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Abstract

This paper introduces two Transformer-based architectures for
Mispronunciation Detection and Diagnosis (MDD). The first
Transformer architecture (T-1) is a standard setup with an en-
coder, a decoder, a projection part and the Cross Entropy (CE)
loss. T-1 takes in Mel-Frequency Cepstral Coefficients (MFCC)
as input. The second architecture (T-2) is based on wav2vec 2.0,
a pretraining framework. T-2 is composed of a CNN feature en-
coder, several Transformer blocks capturing contextual speech
representations, a projection part and the Connectionist Tempo-
ral Classification (CTC) loss. Unlike T-1, T-2 takes in raw audio
data as input. Both models are trained in an end-to-end manner.
Experiments are conducted on the CU-CHLOE corpus, where
T-1 achieves a Phone Error Rate (PER) of 8.69% and F-measure
of 77.23%; and T-2 achieves a PER of 5.97% and F-measure of
80.98%. Both models significantly outperform the previously
proposed AGPM and CNN-RNN-CTC models, with PERs at
11.1% and 12.1% respectively, and F-measures at 72.61% and
74.65% respectively.

Index Terms: Mispronunciation Detection and Diagnosis
(MDD), Transformer, encoder-decoder, wav2vec 2.0, CNN fea-
ture encoder

1. Introduction

Learning a new language offers many benefits, such as personal
enjoyment, facilitating cross-cultural communication, increas-
ing one’s confidence and employability, etc. Computer-assisted
Pronunciation Training (CAPT) offers learners an accessible
and economical way to learn and practice new languages. Mis-
pronunciation detection and diagnosis (MDD) is an essential
part in CAPT, which aims to identify pronunciations that need
practicing and provide pinpointed feedback to support learning.
However, MDD needs to analyze accented speech, where there
is a diversity of influences from different primary languages,
speaker characteristics, vocabularies, domain contexts, etc., and
there is generally a lack of accepted speech data. Hence MDD
remains a challenging task.

Previous research in MDD may be grouped into three cat-
egories: (1) Approaches that aim at scoring pronunciations
[1-3]; (2) Approaches that model with phonological rules
[4-14]; and (3) Approaches that aim to use free-phone recog-
nition to find mispronounced sounds [15-17]. The first type
of approaches that aim at scoring pronunciations are based on
different confidence measures, such as likelihoods and likeli-
hood ratios [18-20]. Goodness of Pronunciation (GOP) [1] is
used to detect mispronunciations with low scores. The lim-
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itation of this approach is the inability to diagnose the de-
tected mispronunciations. The second type of approaches that
model with phonological rules include the generation of ex-
tended recognition networks (ERN) [5], which provides extra
decoding paths that cover both the correct pronunciation and
possible mispronunciations. However, it is very difficult, if
not impossible, to ensure exhasutive coverage of all possible
mispronunciation patterns. More importantly, the model can-
not detect mispronunications that are absent from the ERN.
In order to address the limtations mentioned above, the third
type of approaches introduce deep neural networks (DNNs) to
perform the task of free-phone recognition, which can techni-
cally cover all possible mispronunciation patterns. By align-
ing the canonical phone sequences, human-annotated phone se-
quences and recognized phone sequences, mispronunciation de-
tection and diagnosis can be derived simultaneously. Based on
multi-distribution DNN, [16] presented an acoustic-graphemic-
phonemic model (AGPM) that takes in acoustic features, force-
aligned graphemes and canonical transcriptions as input. Also,
a phone-state transition model is trained for the AGPM for de-
coding. Based on the CU-CHLOE corpus [6], AGPM achieves
a PER of 11.1% and a F-measure of 72.6%, outperforming the
results of previous ERN-based approaches. Further develop-
ment presented an end-to-end architecture referred as the CNN-
RNN-CTC model [15], which takes in acoustic features as input
and seeks to avoid fragile forced-alignments that may affect per-
formance. Convolutional Neural Networks (CNNs) are used to
capture high-level acoustic features which are then fed to the
Recurrent Neural Network (RNN) to generate the final outputs.
CTC loss is chosen for end-to-end training. On CU-CHLOE
test set, the PER of CNN-RNN-CTC model is 12.1% and the
F-measure is 74.65%.

