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Abstract
Automatic speech recognition (ASR) for disordered speech
is a challenging task. People with speech disorders such as
dysarthria often have physical disabilities, leading to severe
degradation of speech quality, highly variable voice character-
istics and large mismatch against normal speech. It is also diffi-
cult to record large amounts of high quality audio-visual data
for developing audio-visual speech recognition (AVSR) sys-
tems. To address these issues, a novel Bayesian gated neural
network (BGNN) based AVSR approach is proposed. Speaker
level Bayesian gated control of contributions from visual fea-
tures allows a more robust fusion of audio and video modal-
ity. A posterior distribution over the gating parameters is used
to model their uncertainty given limited and variable disor-
dered speech data. Experiments conducted on the UASpeech
dysarthric speech corpus suggest the proposed BGNN AVSR
system consistently outperforms state-of-the-art deep neural
network (DNN) baseline ASR and AVSR systems by 4.5% and
4.7% absolute (14.9% and 15.5% relative) in word error rate.
Index Terms: Speech Disorder, Audio-Visual Speech Recog-
nition, Bayesian Gated Neural Network

1. Introduction
Speech disorders lead to the disruption of normal speech. They
affect millions of people worldwide and the quality of their life.
Dysarthria is a common form of speech disorders associated
with neuromotor conditions [1], such as Parkinson disease and
cerebral palsy [2, 3], as well as brain damages due to stroke or
head injuries. Speech disorders lead to severe degradation of
speech quality, highly variable voice characteristics and large
mismatch against normal speech. In addition, it is difficult to
collect high quality speech data in large quantities for auto-
matic speech recognition (ASR) systems development [4]. For
the above reasons, disordered speech recognition is a very chal-
lenging research problem to date [5, 6, 7, 8, 9].

Human speech generation is inherently a bimodal process
based on audio-visual representation. This is also true for
speech perception. The visual information is invariant to acous-
tic signal corruption and can provide complementary informa-
tion to the speech recognizer. This motivates the use of vi-
sual information to improve speech recognition performance
by developing audio-visual speech recognition (AVSR) sys-
tems [10, 11, 12, 13, 14, 15, 16]. Visual information used in
human speech perception mainly constitutes lip motion, head
movement, facial expression and body gesture. Among these,
lip information is the primary form of visual information that is
incorporated in current AVSR systems [17, 18, 19, 20].

Earlier forms of AVSR approaches were based on hidden

Markov models (HMMs), such as multi-stream HMMs [10],
product HMMs [11], coupled HMMs [12] and factorial
HMMs [21]. In recent years, deep learning has been widely
adopted in AVSR systems development [13, 22, 23, 24, 25]. For
example, Huang et al. [13] showed that deep belief networks
reduced the word error rate (WER) by 21% relative over HMM
models on the 5.3 hours in-house collected audio-visual data.
Ninomiya et al. [22] used deep nerual network (DNN) bottle-
neck features based on both audio and video inputs on the 2.6
hours CENSREC-1-AV dataset [26] and achieved from 52% to
69% relative WER reduction over the HMM baseline systems.

However, most previous AVSR research were conducted to
develop AVSR systems for normal speech data. Only a few
AVSR systems were constructed for speakers with speech disor-
ders [27, 28, 29, 30, 31]. The majority of these previous studies
used HMM based AVSR system architecture. The research pre-
sented in [29] used the audio-visual data from 10 speakers of
the UASpeech corpus [32], the largest disordered speech cor-
pus available to date. A WER of 39% was obtained. In con-
trast, state-of-the-art DNN based ASR systems developed in [9]
produced a much lower WER of 23% on the same set of speak-
ers. This suggests that the development of AVSR technologies
for disordered speech still falls behind that of ASR systems and
there is a pressing need to improve AVSR technologies for such
data to improve the quality of life of those affected.

