
native M -gram model can be recast as a pseudo-conventional
L-gram model as follows:

P gram(Wilwi—p41, .« wi1)
=Pr_gram(Wilwi—r41, - ., wi—1)
1

+m (awi a/wi,lmi + . -+au;i,M+1wi,M+2...'wi) - (10)
0"

Based on (10), the discriminative knowledge can be conve-
niently incorporated in the decoding procedure. The baseline
recognizer can simply use the pseudo-conventional L-gram
model instead of the original L-gram model to perform
single-pass decoding. In addition, the pseudo-conventional
L-gram model can also be applied to rescore the recognition
lattices generated by the baseline recognizer, as will be dis-
cussed later.

B. Model Computation

To compute the pseudo-conventional n-gram model based on
(10), there are two possible methods:

1) Compute the Pseudo-Conventional N-Gram Model Of-
fline: This method attempts to build a pseudo-conventional
n-gram model by modifying the n-gram entries in the con-
ventional n-gram model of the baseline recognizer using (10).
The advantage of this method is that the application of a
precomputed model in both decoding and lattice rescoring is
straightforward. For decoding, this model can be applied in
the recognizer as a conventional n-gram LM. No change in
the structure of the recognizer is needed. For lattice rescoring,
standard tools that have been developed for conventional
n-gram LMs can be utilized by the pseudo model to rescore the
recognition lattices.

The difficulty of this method lies in the fact that some of
the n-grams modified by (10) are not included in the baseline
conventional n-gram LM. Conventional n-gram LMs do not
store all n-grams as entries. This is to make the estimation of
n-gram probabilities feasible and to limit memory consumption
required in decoding. For an n-gram that is absent but needed
in decoding, the baseline n-gram model can compute the prob-
ability via back-off to lower-order n-grams, as illustrated in the
following example:
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o WE o LOVE | FLOWERS o
FOR
SIL WE
v ARE FLOWERS
SIL
WILLIAM FLOWERS

Fig. 2. Sample recognition lattice generated by trigram decoding (SIL marks
pauses).

where p(wi|wi_n+1, ce >wi—1) and p(wi|wi_n+2, N :wi—l)
are n-gram and (n — 1)-gram probabilities, respectively.
b(wi—pnt1,...,w;i—1) is the back-off weight.

One solution to this difficulty is to insert those absent but
modified n-grams (i.e., the ones that are not stored in the base-
line LM but are modified by (10)) into the pseudo model as new
entries. However, the resulting pseudo model may be quite large.
Another solution is to adjust the related back-off weights and/or
probabilities of lower-order n-grams so that the probabilities of
the absent but modified n-grams can be calculated via back-off
to lower-order n-grams. In this way, inserting new n-gram en-
tries is unnecessary since they can be computed when needed as
in the baseline LM. The model size can thus remain unchanged.
We will defer this investigation for the future.

2) Compute the Pseudo-Conventional N-Gram Likelihoods
Online: The second method is to compute the pseudo-conven-
tional n-gram likelihoods only when they are needed in either
decoding or lattice rescoring. Since no physical model is created
in this case, the difficulty encountered in the offline method is
circumvented. In this paper, we propose an efficient algorithm to
compute the pseudo-conventional n-gram likelihoods online for
lattice rescoring, as will be presented in detail in Section I'V. For
decoding, the online calculation of pseudo-conventional n-gram
likelihoods can be similar.

IV. DISCRIMINATIVE LATTICE RESCORING

This section presents an algorithm, referred as discriminative
lattice rescoring (DLR), to rescore the recognition lattices gen-
erated by the baseline recognizer using the pseudo-conventional
n-gram model computed online. The procedure for online com-
putation of the pseudo model for decoding is similar since the
recognition lattice is a subset of the decoding search space. To
facilitate the discussion, we first briefly introduce the properties
of recognition lattices. In a recognition lattice, each word hy-
pothesis along with its acoustic and LM likelihoods is stored in a
link. If the lattice is generated by a recognizer with L-gram LM,
the (L — 1)-word history for each word hypothesis is unique.
Fig. 2 provides a sample recognition lattice generated by tri-
gram decoding.