Recently, there has been increasing use of the Trans-
former [21] in automatic speech recognition (ASR). A typical
Transformer-based encoder-decoder ASR model is presented
in [22], which takes in the Mel-filterbank coefficients and fun-
damental frequency features as input. A Transformer-based
pre-training architecture referred as wave2vec2.0 is presented in
[23], which fully utilizes a large amount of unlabeled (but easily
acquired) audio data. The wav2vec 2.0 takes in raw audio data
as input. A convolutional feature encoder is designed to extract
acoustic features and a contrastive task is performed to iden-
tify representations of masked speech from distracting negative
samples. Performance improvements shown in [22, 23] moti-
vates the current exploration in using Transformers for MDD.

In this paper, we introduce two Transformer-based models
for MDD. The first model, T-1, basically follows the architec-
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ture of the vanilla Transformer. The second model, T-2, is based
on wav2vec 2.0. Details about the two models will be presented
in Section 2. Section 3 describes the experiments, results and
analyses. Conclusions will be drawn in Section 4.

2. Models

As mentioned earlier, the first model, T-1 follows an encoder-
decoder architecture, and the second model, T-2 utilizes CTC
loss to fulfill end-to-end training.

2.1. T-1 Architecture

As shown in Figure 1, the model T-1 is composed of 4 parts:
encoder, decoder, projection and loss. The input to the encoder
is MFCC features, together with the corresponding sinusoidal
positional embeddings. The two transformer blocks on the left
(see Figure 1, 2X Transformer Blocks) use the combined in-
put features to generate the encoder output. The input to the
decoder is right-shifted outputs of the whole network, together
with the corresponding sinusoidal positional embeddings. The
encoder and decoder are linked using 2 multi-head attention
blocks. The projection part projects the outputs of decoder to
the desired number of logits, for example, the total number of
distinct phones used. Cross Entropy loss is adopted in T-1. The
architecture of the Transformer block is illustrated in Figure 2.

Loss part 1
__—Targets |
e
~Outputs |

- Projection

Linear & Softmax part
2X e B
Multi-head attention Transformer
2X
Blocks
Encoder part :
Sinusoidal !

2% Transformer ®+— Positional
Blocks Embedding |
Sinusoidal ‘
- Outputs
Bo
! Embedding Embedding
x Outputs Decoderpar‘cf
ME S (shifted right)

Figure 1: The architecture of model T-1

2.1.1. T-2 Architecture

The model T-2 is based on wav2vec 2.0. The architecture of the
Transformer blocks remains unchanged (see Figure 2). The T-2
architecture is designed to fine-tune the well-trained wav2vec
2.0 to perform the MDD task, as illustrated in Figure 3. T-2
takes in raw audio data as input. The CNN feature encoder
serves as a feature extractor, outputting latent speech represen-
tations Z. Then Z are fed into Transformer blocks to generate
contextual representations of speech (see C' in Figure 3). In this
process, the positional embeddings required are generated by a
1-D convolutional layer. The contextual speech representations
are projected and Softmax is applied to generate the probabili-
ties of the occurrences of phones. CTC loss can be applied to
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Figure 2: The architecture of the Transformer blocks in T-1 and
7-2

fine-tune the whole model, which also has well-trained initial
weights in the CNN feature encoder and Transformer blocks.
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Figure 3: The architecture of model T-2

CU-CHLOE

3. Experiments
3.1. Datasets

CU-CHLOE is a corpus within the Chinese University of Hong
Kong, aiming to enhance English learning by the students,
many of whom are native Cantonese and Putonghua speak-
ers. 100 Cantonese speakers (50 males and 50 females) and
110 Putonghua speakers (60 males and 50 females) contributed
to the dataset, forming 34.6 hours of speech data. There are
18139 utterances recorded according to the following 4 kinds
of prompts.

¢ 6 utterances chosen from the AESOP’s fable, “The North
Wind and the Sun”.



e 20 utterances designed to cover common English
phones.

¢ 10 utterances composed of confusable words.
* 50 utterances composed of minimal pairs.

CU-CHLOE is sampled at a rate of 16K Hz and is tran-
scribed by trained linguists.

Besides CU-CHLOE, both models T-1 and T-2 also use
other datasets for training. T-1 puts together all the data from
TIMIT [24] and training set of CU-CHLOE to form a combined
training dataset. Model T-2 only uses the training set of CU-
CHLOE for fine-tuning. The pre-trained parameters of model
T-2 are from the 960-hour Librispeech [25]. The pretraining
phase did not utilize the transcriptions of Librispeech.

