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ABSTRACT

This paper proposes a novel approach to voice conversion
with non-parallel training data. The idea is to bridge
between speakers by means of Phonetic PosteriorGram-
s (PPGs) obtained from a speaker-independent automatic
speech recognition (SI-ASR) system. It is assumed that these
PPGs can represent articulation of speech sounds in a speaker-
normalized space and correspond to spoken content speaker-
independently. The proposed approach first obtains PPGs
of target speech. Then, a Deep Bidirectional Long Short-
Term Memory based Recurrent Neural Network (DBLSTM)
structure is used to model the relationships between the PPGs
and acoustic features of the target speech. To convert arbitrary
source speech, we obtain its PPGs from the same SI-ASR and
feed them into the trained DBLSTM for generating converted
speech. Our approach has two main advantages: 1) no parallel
training data is required; 2) a trained model can be applied to
any other source speaker for a fixed target speaker (i.e., many-
to-one conversion). Experiments show that our approach
performs equally well or better than state-of-the-art systems
in both speech quality and speaker similarity.

Index Terms— voice conversion, phonetic posterior-
grams, non-parallel, many-to-one, SI-ASR, DBLSTM

1. INTRODUCTION

Voice conversion (VC) aims to modify the speech of one
speaker to make it sound as if it were spoken by another
specific speaker. VC can be widely applied to many
fields including customized feedback of computer-aided pro-
nunciation trimming systems, development of personalized
speaking aids for speech-impaired subjects, movie dubbing
with various persons’ voices, etc.

Typical VC training works as follows: speech segments
(e.g., frames) with the same spoken content are aligned first.
Then, the mapping from source acoustic features to target
acoustic features is found. Many previous efforts on VC
rely on parallel training data in which speech recordings
come in pairs by the source speaker and the target speaker
uttering the same sentences. Stylianou et al. [1] proposed

a continuous probabilistic transformation approach based on
Gaussian Mixture Models (GMMs). Toda et al. [2] improved
the performance of GMM-based method by using global
variance to alleviate the over-smoothing effect. Wu et al. [3]
proposed a non-negative matrix factorization-based method to
use speech exemplars to synthesize converted speech directly.
Nakashika et al. [4] used a Deep Neural Network (DNN) to
map the source and target in high order space. Sun et al. [5]
proposed a Deep Bidirectional Long Short-Term Memory
based Recurrent Neural Network (DBLSTM)-based approach
to model the relationships between source and target speeches
by using spectral features and their context information.

All the above approaches provide reasonably good results.
However, in practice, parallel data is not easily available.
Hence, some researchers proposed approaches to VC with
non-parallel data, which is a more challenging problem.
Most of these approaches focused on finding proper frame
alignments that is not so straightforward. Erro et al. [6]
proposed an iterative alignment method to pair phonetically
equivalent acoustic vectors from non-parallel utterances. Tao
et al. [7] proposed a supervisory data alignment method,
where phonetic information was used as the restriction during
alignment. Silén et al. [8] extended a dynamic kernel partial
least squares regression-based approach for non-parallel data
by combining it with an iterative alignment algorithm.
Benisty et al. [9] used temporal context information to
improve the iterative alignment accuracy of non-parallel data.

Unfortunately, the experimental results [6-9] show that
the performance of VC with non-parallel data is not as good
as that of VC with parallel data. This outcome is reasonable
because it is difficult to make non-parallel alignment as
accurate as parallel alignment. Aryal et al. [10] proposed a
very different approach that made use of articulatory behavior
estimated by electromagnetic articulography (EMA). With
the belief that different speakers have the same articulatory
behavior (if their articulatory areas are normalized) when they
speak the same spoken content, the authors took normalized
EMA features as a bridge between the source and target
speakers. After modeling the mapping between EMA features
and acoustic features of the target speaker, VC can be



achieved by driving the trained model with EMA features of
the source speaker.

Our approach is inspired by [10]. However, instead
of EMA features which are expensive to obtain, we use
easily accessible Phonetic PosteriorGrams (PPGs) to bridge
between speakers. A PPG is a time-versus-class matrix
representing the posterior probabilities of each phonetic class
for each specific time frame of one utterance [11, 12]. Our
proposed approach generates PPGs by employing a speaker-
independent automatic speech recognition (SI-ASR) system
for equalizing speaker differences. Then, we use a DBLSTM
structure to model the mapping between the obtained PPGs
and the corresponding acoustic features of the target speaker
for speech parameter generation. Finally, we perform VC
by driving the trained DBLSTM model with the source
speaker’s PPGs (obtained from the same SI-ASR). Note that
we are not using any underlying linguistic information behind
PPGs from SI-ASR in VC. Our proposed approach has the
following advantages: 1) no parallel training data is required;
2) no alignment process (e.g., DTW) is required, which avoids
the influence of possible alignment errors; 3) a trained model
can be applied to any other source speakers as long as the
target speaker is fixed (as in many-to-one conversion). But
for the state-of-the-art approach with parallel training data, a
trained model is only applicable to a specific source speaker
(as in one-to-one conversion).

