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Abstract
Our ongoing work that applies Fishervoice to map joint factor
analysis (JFA)-mean supervectors1 into a compressed discrimi-
nant subspace has shown that performing cosine distance scor-
ing on the Fishervoice projected vectors outperforms classical
JFA. In this paper, we refine Fishervoice for low-dimensional
i-vectors by only using the nonparametric between-class scatter
matrix to substitute the parametric one in linear discriminative
analysis (LDA). The task of 2016 speaker recognition evalua-
tion (SRE16) only has unlabeled in-domain training data and
labeled out-of-domain training data for model training. Sup-
port vector machine (SVM) scoring can capture the discrimi-
native information embedded in the unlabeled in-domain train-
ing data. We perform probabilistic linear discriminant analy-
sis (PLDA) before SVM scoring for inter-session compensa-
tion with speaker label information from out-of-domain train-
ing data. This approach constitutes CUHK’s submission for
SRE16. In this paper, we present a detailed analysis of the ap-
proaches and the performance gains with refined Fishervoice
and PLDA SVM scoring.
Index Terms: DNN i-vector, Refined Fishervoice, PLDA,
SVM, SRE16

1. Introduction
The speaker recognition evaluation (SRE) regularly conducted
by the National Institute of Standards and Technology (NIST),
strongly supports the research on text-independent speaker ver-
ification. There were several new challenges in the latest edi-
tion SRE16 [1], including more duration variability in test seg-
ments, evaluation data collected outside North America, same
and different phone number trials, unlabeled in-domain training
data and labeled out-of-domain training data. The main focus of
SRE16 was testing the robustness to new languages and chan-
nels. Since the most important factors that impact the evaluation
performance are channel and language mismatch, effective use
of unlabeled in-domain training data is key.

In recent years, the Gaussian Mixture Model (GMM) [2]
based i-vector [3] has become a popular approach for text-
independent speaker verification. It compresses both channel
and speaker information into a low-dimensional space called to-
tal variability space, and accordingly projects each GMM super-
vector to a total factor feature vector called the i-vector. Then
LDA [4] and Probabilistic LDA (PLDA) were applied in [5]
on the i-vectors for inter-session compensation. In [6], a deep
neural network (DNN) trained for automatic speech recogni-
tion (ASR) replaced the GMM in traditional i-vector computa-
tion. It used DNN senone posterior for frame alignment in the
i-vector extraction process. The phonetic information provided

1The JFA-mean supervector of an utterance is a GMM supervector
obtained from the JFA model.

through senone posteriors succeeded at improving the accuracy
of frame alignment and therefore achieved better speaker veri-
fication performance.

Based on the JFA-mean supervector [7], we proposed a
speaker recognition framework named Fishervoice in [8, 9].
Using nonparametric Fisher’s discriminant analysis, the frame-
work mapped JFA-mean supervectors into multiple discrimi-
nant subspaces [10, 11]. Such an algorithm can reduce dimen-
sionality through reducing unfavorable intra-speaker variability.
It can also exploit the discriminative information such as clas-
sification boundaries in the multiple discriminative subspaces.
Sadjadi et al. [12, 13] investigated similar application of non-
parametric discriminant analysis for robust speaker recognition.
In this work, we propose to refine our Fishervoice approach for
i-vectors. First, we note that the first step in Fishervoice is prin-
cipal component analysis (PCA) [14], which may be redundant
for low-dimensional i-vectors, especially when the number of
training samples is higher than the dimension of i-vectors. Sec-
ond, in order to alleviate the limitation of Gaussian distribution
assumption in LDA , we only enhance the between-class scatter
matrix in LDA to extract discriminative speaker class bound-
aries — this is the most essential part in Fishervoice.

Besides, PLDA has shown to be a good inter-session com-
pensation method for the i-vector framework. However, it needs
speaker labels during model training. SVM, which is first ap-
plied on JFA-mean supervectors in speaker recognition, do not
need detailed speaker labels for model training. Using SVM
scoring on i-vectors is not very popular primarily because of its
inferior performance compared with PLDA log-likelihood ratio
(LR) scoring and even cosine distance scoring when giving la-
beled in-domain training data. It was studied in [15, 16] that ut-
terance partitioning with acoustic vector resampling (UP-AVR)
[17] could overcome the data imbalance between utterances
from target speaker and utterances from background speakers in
SVM. Besides, Gang et al. [18] proposed a fast universal back-
ground support imposter data selection method for SVM based
speaker verification. In [19], Cumani et al. proposed pairwise
SVM as a pairwise second degree polynominal kernel classifier
in the i-vector pairs space.

