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Abstract. This paper explores the fusion of audio and visual evidences through 
a multi-level hybrid fusion architecture based on dynamic Bayesian network 
(DBN), which combines model level and decision level fusion to achieve higher 
performance. In model level fusion, a new audio-visual correlative model 
(AVCM) based on DBN is proposed, which describes both the inter-
correlations and loose timing synchronicity between the audio and video 
streams. The experiments on the CMU database and our own homegrown data-
base both demonstrate that the methods can improve the accuracies of audio-
visual bimodal speaker identification at all levels of acoustic signal-to-noise-
ratios (SNR) from 0dB to 30dB with varying acoustic conditions. 

1   Introduction 

Human speech is produced by the movement of the articulatory organs. Since some of 
these articulators are visible, there are inherent correlations between audio and visual 
speech. There is also loose timing synchronicity between them, for instance, the 
mouth is opened before producing speech and closed after speech is produced. 

While the audio is a major source of speech information, the visual component is 
considered to be a valuable supplementary information source in noisy environments 
because it remains unaffected by acoustic noise. Many studies have shown that the 
integration of audio and visual features leads to more accurate speaker identification 
even in noisy environments [1-3]. 

Audio-visual integration can be divided into three categories: feature fusion, deci-
sion fusion and model fusion [3-5]. In feature fusion, multiple features are concate-
nated into a large feature vector and a single model is trained [4]. However this type 
of fusion cannot easily represent the loose timing synchronicity between audio visual 
features. In decision fusion, audio and visual features are processed separately to 
build two independent models [5], which completely ignore the audio visual correla-
tions. In model fusion, several models have been proposed, such as multi-stream hid-
den Markov model (HMM) [6], factorial HMM [6], coupled HMM [2], mixed DBN 
[7], etc. Multi-stream HMM and factorial HMM assume independence between audio 
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and visual features. Coupled HMM and mixed DBN force audio visual streams to be 
in strict synchrony at model boundaries by introducing “anchor-points”. 

This work attempts to capture the inter-correlations between audio and visual cues 
as well as the loose synchronicity between them for speaker identification. We pro-
pose a new audio-visual correlative model (AVCM) to describe the above relations, 
which is realized using the DBN. We also explore the fusion of audio and visual evi-
dences through a multi-level hybrid fusion architecture based on DBN, which com-
bines model level and decision level fusion to achieve higher performance. 

The outline of this paper is as follows: Section 2 gives the details of the proposed 
audio-visual correlative model (AVCM). Then the multi-level audio visual fusion 
architecture is described in section 3. Section 4 presents the experimental results and 
analysis showing how the proposed approaches improve the speaker identification 
performance. Finally, section 5 concludes the paper. 

2   DBN Based Audio-Visual Correlative Model (AVCM) 

Dynamic Bayesian networks are a class of Bayesian networks designed to model 
temporal processes as stochastic evolution of a set of random variables over time [8]. 
A DBN is a directed acyclic graph whose topology structure can be easily configured 
to describe various relations among variables. DBN offers a flexible and extensible 
means of modeling the feature-based and temporal correlations between audio and 
visual cues for speaker identification. 

We propose the AVCM model as depicted in figure 1. It illustrates a whole sen-
tence model that consists of several words. The square nodes represent discrete vari-
ables. The round nodes represent continuous variables. The hollow nodes represent 
hidden variables and the shaded nodes are observed. The upper part of the model 
describes the audio stream (audio sub-model) and the lower part describes the video 
stream (video sub-model). The labeled nodes include: 
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Fig. 1. Audio-visual correlative model (AVCM) based on DBN 
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~ the “Word” node stands for the current word which is determined by the sen-
tence; 

~ the “State” node (CA, CV) indicates the current state and is determined by 
“Word”; 

~ the “Observation” node (OA, OV) represents the audio or visual observations; 
~ the “State Trans” node (i.e. state transition, TA, TV) indicates when the current 

state ends and switches to the next state; 
~ the “Word Trans” node may take the values true or false to respectively denote 

whether there is a word transition and is dependent on the “State Trans” node; 
~ the “EOS” node (End Of Sentence) represents the end of the whole sentence. 

Inter-node dependencies modeled by the proposed AVCM include: 

~ the “State Trans” nodes of the audio and video streams are dependent on their 
“State” nodes from both two models, which describe the inter-correlations be-
tween the two streams. This is shown by the thick dashed arrows in figure 1; 

~ the “Word Trans” nodes are also dependent on the “State” nodes from both 
audio and video streams, which capture the loose timing synchronicity in be-
tween the two streams. This is shown by the thick solid arrows in figure 1. 

