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Abstract— Discrete-time Markov chain has been a popular
modeling paradigm for a wide range of applications. In this
paper, we study the class of Markov chains that can be
characterized by Kronecker products of transition matrices.
Such Markov chains exhibit self-replicating property, which is
common in both natural and artificial systems. We show that
such chains can be decomposed into a system of parallel atomic
Markov chains with fewer states. This feature enables analyzing
these Markov chains by studying only the properties of smaller
chains, that is useful for simplifying the overall analysis and
even improving the computational efficiency. We propose an
application of the Kronecker-structured Markov chains to
probabilistic guidance problem, which is recently developed for
decentralized swarm guidance. We then introduce the parallel
probabilistic guidance algorithm, which serves as an improved
version of the existing algorithms. We demonstrate that our
algorithm is scalable for the class of target configurations having
Kronecker product structures. Simulations are presented to
demonstrate the effectiveness of the proposed method. Our
work provides a guideline for the design of swarm configuration
by exploiting the Kronecker structure to greatly enhance the
computational efficiency.

I. INTRODUCTION

Kronecker product (KP) is an important matrix opera-
tion which can represent a large block matrix by two or
more smaller factor matrices [1]. One remarkable feature
is its “fractal”-like structure, which can represent the self-
similarity or self-replicating properties appearing in both
natural and artificial systems. Recently, this structure has
been applied for modeling networks of complex systems
that exhibit the hierarchical network structures [2] and also
networked control systems [3]. There are some well-known
connections between the theory of graphs and Markov chain
(MC), such as the correspondence between the consensus
protocol over a weighted digraph and the discrete-time
evolution of a MC [4]. Hence, the study of KP structures
in discrete-time MC (DTMC) is of great interest.

There is an extensive literature on incorporating KP within
MCs, but they focus on the continuous-time MC with Kro-
necker structure described by the sum of KPs [5]–[7], which
has a different formulation as the DTMC. In this paper,
we propose a new approach to incorporate KPs in DTMCs
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that is different from the existing ones, by considering the
transition matrix of a large MC system as KPs of multiple
factor matrices with much fewer states. We show that some
properties of the KPs allows the large MC to be separated
into several parallel smaller MCs. This in turn provide the
tools to analyze the large MC by only analyzing the smaller,
atomic chains, which is often useful to simplify the analysis
and improve computational efficiency.

To illustrate the effectiveness of the proposed method, we
apply it on the probabilistic swarm guidance (PSG) as a
case study. The PSG was originally proposed by Açıkmeşe
and Bayard [8] as an MC based approach for coordination
of autonomous swarm agents. The key idea is to drive the
swarm to a target density distribution in the configuration
space in decentralized sense. The problem can thus be
formulated as synthesizing an appropriate Markov transition
matrix given the desired target density distribution. Hence,
no communication or collaboration is required among the
agents. Besides, it allows automatically damage repairing
once the desired distribution is attained, without extra sensing
effort.

Açıkmeşe and Bayard proposed two approaches for syn-
thesizing the Markov transition matrix: Metropolis-Hastings
(MH) [8] and a linear matrix inequality (LMI) approach [9].
While the MH algorithm is easy to implement and scalable,
it does not enable explicit control on convergence rate and
fuel use. The LMI approach allows explicit control on the
both, but it is not scalable when the number of bins is large.

The contribution of this paper to the probabilistic guidance
problem is as follows. We aim to tackle the scalability
problem of the LMI approach when the class of target spatial
configuration has a self-replicating structure. We show that
using the KP property of separating a large MC into smaller
parallel ones with fewer states, it is possible to parallelize the
LMI optimization into a system of smaller optimizations with
much less variables. Therefore, the method is applicable even
for extremely large MCs whose desired target distribution
exhibits certain repeating properties. We also introduce a
parallel probabilistic guidance algorithm (PPGA) for the
swarm agents to decide their movements independently. The
proposed approach can serve as a guideline for designing
complex large target density distributions.