Since effective use of the unlabeled in-domain training data
is most essential for the task of SRE16, we propose to per-
form classical SVM scoring to derive the discriminative infor-
mation embedded in the unlabeled in-domain training data by
constructing SVM models for every target speaker. The SVM
seeks to find a classifying hyperplane that is optimal for sepa-
rating the i-vectors of a target speaker from the i-vectors of all
the background speakers. We also try to perform refined Fisher-
voice and PLDA beforehand to reduce intra-speaker variability
in the i-vectors with speaker label information using the out-of-
domain training data.



2. Refined Fishervoice and PLDA SVM
scoring

2.1. Refined Fishervoice

i-vectors model both speaker- and channel- dependent informa-
tion, and Linear Discriminant Analysis (LDA) is applied for
channel compensation. The approach seeks to find a linear
transformation that maximizes the ratio of the determinant of
the between-class scatter matrix Sb to that of the within-class
scatter matrix Sω . Given samples from the training dataset, let
C be the total number of speakers,Hi be the number of samples
for the speaker i, xi,h be the h-th sample vector from speaker
i, µi be the sample mean of the speaker i and µ be the sample
mean of all the training data. The optimal projection Wlda for
LDA is calculated as follows:

Wlda = argmax
W :‖wi‖=1

∥∥W TSbW
∥∥

‖W TSωW ‖

Sω =

C∑
i=1

Hi∑
h=1

(xi,h − µi)(xi,h − µi)
T

Sb =

C∑
i=1

Hi(µi − ξ)(µi − ξ)T

(1)

Since traditional LDA assumes that all classes obey Gaus-
sian distributions with the same covariance matrix, it suffers
a fundamental limitation while using the parametric form of
scatter matrix. However, i-vectors may not exactly obey Gaus-
sian distribution as shown in [20]. Besides, with only the cen-
ters of classes taken into account for computing matrix Sb, the
approach fails to capture the boundary structure of classes ef-
fectively, which is essential in classification. In our previous
work, we proposed Fishervoice [8, 9] to enhance performance
by extracting discriminant information from the matrices Sω

and Sb effectively. Based on JFA-mean supervector, the first
step of Fishervoice performed PCA to guarantee that Sω is
non-singular so as to deal with the small sample size problem.
Then we enhanced Sω by means of whitening transformation
[21]. Last but not least, we enhanced Sb by applying nonpara-
metric subspace analysis to capture the boundary structural in-
formation. Let vi,h denotes the new sample vector after PCA
and whitening transformation, we consider the contribution of
vi,h towards the nonparametric between-class scatter matrixS′

b

by focusing on its proximity to the boundary which separates
speaker i and any other speaker j. Formally, S′

b was computed
according to the following equations:

S
′
b =

C∑
i=1

C∑
j=1,j 6=i

Hi∑
h=1

g(i, j, h)(vi,h −mj(vi,h))(vi,h −mj(vi,h))
T

mj(vi,h) =
1

R

R∑
r=1

ϕj,r(vi,h)

(2)
where ϕj,r(vi,h) was the r-th vector from speaker j which
was among the neighbors of vi,h, R was the number of consid-
ered nearest neighbors,mj(vi,h) was the mean vector of these
R nearest neighbors and g(i, j, h) was a weighing function de-
fined as:

g(i, j, h) =
min{dα(vi,h,ϕi,R(vi,h)), dα(vi,h,ϕj,R(vi,h))}

dα(vi,h,ϕi,R(vi,h)) + dα(vi,h,ϕj,R(vi,h))

(3)
where the exponential parameter α controls the variation of
the weighting function with respect to the distance d(ν1,ν2),
which was the Euclidean distance between two vectors ν1 and

ν2. The parameter R was often set as the median value of the
total utterances for each speaker in the training data [22]. This
step could extract discriminative speaker class boundaries in-
formation which was most essential when the samples were not
normally distributed.

In this work, we propose to refine the Fishervoice for i-
vectors. Since the dimension of i-vector is low compared with
the number of training samples, the first step of Fishervoice
is redundant. Besides, in order to only alleviate the above-
mentioned limitations of LDA, we directly substitute Sb in
Eq. 1 with the nonparametric between-class scatter matrix S′

b

and then maximize the ratio of the determinant of S′
b to Sω for

better class separability.