The proposed AVCM model differs from previous approaches such as [2] and [7], 
where the loose timing synchronicity between audio and video streams is restricted by 
“anchor-points” at word boundaries. In AVCM, audio and video streams have their 
own independent “Word” and “Word Trans” nodes. Furthermore, the “Word Trans” 
node of the audio stream is dependent on the “State” node of the video stream, and 
vice versa. This models the loose synchronicity in between two streams and brings 
about performance improvements, as will be discussed later. 

3   Multi-level Fusion of Audio and Visual Evidences 

Incorporation of bimodal, correlated audio-visual features should achieve speaker 
identification performance that is superior to mono-modal systems. This is because 
the two modalities, if modeled properly, can complement and reinforce each other. 
However, under some conditions, the performance of AVCM is not as good as that of 
decision fusion (see point 4 in section 4.2). Similar observations are reported in [2]. 

In view of the advantages of model fusion and decision fusion, we proposed a 
multi-level fusion strategy via DBN, as illustrated in figure 2. There are three models 
altogether: the audio-only model, the video-only model and the AVCM model that 
performs model-based audio-video fusion. These three models are further combined 
by means of decision-level fusion to deliver the final speaker identification result. 
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Fig. 2. Strategy for audio-visual multi-level fusion 
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Fig. 3. DBN for audio-visual multi-level fusion 

Decision-level fusion for the three models is also achieved through the use of 
DBN, by virtue of its extensibility. This is shown in figure 3, in which the EOS node 
of AVCM model (AVCM EOS), audio-only model (Audio EOS) and video-only 
model (Video EOS) are connected to the global “EOS” node. The EOS nodes of the 
three models are hidden and the global “EOS” node is observable. 

Equation 1 shows the mathematical formula we use for multi-level fusion, 

P(OA, OV | MA, MV, MAV) = [P(OA | MA)]λA [P(OV | MV)]λV [P(OA, OA | MAV)]λAV. (1) 

where P(OA | MA) is the recognition formula for audio-only model MA of audio obser-
vation OA, and P(OV | MV) is the formula for video-only model MV of video observa-
tion OV, and P(OA, OV | MAV) is the formula for AVCM model MAV. λA, λV and λAV are 
stream exponents (fusion weights) for audio-only, video-only and AVCM model, 
which encode the relative reliability of the models and can be varied according to 
ambient noise conditions (i.e. SNR). When the SNR is high, AVCM should be more 
reliable than mono-modal models and should carry higher weights. When SNR is low, 
the reliability of the audio-only and AVCM models degrade, hence the video-only 
model should carry the highest weight. The proposed multi-level fusion strategy com-
bines the advantages of model fusion and decision fusion and has the potential of 
achieving performance improvement. 

The estimation of the fusion weights is a key issue. We enforce the parameter con-
straints of λA+λV+λAV=1, λA=λAV and λA,λV,λAV≥0. In addition we impose λA=λAV by 
assuming that the performance of both audio-only and AVCM models are equally 
dependent on the quality of the acoustic speech. We then use a novel methodology 
known as support vector regression (SVR) to estimate the fusion weights directly 
from the original audio features [9]. 

4   Experiments 

We perform the text-prompted speaker identification experiments to evaluate the 
performance of various models including audio-only, video-only, decision fusion, 
feature fusion, coupled HMM (CHMM), AVCM and multi-level fusion. 
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The experiments are conducted on the audio-visual bimodal database from Carne-
gie Mellon University (CMU database) [10] as well as our own homegrown database. 
The CMU database includes 10 subjects (7 males and 3 females) speaking 78 isolated 
words repeated 10 times. These words include numbers, weekdays, months, and oth-
ers that are commonly used for scheduling applications. Our homegrown database 
includes 60 subjects (38 males and 22 females, aged from 20 to 65) with each subject 
speaks 30 connect-digit words (the digit length differs from 2 to 6), and each utter-
ance is repeated three times at intervals of 1 month. 

The acoustic front-end includes 13 Mel frequency cepstral coefficients (MFCCs) 
and 1 energy parameter (with frame window size of 25ms and frame shift of 11ms) 
together with their delta parameters. Hence the audio feature vector has 28 dimen-
sions. The visual front-end includes mouth width, upper lip height, lower lip height 
[10] and their delta parameters. Thus the visual feature vector has 6 dimensions. The 
video frame rate is 30 frames per second (fps), which is up-sampled to 90fps (11ms) 
by copying and inserting two frames between each two original video frames. 

