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Abstract. This paper investigates the estimation of fusion weights under vary-
ing acoustic noise conditions for audio-visual multi-level hybrid fusion strategy 
in speaker identification. The multi-level fusion combines model level and de-
cision level fusion via dynamic Bayesian networks (DBNs). A novel methodol-
ogy known as support vector regression (SVR) is utilized to estimate the fusion 
weights directly from audio features; Sigma-Pi network sampling method is 
also incorporated to reduce feature dimensions. Experiments on the homegrown 
Chinese database and CMU English database both demonstrate that the method 
improves the accuracies of audio-visual bimodal speaker identification under 
dynamically varying acoustic noise conditions. 

1   Introduction 

Human speech is bimodal in nature. While the audio is a major source of speech 
information, the visual component is considered to be a valuable supplementary in 
noisy environments because it remains unaffected by acoustic noise. Many studies 
have shown that the fusion of audio and visual features leads to more accurate 
speaker identification even in noisy environments [1-3]. 

The audio-visual fusion can be divided into three levels: feature level, decision 
level and model level [2-3]. It is generally agreed that the model level fusion gives 
better performance because it can capture the potentially useful coupling or condi-
tional dependence between audio visual modalities [2-5]. However, in a very noisy 
environment, the performance of model level fusion may not be as good as that of 
decision level fusion [2, 5]. It is postulated to be caused by the segmentation mis-
alignment of visual stream “pulled” by audio stream during the identification stage. 

We have proposed a multi-level hybrid fusion strategy based on dynamic Bayesian 
networks (DBNs). It combines model level and decision level fusion to achieve im-
proved performance [5]. In such a strategy, the fusion weights are of great importance 
as they must capture the reliability of inputs which may vary dynamically. 

In the literature, the fusion weights have been usually determined during training 
and remain fixed for all subsequent testing over an entire dataset [2-4]. Hence the 



weights may not match the input testing patterns well, leading to inferior accuracies 
when compared with mono-modal identification, because the speech information can 
vary dramatically at a temporal level (e.g. noise bursts) in practice. 

In this paper, we attempt to estimate the fusion weights directly from the audio 
stream, which will be able to capture the dynamical variations of acoustic noise in a 
reasonable way. A novel methodology known as support vector regression (SVR) [6] 
is utilized, which performs real value function approximation based on the principle 
of structural risk minimization leading to high degree of generalization. The method 
also incorporates the Sigma-Pi network [7] sampling for the purpose of feature di-
mension reduction. 

The outline of this paper is as follows. Section 2 gives a brief introduction to the 
audio-visual multi-level fusion architecture. Section 3 describes the proposed strategy 
for fusion weight estimation. Section 4 introduces the databases. The experiments and 
results are presented in section 5. Finally, section 6 concludes the paper. 

2   Multi-level Fusion of Audio-Visual Features 

 

 

Fig. 1. DBN based audio-visual multi-level fusion 

Incorporation of bimodal, correlated audio-visual features should achieve speaker 
identification performance that is superior to mono-modal. This is because the two 
modalities, if modeled properly, can complement and reinforce each other. Further-
more, different levels of fusion strategies can reinforce each other too. For example, 
model level fusion outperforms decision level fusion in most cases. However, the 
performance of decision level fusion may be better than that of model level in the 
very noisy environments [2, 5]. 



In view of the advantages of model level and decision level fusion, we proposed a 
multi-level fusion strategy via DBNs, as illustrated in figure 1. There are three models: 
audio-only model, video-only model, and the audio-visual correlative model (AVCM) 
that performs model level fusion. These three models are further combined by means 
of decision level fusion to deliver the final speaker identification result. AVCM cap-
tures the inter-dependencies between audio and visual features and the loose temporal 
synchronicity among them. Further studies of multi-level fusion are given in [5]. 

The formula used for multi-level fusion is: 

P(OA, OV | MA, MV, MAV) = [P(OA | MA)]λA [P(OV | MV)]λV [P(OA, OV | MAV)]λAV. (1) 

Where P(OA | MA) is the identification formula for audio-only model MA of audio 
observation OA, P(OV | MV) is the formula for video-only model MV of video observa-
tion OV, and P(OA, OV | MAV) is the formula for AVCM model MAV. λA, λV and λAV are 
fusion weights for three models. 