3.2. Model Training
3.2.1. Model T-1 setup

In the encoder, the inputs are MFCCs plus sinusoidal positional
embeddings. A 13-dimensional MFCC is extracted every 10ms,
covering 25ms of audio data (in a frame). To make use of the
contextual information in the input, the MFCCs of two frames
to the left and two frames to the right are concatenated with
those of the central frame, forming a 65-dimensional feature
vector. The sinusoidal positional embedding size is also 65.
Within 2 Transformer blocks, the number of heads is 4, the
model dimension is 32 and the feedforward dimension is 256.

In the decoder, the output embedding size is 32, which is
the same as the corresponding sinusoidal positional embedding.
Within the 2 Transformer blocks and 2 encoder-decoder multi-
head attention modules, the number of heads is 2, the model
dimension is 32 and the feedforward dimension is 256.

The batch size in training is 8. The optimizer is Adam [26]
and the learning rate is fixed at le-3.

3.2.2. Model T-2 setup

The input of T-2 is raw audio data with a sampling rate of
16kHz. There are 7 1-dimensional convolutional layers in the
CNN feature encoder, with kernel sizes [10, 3, 3, 3, 3, 2, 2],
strides [5, 2, 2, 2, 2, 2, 2] and channel number 512. By this
configuration, the CNN feature encoder outputs a latent repre-
sentation corresponding to 25ms of raw speech data every 20ms.
Another 1-dimensional convolutional layer capturing positional
relationships has a kernel size of 128, stride of 1 and padding of
64. The model dimension of all 12 Transformer blocks is 768,
the multi-head size is 8 and the feedforward dimension is 3,072.

2 GPUs are used for fine-tuning, with the maximum num-
ber of tokens per GPU being 3,200,000, representing 200s of
speech. Changes in the learning rate is composed of three
stages. First, we warm up the learning rate until 10% of the
set training steps. Second, we hold the learning rate constant at
le-4 for next 40% of the set training steps. Third, we linearly
decay the learning rate.

Every time we update the parameters of the model, we re-
gard it as an update. The set number of updates is 20,000. Dur-
ing fine-tuning, the parameters of the CNN feature encoder are
always fixed and those of transformer blocks are fixed during
the first 10,000 updates.

3.3. Evaluation

Both models T-1 and T-2 are evaluated on CU-CHLOE test set,
based on phone recognition and performance of MDD.
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Table 1: Performances of different approaches

Methods Accuracy Correction Rate
AGPM 88.92% 91.87%
CNN-RNN-CTC  87.93% 90.08%
T-1 91.31% 93.41%
T-2 94.03 % 95.08 %

3.3.1. Performance in phone recognition

Evaluation is based on two criteria: Accuracy and Correct Rate,
which are shown in Equations (1) and (2) respectively:

N-S-D-1I

N
N-S-D
N @)

Where S, D and I represent the number of substitutions,
deletions and insertions found in the recognized phone se-
quences. NN is the total number of labels annotated. Table 1
shows the performances of the different approaches.

The phone accuracy achieved by model T-1 is 91.31%.
This outperforms AGPM and CNN-RNN-CTC respectively by
2.69% and 3.84% relative. Similarly, phone accuracy achieved
by model T-2 is 94.03% and this outperforms AGPM and CNN-
RNN-CTC respectively by 5.75% and 6.94% relative. In terms
of Correct Rate, model T-1 achieved 93.41% and model T-2
achieved 95.08%, both outperforming AGPM and CNN-RNN-
CTC. The improved performance values from models T-1 and
T-2 in free-phone recognition of L2 speech offers good potential
for MDD.

)]

Accuracy =

Correct rate =

3.3.2. Performance in MDD

In terms of MDD, we follow the measures developed in [10].
For mispronunciation detection, we consider True Acceptance
(TA), True Rejection (TR), False Rejection (FR), and False Ac-
ceptance (FA). TA indicates that both the human-transcribed
phone and the recognized phone are the same as the canon-
ical pronunciation. TR indicates that neither the transcribed
phone nor the recognized phone is identical to the canonical
pronunciation. FR indicates that transcribed phone is the same
as the canonical pronunciation, but the recognized phone is dif-
ferent. FA indicates that the recognized phone is the same as
the canonical phone, but the transcribed phone is different. The
False Rejection Rate (FRR) and False Acceptance Rate (FAR)
are calculated using Equations (3) and (4) respectively.

FR

FRE = 73-FR )
FA
FAR= T3 TR @

For mispronunciation diagnosis, we consider Correct Diag-
nosis (CD) and Diagnosis Error (DE). CD refers to the situation
where with TR (true rejection), the human-transcribed phone
is identical to the recognized phone. DE refers to the situation
where with TR, the transcribed phone is not identical to rec-
ognized phone. The Diagnosis Error Rate (DER) is calculated
using Equation (5).