The rest of the paper is organized as follows: Section
2 introduces a state-of-the-art VC system that relies on
parallel training data as our baseline. Section 3 describes our
proposed VC approach with PPGs. Section 4 presents the
experiments and the comparison of our proposed approach
against the baseline in terms of both objective and subjective
measures. Section 5 concludes this paper.

2. BASELINE: DBLSTM-BASED APPROACH
WITH PARALLEL TRAINING DATA

The baseline approach is based on a DBLSTM framework
which is trained with parallel data [5].

2.1. Basic Framework of DBLSTM

As shown in Fig. 1, DBLSTM is a sequence to sequence
mapping model. The middle section, the left section and the
right section (marked with “t”, “t-1” and “t+1” respectively)
stand for the current frame, the previous frame and the
following frame respectively. Each square in the Fig. 1
represents one memory block, which contains self-connected
memory cells and three gate units (i.e., input, output and
forget gates) that can respectively provide write, read and
reset operations. Furthermore, bidirectional connections of
each layer can make full use of the context information in
both forward and backward directions.
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Fig. 1. Architecture of DBLSTM.

The DBLSTM network architecture including memory
blocks and recurrent connections makes it possible to store
information over a longer period of time and to learn the
optimal amount of context information [5, 13].

2.2. Training Stage and Conversion Stage

The baseline approach is divided into training stage and
conversion stage as illustrated in Fig. 2.

Training Stage

Source Speech
Target Speech

Conversion Stage

Source Speech

(Parallel Data)

Parameter
Extraction 4
Log FO
Source Target Parameter
MCEPs y MCEPs Extraction ~ |AP
DTW |

Source
MCEPs

Paired source Paired target
MCEPs v MCEPs

DBLSTM j> Trained DBLSTM Linear
Model Training L Model Conversion

Converted
MCEP:
CEPs y

STRAIGHT
Vocoder

Converted
Speech

Fig. 2. Schematic diagram of the DBLSTM-based approach
for VC with parallel training data.

In the training stage, the spectral envelope is extracted
by STRAIGHT analysis [14]. Mel-cepstral coefficients
(MCEPs) [15] are extracted to represent the spectral envelope
and then MCEPs features from the same sentences of the
source speech and the target speech are aligned by dynamic
time warping (DTW). Then, paired MCEPs features of the
source and target speeches are treated as the training data.
Back-propagation through time (BPTT) is used to train
DBLSTM model.



In the conversion stage, fundamental frequency (FO),
MCEPs and an aperiodic component (AP) are extracted for
one source utterance first. Then, parameters of the converted
speech are generated as follows: MCEPs are mapped by the
trained DBLSTM model. Log FO is converted by equalizing
the mean and the standard deviation of the source and target
speeches. AP is directly copied. Finally, the STRAIGHT
vocoder is used to synthesize the speech waveform.

2.3. Limitations

Despite its good performance, the DBLSTM-based approach
has the following limitations: 1) it relies on parallel training
data which is expensive to collect; 2) the influence of DTW
errors on VC output quality is unavoidable.

3. PROPOSED APPROACH: VC WITH
PHONETIC POSTERIORGRAMS (PPGS)

To solve the limitations of the baseline approach, we propose
a PPGs-based approach with the belief that PPGs obtained
from an SI-ASR system can bridge across speakers.

3.1. Overview
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Fig. 3. Schematic diagram of VC with PPGs. SI stands for
speaker-independent. Target speech and source speech do
not have any overlapped portion. The shaded part will be
presented in Fig. 5.

As illustrated in Fig. 3, the proposed approach is divided
into three stages: training stage 1, training stage 2 and the
conversion stage. The role of the SI-ASR model is to obtain
a PPGs representation of the input speech. Training stage
2 models the relationships between the PPGs and MCEPs
features of the target speaker for speech parameter generation.
The conversion stage drives the trained DBLSTM model with

PPGs of the source speech (obtained from the same SI-ASR)
for VC. The computation of PPGs and the three stages will be
presented in the following subsections.