Suppose the baseline recognizer uses a conventional L-gram
LM and a discriminative M-gram (M < L) is adopted. The

DLR algorithm recasts the discriminative M -gram model into
a pseudo-conventional L-gram model as (10) and applies this
pseudo model to process the recognition lattices generated by
the baseline recognizer as follows:

For each recognition lattice:

Step 1) Traverse all links (i.e., word hypotheses) in
the lattice. For each link w;, compute (1/(aq -
B w; + @w, yw, + .-+ awi—lw+1wi—lw+2---wi)
based on the (M — 1)-word history and
add this score to the original LM likelihood
(.e., Pr—gram(wi|lwi—p41,...,wi—1))
stored in this link. The summation is the
pseudo-conventional L-gram likelihood
Pifgram(w”wi—lff'l? c. ;wi—l) of Wy .

Step 2) In the rescored lattice, perform the A* search to
identify the top-scoring utterance hypothesis. This
hypothesis is the new recognition result for the
utterance in focus.

In Step 1, the (M — 1)-word history for each link is unique.
This is because the (I — 1)-word history is unique and M < L.
In Step 2, the score of an utterance hypothesis wiws . . . wy in
the rescored lattices is

k
Score(h) = « Z Paps(w;)
i=1

K
+/32 Pr_gram(Wilwi—py1, .. wim1) = k- (12)
=1

The utterance hypothesis can be viewed as scored by the up-
graded recognizer with a modified L-gram LM. As discussed in
Section III-A, this scoring method is equivalent to scoring the
utterance hypothesis by the discriminative n-gram model using
(1). The top-scoring utterance hypothesis in the rescored lattice
is thus the one having the highest g(h, @) value among all ut-
terance hypotheses in the lattice search space. In other words,
performing DLR is functionally equivalent to application of the
discriminative n-gram model to re-rank all utterance hypotheses
in the recognition lattice, but is more efficient, as will be proven
later (see Section V-D).

Note that during the generation of the recognition lattice,
some recognizers may merge two word hypotheses that bear the
same word and the same time annotations (start and end times)
if 1) their LM likelihoods are the same, and 2) the merging will
not cause ambiguities in the assignment of L-gram likelihoods
for the subsequent word hypotheses. In the recognition lattice
generated this way, the (I — 1)-word history for a link may not
be unique. This problem can be solved by various methods. For
example, the function of merging word hypotheses satisfying
the two conditions above can be disabled for the generation of
recognition lattices. Another convenient approach is to insert
duplicate links into the recognition lattice to ensure that each
link has a unique (L — 1)-word history.

In the literature, there are many lattice rescoring methods.
Most of these methods rescore recognition lattices with models
estimated using maximum-likelihood estimation [21], [22].
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Compared with such methods, DLR is different in the sense
that the adopted model [i.e., Pi_gmm(wi|wi_L+1./ e Wisq)
as (10)] attempts to directly minimize CER, that is, attempts
to assign the highest score [i.e., g’(h) as (8)] to the hypothesis
with the lowest CER in a lattice.

Another lattice processing approach that aims to minimize
word/character error rate is consensus decoding [23], [24]. This
approach 1) converts a recognition lattice into a sequence of
confusion sets and 2) concatenates the best word (e.g., the word
having the highest word posterior probability) of each confusion
set to form the output. This technique has been reported to be
effective (e.g., reducing the WER from 38.5% to 37.3% on the
Switchboard corpus) and widely used in LVCSR systems. While
consensus decoding utilizes multiple information sources (e.g.,
acoustic and LM likelihoods, rules), DLR focuses on LM like-
lihoods and is relatively convenient to apply.

V. EXPERIMENTS AND ANALYSES

We conduct experiments on the task of Mandarin dictation.
We first train a baseline recognizer that incorporates a conven-
tional trigram LM. We then train a set of discriminative bigram
models. Based on these models, we evaluate the original ap-
plication of discriminative n-gram models (i.e., re-ranking the
N-best hypotheses) and the proposed method for discrimina-
tive lattice rescoring. We compare the two methods and explore
the conditions under which applying the pseudo-conventional
n-gram model is suitable.