DE

PER= o5 pE

&)



Table 2: Performance in MDD using different approaches

Methods FRR FAR DER Precision Recall F-measure Detection  Diagnosis
Accuracy Accuracy
AGPM 4.57% 30.53% 13.49%  76.05% 69.47%  72.61% 90.94% 86.51%
CNN-RNN-CTC  8.66% 18.85% 16.76%  69.06% 81.15%  74.62% 89.38% 83.24%
T-1 11.46% 1.28% 8.61% 63.43% 98.72% 77.23% 90.25% 91.39%
T-2 4.75% 19.32%  9.95% 81.27 % 80.68%  80.98% 92.28 % 90.05%

In addition, Precision, Recall and F-measure are also used
to evaluate the performance of mispronunciation detection of a
system. Detection Accuracy and Diagnosis Accuracy are calcu-
lated as well. Corresponding equations are shown in Equation
(6)-(10).

TR

Precision — — 21
recision TRLFR ©)
TR
Recall = TRLFA ™
Precision * Recall

F — measure = 2 x Precision + Recall ®

' TA+TR

D A =
etection Accuracy TALFRYFALTR ©))
CD
DiagnosisA =~ 6D+ DE :

iagnosis Accuracy CD+ DE 10

Performances in MDD using the different approaches are
shown in Table 2. Recall that the calculation of FRR (false
rejection rate) lies within the scope of correct pronunciations,
which means the phone is pronounced without much accent.
The low FRR of 4.75% of T-2 indicates that T-2 works well in
recognizing correct pronunciations after reaping benefits from
pre-training using large-scale data. Analogously, the low FAR
of 1.28% of T-1 indicates that T-1 is good at modeling mispro-
nunciations. The F-measure model of T-1 is 77.23% and that of
model T-2 is 80.98%. T-1 outperforms AGPM and CNN-RNN-
CTC respectively by 6.36% and 3.50% in F-measure. T-2 out-
performs AGPM and CNN-RNN-CTC respectively by 11.53%
and 8.52% in F-measure.

When it comes to mispronunciation diagnosis, T-1 achieved
a Diagnosis Accuracy of 91.39%, outperforming AGPM and
CNN-RNN-CTC respectively by 5.64% and 9.79%. T-2
achieved a Diagnosis Accuracy of 90.05%, outperforming
AGPM and CNN-RNN-CTC respectively by 4.09% and 8.18%.
Thus, both T-1 and T-2 can provide more pinpointed feedback
for English learners.

4. Conclusions

This paper proposes two Transformer-based models for the task
of mispronunciation detection and diagnosis (MDD) to support
computer-aided pronunciation training. The architectures and
training schemes of both models are straightforward. The first
model, T-1, follows the standard encoder-decoder architecture,
takes in MFCC as input and adopts the Cross Entropy loss.
The second model, T-2, is based on the wav2vec 2.0, takes in
raw audio data and adopts CTC loss. Both Transformer-based
models significantly outperform our previous (most competi-
tive) AGPM and CNN-RNN-CTC models, both in terms of free-
phone recognition performance and mispronunciation detection
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and diagnosis performance. Future work will incorporate ad-
ditional information, such as phonological contexts, for further
performance improvements.

5. Acknowledgements

The grant of this work is partially from the HKSAR Govern-
ment Research Grants Council General Research Fund (project
number 14207315). Also, this work is partially supported by
the Centre for Perceptual and Interactive Intelligence (CPII) Ltd
under the Innovation and Technology Fund.

6. References
(1

S. M. Witt and S. Young, “Phone-level pronunciation scoring and
assessment for interactive language learning,” Speech Commun.,

vol. 30, pp. 95-108, 2000.

[2] W. ping Hu, Y. Qian, F. Soong, and Y. Wang, “Improved mispro-
nunciation detection with deep neural network trained acoustic
models and transfer learning based logistic regression classifiers,”

Speech Commun., vol. 67, pp. 154-166, 2015.

S. Sudhakara, M. K. Ramanathi, C. Yarra, and P. Ghosh, “An im-
proved goodness of pronunciation (gop) measure for pronuncia-
tion evaluation with dnn-hmm system considering hmm transition
probabilities,” in INTERSPEECH, 2019.