In addition to the well known degradation of voice quality,
there are several new challenges when developing AVSR sys-
tems for people with speech disorders. First, their underlying
medical conditions such as cerebral palsy and Parkinson dis-
ease combined with possibly co-occurring disabilities increase
the difficulty to record high quality visual data. For example,
head movements and different angles facing the camera are of-
ten found. These make the accurate detection of lip regions very
difficult, and the subsequent extracted visual features unreliable
to use. Second, in common with the audio data, the diverse
causes leading to speech disorders and the resulting symptoms
create a large variability among individual impaired speakers.
Finally, it is generally difficult to collect large amounts of audio-
visual data from people suffering from speech impairment.

In order to address these issues, we propose a novel
Bayesian gated neural network (BGNN) based AVSR architec-
ture in this paper. This is realized by positioning an additional
multiplicative gating layer [20] between the input and first hid-
den layer. This layer’s outputs are used to dynamically weight
the contributions from visual features before they are further
concatenated with acoustic features. This allows a more flexi-
ble fusion of acoustic and visual features that can learn to sup-
press non-discriminant visual data. It is generally possible to
add gates to both modalities. However, our scope in this pa-
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per is to investigate the integration and selection on visual data.
Speaker dependent BGNN models are constructed to handle
speaker level variability. In order to address the data sparsity
issue, a posterior distribution over the gating layer weight and
bias parameters is used to model their uncertainty given lim-
ited and variable data. An efficient variational inference based
approach [33] is also used in BGNN system training.

The main contributions of this paper are summarized below.
First, to the best of our knowledge, this paper proposes the first
use of Bayesian gated neural networks for AVSR systems, in
contrast to previous use of simple concatenation of acoustic and
visual features [24], and the conventional, non-Bayesian gated
neural networks [20] using fixed point parameter estimation.
Second, this paper presents the first use of deep learning based
AVSR approaches for disordered speech on the largest avail-
able UASpeech corpus. Finally, the proposed BGNN AVSR
system outperforms both the previously published best DNN
ASR system in [9], and the baseline DNN AVSR system con-
structed using feature concatenation by 4.5% and 4.7% absolute
(14.9% and 15.5% relative) in WER. Consistent improvements
were also obtained over the conventional gated neural network
(GNN) based AVSR system.

The paper is structured as follows. The basic DNN AVSR
system architecture is described in section 2. The proposed
BGNN model is presented in section 3. Section 4 elaborates
the experiments and results. The last section concludes and dis-
cusses possible future work.
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Figure 1: The framework of the standard DNN based AVSR ar-
chitecture. Acoustic and visual features are concatenated at the
input layer before they are fed into the subsequent hidden lay-
ers. Network outputs are the tied triphone state labels.

2. Audio-visual Speech Recognition
A commonly used approach in DNN based AVSR systems is
to concatenate the acoustic and visual features at the input
layer [23, 24, 25], as shown in the example of Fig. 1. Given
an input vector z

(l−1)
t from (l − 1)-th layer at t-th frame, a

standard DNN AVSR system computes the output h(l)
i (z

(l−1)
t )

of the i-th node in the l-th layer using Eqn. (1).
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denotes the node’s weight vector, φ (·)
is the activation function, and • denotes the dot product.

Acoustic and visual features are concatenated at the input

layer, where z
(0)
t = [xat ⊕ xvt , 1]. xat and xvt are the acoustic

and visual feature vectors of t-th frame, respectively. ⊕ denotes
the vector concatenation operation. The output layer targets are
tied triphone state labels.
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Figure 2: A Bayesian gated DNN based AVSR system architec-
ture. In contrast to the conventional gated DNN, a posterior dis-
tribution (top right corner) over the gating parameters is used
to model the uncertainty given limited and variable visual data.

3. Bayesian Gated Neural Network
for Audio-visual Speech Recognition

The proposed Bayesian gated neural network (BGNN) model
for AVSR system development is described in this section, as
shown in Fig. 2. Compared to DNN AVSR system, a gating
layer is placed at the input layer to dynamically weight the con-
tributions from visual features, and a posterior distribution over
the gating parameters is also applied to model the uncertainty
given limited and variable disordered speech data.