A. Development of the Baseline Recognizer

We train a general-domain baseline recognizer with state-of-
the-art techniques on abundant data. The recognizer utilizes a
60 606-word lexicon for language and acoustic modeling. For
language modeling, a conventional trigram LM is trained on a
28-GB text corpus. This text corpus is well balanced across a
variety of domains. The LM is smoothed using the absolute dis-
counting algorithm. For acoustic modeling, the trained models
are gender-independent cross-word triphone diagonal-covari-
ance Gaussian tied-state HMMs that have 36 Gaussian mixture
components [25]. The acoustic models are trained on a 700-hour
speech set. In this paper, all the speech datasets involved are read
speech recorded in clean environments by Microsoft Research.

B. Development of the Discriminative N-Gram Models

We use a disjoint speech dataset (DT_Set), which contains
84 498 utterances, to train the discriminative n-gram models.
In the DT_Set, novels constitute the majority of the content.
We refer to this and other similar datasets as the novels-domain
datasets in this study.

Since our aim is to investigate the applicability of the
pseudo-conventional n-gram model, we did not attempt to de-
velop optimal discriminative n-gram models. Instead, we train
two discriminative bigram models based on different numbers
of N-best hypotheses, to exemplify different performance
levels of the discriminative n-gram models.

The discriminative bigram models utilize the recognition
scores, unigram counts and bigram counts as features. Uni-
grams are the words in the recognizer’s lexicon. All the word
pairs in the 20-best hypotheses generated by the baseline

recognizer for the training set (DT_Set) are used as bigrams.
There are 3 657 348 bigrams in total.

The discriminative models are trained using the average per-
ceptron algorithm. ag (i.e., the weight for the base feature fy) is
initialized at 0.8, while a; (1 < i < D) (i.e., the weight for the
feature f;) is initialized at 0. In the iterative procedure, the size
of the learning step is set to be 0.01, and the number of iterations
is set at 60. Note that more iterations may lead to better perfor-
mance especially when the training and test data are similar in
nature [12].

As regards the two discriminative bigram models, the first
model is trained on the 20-best hypotheses generated by the
baseline recognizer for the utterances in DT_Set, while the
second model is trained on the 1000-best hypotheses. We refer
to the first and second models as Model_20 and Model_1000,
respectively. The influence of adopting a greater number of
N-best hypotheses in training depends on how well the test
data matches the training data [26], as will be discussed later.

The trained discriminative bigram models, Model_20 and
Model_1000, can be stored compactly in memory. Although
the total number of features (i.e., the recognition score, counts
of 60 606 unigrams and 3 657 348 bigrams) is large, the number
of active features (i.e., those features whose trained weights
are different from the initial weights) is much smaller. Only
12.6% and 17.2% of total features are active for Model 20 and
Model_1000, respectively. For each trained model, deleting all
inactive features leads to a compact model, which provides the
same performance as the original one.

C. Evaluation

We utilize two test sets in evaluation. One is a novels-domain
speech set (TestSet_N), which is similar in nature to the dis-
criminative training set DT_Set. The other is a general-domain
speech set (TestSet_G) [27], which is different from DT_Set
in terms of domain. There are 4000 and 500 utterances in
TestSet_N and TestSet_G, respectively. Since discriminative
n-gram modeling tends to be sensitive to differences between
the training and test data [12], we adopt the two test sets
to investigate the applications of the discriminative n-gram
models under different conditions (i.e., where the training and
test datasets are similar or different in nature).

1) Baseline Performance: For each input speech utterance
(e.g., EFE R ULF LXMW, translation: “Meet the prolo-
cutor at the news center”), we view the recognition result (e.g.,
T at/#7 Blnews/F '\b\center/ﬁ%meetﬁ)‘('&prolocutor) as a
Chinese character sequence. We then evaluate the recognition
performance based on character error rate (CER)

Ns+ Ny + Np
Nau

where N, is the number of the characters in the recognized
utterances, and Ng, N7, and Np are the numbers of character-
based substitutions, insertions, and deletions, respectively.

The performances of the baseline recognizer are presented in
Table I. We can see that the CER on the novels-domain test set
TestSet_N is relatively high. This is because the novels-domain
utterances in TestSet_N are dissimilar to those used to train the
general-domain LM in the baseline recognizer. The perplexity
[28] of the general-domain LM for TestSet_N (novels domain)
is more than three times of that for TestSet_G (general domain).