2.2. PLDA SVM scoring

Ioffe [23] and Prince et al. [5] proposed a probabilistic approach
called PLDA which applied generative factor analysis modeling
to solve the subspace recognition problem. Kenny et al. [20]
introduced heavy-tailed PLDA which used Student’s t distribu-
tions instead of the Gaussian distribution to model the i-vectors.
Significant performance improvement was demonstrated, but
the system was complicated and computationally demanding.
Later, a simple length normalization scheme [24] was proposed
to deal with the non-Gaussian behavior of i-vectors, which al-
lowed the use of probabilistic models with Gaussian assump-
tions. This non-linear transformation simplified the second step
of Radial Gaussianization proposed in [25] by scaling the length
of each whitened i-vector to unit length. In this way, PLDA with
Gaussian assumptions could achieve a performance comparable
to that of heavy-tailed PLDA. In this paper, we focus on PLDA
with Gaussian assumptions, named Gaussian PLDA.

Suppose each speaker i has Hi utterances. The Gaussian
PLDA model assumes that each length-normalized speaker vec-
tor ηih can be decomposed as

ηih =m+ Φβi + Γαih + εih (4)

wherem is a global offset, the columns of Φ provide a basis for
the speaker-specific subspace (i.e. eigenvoices), Γ provides a
basis for the channel subspace (i.e. eigenchannels), βi andαih

are the corresponding latent vectors and εih is a residual term.
Besides, βi and αih are both assumed to have standard normal
distributions, and εih follows a Gaussian distribution with zero
mean and diagonal covariance matrix Σ. If Σ is assumed to be a
full covariance matrix, then the eigenchannels can be absorbed
into Σ and the modified model becomes:

ηih =m+ Φβi + εih (5)

During PLDA model training, the ML point estimates of the
model parameters {m,Φ,Σ} are obtained from a set of model
training data using the expectation-maximization (EM) algo-
rithm as in [5]. Then, log-likelihood ratio scoring (LRS) is the
most successful method in PLDA verification score.

Besides, with the model parameters {m,Φ,Σ}, the Max-
imum a Posteriori (MAP) values of speaker factor β could be
estimated for all the training data and evaluation data as follows:

β = (Φ−1Σ−1Φ + I)−1Φ−1Σ−1η (6)

So instead of scoring with log-likelihood ratios, PLDA is
treated similarly as i-vector extraction process to extract speaker
vector β. Then, SVM scoring is performed on the speaker
vector as a discriminative classifier. In the training phase,



SVM projects the low-dimensional input vectors to a high-
dimensional space to find a classifying hyperplane that maxi-
mizes the margin between every target speaker’s vectors and all
background speakers’ vectors. Once the SVM model training
is done, the structure of the classifying hyperplane is captured
with a small subset of support vectors of both positive and neg-
ative samples from the training data. The SVM model for ev-
ery target speaker remains fixed during the recognition phase.
Given the SVM of target speaker s, the verification score with
test utterance t is given by

SSV M (β(t),β(s)) =
∑
i

α
(s)
i yiK(β(t),β

(s)
i ) + d(s) (7)

where α(s)
i is the Lagrange multiplier of the i-th sample and

β
(s)
i is the i-th sample with class label yi ∈ {−1, 1} during

the SVM model training for speaker s. A linear kernel function
K(·, ·) was used.

3. Experimental Setup
The Call My Net Speech Collection collected by the LDC was
used to compile the SRE16 evaluation set, development set and
part of the model training set. It consists of telephone conversa-
tions collected outside North America, spoken in Tagalog and
Cantonese (named as major languages) and Cebuano and Man-
darin (named as minor languages). The development set con-
tains data from the two minor languages while the evaluation
set contains data from the two major languages.

3.1. Feature Extraction

For the acoustic features in speaker modeling, the first 19 Mel
frequency cepstral coefficients and log energy were calculated,
together with their first and second derivatives. Hence, a 60-
dimensional MFCC feature vector was obtained for each frame.
The frame length was 25ms and the frame shift was 10ms.
Then energy-based voice-activity detection (VAD) and sliding-
window cepstral mean and variance normalization (CMVN)
were applied to remove non-speech frames and for feature nor-
malization. Besides, the feature vectors for the DNN were 40-
dimensional MFCC features without cepstral truncation. The
features were also pre-processed with sliding-window CMVN.

