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ABSTRACT

Dynamic features such as delta and delta-delta of basic acoustic fea-

tures have long been used in various speech applications and give

satisfactory performance. The explicit physical meaning and sim-

plicity of dynamic features clearly compound their prevalence. In

this paper, we propose a new framework with neural network to learn

the alternatives of traditional delta and higher order differences. In-

stead of embracing the interpretability and simplicity, our framework

is able to learn a new transformation that simulates what differences

do but is more relevant to a specific task such as phoneme recogni-

tion. We determine the best way to learn such a new transformation

among several most probable alternatives. Our experiments indi-

cate that dynamic features obtained with transformation learned this

way are better than traditional differences in both frame classifica-

tion and phoneme recognition. The improvement of performance is

even clearer when higher-order of differences are applied.

Index Terms— phoneme recognition, neural network, deep

neural network (DNN), delta, higher order, difference

1. INTRODUCTION

Traditional dynamic features like delta and delta-delta of cepstrum

coefficients have been shown to be very helpful in hidden Markov

model (HMM)-based continuous speech recognition [1][2][3]. Tra-

ditional delta and delta-delta features have a clear physical meaning

(velocity and acceleration), and the way to calculate them is very

simple. Thus acoustic feature such as Mel-frequency cepstral coeffi-

cients (MFCC) and perceptual linear prediction (PLP) concatenated

with delta and delta-delta have become the default way to use feature

in building speech recognition systems.

Although delta and delta-delta features are useful, the sim-

ple calculation may have limited their power. To deal with such

problem, Chengalvarayan and Deng [4] proposed generalized dy-

namic feature parameters in HMM-Gaussian mixture model (GMM)

speech recognition system for phoneme recognition. Generalized

dynamic feature parameters extend the traditional way to calculate

delta features to a weighted linear combination of a window of

several frames, with the weights to be learned. Their results show

that dynamic features calculated with generalized dynamic feature

parameters are much better than traditional dynamic features on

TIMIT.

In recent years, deep learning techniques have attracted attention

from speech community due to impressive performance in speech

recognition. Researchers have found that replacing Gaussian mix-

ture model (GMM) with deep neural network (DNN) can significant-

ly improve the recognition accuracy of both phoneme recognition [5]

and large vocabulary continuous speech recognition (LVCSR) tasks

[6][7]. However, all the experiments in these results use raw acoustic

features concatenated with traditional delta and delta-delta features.

Deng et al. [8] performed the experiment of using only raw Mel-

scale log filter bank with hybrid HMM-DNN, but got poor results.

They thus concluded that DNN is not capable of capturing the con-

cept of traditional delta and delta-delta features. However, no further

discussion on whether different architectures can make a difference

in learning these concepts was given.

In this work, we propose a framework with neural network to

learn alternatives of traditional delta and delta-delta features. By

pointing out the relationship between the calculation of delta features

and the operation of one layer neural network, we design architec-

tures to simulate the behavior of traditional dynamic features, yet

providing a much more generalized possibility of building the trans-

formation. With back-propagation algorithm, the transformations to

build our dynamic features can be learned by optimizing the cross-

entropy error of training data. Compared with Chengalvarayan and

Deng’s work [4], we are able to leverage the information of cross-

coefficients transformation.

2. RELATED WORK

Traditional delta and delta-delta features are calculated as follows:

dt =

∑Θ

θ=1
θ · (ct+θ − ct−θ)

2
∑Θ

θ=1
θ2

(1)

ddt =

∑Θ

θ=1
θ · (dt+θ − dt−θ)

2
∑Θ

θ=1
θ2

(2)

in [9], where ct, dt, ddt are static, delta and delta-delta coefficients

at time t respectively. Θ is called delta window in HTK[9]. Higher-

order differences can be similarly derived.
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Besides speech recognition, formulation (1) and (2) have also

been utilized to various of other speech applications such as speak-

er recognition [10], speech synthesis [11] and articulatory inversion

[12]. While the physical meaning underlying these formulations has

been shown to contain certain discriminative power, it is quite unrea-

sonable that such formulations are always the only and best choice to

calculate dynamic features from application to application. Instead

of embracing such generality and interpretability, we would like to

learn dynamic features that have the largest discriminative power for

specific applications such as phoneme recognition.