[3]

[4] A.M. Harrison, W. Lau, H. Meng, and L. Wang, “Improving mis-
pronunciation detection and diagnosis of learners’ speech with
context-sensitive phonological rules based on language transfer,”

in INTERSPEECH, 2008.

[5] A. M. Harrison, W. Lo, X. Qian, and H. Meng, “Implementation
of an extended recognition network for mispronunciation detec-
tion and diagnosis in computer-assisted pronunciation training,”

in SLaTE, 2009.

[6] H. Meng, Y. Lo, L. Wang, and W. Lau, “Deriving salient learn-
ers’ mispronunciations from cross-language phonological com-
parisons,” 2007 IEEE Workshop on Automatic Speech Recogni-

tion & Understanding (ASRU), pp. 437-442, 2007.

[71 W. Lo, S. Zhang, and H. Meng, “Automatic derivation of
phonological rules for mispronunciation detection in a computer-

assisted pronunciation training system,” in INTERSPEECH, 2010.

W. K. Lo, A. M. Harrison, H. Meng, and L. Wang, “Decision
fusion for improving mispronunciation detection using language
transfer knowledge and phoneme-dependent pronunciation scor-
ing,” in 2008 6th International Symposium on Chinese Spoken
Language Processing, 2008, pp. 1-4.

[8]

[9] H.Meng, “Developing speech recognition and synthesis technolo-
gies to support computer-aided pronunciation training for Chinese
learners of English,” in Proceedings of the 23rd Pacific Asia Con-
ference on Language, Information and Computation, Volume 1,

Dec. 2009.

[10] X. Qian, H. Meng, and F. Soong, “Capturing 12 segmental mispro-
nunciations with joint-sequence models in computer-aided pro-
nunciation training (capt),” 2010 7th International Symposium on

Chinese Spoken Language Processing, pp. 84-88, 2010.



[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

X. Qian, H. Meng, and F. Soong, “On mispronunciation lexicon
generation using joint-sequence multigrams in computer-aided
pronunciation training (capt),” in INTERSPEECH, 2011.

X. Qian, H. Meng, and F. Soong, “The use of dbn-hmms for
mispronunciation detection and diagnosis in 12 english to sup-
port computer-aided pronunciation training,” in INTERSPEECH,
2012.

X. Qian, F. Soong, and H. Meng, “Discriminatively trained acous-
tic model for improving mispronunciation detection and diagnosis
in computer aided pronunciation training ( capt ),” 2010.

L. Wang, X. Feng, and H. Meng, “Automatic generation and prun-
ing of phonetic mispronunciations to support computer-aided pro-
nunciation training,” in INTERSPEECH, 2008.

W. Leung, X. Liu, and H. Meng, “Cnn-rnn-ctc based end-to-
end mispronunciation detection and diagnosis,” in ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 8132-8136.

K. Li, X. Qian, and H. Meng, “Mispronunciation detection and
diagnosis in 12 english speech using multidistribution deep neural
networks,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 1, pp. 193-207, 2017.

B.-C. Yan, M.-C. Wu, H.-T. Hung, and B. Chen, “An end-to-end
mispronunciation detection system for 12 english speech leverag-
ing novel anti-phone modeling,” in INTERSPEECH, 2020.

H. Franco, L. Neumeyer, Yoon Kim, and O. Ronen, “Automatic
pronunciation scoring for language instruction,” in /997 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Process-
ing, vol. 2, 1997, pp. 1471-1474 vol.2.

S. Wei, G. Hu, Y. Hu, and R. Wang, “A new method for mis-
pronunciation detection using support vector machine based on
pronunciation space models,” Speech Commun., vol. 51, pp. 896—
905, 20009.

M. Nicolao, A. Beeston, and T. Hain, “Automatic assessment
of english learner pronunciation using discriminative classifiers,”
2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 53515355, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Atten-
tion is all you need,” in Advances in Neural Information
Processing Systems, 1. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, Eds., vol. 30. Curran Associates, Inc., 2017. [On-
line]. Available: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

A. Mohamed, D. Okhonko, and L. Zettlemoyer, “Transformers
with convolutional context for asr,” 2020.

A. Baevski, H. Zhou, A. rahman Mohamed, and M. Auli,
“wav2vec 2.0: A framework for self-supervised learning of
speech representations,” ArXiv, vol. abs/2006.11477, 2020.

V. Zue, S. Seneff, and J. R. Glass, “Speech database development
at mit: Timit and beyond,” Speech Commun., vol. 9, pp. 351-356,
1990.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEFE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206-5210.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” CoRR, vol. abs/1412.6980, 2015.

3958