The paper is organized as follows: Section II reviews the
basic background. Section III presents the proposed formu-
lation of DTMCs with the KP structure. Section IV presents
the application of the KP MC to PSG and introduces the
proposed PPGA. Section V provides the simulation results
of the proposed approach. Section VI concludes the paper
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and suggests directions for future research.

II. BACKGROUND

This section provides the background for the proposed
PPGA, including the review on MC, KP and the formulation
of the PSG problem.

Here we define the notation used in this paper: vi or [v]i
denotes the i-th element of a column vector v ∈ Rp; mij or
[M]ij denotes the element on the i-th row and j-th column;
1n denotes the vector of ones of dimension n; In denotes
the identity matrix of dimension n-by-n; A ≥ 0 implies that
all entries in A are non-negative; Q � (�) 0 implies that
Q is positive (semi-)definite; Xk denotes the state of a MC
at time step k; � denotes the element-wise multiplication;
a = vec(A) implies that a is a vector formed by stacking
columns of A; ρ(A) is the spectral radius of A, defined
as the largest eigenvalue of A; diag (M) denotes a column
vector of main diagonal elements of M. ‖M‖F denotes
the Frobenius norm of the matrix M, which is defined by:
‖M‖F =

√∑p1

i=1

∑q1
j=1m

2
ij .

A. Discrete-time Finite Markov Chains

MC is a popular model for describing a discrete-time
stochastic process where the future state depends only on
the current state but not on the previous states [10]. The
chain is a sequence {Xk : k ≥ 0} of random variables
taking values in a finite state set S = {1, . . . , n}. Thus,
Xk represents the state of the random development at the
k-th time step. The MC satisfies the following property:
P{Xk = xk|Xk−1 = xk−1, . . . , X1 = x1} = P{Xk =
xk|Xk−1 = xk−1}. For a time-homogeneous MC, where
P{Xk+1 = j|Xk = i} = P{Xk = j|Xk−1 = i} for all time
steps k ≥ 0, we define a transition matrix P ∈ [0, 1]n×n

with the element defined by pij = P{Xk+1 = j|Xk = i},
which is the probability for the state to transit from State i to
State j in the next time step. Note that the transition matrix
P is row-stochastic, where the sum of every row equals 1,
that is,

∑n
j pij = 1 for all i, and 0 ≤ pij ≤ 1.

Let π(k) ∈ [0, 1]n denote the distribution at time k where
the i-th element is defined by πi(k) = P{Xk = i}. The
distribution at time k can be obtained by the following
formula: π(k + 1)

T
= π(k)

T
P. Hence, π(k)T = π(0)

T
Pk.

The stationary distribution π∗ for the MC is defined as
the distribution that satisfies

π∗T = π∗TP or π∗ = Mπ∗, (1)

where M = PT and hence mji = pij . This notation will be
used interchangeably in this paper.

A MC is irreducible if there exists a time step k such that
every entry in the k-step transition matrix is positive, that is,[
Pk
]
ij
> 0 for all i, j ∈ {1, . . . , n}.

A distribution π∗ is said to be a steady-state distribution
of a MC, if for every initial distribution π(0), we have
limk→∞ π(k) = π∗. It is known that for an irreducible MC
is also aperiodic, if it has an stationary distribution π∗, then
it is also a steady-state distribution. In this paper, we focus
on finite irreducible time-homogeneous MCs.

B. Kronecker Product

The KP of matrices A ∈ Rp1×q1 and B ∈ Rp2×q2 is
defined as the p1p2-by-q1q2 matrix,

A⊗B =


a11B a12B · · · a1,q1B
a21B a22B · · · a2,q1B

...
...

. . .
...

ap1,1B ap1,2B · · · ap1,,q1B

 (2)

We have the following mixed-product property [1]:

(A⊗B) (C⊗D) = AC⊗BD (3)

where A ∈ Rm×n, B ∈ Rp×q , C ∈ Rn×r and D ∈ Rq×s.

C. Probabilistic Swarm Guidance

The objective of PSG is to drive a large number of
swarming agents to a prescribed region of the configuration
space in a certain target density distribution based on proba-
bilistic approach [8]. The idea is to assign the target density
distribution of swarms as the steady-state distribution π∗ of
a MC, and then obtain the transition matrix of the MC such
that the distribution from any initial distribution π(0) can
converge to π∗.