3. LEARNING FRAMEWORK

3.1. Description

One of the most noteworthy thing in formulation (1) is that dt is a

linear transformation (combination) of ct+Θ to ct−Θ. So if we are to

design an architecture that is able to imitate the way delta coefficients

behave, we would like it to be able to perform transformation f to

static coefficients. That is, we would like to learn f that satisfies the

following formulation:

dt = f(ct−Θ, ct−Θ+1, . . . , ct+Θ−1, ct+Θ) (3)

such f can either be linear or non-linear. Note that such a transfor-

mation is easily implemented by a single layer of a neural network.

Concretely, assuming both ct and dt have dimension d× 1, Θ = 1,

with a weight matrix W of dimension d× 2d and a bias vector b of

dimension d× 1, we have:

dt = g(W [ct−1; ct+1] + b) (4)

where the operation [p; q] represents stack vector p and q vertical-

ly and g can be identity function if we want linear transformation

and sigmoid or tanh function if we want non-linear one. Although

such a transformation constructed can not represent every possible

function, it is capable of recovering formulation (1) by setting:

W =

(

−0.5 0 0.5 0
0 −0.5 0 0.5

)

, b = 0 (5)

if d = 2 and Θ = 1. Thus formulation (1) is just a special case of

formulation (4). Also, if we would like to make even more complex

transformations, we can simply add another layer on top of formu-

lation (4). However, in some of our preliminary experiments, we

found out that a single layer is enough to exceed the traditional delta

formulation, and adding one more layer does not help.

After making the calculation of delta-like features under the

framework of neural network, the rest part is the same way with

traditional 39-dimensional MFCC used in a DNN. Thus, the training

of the whole neural network is modifying not only the part that an

ordinary neural network does, but also the weights that calculate

delta-like features simultaneously. Since the weights that calculate

delta-like features are a much more general case, they can be count-

ed on to learn a better transformation that is relevant to the certain

task the neural network optimizes. For example, in the phoneme

recognition problem, the minimization of cross-entropy error pro-

vides a transformation to calculate delta-like features, together with

basic acoustic features, minimizes the cross-entropy of the training

data in the neural network.

3.2. Architectures

3.2.1. Learning new delta features

The idea described above can be illustrated in figure 1(a). All the

solid lines represent a full connection and all biases are omitted.

The units with dashed line of ct are actually the same with solid

line units ct, and they are drawn this way only to make a convenient

comparison between our framework and the ordinary way delta fea-

ture is used, by which we mean that the ordinary way to use delta

feature does not contain the part on the left of the large dashed rect-

angle. Also, the two hidden layers can be extended to any number

of hidden layers appropriate. The most important thing in this ar-

chitecture is that all the solid lines between group of units in figure

1 are trained together. With back-propagation algorithm minimizing

cross-entropy error, when the neural network converges, the weight

matrix W in figure1, together with the omitted bias vector, creates an

alternative transformation that is originally calculated with formula-

tion (1). For convenience, we would like to call the transformation

obtained this way the “new delta” in the following text. We will

compare the original one and the new one later in section 4.4.

(a) full connection (b) sparse connection

Fig. 1. Two different architectures to learn delta-like features.

3.2.2. Learning new delta-delta features

While it is relatively easy to determine the architecture to learn delta-

like features, the delta-delta-like features need some more discus-

sion. Although delta-delta features are calculated from delta features

by replacing dt and ct in formulation (1) to ddt and dt respective-

ly, we point out that ddt is still a linear transformation of ct−2Θ to

ct+2Θ by substituting (1) into (2). So, as formulated in (3), we have:

ddt = f(ct−2Θ, ct−2Θ+1, . . . , ct+2Θ−1, ct+2Θ) (6)

Following the discussion of section 3.1, the architecture in our

framework can be illustrated figure 2(a) when Θ = 1. Of course,

delta-delta-like features can also be obtained from transformation of

delta-like features, that is,

ddt = f(dt−Θ, dt−Θ+1, . . . , dt+Θ−1, dt+Θ) (7)

and the architecture is illustrated in figure 2(b). Similarly, we would

like to call the transformation obtained by both architectures the

“new delta-delta”. We will find out which of these two architectures

in figure 2 is better later in section 4.4.

3.2.3. Learning higher-order differences

Following the discussion in section 3.2.2, it is quite natural to gen-

eralize the transformation to even higher-order differences beyond
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(a) type 1 (b) type 2

Fig. 2. Two different architecture to learn delta-delta-like features.