3.2. The baseline system

The DNN for i-vector extraction was trained on the Fisher
dataset. We trained a 6-hidden layer p-norm neural networks
[26] with power p = 2 using the Kaldi toolkit [27]. The p-norm
input/output dimensions in DNN were set to 3,500/350 for each
hidden layer. The DNN ASR system was based on the multi-
splice time delay DNN described in [28, 29]. In the multisplice
system, a narrow temporal context of only 2 frames before and
after was provided to the first layer, so the input of the DNN
consisted 200 nodes. The softmax output layer computed pos-
teriors for 5,545 senones.

In addition to 2,472 in-domain unlabeled training data, we
also selected large amount of labeled data as out-of-domain
training set, from Switchboard II Phase 2, NIST SRE2004-2012
for speaker model training, including 52,391 utterances from
2,670 speakers, each with not less than 8 utterances. The i-
vector extractor, LDA and PLDA with whitening and length
normalization were all trained on this out-of-domain training
set. The dimension of i-vector was set to 600. The rank of LDA

projection matrix was set to 500. The number of eigenvoices in
PLDA LR scoring was set to 500.

3.3. Refined Fishervoice and PLDA SVM scoring

Here, refined Fishervoice and PLDA with whitening and length
normalization were trained on the out-of-domain training set.
The parameter R in Eq. 2 that controls the number of nearest
neighbors for constructing S′

b was set to 4, according to the me-
dian number of utterances for each speaker. The ranks of refined
Fishervoice projection matrix were set to 500. Both unlabeled
in-domain training set and labeled out-of-domain training set
for training target speaker models were used to construct kernels
of support vector machine by using LIBSVM [30]. The SVM
model training was speaker-specific. For every target speaker,
we took all his/her i-vectors as positive examples and all the
model training data as negative examples to train SVM mod-
els for every target speaker. During verification, given a test
i-vector, we computed the SVM testing score with every SVM
model of target speaker. The rank of Fishervoice and refined
Fishervoice projection matrices were set to 500. The number of
eigenvoices in PLDA SVM scoring was set to 400.

4. Results
The performance of NIST SRE16 is evaluated using the Equal
Error Rate (EER) and in terms of the primary cost function de-
fined in [1]. The primary metric, Cprimary , is the average cost
at two specific points on the DET curve. The minimal and ac-
tual primary cost, minCprimary and actCprimary , is computed
for performance measure.

4.1. PLDA SVM scoring

Table 1 shows the performance of various methods for NIST
2016 SRE on both development set and evaluation set. We
consider PLDA with LR scoring as the baseline (rows 1 and
3 in Table 1). We show the performance comparison of PLDA
LR scoring and PLDA SVM scoring under different conditions,
including performing Fishervoice beforehand. There are four
pairs of results (rows 1 and 2, 3 and 4, 5 and 6, 7 and 8) com-
paring the two scoring methods. Performances showed that no
matter whether the i-vectors were preprocessed by LDA, Fisher-
voice, refined Fishervoice or not, SVM scoring can significantly
improve the performance of PLDA with log-likelihood ratio
scoring. SVM scoring outperformed PLDA LR scoring in unla-
beled in-domain training scenarios, because PLDA LR scoring
could not directly use unlabeled in-domain training data. The
worse act Cprimary of our system is because of calibration is-
sue.

4.2. Refined Fishervoice

We also evaluated the effectiveness of the refined Fishervoice
(defined as rFishervoice in Table 1) versus our pervious Fish-
ervoice method based on JFA-mean supervector. Comparing
rows 5 and 7 using PLDA LR scoring or rows 6 and 8 us-
ing PLDA SVM scoring, the results suggest that the refining
process in Fishervoice significantly improves the performance.
When comparing refined Fishervoice with the traditional LDA,
refined Fishervoice performed slightly better than LDA for the
development set when using PLDA LR scoring (rows 3 and 7).
Compared to obvious improvement of Fishervoice over LDA
on JFA-mean supervector [31], refined Fishervoice on i-vector
gained less improvement over LDA. Besides, traditional LDA



Table 1: Performance of various methods for NIST 2016 SRE on development set and evaluation set.