In the problem, the physical space R where the swarm
distributed is partitioned into n disjoint sub-regions Ri for

i = 1, . . . , n such that R =
n⋃

i=1

Ri and Ri ∩ Rj = ∅ for

i 6= j. The sub-regions Ri are usually referred as bins.
Consider that a swarm agent is located at r(k) at time

step k, then let π be the probability vector whose i-th
element πi represents the probability that the agent is in
xi at time step k, πi(k) = P{r(k) ∈ Ri}. Assume that a
swarm is comprised of N agents, where agent in the swarm
acts statistically independent of each other. Let rj(k) be the
position of the j-th agent at time k, denote x(k) as the
actual distribution of the N agents at time step k. Thus,
its i-th element xi(k) is the average number of agents in Ri

at time k, that is, xi(k) = #{rj(k) ∈ Ri}/N , where #A
denotes the cardinality of the set A. When the number of
agents is extremely large N → ∞, then xi(k) → πi(k) for
i = 1, . . . , n, due to the law of large numbers.

The distribution guidance problem is thus formulated as
follows: Suppose N is very large; given any initial distri-
bution x(0), we desire to guide the swarm toward a target
steady-state distribution described by a probability vector π∗,
that is, limk→∞ xi(k) = πi(k) for i = 1, . . . , n. As the
number of swarm agents is assumed to be large, we consider
the swarm distribution at time k is π(k) in the following
formulation. Therefore, the goal is to synthesize a transition
matrix M ∈ [0, 1]n×n such that

π∗ = Mπ∗. (4)

Note that M is a column-stochastic matrix, and π(k+1) =
Mπ(k) describes the time evolution of the probability vector
π. If the transition matrix M is obtained, as the movement of
agents are independent from each other, the transition of each
agent just follows the MC specified by the same transition
matrix M.
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There are two broad approaches to synthesize the ma-
trix M. The first one is by applying Metropolis-Hastings
algorithm, which is a Markov Chain Monte Carlo (MCMC)
method for obtaining a sequence of random samples by
propagating a special MC [8]. Although this approach is
scalable and easy to implement, it lacks the explicit control
on the convergence rate and explicit consideration of energy
use by the swarm.

The second approach generates the matrix M with explicit
control on convergence rate and energy use by solving a
linear matrix inequality (LMI) problem [9]. The LMI is
formulated as follows:

min
M,P

1T (1− diag (M))

subject to P � 0, M ≥ 0, 1TM = 1T,

Mπ∗ = π∗, (11T −AT)�M = 0 and(
λ2P (M− π∗ 1T)TGT

G(M− π∗ 1T) G+GT −P

)
� 0

(5)

where λ ∈ [0, 1) denotes the decay rate and G+GT � 0. If
the solution M exists, the convergence of the corresponding
MC is guaranteed as proved in [9]. Note that the formulation
(5) considers a motion constraint specified by an adjacency
matrix A ∈ {0, 1}n×n whose element Aij indicates that
the transition from bin i to bin j when it equals one,
and zero otherwise. By choosing specific λ and G, the
minimization problem (5) can be solved to obtain M that
satisfies the requirement for probabilistic guidance. However,
the size of M is determined by the number of bins n, which
could be over thousands, depending on the spatial resolution.
Hence, when n is large, it is rather computationally expensive
to solve the overarching LMI problem using the available
numerical convex optimization packages.

The convergence of the obtained MC characterized by M
is guaranteed by the following theorem:

Theorem 1. (Theorem 2 in [9]) For any initial probability
vector π(0) ∈ [0, 1]n, it follows that limk→∞ π(t) = π∗ for
the swarm system if and only if ρ(M− π∗1T) < 1.

It is shown in [9] that the last inequality constraint in
(5) is equivalent to ρ(M− π∗1T) < 1. Hence, the solution
of (5) guarantees the convergence of swarm to the desired
distribution, regardless of the initial distribution.