The black dots represent the omitted two hidden layers and the out-

put layer as illustrated in figure 1.

the 2nd order. Although they are infrequently used in speech recog-

nition, higher order of differences in our architecture possess much

more variability over traditional way of calculating differences than

the lower order one, thus potentially imply better performance. We

will report our experimental results later in section 4.5.

3.2.4. Full connection vs. sparse connection

In all the above architectures, weights are all fully connected, which

means all elements of W in (4) are tunable. But the original way

how delta feature is calculated only to transform feature in each di-

mension separately. In this case, similar to (5), we have:

W =

(

x1 0 x3 0
0 x2 0 x4

)

(8)

where xi are numbers to learn. Such kind of transformation, if rep-

resented in our framework, can be illustrated in figure 1(b). To em-

phasize the difference, we call such kind of connections “sparse con-

nections”. The most essential question for the choosing between full

connections versus sparse connections is whether cross-coefficients

transformation is able to contribute to the classification. We will

compare them later in section 4.3.

4. EXPERIMENTS

4.1. Corpus

We conducted all our experiments on TIMIT. MFCC features are ex-

tracted with a window size of 25ms and a window shift of 10ms. We

used 12 cepstrum coefficients with the 0’th (13 dimensions) for basic

MFCC and a delta window Θ = 2 to calculate all the differences.

4.2. Setup

The first part of our experiments tries to find out the most appropriate

way to learn new delta features from a few probable candidates. The

second part compares the new delta and new delta-delta with the

traditional ones. The last part tests the performance of the learned

new different order of differences in phoneme recognition tasks. In

all three parts of our experiments, data used to train a neural network

are normalized to zero mean and unit variance in each dimension, in

order to achieve faster and better convergence.

In the first two parts of our experiments, we used the same set-

ting for training: 2 hidden layers (if not explicitly mentioned other-

wise), each with 500 units; stochastic gradient descent (SGD) with

a mini-batch size of 100; a constant learning rate 0.1 (apply to each

mini-batch). We did not use momentum in these parts of our experi-

ments, because employing momentum is very tricky and may signif-

icantly effect the final results [13] while in these experiments we just

intended to make a fair comparison. Since there are 61 phonemes in

TIMIT and we used a 3-states HMM for each phoneme, there are

183 classes altogether. All the labels of frames are obtained by an

alignment from a HMM-GMM system. We used cross-entropy as

training criterion. All the results in these two parts of our experi-

ments are reported on the development set.

In the third part of our experiments, we used the type of trans-

formation and configuration that were concluded from and described

in the first two parts of our experiments to trained neural network-

s to learn different order of new differences. With these new dif-

ferences, acoustic features of a context of 15 frames are put into a

hybrid HMM-DNN system for phoneme recognition. Of all the ex-

periments in this part, we used a feed-forward neural network of 6

hidden layers, each with 2000 units. All the neural networks are pre-

trained with stacked restricted Boltzmann machine the same way as

in [14]. Cross-entropy was minimized with SGD with momentum.

All the other hyper-parameters are the same as used in [14]. The

recognition results are folded from 61 phones to 39 phonemes the

same way as in [15].

4.3. Learn new delta features

In the first part of our experiments, we would like to determine which

way is better in our framework to learn new delta features. Following

the discussion in section 3.2.4, we compared the performance of full-

connected and sparse-connected way of learning new deltas. The

architectures have been illustrated in figure 1.

When we regard the layer that transforms basic MFCC to delta-

like features as a hidden layer of the whole neural network, it is

plausible that a non-linear activation function such as sigmoid func-

tion gives better results. However, the traditional way like (1) clearly

shows an empirical linear activation function. So it would be inter-

esting to find out which activation function is better.
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Fig. 3. Frame classification error rate on the development set of

TIMIT by comparing sigmoid and linear activation function, as well

as full and sparse connection.

Figure 3 shows the frame classification error of different setting

on the development set. The first thing we can observe is that all

sigmoid versions are worse than their linear counterparts, which val-

idates the efficacy of the traditional way of calculating delta. The

next thing worth noting is the comparison between the traditional
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version of delta and the linear+sparse version. Our results show that

a more general weight matrix like (8) is better than (5). Finally, we

can see that a full-connected weight matrix W with linear activa-

tion gives best result, which we believe shows that cross-coefficients

transformation is important for the classification of MFCC.