Artificial white Gaussian noise was added to the original audio data (SNR=30dB) 
to simulate various SNR levels. The models were trained at 30dB SNR and tested 
under SNR levels ranging from 0dB to 30dB at 10dB intervals. We applied cross-
validation for every subject’s data, i.e. 90% of all the data are used as training set, and 
the remaining 10% as testing set. This partitioning was repeated until all the data had 
been covered in the testing set. 

Table 1. Accuracies (%) of speaker identification under different SNR on CMU database 

audio signal-to-noise-ratio (SNR) 30dB 20dB 10dB 0dB 

video-only 77 77 77 77 
audio-only 100 64 22 17 
feature fusion 99 85 30 20 
decision fusion 100 86 78 78 
CHMM 100 88 79 60 
AVCM 100 92 79 65 
multi-level fusion 100 93 81 79 
fusion weight for multi-level fusion (λA=λAV) 0.4 0.32 0.1 0.01 

Table 2. Accuracies (%) of speaker identification under different SNR on our own database 

audio signal-to-noise-ratio (SNR) 30dB 20dB 10dB 0dB 

video-only 74 74 74 74 
audio-only 99 59 20 15 
feature fusion 99 81 26 18 
decision fusion 100 83 76 75 
CHMM 100 85 77 57 
AVCM 100 89 78 61 
multi-level fusion 100 91 80 77 
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All the tested models are implemented as DBNs. A DBN is developed for each 
word, with a left-to-right no skipping topological structure. The number of the tran-
sited state is always equal to or 1 greater than the original state. The audio sub-model 
has 5 states, and video sub-model has 3 states, each state is modeled using the Gaus-
sian mixture model (GMM) with 3 mixtures. During speaker identification, the 
words’ DBNs are connected to form a whole sentence model, which is then used to 
identify the speakers. The DBNs are implemented using the GMTK toolkit [11]. 

The identification accuracies from all the testing data are averaged and reported as 
the final result. The results on CMU database are summarized in table 1. The experi-
ments are also conducted on our own homegrown database with a larger number of 
speakers and results are summarized in table 2. Main observations include: 

(1) Feature fusion performs worse than other fusion methods, even achieving ac-
curacies lower than video-only model when SNR≤10dB. The main reason is 
due to the misalignment between audio and video streams; 

(2) Decision fusion achieves lower accuracy than CHMM and AVCM when 
SNR≥10dB. However, when SNR<10dB, the accuracy is higher than CHMM 
and AVCM, as shown by the shaded table cells; 

(3) The AVCM model proposed in this paper has higher accuracy than CHMM, 
because it describes both inter-correlations and loose timing synchronicity be-
tween audio and video features; 

(4) Because of the misalignment during model training, when SNR<10dB, the 
performance of the AVCM and CHMM degrades and the accuracy is even 
lower than the video-only model; 

(5) The audio-visual multi-level fusion strategy has solved the problem in (4) 
well. Best identification performance is obtained even when SNR=0dB. It can 
also be seen from both tables that better results are also obtained when SNR is 
10dB and 20dB than the AVCM model. This is because that the multi-level 
fusion strategy combines the results from audio-only, video-only and AVCM 
model, and the results of audio and video model are supplementary to that of 
AVCM; 

(6) From the results of table 1 and table 2, we can see that the performance of the 
speaker identification degrades a little with larger speaker numbers, but the 
conclusions from (1) to (5) can still be drawn. This indicates that the proposed 
model based on DBN has good extensibility for different databases. 

5   Conclusions 

This paper investigates the correlations between audio and visual features. A new 
audio-visual correlative model (AVCM) based on dynamic Bayesian network (DBN) 
is proposed, which describes both the inter-correlations and the loose synchronicity 
between audio and visual streams. The experiments on the audio-visual bimodal 
speaker identification demonstrate that the AVCM model improves the identification 
accuracies compared to the previous methods. 

We also propose a DBN based audio-visual multi-level fusion strategy, which 
combines the results of audio-only, video-only and AVCM models through decision-
level fusion. Experiments on both CMU database and our own homegrown database 
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show that the proposed strategy integrates the advantages of both model level and 
decision level fusion and achieves the best accuracies of speaker identification at all 
levels of acoustic signal-to-noise ratio (SNR), ranging from 0dB to 30dB. 
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