3   Estimating Fusion Weight with Support Vector Regression 

The fusion weights (λA, λV and λAV) provide a means to encode the relative reliability 
of the models, which can vary according to ambient noise conditions (i.e. SNR). 
When the acoustic SNR is high, AVCM model is more reliable and should carry 
higher weight. When acoustic SNR is low, the reliability of audio-only and AVCM 
model degrades, hence the video-only model should carry the highest weight. 

3.1   Fusion Weight Estimating Strategy 
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Fig. 2. Processing steps for fusion weight estimation 

The estimation of the fusion weights raises a key issue. We enforce the constraints of 
λA+λV+λAV=1 and λA,λV,λAv≥0. In addition, we impose λA=λAV by assuming that the 
performances of both audio-only and AVCM models are equally dependent on the 
quality of the acoustic speech. We then use the support vector regression (SVR) to 



estimate the audio weight λA directly from the original audio features. SVR is used 
because it has powerful ability in learning and can achieve high degree of generaliza-
tion by means of structural risk minimization [6]. 

Figure 2 depicts the processing sequence in the use of SVR to estimate the audio 
fusion weight. The primary audio features are first extracted from the original audio 
speech. These features are then re-sampled by Sigma-Pi sampling [7] to obtain sec-
ondary distribution features that describe the distributions of the original audio fea-
tures. Finally, SVR is used to predict the fusion weight. 

The audio fusion weight λA should reflect the quality of input audio speech, and 
should be obtained from a relatively long time span (e.g., 1500ms) of original audio 
features. If these features are input directly into the SVR module to estimate λA, there 
will be too many dimensions for computation (e.g., a 28-order speech feature vector 
sampled with the frame shift of 11ms will give 28×1500/11=3818 dimensions!). In 
order to reduce the amount of computation, we propose to use Sigma-Pi networks to 
sample the primary audio features prior to further processing. 

3.2   Dimension Reduction with Sigma-Pi Sampling 
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Fig. 3. Schematic overview of Sigma-Pi sampling [7] 

In this paper, Sigma-Pi sampling is defined on sequences of primary audio features, 
the horizontal vertex is time and the vertical vertex represents the primary features. It 
consists of two windows of different size with constant distance in time and feature 
position. The size of small window is fixed to 1 and the size of large window is 
changeable. 

If the primary audio feature values are p(t,f), then the secondary distribution fea-
tures s(f1,f2,t0,∆t,∆f) are calculated as follows: 
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Where f1 is the feature channel of the small window, f2 is the feature channel of the 
bottom left corner of the large window, t0 is the time difference between two win-
dows and ∆t∆f is the extension of large window in time and feature. 



As can be seen, for each time step, the small window value is multiplied with the 
mean of the large window, the results are then integrated over time, resulting in a 
single secondary feature value, which reflects the distributions of original primary 
audio features. The mean value of large window reflects the feature distribution of the 
area covered by the large window and the distance between two windows reflects the 
distribution variation of primary features. 

In this paper, we assume that different orders of the primary features are independ-
ent, then the parameters f2=f1 and ∆f=0 of Sigma-Pi sampling are fixed and only t0 
and ∆t are variable. Sigma-Pi sampling can reduce the dimensions of features greatly, 
only 28 secondary distribution feature values are calculated from 3818 primary audio 
features (in time span of 1500ms). 

4   Databases and Setup 

We perform the weight estimation experiment in the scope of the audio-visual text-
prompted speaker identification. 

The experiments are conducted on two databases. One is our homegrown audio-
visual bimodal database including 60 subjects (38 males 22 females, aged from 20 to 
65) with each subject speaks 30 continuous Chinese digits (upper to 6 digits per utter-
ance), each utterance is repeated 3 times at intervals of 1 month. The other is CMU’s 
bimodal database [8] which includes 10 subjects (7 males 3 females) speaking 78 
English words repeated 10 times. These words include numbers, weekdays, months, 
and other scheduling words. 

Artificial white Gaussian noise was added to original audio data (SNR=30dB) to 
simulate various SNR levels. The fusion models were trained at 30dB SNR and tested 
under all SNR levels. We applied cross-validation for every subject’s data, i.e. 90% 
of all the data are used as training set, the remaining 10% as test set, and this parti-
tioning is repeated until all the data had been covered in the test set. 

The acoustic features include 13 Mel frequency cepstral coefficients (MFCCs) and 
1 energy (with frame size 25ms, frame shift 11ms) together with their corresponding 
delta parameters. The visual features include the mouth width, upper lip height, lower 
lip height [8] and their delta values. The frame rate of visual features is 30 frames per 
second (fps), which is up-sampled to 90fps (11ms) to match with the audio features 
by copying and inserting two frames between each two original visual feature frames. 