III. DISCRETE-TIME MARKOV CHAINS WITH
KRONECKER PRODUCT STRUCTURE

In this section, we present the properties of discrete-time
finite MCs having a KP structure.

A. Formulation and Interpretation

Consider two irreducible MCs which are denoted as α1 =
{Xk : k = 0, 1, 2, . . .} and α2 = {Yk : k = 0, 1, 2, . . .}.
Let the finite state sets of α1 and α2 be S1 = x1, . . . , xn1

and S2 = y1, . . . , yn2 respectively. We assume that the
corresponding transition matrices P1 ∈ [0, 1]n1×n1 and
P2 ∈ [0, 1]n2×n2 of α1 and α2 are given, where [P1]ij =
P{Xk+1 = xj |Xk = xi} and [P2]ij = P{Yk+1 = yj |Yk =

yi}. Now consider another MC β = {Zk : k = 0, 1, 2, . . .}
with the state set S as the Cartesian product of the states
sets of α1 and α2, that is, S = S1×S2. Note that S is finite
with n1n2 elements. Now, we aim to combine the two MCs
α1 and α2 to generate β by assuming the random variables
Xk+1 and Yk+1 only depend on Xk and Yk, respectively,
that is,

P{Zk+1|Zk} = P{(Xk+1, Yk+1) |(Xk, Yk)}
= P{Xk+1|Xk}P{Yk+1|Yk}.

(6)

The corresponding transition matrix P of β can actually
be generated by taking the KP of P1 and P2, i.e., P =
P1 ⊗ P2. Note that P is also a row-stochastic matrix. The
above formulation can be easily extended to KPs of multiple
transition matrices, and similar arguments are thus applicable
in combining multiple MCs.

B. Basic Properties

Here we state certain properties of DTMCs with KP struc-
tures. Given an irreducible MC α = {Xk : k = 0, 1, 2, . . .}
characterized by transition matrix P = P1⊗· · ·⊗PN , where
P1, . . . ,PN are the transition matrices corresponding to N
different irreducible MCs α1, . . . , αN with smaller number
of states.

The following proposition shows that the evolution of the
corresponding distribution can be decomposed into that of
its factors. We assume the transition matrix is given as P =
P1 ⊗ · · · ⊗PN .

Proposition 1. (Evolution of distribution)
If the initial distribution of the MC α can be represented by
π(0) = π1(0) ⊗ · · · ⊗ πN (0), where π1(0), . . . ,πN (0) are
the initial distributions of the MC α1, . . . , αN with transition
matrix P1, . . . ,PN , respectively. Then π(k) = π1(k)⊗· · ·⊗
πN (k).

Proof. Given π(0) = π1(0) ⊗ · · · ⊗ πN (0), as we have
πi(k)

T = πi(0)
TPk

i for i = 1, . . . , N , hence by the KP
property in (3),

πT(k) = πT(0)Pk

=
(
πT
1 (0)⊗ · · · ⊗ πT

N (0)
)
(P1 ⊗ · · · ⊗PN )

k

=
(
πT
1 (0)P

k
1

)
⊗ · · · ⊗

(
πT
N (0)Pk

N

)
= πT

1 (k)⊗ · · · ⊗ πT
N (k).

Proposition 2. (Stationary and steady-state distribution)
If there exist stationary (steady-state) distributions

π∗1 , . . . ,π
∗
N for the MC α1, . . . , αN , where π∗Ti = π∗Ti Pi,

for i = 1, . . . , N , then π∗ = π∗1 ⊗· · ·⊗π∗N is the stationary
(steady-state) distribution of the MC α.

Proof. It can be shown that(
π∗T1 ⊗ · · · ⊗ π∗TN

)
=
(
π∗T1 P1

)
⊗ · · · ⊗

(
π∗TN Pk

N

)
=
(
π∗T1 ⊗ · · · ⊗ π∗TN

)
(P1 ⊗ · · · ⊗PN ) .