CER = (13)
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TABLE I
PERFORMANCE OF THE BASELINE RECOGNIZER
. . Number of | Number of . CER
Test Set Domain Utterances | Characters Perplexity (%)
TestSet_N Novels 4,000 62,691 1,528 19.86
TestSet_G General 500 9,572 463 8.89

CER
9.1%

9.0% + !

e — Model_20

....... Model_1000

“Perplexity” refers to the perplexity value of the LM used in the recognizer.
“CER?” is the character error rate [see Equation (13)].

CER
20%-

19%

————— Model_20
rrrrrrr Model_1000
Baseline

18%+

17%4"

16% — T .

0 200 400 600
The graph below is a magnification
of the initial region (N1 = 1 to 20) of the graph above:

800 1000

CER
20%

19%1

-~ =T Model_20
AAAAAAA Model_1000
Baseline

18%-

17%

16% T T T " Nrg
0 5 10 15 20

Fig. 3. Performance of discriminative NV -best re-ranking on TestSet N. N7
is the number of the NN -best hypotheses for each test utterance.

2) Discriminative N-Best Re-Ranking: The discriminative
n-gram models are used to re-rank the N-best hypotheses
generated by the baseline recognizer [see (1)]. We refer to this
procedure as discriminative N-best re-ranking. We evaluate
the performance of discriminative /N-best re-ranking for the
two discriminative bigram models, Model_20 and Model_1000
(trained on the 20-best and 1000-best hypotheses, respectively,
see Section V-B). We increase the value of N (i.e., the number
of N-best hypotheses for each speech utterance in testing) from
1 to 1000. Performance values for TestSet_ N and TestSet_G
are illustrated in Figs. 3 and 4, respectively.

Fig. 3 shows that for TestSet_N, ranking a greater number
of N-best hypotheses for each testing utterance consistently
improves the performance for both Model_20 and Model_1000.
When Nrg increases, the CER drops quickly and then levels
off. We can also see that Model_1000 performs better than
Model_20 on TestSet_N.

For TestSet_G, Fig. 4 shows that the minimum CERs are
achieved by only using the three- or four-best hypotheses in
testing. When Npg increases to around 100, the CER curve
rises and stabilizes around a relatively high position for both

88% 1 v
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7 LI —— Nrg
0 200 400 600 800 1000
The graph below is a magnification
of the initial region (N7 = 1 to 20) of the graph above:
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Fig. 4. Performance of discriminative /N -best re-ranking on TestSet_G. N
is the number of the [V -best hypotheses for each test utterance.

models. N-best re-ranking using Model_1000 mostly hurts per-
formance while Model_20 brings a small improvement only
(i.e., less than 0.1% absolute CER reduction).

The different performances between TestSet G and
TestSet_ N demonstrate that the effectiveness of discrimi-
native n-gram models depends heavily on how well the test
data match the discriminative training data. If the test data (e.g.,
TestSet_N) is similar to the discriminative training data (e.g.,
DT_Set), the knowledge captured by the discriminative models
is effective in distinguishing among the N-best hypotheses. In
this case, adopting a greater number of N-best hypotheses in
testing leads to better performance, as observed in the CER
reductions in Fig. 3. Furthermore, the greater the number of
hypotheses (N) used in training, the more beneficial it will be
for testing. Since Model_1000 captures more knowledge than
Model_20, it achieves better performance on TestSet_N.

However, if the test data is different from the discriminative
training data, the knowledge captured by the discriminative
models during training may mislead N -best re-ranking during
testing. For example, each discriminative model trained on
the novels-domain training data DT_Set captures two types
of knowledge: general-domain knowledge and novels-domain
knowledge (i.e., knowledge of novels-style expressions, such as
“sweet air”’). When the model is applied to the general-domain
TestSet_G, the general-domain knowledge is beneficial, but
the novels-domain knowledge is misleading. More specifically,
discriminative N -best re-ranking utilizes both general-domain
knowledge (represented as n-gram features trained/tuned on
general content) and novels-domain knowledge (represented
as n-gram features trained/tuned on novels-style expressions)
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TABLE II
PERFORMANCE OF DISCRIMINATIVE LATTICE RESCORING (DLR)

Performance on TestSet_N (Novels Domain)