The focus of this paper is the incorporation of selected vi-
sual features to help speech recognition, hence the gated control
is only applied to the visual modality in our proposed model.
The gated input layer outputs z(0)t are computed as:

zvt =[xvt , 1]

h
(0)
i (zvt )=φ

(
θ
(0)
i • z

v
t

)
z
(0),v
t =xvt ⊗ h(0)(zvt )

z
(0)
t =[xat ⊕ z

(0),v
t , 1]

(2)

where the gating layer is denoted as the 0-th hidden layer. ⊗ and
⊕ denote the element-wise multiplication and vector concate-
nation, respectively. The activation function φ (·) is a sigmoid
function, whose outputs vary between 0 and 1.

The general form of the hidden output with Bayesian learn-
ing [34] is as follows:

h
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i (z
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p(θ
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where p(θ(l)
i ) = p(θ

(l)
i | {xt, ŷt}) denotes the node dependent

activation parameter posterior distribution to be learned from
training data {xt, ŷt} (xt, ŷt are the input data and its corre-
sponding triphone state label at t-th frame). In our scenario, we
only perform Bayesian learning on the gating parameters, hence
the Eqn. (3) can be rewritten as the specialized form Eqn. (4).

h
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To estimate the hyper-parameters of the posterior distribu-
tion p(θ(0)

i ), the standard back-propagation algorithm needs to
be modified to include two additional steps. First, to calculate
the variational lower bound approximate over the integration of
the model parameters. Second, a sampling step applied to the
first term of the lower bound is required to obtain the gradi-
ent statistics for updating the hyper-paramters in standard back-
propagation. These changes allow all layers including the gat-
ing layer of the network to be updated using back-propagation.
In this paper, we use variational inference approach [33] to ap-
proximate the integration in Eqn. (4). For notation simplicity,
we consider the parameters θ = θ

(0)
i as the gating parameters

at the i-th gating layer node. By applying Jensen’s inequality,
we calculate the evidence lower bound of the cross-entropy cri-
terion, or equivalently the log-likelihood (see Eqn. (5)) of tied
HMM state sequence Y given input acoustic feature vector se-
quence X, with visual features optionally appended.

logP (Y | X)=log

∫
P (Y |θ,X)Pr(θ)dθ

≥
∫
q(θ) logP (Y |θ,X)dθ︸ ︷︷ ︸

L1

−KL(q(θ)‖Pr(θ))︸ ︷︷ ︸
L2

= L (5)

where Pr(θ) denotes gating parameters prior distribution, q(θ)
is the variational approximation of gating parameters posterior
distribution p(θ). We assume that the variational distribution
q and the prior distribution Pr are both Gaussian distributions,
following [35], i.e. Pr(θ) = N (µµµr,σσσ

2
r), q(θ) = N (µµµ,σσσ2).

KL(q‖Pr) is the Kullback-Leibler (KL) divergence between q
and Pr .

The first term L1 in Eqn. (5) can be efficiently approxi-
mated by Monte Carlo sampling method.

L1 =

T∑
t=1

∫
q(θ) logP (yt |θ,xt)dθ

≈ 1

N

T∑
t=1

N∑
k=1

logP (yt |µµµ+σσσ�εεεk,xt)

(6)

where T is the total number of frames in the training data, εεεk=
N (0, I) is the k-th sample.

The KL divergence between q and Pr of the second term
L2 in Eqn. (5) can be simplified as follows,

L2 =
∑
j

{
log

σr,j
σj

+
σ2
j + (µj − µr,j)2

2σ2
r,j

− 1

2

}
(7)

where µj and σj are the j-th component of variational poste-
rior distribution hyper-parameters µµµ, σσσ, µr,j and σr,j are the
j-th component of prior distribution hyper-parameters µµµr and
σσσr . Then we can calculate the gradient statistics for the hyper-
parameters λ={µj , σj} as the following,

∂L
∂µj

=
1

N

T,N∑
t,k=1

∂logP (y |x, λ, εεεk)

∂µj
− Tb
T

(µj−µr,j)
σ2
j
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=
1

N

T,N∑
t,k=1

∂logP (y |x, λ, εεεk)

∂σj
− Tb
T

(
σ2
j−σ2

r,j

σjσ2
r,j

) (8)

where Tb is the number of frames in a minibatch [36]. Then
the standard back-propagation method can be applied to the
calculation of the two gradient terms ∂logP (y|x,λ,εεεk)

∂µj
and

(a) F04

(c) M11

(b) F05

(d) M12

Figure 3: Example video snapshots of four UASpeech speakers
F04, F05, M11 and M12 with different head movement patterns
and various angles facing the camera.

