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Abstract
We propose an automatic music generation demo
based on artificial neural networks, which inte-
grates the ability of Long Short-Term Memory
(LSTM) in memorizing and retrieving useful his-
tory information, together with the advantage of
Restricted Boltzmann Machine (RBM) in high di-
mensional data modelling. Our model can gener-
alize to different musical styles and generate poly-
phonic music better than previous models.

1 Introduction
Music is among the most widely consumed types of signal
streams. Models for finding, extracting and reproducing mu-
sical temporal structure are of considerable interest. In par-
ticular, generative models for composing (good) music might
have not only artistic value but also commercial potential. In
the belief that memory is one of the vital intelligence needed
for music generation, we introduce a model that specializes in
memorization and can generate beautiful music pieces with-
out human interference.

Traditionally, there are many sequence models that can be
utilized for modelling the music generation process, such as
hidden Markov hodel (HMM) [Allan and Williams, 2005],
Markov random field [Lavrenko and Pickens, 2003], etc. Re-
current Neural Network (RNN) [Rumelhart et al., 1986], with
its internal dynamics trainable by back-propagation through
time (BPTT), is simple yet powerful for modelling sequences.
In principle, a large enough RNN can be sufficient to model
sequences of arbitrary complexity. In practice however, it is
difficult for RNN to store lengthy historic information about
a sequence. Complex sequences are usually non-local in that
the impact of a factor localized in time can be delayed by an
arbitrarily long time-lag. For example, in order to complete a
melody line, the beginning of the music sequence needs to be
held in mind while the rest is played, a task which is carried
out by the short-term memory. The long-term memory will
serve as the theme and emotion that will help maintain the
global coherence of music. The existence of both the short-
and long-term memory is vital for generating melodic and co-
herent music sequences. In such cases standard RNN is prone
to drift away from the desired predictions because it forms a
conditional distribution based on a limited context. LSTM is

a RNN architecture specifically designed to help memorize
and retrieve information in sequences better than the standard
RNN. LSTM produces many state-of-the-art results in vari-
ous sequence processing tasks, including speech recognition
[Graves et al., 2013], and machine translation [Sutskever et
al., 2014].

In modelling polyphonic music, it is obvious that the occur-
rence of a particular note at a particular time modifies con-
siderably the probability with which other notes may occur
at the same time. In other words, notes appearing together
in correlated patterns cannot be conveniently described by
a normal RNN architecture designed for multi-class classi-
fication task, because enumerating all configurations of the
variable to predict would be very expensive. This difficulty
motivates energy-based models which allow us to express the
log-likelihood of a given configuration by an arbitrary energy
function, such as the restricted Boltzmann machine (RBM)
[Smolensky, 1986].

In this context, we wish to combine the ability of RBM to
represent a complicated distribution for each time step, to-
gether with a temporal model in sequence. We consider both
long-term memory and short-term memory in our design of
guide and learning modules, by increasing a bypassing chan-
nel from data source filtered by a recurrent LSTM layer and
we show that our model increases performance generally.

2 Model
Adding LSTM units to RTRBM is nontrivial, considering that
RTRBM’s hidden units and visible units are intertwined in
inference and learning. The simplest way to circumvent this
difficulty is to use bypass connections from LSTM units to
the hidden units besides the existing recurrent connections of
hidden units.

By this means, there are two channels for temporal infor-
mation flow, the direct connection (WR) between the con-
ditional RBM at each time step, and the connection (WLR)
from the recurrent LSTM units of previous time steps.(see
Fig. 1) The main computation complexity comes from the
repeated sampling procedure of RBM learning and replac-
ing some hidden units in RBM with LSTM units actually
boosts learning speed. The inference and sampling procedure
is roughly the same as in RTRBM while the Backpropagation
Through Time (BPTT) procedure is a bit complex.
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Figure 1: Structure of LSTM-RTRBM

3 Experiments
In this section, we show results with the main application of
interest: probabilistic modeling of sequences of polyphonic
music. We experiment on two datasets with varying com-
plexities: MuseData, an electronic library of orchestral and
piano classical music from CCARH 41 and JSB chorales, the
entire corpus of 382 four-part harmonized chorales by J. S.
Bach.

Each dataset contains at least 7 hours of polyphonic mu-
sic and the total duration is approximately 29 hours. The
polyphony (number of simultaneous notes) varies from 0 to
15 and the average polyphony is 4.2. We use a completely
general piano-roll representation with an input of 88 binary
visible units that span the whole range of piano from A0 to
C8 and temporally aligned on an integer fraction of the beat
(quarter note). Consequently, pieces with different time sig-
natures will not have their measures start at the same interval.
Although it is not strictly necessary, learning is facilitated if
the sequences are transposed in a common tonality (e.g. C
major/minor) as preprocessing.

We adopt the classic momentum training regime, with
learning rate 0.01 and momentum 0.9. The learning start
with CD10 for the first 1000 weight updates, which then
switched to CD25. We use 88 hidden units and 88 LSTM
units, the same number as the input and the output dimen-
sion, which is trained faster than using hundreds of hidden
units in the RTRBM, for the main computation takes place in
the CD steps. Quantitatively, the smaller the negative Log-
likelihood(LL), the better the result. The results in negative
LL is 5.54, 4.72 for LSTM-RTRBM, 6.35, 6.35 for RTRBM,
8.13, 8.71 for RNN, for MuseData, JSB chorales dataset re-
spectively.

We also evaluate our models qualitatively by generating
sample sequences (see Fig. 2 for a glimpse). The model
has learned the chords (such as sequential D major triads in
Fig. 2), local and global temporal coherence, melody lines
and generate music that is harmonic and coherent 2. With the
same configuration, LSTM-RTRBM could learn melody lines
from both the three datasets while RTRBM generates incon-
sistent and unpleasant sample sequences. However, all the re-
current temporal model forms a closed loop that have no new
incitations from outside, making the long piece of music dull.
One way to solve this is with the technique of side-slipping

1www.musedata.org
2Samples can be downloaded at bitbucket, music-samples.

Figure 2: A slice of sample music generated by the proposed
model.

[Coker, 1980], by playing out-of-key to produce a short sen-
sation of surprise in a context deemed too predictable. For
future work, we are interested in enhancing LSTM with op-
timization techniques for better results, and integrating side-
slipping mechanism for more variable music generation.
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