CER (%)
Baseline 19.86
Oracle (1000-best hypotheses vs. lattices) 9.44 vs. <8.29
DLR 17.74
Model_20 Discriminative 1000-best Re-ranking 17.75
DLR 16.27
Model 1000 Discriminative 1000-best Re-ranking 16.31
Performance on TestSet_G (General Domain)
CER (%)
Baseline 8.89
Oracle (1000-best hypotheses vs. lattices) 3.45 vs. <3.06
DLR 8.83
Model_20 Discriminative 1000-best Re-ranking 8.82
DLR 9.06
Model_1000 Discriminative 1000-best Re-ranking 9.04

“Oracle” refers to the CER of the best hypotheses (the ones with lowest
CERs) in given search spaces (e.g., 1000-best hypotheses or lattices).

that are applied in the N-best hypotheses for TestSet_G. As
N increases, the amounts of both types of applied knowledge
increase. Fig. 4 indicates that initially, the general-domain
knowledge applied grows faster than novels-domain knowl-
edge, leading to minimum CER at around Npg = 3 or 4.
Thereafter, competing effects between the increasing applica-
tion of general-domain and novels-domain knowledge result in
widely fluctuating CER curves. When Npg > 100, a rough
balance is achieved between the two types of knowledge and
the performance curves level off. Furthermore, the fact that
Model_1000 performs worse than Model_20 indicates that the
former captures a greater amount of misleading knowledge
(from the novels-domain) compared with the latter.

The computation time of discriminative N-best re-ranking
grows linearly when N increases. 1000-best hypotheses are dis-
criminatively re-ranked in about 0.15 X real-time. In this paper,
all computation times were estimated on a server with Pentium
4 CPU of 3.20 GHz.

3) Discriminative Lattice Rescoring: We apply the two dis-
criminative bigram models (i.e., Model_20 and Model_1000)
to perform discriminative lattice rescoring. We first recast each
model as a pseudo conventional trigram model. We then use the
two-step algorithm proposed in Section IV to rescore the recog-
nition lattices generated by the baseline recognizer.

The evaluation results of DLR are illustrated in Table II.
We also include the performance of discriminative 1000-best
re-ranking in Table II for comparison. Compared with discrim-
inative 1000-best re-ranking, DLR discriminatively re-ranks
more hypotheses for each utterance. From Table II, we can see
that DLR provides CER reductions similar to discriminative
1000-best re-ranking. The improvements over the baseline
brought by both DLR and discriminative 1000-best re-ranking
on TestSet_N are statistically significant! for both discrimina-
tive models. On TestSet_G, the differences with the baseline
performance are insignificant for both discriminative models.

Table II also shows that on TestSet_N, DLR slightly out-
performs discriminative 1000-best re-ranking. The difference

IAll the significance tests conducted in this paper are matched-pairs signifi-
cance tests. The significance level is set at 0.01 throughout this paper.

TABLE III
COMPARISON ON TESTSET_G
Optimal CER (%) of CER (%) of
Discriminative N-best Re-ranking DLR
Model_20 8.64 (discriminative 4-best re-ranking) 8.83
Model_1000 8.70 (discriminative 3-best re-ranking) 9.06

is statistically significant for Model_1000, but is insignificant
for Model_20. This indicates that Model_1000 can effectively
distinguish among more than 1000 hypotheses when the test
data matches the training data. In contrast, Model_20 has al-
most reached its performance upper bound when the number of
hypotheses rises to 1000 (see Fig. 3).

On TestSet_G, DLR performs slightly worse than discrimina-
tive 1000-best re-ranking (see Table II). However, for both dis-
criminative models, the differences between the two approaches
are insignificant. As illustrated in Fig. 4, each CER curve fluctu-
ates slightly when Nprgr > 100. Compared with ranking 1000-
best hypotheses, the differences brought by DLR (i.e., ranking
all hypotheses in the lattices) may be due to chance effects.

Regarding efficiency, the processing speed of DLR is about
0.05 x real-time. For DLR, 88% of the computation time is
expended on lattice rescoring and 12% is used for identifying
the top-scoring utterance hypothesis in the rescored lattices.