Hence, π∗ = π∗1 ⊗ · · · ⊗ π∗N is the stationary distribution.
Similarly, a parallel statement holds for the steady-state
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Fig. 1: An example of target spatial configuration with self-
replicating structures in 90×90 bins. The color indicates the
relative density, where the density sum over all bins is one.

distribution, as if the steady-state distribution exists, it must
also be a stationary distribution.

Note that Proposition 2 reveals a non-trivial property:
when all the Markov sub-chains α1, . . . , αN have steady-
state distributions, the MC α will also has a steady-state dis-
tribution. By definition, if π∗ is the steady-state distribution
of MC α, the distribution will eventually converge to π∗ from
any initial distribution π(0) which is not necessarily KP of
π1(0), . . . ,πN (0). Hence, it is independent of Proposition 1
where π(0) = π1(0)⊗· · ·⊗πN (0). This property is essential
to guarantee the convergence of the proposed parallel swarm
guidance algorithm.

IV. PROBABILISTIC SWARM GUIDANCE VIA
KRONECKER PRODUCT MARKOV CHAINS

In this section, we apply the proposed MC framework with
the KP structure in Section III for the PSG. As mentioned
in Section II-C, this problem is computationally challenging
for the LMI approach when the number of bins is large,
which may happen when the configuration space is large
and is partitioned in high resolution. We aim to reduce
the computational cost for solving the corresponding LMI
problem by exploring a class of swarm configurations that
exhibit the self-replicating structures with the aid of KPs.
Self-replicating swarm behaviours and patterns have widely
been observed in natural animal communities. Therefore, it
is a natural choice for the design of swarm configuration.
We show that if the target configuration in swarm guidance
problem exhibits repeating patterns, we can apply the sep-
aration property of KP MC to break the large system into
smaller chains and synthesize the transition matrix M by
synthesizing for the smaller subsystems. This on the other
hand can greatly reduce the computational cost. In other
words, it is desirable to design the configuration such that it
possesses as many repeating features in configuration space
as possible.

A. An Illustrative Example

We show a 2-dimensional example of swarm configuration
with self-replicating structures in Fig. 1. Each pixel repre-
sents a bin. It is obvious to see the repeating patterns. The
colors represent the relative densities of the bins, where the

Fig. 2: An illustration on how the KP structures in space
corresponding to multi-resolutions. The bins can be decom-
posed into four layers, represented by X(1) ∈ [0, 1]5×5,
X(2) ∈ [0, 1]3×3, X(3) ∈ [0, 1]3×3 and X(4) ∈ [0, 1]2×2

respectively, from bottom to top.

sum of densities over all bins is one. This configuration is
actually generated by the KPs of four matrices,

X(1) =
1

19


1 0 1 0 1
0 2 0 2 0
1 0 3 0 1
0 2 0 2 0
1 0 1 0 1

, X(2) =
1

6

(
0 1 1
1 1 0
1 0 1

)
,

X(3) =
1

13

(
2 1 2
1 2 0
2 1 2

)
and X(4) =

1

6

(
1 2
2 1

)
,

of which the sums of all entries equal to one. Therefore,
one can think of the matrices as the density distributions in
different scales. The KP demonstrates the power of capturing
the multi-scaling properties inside a configuration. In general,
the matrices can be of arbitrary size, and do not necessarily
be square. The total number of bins N is 8100, and thus
the size of transition matrix M is 8100 × 8100, which is
too large for solving the LMI problem in (5). We will show
that the size of the LMI problem can be greatly reduced by
exploiting the KP structure.

Fig. 2 illustrates how the configuration in Fig. 1 can be
decomposed into layers of smaller local configurations by
KPs. In the figure, the bottom layer is divided into 5 × 5
partitions, and each partition is a weighted copy of the upper
layer. Hence, the upper layer represents the repeating local
features. Each layer can be expressed by a matrix of the
weights, which are values corresponding to the probability
densities of finding a swarm agent in the bins.
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B. General Case