∂logP (y|x,λ,εεεk)
∂σj

for updating hyper-parameters µµµ,σσσ. During
model evaluation, the mean of the gating parameter µµµ of the

posterior distribution p(θ) is used as the drawn sample to com-
pute the gating layer outputs.

4. Experiments
4.1. Task Description and Experimental Setup

The UASpeech was recorded by an 8-channel microphone array
and a video camera, including 7 channels with segmented single
word audio segments and 1 channel with whole length unseg-
mented videos (having both audio and video streams) [32].

The UASpeech is an isolated word recognition task includ-
ing 16 dysarthric speakers. 12 dysarthric speakers have both
audios and videos, but only 8 out of the 12 speakers’ videos
were provided with video time segment labels (start and end
time stamps of each word for chopping the whole length video
into single word video segments). We utilized these 8 dysarthric
speakers’ audio-visual data to conduct our AVSR experiments.
All speakers were required to repeat 455 distinct words. These
words were distributed into three blocks. The block 1 (B1) and
block 3 (B3) were treated as the training set, leaving the remain-
ing block 2 (B2) as the test set.

The authors in [9] tried a range of deep learning based
acoustic models including feed-forward DNNs, time delayed
neural networks [37] and long short-term memory recurrent
neural networks [38] on the UASpeech corpus. Among these,
the feed forward DNN produced the lowest word error rate
(WER). Therefore it is used as the ASR baseline system in this
paper. All the neural network models developed in this paper
are built by PyTorch [39].

In our experiments, a 9-frame context window was used in
both ASR and AVSR systems’ inputs. Acoustic features fed to
neural networks are 80-dimension filter banks (FBKs)+∆ fea-
tures. Target tied triphone state labels were produced by speaker
dependent GMM-HMM models. Speaker dependent neural net-
work acoustic models used 5 hidden layers of 500 neurons each,
which is applicable for all experimented models in this paper.
For the gated DNN and Bayesian gated DNN AVSR systems,
an additional hidden layer having the same size with the input
visual feature dimension was added. During training, we per-
formed a layer-wise pretraining, then fine-tuned the whole net-
work using SGD optimization method associated with a NEW-
BOB learning rate scheduler until no validation accuracy im-
provement was gained. For performance evaluation, the frame
level output probability tables were fed to the HDecode in the
HTK toolkit [40] to produce recognition outputs. A word gram-
mar network was used in decoding, following [5].
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Table 1: Performance of baseline ASR systems v.s. AVSR, non-Bayesian GNN AVSR, and proposed BGNN AVSR systems with two types
of visual features on the 8 UASpeech dysarthric speakers with audio-visual data available. All the systems are speaker dependent.

Speaker ID Intelligibility [5]
WER% (numbers in brackets indicate absolute WER reduction over ASR system)

ASR-DNN
AVSR (DCT-LDA) AVSR (AE-LDA)

DNN GNN BGNN DNN GNN BGNN
F02 low 49.6 49.6 48.1 46.8 46.4 45.4 40.8 (-8.8)
F04 mid 29.2 34.8 32.6 27.6 32.9 29.9 24.0 (-5.2)
F05 high 9.7 11.6 10.4 9.0 11.4 9.8 8.0 (-1.7)
M08 high 11.6 16.1 13.3 11.1 11.4 10.4 9.2 (-2.4)
M11 mid 32.3 38.6 35.3 31.8 37.4 35.2 32.5 (+0.2)
M12 very low 65.7 62.7 62.2 60.5 59.5 58.4 54.0 (-11.7)
M14 high 20.3 22.7 20.3 19.3 20.2 19.8 15.6 (-4.7)
M16 low 29.5 29.5 29.0 28.0 29.2 27.1 26.7 (-2.8)

Avearge 30.3 32.6 30.8 28.7 30.4 28.9 25.7

4.2. Audio and Video Data Preoprocessing

The whole length unsegmented videos were chopped into seg-
mented word video segments. We slightly adjusted the time
boundaries of the 7 channels’ single word audio segments us-
ing the time boundaries of the segmented single word video
segments. Excessive amounts of silence of the audio segments
were removed by following the strategy described in [9].