D. Discussion

Our results indicate that it is beneficial to recast the discrimi-
native n-gram model as pseudo-conventional n-gram model and
apply the pseudo model in decoding or lattice rescoring if the
test data is similar in nature to the discriminative training data.
Pseudo-model decoding (i.e., replacing the original LM with the
pseudo model in the baseline recognizer to perform decoding)
is functionally equivalent to discriminatively ranking the utter-
ance hypotheses in the decoding search space, while DLR is
functionally equivalent to discriminatively ranking the utterance
hypotheses in the recognition lattice. Note that the N-best hy-
potheses are subsumed by the recognition lattice and the recog-
nition lattice is subsumed by the decoding search space. Pseudo-
model decoding will perform better than DLR and DLR will in
turn perform better than discriminative N-best re-ranking (as
proven in Section V-C-3) if ranking more hypotheses for each
utterance is always beneficial. As shown in Fig. 3, this condition
is true when the test data has similar nature as the discriminative
training data.

In case that the test data is different in nature from the training
data, i.e., when the knowledge captured by the discriminative
n-gram model from the training data does not fit the test data
well, discriminative /N-best re-ranking may perform better
than DLR and pseudo-model decoding. This is because incor-
porating more hypotheses in ranking may introduce a greater
amount of misleading knowledge and thus lead to unstable
performance (e.g., the fluctuating CER curves shown in Fig. 4).
For example, TestSet_G is different from the discriminative
training data DT_Set in terms of domain. As demonstrated in
Table III, the optimal CERs on this test set are achieved by
re-ranking several N -best hypotheses. These optimal CERs are
much lower than the CERs of DLR, even though DLR discrim-
inatively ranks all the utterance hypotheses in the recognition
lattices. According to the trend of CER when the hypothesis
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number grows (see Fig. 4), the performance of pseudo-model
decoding should be similar to DLR and also worse than the
optimal performance of discriminative N-best re-ranking.

Thus far, three methods have been presented for applying dis-
criminative n-gram models. Discriminative /N-best re-ranking
and DLR have been implemented. The potential usefulness of
pseudo-model decoding has also been discussed. Among the
three methods, pseudo-model decoding can be the most efficient
if the model is built offline. The recognizer can directly apply
the pseudo model in place of the original LM and no additional
computation is needed. Online computation of the pseudo-con-
ventional n-gram likelihoods may affect the efficiency of the
recognizer. However, DLR with online computation of pseudo
likelihoods has been shown to be efficient, costing only 0.05 x
real-time to process the lattices. This indicates that the online
computation of pseudo likelihoods is sufficiently efficient.

If online computation of pseudo-conventional n-gram
models is adopted, we can compare the effectiveness between
the pseudo-model based methods (i.e., DLR and pseudo-model
decoding) and discriminative N -best re-ranking. When the test
data is similar in nature to the training data, methods based
on the pseudo model may achieve better performance in less
time. For example, DLR performs better than discriminative
1000-best re-ranking on TestSet_G while using only 32%
of the computation time needed by discriminative 1000-best
re-ranking. When the test data is different in nature from the
training data, discriminative N-best re-ranking may be more
efficient since the optimal performance may be achieved by
re-ranking only a small number of N-best hypotheses for each
utterance.

VI. COMBINATION WITH RECOGNITION POST-PROCESSES

Many recognition post-processes have been proposed to
improve LVCSR. Combining discriminative n-gram modeling
with other post-processes to achieve cumulative improvements
is thus a meaningful topic. Discriminative n-gram modeling
is originally a task of IN-best re-ranking and it is generally
inconvenient to combine with other post-processes (especially
for lattice-based processes). However, with the pseudo-con-
ventional n-gram representation, such combination becomes
straightforward—other recognition post-processes can be ap-
plied to the output of pseudo-model decoding or DLR in the
same way as they process the output of conventional decoding.
This section provides an illustration by combining an error
detection and error correction (ED-EC) framework [26], [29]
with DLR.

A. An ED-EC Framework to Improve Mandarin LVCSR

The ED-EC framework attempts to post-process the output
of a baseline recognition system by two subsequent procedures:
error detection and error correction. Since both procedures de-
pend on recognition lattices, combining the framework with
discriminative N -best re-ranking is difficult. However, we can
first conduct pseudo-model decoding or DLR and then apply
the framework to the discriminatively enhanced baseline sys-
tems without any algorithmic modifications. For the discrimi-
natively enhanced baseline systems, the recognition lattices are
the ones generated by pseudo-model decoding or rescored by
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Fig. 5. Search network with character alternatives, created during error correc-
tion for an utterance.
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DLR, while the recognized utterances are the top-scoring utter-
ances in these lattices.