Consider the general case where a configuration X ∈
[0, 1]p1···pL×q1···qL is composed of the KPs of L matri-
ces, X(i) ∈ [0, 1]pi×qi for i = 1, . . . , L, that is, X =
X(1), . . . ,X(L), where the sum of all entries in X(i) is one.
It is obvious that the sum of all entries in matrix X is
also one. Let x(i) ∈ [0, 1]piqi be the vector generated by
stacking the columns of X(i), i.e. x(i) = vec(X(i)), that
becomes a density vector of layer i. Each element can be
given an identity number according to its index. Hence,
each bin in X can be labelled by a tuple of L indexes,
each corresponding to one layer. For example, the bin at
X9,7 in Fig. 1 is labelled as (1, 2, 2, 1). However note that
in general x 6= x(1) ⊗ · · · ⊗ x(L) where x = vec(X). In
the meantime, the product can be a permutation of x, i.e.,
Px = x(1) ⊗ · · · ⊗ x(L), where P is certain permutation
matrix. As the re-ordering labels of bins or the entries in
the density vector does not affect the physical meaning in
the probabilistic guidance problem, we will use this fact to
develop a parallel algorithm for the probabilistic guidance.

The following provides the definition of Kronecker-
structured density vector:

Definition 1. (Kronecker-structured density vector)
We call a density vector x the Kronecker-structured density

vector, if there exists a permutation P that satisfies Px =
x(1) ⊗ · · · ⊗ x(L), and the corresponding vectors x(i) for
i = 1, . . . , L is called the factor density vectors.

C. Parallel Probabilistic Guidance Algorithm

We propose a parallel probabilistic guidance algorithm
based on the properties of KP structure. Let π be the target
configuration of swarm which is a Kronecker-structured
density vector, Pπ = π(1) ⊗ · · · ⊗ π(L) for a certain
permutation matrix P and a finite integer L > 1. The key
idea of parallel probabilistic guidance is to find the MC
with column-stochastic transition matrix M which can be
expressed as M = M1 ⊗ . . .⊗ML.

The following theorem lays the foundation for our parallel
algorithm. For simplicity, we will use π instead of π∗ to
represent the steady-state distribution which is also the target
swarm distribution when it does not cause any ambiguity.

Theorem 2. Given a Kronecker-structured density vector π
where Pπ = π(1) ⊗ · · · ⊗ π(L) with certain permutation
matrix P and a finite integer L > 1. If there exists matrices
Mi that satisfy

Miπ
(i) = π(i), Mi ≥ 0 and 1TMi = 1T (7)

for i = 1, . . . , L, then the matrix M = M1⊗· · ·⊗ML must
satisfy

MPπ = Pπ, M ≥ 0 and 1TM = 1T. (8)

Proof. Note that

MPπ = (M1 ⊗ · · · ⊗ML)
(
π(1) ⊗ · · · ⊗ π(L)

)
= M1π

(1) ⊗ · · · ⊗MLπ
(L) = π(1) ⊗ · · · ⊗ π(L) = Pπ

and it is well-known that KPs of column-stochastic matrix
is also column-stochastic.

Based on Theorem 2, we propose a parallel LMI formu-
lation to solve the guidance problem. The idea is based on
[9]: Given a Kronecker-structured density vector π, where
Pπ = π(1) ⊗ · · · ⊗ π(L), we synthesize M1, . . . ,ML by
solving the following optimization problem:

min
Mi,Pi

1T (1− diag (Mi))

subject to Pi � 0, Mi ≥ 0, 1TMi = 1T,Miπ
(i) = π(i),

and
(

λ2Pi (Mi − π(i) 1T)TGT
i

Gi(Mi − π(i) 1T) Gi +GT
i −Pi

)
� 0

(9)

where λ ∈ [0, 1) denotes the decay rate and Gi +GT
i � 0,

for i = 1, . . . , L.
Note that the above LMI problem is the parallel version of

(5) without the motion constraint. If the adjacency matrix A
that characterizes the motion constraint also has the similar
KP structure as the transition matrix M, i.e., A = A1⊗· · ·⊗
AL where Ai ∈ {0, 1}piqi×piqi has the same size as Mi,
then the motion constraints characterized by Ai can also fit
into the above system (9). However, we only concern the
case without motion constraint in this paper for simplicity.