For the visual feature extraction process, the video seg-
ments were first upsampled to match the frame numbers of
acoustic features of each word. We employed an off-the-shelf
face alignment network [41] to detect lip landmarks on the up-
sampled video data. From Fig. 3 we notice that the lips of the
speakers are not in the horizontal view due to different head
movements, so we applied affine transformation to detected lip
regions to make them horizontal. Since lip regions are not the
same size, we resized them to 128*128 pixels, following [29].
Afterwards, two unsupervised dimension reduction techniques
were investigated respectively, i.e. discrete cosine transform
(DCT) and autoencoder (AE), to downsize the lip regions to
40-dimension vectors. Finally, we applied linear discriminant
analysis (LDA) to further reduce the size of visual feature vec-
tors to 25 dimensions. The two types of dimension reducted
visual features are denoted as DCT-LDA and AE-LDA.

4.3. Performance of Baseline ASR and AVSR Systems

The performance of two baseline systems are shown in Table
1 (2nd, 3rd and 6th columns). Our baseline ASR systems pro-
duced a competitive average WER (30.3%1) compared to [9] on
the 8 dysarthric speakers. For baseline AVSR systems, the av-
erage WER degradation is observed on both two types of visual
features, i.e. DCT-LDA and AE-LDA. This suggests that a se-
letion mechanism is required to find a more robust integration
of acoustic and visual features.

4.4. Performance of GNN and BGNN AVSR Systems

The performance of the AVSR systems constructed using the
proposed BGNN approach and the conventional non-Bayesian
GNN model is shown in Table 1) (4th, 5th, 7th and 8th
columns). There is an obvious trend that no matter which vi-
sual features are used, the proposed BGNN approach outper-
forms the baseline ASR and AVSR systems. However, using

1The average WER of DNN ASR systems [9] built by HTK on the 8
speakers is 30.2%. The authors of [9] provide the speaker level WERs.

AE-LDA visual features with BGNN approach provides more
significant average WER reduction, which are 4.5% and 4.7%
absolute (14.9% and 15.5% relative), over baseline ASR and
AVSR systems. Consistent improvements are also observed
over the conventional non-Bayesian GNN AVSR systems.

4.5. BGNN AVSR Systems v.s. Published ASR Systems

We compare the best average WER result of the AVSR sys-
tems using the proposed BGNN AVSR architecture with previ-
ously published best ASR systems available on the 8 UASpeech
dysarthric speakers (see in Table 2). This comparison shows
that our proposed BGNN AVSR architecture using AE-LDA vi-
sual features (last row in Table 2) in this paper achieves the
lowest WER.

Table 2: A comparison between the best WER result in this pa-
per and published WER results on the 8 UASpeech dysarthric
speakers with audio-visual data available.

Systems Avg WER%
Sheffield-2012 ASR [5] 39.5
Sheffield-2015 ASR [8] 33.1
CUHK-2018 ASR [9] 30.21

BGNN AVSR 25.7

5. Conclusion
In this paper, we present the first work using Bayesian gated
neural network for AVSR systems development. To the best
of our knowledge, this paper also presents the first use of deep
learning based AVSR approaches for disordered speech on the
largest available dysarthric speech corpus–UASpeech. The pro-
posed BGNN AVSR systems achieve the lowest word error rate
compared to baseline ASR and AVSR systems in this paper, as
well as those previously published best ASR systems. Possi-
ble future research will focus on improving speaker adaptation
and adaptive training techniques to handle variability among
dysarthric speakers.
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