In the rest of this section, we briefly introduce the ED-EC
framework. Since this framework is only used as an example of
combined techniques and is not the focus of this paper, we only
present the main ideas of the framework. Detailed information
about the framework can be found in [26].

1) Error Detection Procedure: This procedure attempts to
detect the erroneous characters in the recognized utterances.
First, it labels each Chinese word in the recognized utterances as
either correct or erroneous based on the generalized word pos-
terior probabilities (GWPP) calculated from the recognition lat-
tices [26], [30]. Then, for each word that is deemed erroneous,
all its characters are labeled as erroneous.

2) Error Correction Procedure: This procedure attempts to
rectify the erroneous characters that have been detected, with
the help of an advanced LM. For each detected character, a can-
didate list of character alternatives is created with the aim of
including the correct character. The character alternatives are
selected from the recognition lattices based on their generated
character posterior probabilities [26]. Connecting the candidate
lists with the context of the corresponding recognized utterance
leads to a new search network, as illustrated in Fig. 5.

An advanced LM is then applied to score the utterance hy-
potheses contained in the new search network. The advanced
LM [26] linearly combines an inter-word mutual information
(MI) model, a word trigram model and a POS trigram model,
and scores each utterance hypothesis h as follows:

S(h) =7r1-Smr(h) +7r2- Swarri(h) + 13- SposTri(h) (14)

where Syrr(h), Swarri(h), and Spostr;(h) are the scores as-
signed to h by the MI model, word trigram model and POS tri-
gram model, respectively, and 71, 12, and 73 are the combination
weights.

The candidates in the top-scoring utterance are viewed as the
error correction results. For the example of Fig. 5, the two candi-
dates in the top-scoring hypothesis FERTE A OF S WA

(Translation: Meet the prolocutor at the news center.) are # and
2. The corresponding detected errors are corrected.

Note that the error detection procedure may mistakenly
label some correct characters as erroneous and “correcting”
these false errors may introduce new misrecognitions. To
address this problem, we adopt an additional mechanism [26]
to accept/reject the error correction results based on confidence
scores and linguistic scores.

Basically, the ED-EC framework attempts to concentrate the
computation of sophisticated LMs on signal segments where a
baseline recognition system makes mistakes. If all recognition
errors can be perfectly detected, the advanced LM will only be
applied to distinguishing among the error alternatives.
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TABLE IV
BASELINE RECOGNITION SYSTEMS FOR THE ED-EC FRAMEWORK

Baseline System Techniques
BL_Orig Decoding with the original baseline recognizer
Applying DLR to rescore the recognition lattices
BL_DLRy using Model_20
Applying DLR to rescore the recognition lattices
BL_DLR1000 using Model_1000

TABLE V
PERFORMANCE OF THE ED-EC FRAMEWORK OVER DIFFERENT BASELINES

Performance on TestSet_N (Novels Domain)

Baseline ED-EC Framework Relative CER

CER (%) CER (%) Reduction (%)
BL_Orig 19.86 19.35 2.6
BL_DLRyg 17.74 17.36 2.1
BL_DLR (0 16.27 16.03 1.5

Performance on TestSet_G (General Domain)

Baseline ED-EC Framework Relative CER

CER (%) CER (%) Reduction (%)
BL_Orig 8.89 8.36 6.0
BL_DLR> 8.83 8.67 1.8
BL_DLR 1900 9.06 8.78 3.1

B. Experiments and Analyses

We use a disjoint 2000-utterance speech dataset to develop
the error detection procedure and another disjoint 8000-utter-
ance speech dataset to develop the error correction procedure.
Both sets are in the domain of novels. For the advanced LM, the
three individual LMs (MI, word trigram and POS trigram) are
trained on a 340-megabyte general text corpus which consists
of the text from the People’s Daily and Xinhua newswire in the
LDC corpus the Mandarin Chinese News Text corpus. The com-
bination weights (i.e., r1, ro, and r3) are tuned by grid search
on the development set of error correction.

We apply the ED-EC framework to three baseline recogni-
tion systems, as illustrated in Table IV. Two of the systems
are related to DLR—the recognition lattices are discrimina-
tively rescored lattices and the recognized utterances are the
top-scoring utterance hypotheses in the rescored lattices. For
each of the three baseline systems, the ED-EC framework
attempts to detect/correct errors in the recognized utterances
based on the recognition lattices in the same way.