We describe the parallel probabilistic guidance algorithm
(PPGA) as follows. As the Markov sub-chains generated
by the above optimization problems are independent from
each other, we can consider them as parallel MCs so that
we do not need to explicitly compute or store the large
transition matrix M. Each agent has a copy of all the
factor transition matrices Mi for i = 1, . . . , L. The swarm
then propagates its position based on the following Markov
process. Note that every bin is labelled by a tuple of length
L, with each element representing the position in terms of the
corresponding layer. First, each agent detects its current bin,
labelled as (i1, . . . , iL). Then, each agent generates vector
of random numbers z ∈ [0, 1]L whose values are uniformly
distributed in [0, 1]. Then, each agent moves to bin labelled
as (j1, . . . , jL) if

jl−1∑
k=1

Mk,il ≤ zl ≤
jl∑

k=1

Mk,il (10)

for l = 1, . . . , L. Obviously, the overall convergence rate
will be limited by the layer that converges with the slowest
speed.

Note that if the solutions of (9) exist, Theorem 1 ensures
the convergence of all the sub-chains to the desired steady-
state distributions . Hence, by Proposition 2, the MC with
transition matrix M = M1⊗· · ·⊗ML also converges to the
steady-state distribution which guarantees the convergence
of the proposed PPGA.

V. NUMERICAL EXPERIMENTS

In this section, we present the computational simulation
results to demonstrate the efficacy of the proposed algorithm.
We use the spatial configuration in Fig. 1 as input, which
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Fig. 3: The plot showing the changes in total variation for
λ = 0.1, 0.5, 0.9, respectively.
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(d) k = 8 (e) k = 16 (f) k = 32

Fig. 4: Evolution of the distribution and the target configu-
ration

has 8,100 bins in total. The swarm contains N = 20000
autonomous agents that are guided by the PPGA to form
a distribution sequence over time. The swarm is distributed
uniformly across the space at time step k = 0. We solved the
optimization problem in (9), and each agent moves indepen-
dently based on the PPGA. We apply total variation T (k) at
time k to monitor the convergence: T (k) =

∑pq
j |xj(k)−πj |

where p = p1 · · · pL and q = q1 · · · qL.
Fig. 3 shows the total variations change in time for differ-

ent λ settings. It reveals that the selection of λ actually affects
the convergence rate. Smaller λ leads to faster convergence.
For λ = 0.9, the distribution converges at around k = 20.

The evolution of the distribution when k =
0, 2, 4, 8, 16, 32 for λ = 0.9 is shown in Fig. 4. It
reveals that the convergence is in parallel across different
layers. The simulation is run on a personal computer;
it takes less than a minute to solve the corresponding
LMI problems. However, if we try to solve the original
optimization in (5) which has 65,610,000 variables for M, it
is impossible for a personal computer to solve it due to the
limitation on memory and computational power. Our method
can even lead to a parallel computation framework, where
each optimization can be solved separately in different cores
of computing units.

VI. CONCLUSIONS

This paper explored the power of Kronecker product (KP)
for the analysis and synthesis of discrete-time Markov chains
(MC). In particular, we studied the MC that has KP structure
and showed that it is equivalent to a system of parallel
MCs with less number of states. We then demonstrated the
advantages of using KP-structured MC on the application
of probabilistic swarm guidance by greatly reducing the
computational cost of finding the guidance rule for the
target configuration that exhibits repeating spatial patterns.
In addition, we proposed the parallel probabilistic guidance
algorithm that can drive the agents independently to the
desired swarm distribution. The search for suitable guidance
rule can be done off-line using a personal computer with
inexpensive configuration. The pre-computed rule is then
implemented to the swarm agents. This rule preserves the
essence of the original probabilistic guidance idea proposed
by Açıkmeşe and Bayard in [8]. Here we focused on the
design perspective where the target configuration is chosen
to possess the repeating patterns. It is worthwhile to study
the appropriate approximation of certain desired density
distribution that is not exactly Kronecker-structured but also
exhibits self-replicating patterns. Moreover, incorporating
motion constraints to the proposed hierarchical framework
will also be studied in our future work.
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