5   Experiments 

5.1   Learning SVR Parameters 

Weight estimation is carried out using µ-SVR [6] whose parameters are trained with 
the following steps. First the multi-level fusion DBNs are trained. A DBN is devel-



oped for each word, with a left-to-right no skipping topological structure. The audio 
sub-model has 5 states, the video sub-model has 3 states, and each state is modeled 
using Gaussian mixture model (GMM) with 3 mixtures. All the DBNs are imple-
mented using the GMTK toolkit [9]. Then for each test set with one specific SNR 
level and each value of audio fusion weight λA which varies from 0 to 1 at 0.02 inter-
vals, perform the speaker identification. The words’ DBNs are connected to form a 
whole sentence model, which is then used to identify the speakers. For each SNR 
level value, the fusion weight λA with the best identification accuracy is recorded and 
stored as the target weight value for SVR training. 

5.2   Choosing Sigma-Pi Parameters and Segment Length 

First, the parameters t0 and ∆t of Sigma-Pi should be chosen. During this stage, the 
segment length is fixed to 2000ms, the value of t0 varies from 100ms to 1000ms at 
100ms intervals, and ∆t varies from 50ms to 300ms at 50ms intervals. The tests are 
carried out for all combinations of t0 and ∆t. Results show that when t0=500ms and 
∆t=150ms, the performance is the best. These two parameters are then taken as the 
basic parameters for the following experiments. 
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Fig. 4. Weight estimation error on training and test set depending on segment length 

The performance of weight estimation is also affected by the segment length. The 
weight estimation errors depending on different segment length are measured by 
mean square error (MSE) between the estimated weight value λ’

A and the actual one 
λA, where l is the number of weight values in the data set: 
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The results are illustrated in figure 4, which show that MSE decreases with the 
segment length getting longer either on training or test set. When the segment length 
is greater than 1500ms, MSE decreases little. The segment length of 1500ms is cho-
sen for the following experiment. 



5.3   Speaker Identification Results 

We conduct the speaker identification experiments with fixed noise and random vary-
ing noise conditions (with mean acoustic SNR varies from 30dB to 0dB at 10dB 
intervals) through the whole sentence. Two different weight estimation methods are 
tested: (1) fixed weight, the fusion weight remains fixed for the test set after trained, 
as the tradition way mentioned in [2-4]; (2) our proposed method, the estimated 
weight changes automatically according to the acoustic noise conditions. 

The experimental results on our homegrown Chinese database are summarized in 
table 1. The experiments are also conducted on the CMU English database to check 
the validation of the proposed method. The results are summarized in table 2. 

It can be seen that the method proposed in this paper improves the accuracies of 
speaker identification at different acoustic SNR levels when the noise varies dynami-
cally comparing to the traditional fixed weight method. When the acoustic noise 
changes, that is to say the noise condition for the test set varies and does not match 
with the training set, the performance degrades dramatically for the traditional fixed 
weight method, while the performance differences are not significant for the proposed 
method in this paper. It indicates that our proposed method can predict the fusion 
weight well under dynamically varying acoustic noise conditions, and can improve 
the performance of the audio-visual bimodal speaker identification. 

Table 1. Accuracies of speaker identification on our own database with different fusion weight 
estimation method 

mean SNR 30dB 20dB 10dB 0dB 
 fixed varying fixed varying fixed varying fixed varying 
fixed weight 100% 98% 91% 85% 79% 72% 76% 70% 
proposed method 100% 100% 91% 90% 80% 78% 77% 75% 

Table 2. Accuracies of speaker identification on CMU database with different fusion weight 
estimation method 

mean SNR 30dB 20dB 10dB 0dB 
 fixed varying fixed varying fixed varying fixed varying 
fixed weight 100% 99% 92% 86% 81% 77% 77% 73% 
proposed method 100% 100% 93% 92% 81% 81% 79% 78% 

6   Conclusions 

We investigate a fusion weights estimation method of multi-level hybrid fusion for 
audio-visual speaker identification by means of support vector regression (SVR). The 
proposed method estimates the fusion weights directly from the audio features. In the 
method, Sigma-Pi network re-sampling is introduced to reduce the dimensions of the 
audio features. The experiments show that the method improves the speaker identifi-
cation performance at different acoustic SNR levels under varying acoustic noise 



conditions, which indicates that the proposed method can predict the fusion weight 
well under such circumstances. 
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