We develop and evaluate the ED-EC framework for each
baseline system separately. The results are shown in Table V.
We can see that on the novels-domain TestSet_N, applying
the framework effectively reduces the CERs for all the three
baseline systems. The improvements over the DLR-related
baselines are relatively small because many recognition errors
have already been corrected by DLR and the remaining ones are
relatively difficult to correct. On TestSet_N, the improvements
brought by the ED-EC framework for all the three baseline
systems are statistically significant.

On the general-domain TestSet_G, the framework achieves
relatively large reductions in CER for BL_Orig. This is because
the advanced LM trained on general text is effective in error
correction in a general context. The improvement for BL_Orig
is statistically significant. However, for the DLR-related base-
line systems, the relatively small improvements from the ED-EC
framework are statistically insignificant. A possible reason is
that for general-domain data, using the discriminative models

trained on novels to rescore the recognition lattices inappropri-
ately altered the likelihoods in the lattices, thus affecting the ef-
fectiveness of the error detection and correction.

C. Discussion

The previous discussions have demonstrated that it is con-
venient to combine discriminative n-gram modeling with other
recognition post-processes using the pseudo-conventional
n-gram representation. In addition to the ED-EC framework,
other examples include using an inter-word MI model to re-rank
the N -best hypotheses extracted from the discriminative lattices
(i.e., the ones generated by pseudo-model decoding or rescored
by DLR) [20]. It is also possible to conduct consensus decoding
[23], [24] based on the discriminative lattices.

The experimental results reported in the previous subsection
indicate that when the test data matches the training data in na-
ture, applying other post-processes to the discriminative lattices
may achieve cumulative improvements. However, if the training
and test data are different in nature, such benefits may not be
observed due to the inappropriately altered likelihoods in the
lattices.

VII. CONCLUSION AND FUTURE DIRECTIONS

This work is an extension of discriminative n-gram mod-
eling that applies the discriminative n-gram model to re-rank
the N-best hypotheses generated by a baseline recognizer. We
prove that a discriminative n-gram model can be recast as a
pseudo model, and decoding with the pseudo LM is equivalent
to applying the discriminative n-gram model in distinguishing
among all utterance hypotheses in the decoding search space.
Hence, incorporating the power of the discriminative n-gram
modeling into decoding is theoretically possible.

We demonstrate that if the baseline recognizer utilizes
a conventional L-gram model, the discriminative M-gram
model can be recast as a pseudo-conventional L-gram model
if M < L. Decoding with the pseudo-conventional L-gram
model can capture the power of a discriminative M-gram
model. The pseudo model can be computed either offline or
online. Offline computation faces the difficulty in back-off
strategies. We propose an efficient algorithm, called discrimi-
native lattice rescoring (DLR), to compute the pseudo model
online to rescore the recognition lattices generated by the
baseline recognizer. The pseudo model can be computed in a
similar way when it is applied in decoding.

We compare DLR with discriminative N-best re-ranking
under different conditions (i.e., the training and test sets are
similar or different in nature). Experimental results show that
given a discriminative training set in the domain of novels,
DLR achieves better performances (i.e., 10.7% and 18.1%
relative reductions in CER over the performance of a baseline
recognizer) using only 32% of the computation time compared
with discriminative 1000-best re-ranking on a novels-domain
test set. On the other hand, the optimal performances (i.e., 2.8%
and 2.1% relative CER reductions) on a general-domain test
set are achieved by discriminatively re-ranking only three- or
four-best hypotheses. These demonstrate that it is advantageous
to apply DLR or pseudo-model decoding when the test data
is similar in nature to the training data. We also investigate



952 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 6, DECEMBER 2010

the feasibility of applying other recognition post-processes
(such as the ED-EC framework) in conjunction with DLR or
pseudo-model decoding. Results show that cumulative perfor-
mance may be achieved.

In the future, we will extend the DLR algorithm to integrate
the pseudo-conventional n-gram model online during decoding.
We will also investigate offline computation of the pseudo
model. A pseudo model built completely offline can be directly
applied as a conventional n-gram model for decoding.
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