4.4. Compare with the traditional delta and delta-delta

According to section 4.3, we used fully connected weight matrix

with linear activation for calculating all the new delta and new delta-

delta in this section. Figure 4 compares the performance of tradition-

al MFCC (with differences) with the ones we proposed, where type1

and type2 denotes the two different architectures of calculating new

acceleration we presented in section 3.2.2 respectively (figure 2).
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Fig. 4. Frame classification error rate on the development set of

TIMIT by comparing traditional delta and delta-delta features and

the new ones learned from our framework.

The results show that learning new delta-delta from new delta is

slightly better than from MFCC, which means that the architecture

in figure 2(b) is better than the one in figure 2(a), and both of them

are much better than traditional delta-delta features.

Of course, it can be argued that the gain simply comes from the

extra hidden layer or the increase of number of parameters, so we

also experimented on original delta classified by a neural network

with 3 and 4 hidden layers. From figure 4, we can see that the im-

provement of 3 layers from 2 layers and 4 layers from 3 layers are

marginal. We believe this is due to the poor initialization of weights

and the limited ability of SGD. However, we should notice that the

new dynamic features are actually initialized and optimized in the

same way. So we believe that the extra hidden layers are not the

reason why the new delta features are better.

In all the experiments in this section, we tied the weights of

transformation only within layer. Concretely, as shown in the right

one in figure 2, the weights to get dt+1, dt and dt−1 from their cor-

responding static coefficients are forced to be the same, and can be

different from the weights to calculate ddt(from dt+1 and dt−1).

This is not mandatory in our framework. In some of our later exper-

iments, we found out that no matter untying all the weights, tying

weights within layer, or tying all the weights, the difference is neg-

ligible with new delta and new delta-delta features for recognition.

So in all the following experiments, we still only tied our weights

within layers for learning new dynamic features.

4.5. Phoneme recognition

In this section we tested the features learned in our framework in

real phoneme recognition tasks. From the results in section 4.3 and

section 4.4, we used fully connected matrices with linear activation

function and an architecture like figure 2(b) to learn higher order of

differences. Then the new features are used in a hybrid HMM-DNN

system to get final recognition results.

In our framework, we are actually proposing a two-staged proce-

dure (learn new differences and use them for recognition). We made

it this way mainly because of the fact that the pre-training of DNN

makes a difference in phoneme recognition task with TIMIT [14].

But if you have lots of data, we suggest training all the weights in

one shot, since our frame can be easily extended to learning dynamic

features for a context of several frames altogether. We also tried to

learn new differences this way on TIMIT, and the result makes little

difference with the above method that we learn new differences for

each frame individually and then arrange them into contexts.

2 3 4 5 6
21.5

22

22.5

23

23.5

24

Order

P
h
o
n
e
 E

rr
o
r 

R
a
te

 (
P

E
R

) 
%

traditional−dev

new−dev

traditional−core test

new−core test

23.76

23.01

23.77

22.74

22.20

21.84

22.74
22.68

22.61

22.56

22.51

21.77

22.98

23.55

23.31

23.55

21.83

23.22

23.24

23.11

Fig. 5. Phoneme recognition results of different order of differences

on development set and core test set of TIMIT by comparing tradi-

tional differences and new differences learned with our framework.

We compared the recognition results of the traditional way of

calculating differences with our framework of learning differences

from the 2nd order to the 6th order. All results are shown in figure 5.

In each of our experiment, the number of order represents we use the

basic 13-dimensional basic MFCC concatenated with the 1st order

of difference up to the specified order, making them (order+1)∗13-

dimensional. We can see that with original differences, much higher

order helps, but the improvement beyond 3rd order is quite marginal.

Compared with the traditional way, the new differences learned with

our framework consistently prevail. Also, we should notice that the

gap between our method and traditional method increases with the

order of difference used, which verifies the importance of variabil-

ity our framework provided in capturing the dynamic information

underlying the acoustic feature sequence.

5. CONCLUSIONS

In this work, we have presented a new framework with neural net-

work to learn better dynamic features for phoneme recognition. We

have shown in our experiments that the layers to obtain dynamic fea-

tures should be full-connected with linear activation function. Fur-

thermore, we have demonstrated that dynamic features learned with

our framework are better than traditional dynamic features and such

effect is even clearer when higher order dynamic features are used.
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