Method EER (%) min Cprimary act Cprimary

Development Evaluation Development Evaluation Development Evaluation
1 PLDA + LRS 19.87 18.36 0.8807 0.9837 0.9658 1.0269
2 PLDA + SVM 17.78 13.17 0.7735 0.7570 1.0000 1.0000
3 LDA + PLDA + LRS 19.88 18.25 0.8738 0.9821 0.9589 1.0374
4 LDA + PLDA + SVM 17.67 13.01 0.7554 0.7536 1.0000 1.0000
5 Fishervoice + PLDA + LRS 22.54 20.37 0.8843 0.9909 0.9530 1.1986
6 Fishervoice + PLDA + SVM 20.02 14.26 0.8470 0.7938 1.0000 1.0000
7 rFishervoice + PLDA + LRS 19.53 18.26 0.8664 0.9839 0.9580 1.0518
8 rFishervoice + PLDA + SVM 18.01 13.05 0.7766 0.7525 1.0000 1.0000
9 Fusion 16.04 12.35 0.7515 0.7533 0.7672 0.7604

only gained a little improvement on i-vector with PLDA LR
scoring (rows 1 and 3). PLDA seems to be the most essen-
tial part for inter-session compensation in the i-vector frame-
work, although it is trained with the out-of-domain training
data. Both LDA and refined Fishervoice could gain little im-
provement when combined with PLDA on i-vector.

We also take the NIST 2010 SRE for performance compar-
ison (see Table 2). The experiment setup is the same as that per-
formed on NIST 2016 SRE. From the table, we can see that we
also obtained consistent observations on the NIST SRE 2010
extended core task. Similar results between LDA and refined
Fishervoice maybe due to the better Gaussian distributions of
i-vectors than JFA-mean supervectors.
Table 2: Performance of various methods for NIST 2010 SRE
on coreext-coreext task of cc5.

Method EER(%) minDCF08
PLDA 1.05 0.0048

LDA + PLDA 1.03 0.0045
Fishervoice + PLDA 1.66 0.0081
rFishervoice + PLDA 1.00 0.0045

4.3. Score Fusion and Analysis

We fused all the methods in Table 1 (row 1-8) for the final veri-
fication scores of Row 9. The Bosaris toolkit [32] was used for
score calibration and fusion. Score fusion achieved a signifi-
cant improvement in terms of act Cprimary . We compared the
three main approaches on the evaluation set, LDA with PLDA
LR scoring, refined Fishervoice with PLDA LR scoring and re-
fined Fishervoice with PLDA SVM scoring (rows 3, 7 and 8
in Table 1), with the fusion results on DET curve in Figure 1.
From the figure, we can see that SVM scoring can significantly
improve the performance (the green line and red line) while re-
fined Fishervoice shows similar results with LDA (the red line
and blue line).

Finally, we evaluated the fusion scores with respect to gen-
der, language enrollment segments’ No. and phone difference
for enrollment and test as in Table 3. From the results, we have
two observations. First, language, number of enrollment seg-
ments and the phone difference highly influenced the perfor-
mance. Besides, Cantonese trials performed much better than
Tagalog trials. Results in the development set also showed that
Mandarin trials performed much better than Cebuano trials.

5. Conclusions
This paper presented a detailed analysis of our approaches and
performance comparison for SRE16. We proposed refining our

 

 

Figure 1: Performance comparison with DET curve on SRE16
evaluation set.

Table 3: Performance comparison of fusion results based on
different catalogues for SRE16 evaluation set(EER(%)).

Catalogue EER min Cprimary act Cprimary

Gender Male 11.85 0.7329 0.7441
Female 12.64 0.7684 0.7766

Language Tagalog 16.76 0.8475 0.8959
Cantonese 7.82 0.6181 0.6248

Enrollment
segments’ No.

1 15.05 0.8146 0.8379
3 9.47 0.6334 0.6829

Phone difference for
enrollment and test

Same 11.01 0.7088 0.7157
Different 15.17 0.8627 0.8727

Fishervoice method for low-dimensional i-vectors and PLDA
SVM scoring to effectively use the speaker label information
in the out-of-domain training data and discriminative informa-
tion embedded in the unlabeled in-domain training data. Perfor-
mance showed that refined Fishervoice gained significant im-
provement over Fishervoice and showed slightly better perfor-
mance than LDA. Besides, PLDA SVM scoring could signifi-
cantly improve the performance. Future work will investigate
how to leverage insufficient in-domain data in DNN i-vector
by DNN adaptation as in [33]. Also, we will experiment with
PLDA adaptation to make use of unlabeled in-domain data.
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