3.2. Phonetic PosteriorGrams (PPGs)

A PPG is a time-versus-class matrix representing the posterior
probabilities of each phonetic class for each specific time
frame of one utterance [11, 12]. A phonetic class may refer
to a word, a phone or a senone. In this paper, we treat
senones as the phonetic class. Fig. 4 shows an example of
PPG representation for the spoken phrase “particular case”.
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Fig. 4. PPG representation of the spoken phrase “particular
case”. The horizontal axis represents time in seconds and the
vertical one contain indices of phonetic classes. The number
of senones is 131. Darker shade implies a higher posterior
probability.

We believe that PPGs obtained from an SI-ASR can
represent articulation of speech sounds in a speaker-
normalized space and correspond to speech content speaker-
independently. Therefore, we regard these PPGs as a bridge
between the source and the target speakers.

3.3. Training Stages 1 and 2

In training stage 1, an SI-ASR system is trained for PPGs
generation using a multi-speaker ASR corpus. The equations
are illustrated by the example of one utterance. The input
is the MFCC feature vector of t® frame, denoted as X,.
The output is the vector of posterior probabilities P, =
(p(s|Xy)|s = 1,2,---,C), where p(s|X;) is the posterior
probability of each phonetic class s.

As shown in Fig. 5, training stage 2 trains the DBLSTM
model (speech parameter generation model) to get the
mapping relationships between the PPG and the MCEPs
sequence. For a given utterance from the target speaker,
t denotes the frame index of this sequence. The input is
the PPG (Pq, -+ ,P,--- ,Py), computed by the trained
SI-ASR model. The ideal value of the output layer is the
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Fig. 5. Schematic diagram of DBLSTM model training.
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The model is trained to minimize the cost function
through the BPTT technique mentioned in Section 2. Note
that the DBLSTM model is trained using only the target
speaker’s MCEPs features and the speaker-independent PPGs
without using any other linguistic information.

3.4. Conversion Stage

In the conversion stage, the conversion of log FO and AP is
the same as that of the baseline approach. First, to get the
converted MCEPs, MFCC features of the source speech are
extracted. Second, PPGs are obtained from the trained SI-
ASR model where the input is MFCC features. Third, PPGs
are converted to MCEPs by the trained DBLSTM model.
Finally, the converted MCEPs together with the converted log
FO and AP are used by the vocoder to synthesize the output
speech.

4. EXPERIMENTS

4.1. Experimental Setup

The data we use for VC is the CMU ARCTIC corpus [16].
The within-gender conversion experiment (male-to-male:
BDL to RMS) and the cross-gender conversion experiment
(male-to-female: BDL to SLT) are conducted. The baseline
approach uses parallel speech of the source and target
speakers while our proposed approach uses only the target
speaker’s speech for model training.

The signals are sampled at 16kHZ with mono channel,
windowed with 25 ms and shifted every 5 ms. Acoustic
features, including spectral envelope, FO (1 dimension)
and AP (513 dimensions) are extracted by STRAIGHT
analysis [14]. The 39th order MCEPs plus log energy are
extracted to represent the spectral envelope.

Two systems are implemented for comparison:

e Baseline system: DBLSTM-based approach with
parallel training data. Two tasks: male-to-male (M2M)
conversion and male-to-female (M2F) conversion.

e Proposed PPGs system: Our proposed approach uses
PPGs to augment the DBLSTM. Two tasks: male-
to-male (M2M) conversion and male-to-female (M2F)
conversion.

In the PPGs-based approach, the SI-ASR system is
implemented using the Kaldi speech recognition toolkit [17]
with the TIMIT corpus [18]. The system has a DNN
architecture with 4 hidden layers each of which contains 1024
units. Senones are treated as the phonetic class of PPGs. The
number of senones is 131, which is obtained by clustering
in training stage 1. Hardware configuration of the SI-ASR
model training is dual Intel Xeon E5-2640, 8 cores, 2.6GHZ.
The training time is about 11 hours.

Then, the DBLSTM model is adopted to map the
relationships of PPGs sequence and MCEPs sequence for
speech parameter generation. The implementation is based on
the machine learning library, CURRENNT [19]. The number
of units in each layer is [131 64 64 64 64 39] respectively,
where each hidden layer contains one forward LSTM layer
and one backward LSTM layer. BPTT is used to train this
model with a learning rate of 1.0 x 10~¢ and a momentum of
0.9. The training process of DBLSTM model is accelerated
by a NVIDIA Tesla K40 GPU and it takes about 4 hours for
100 sentences training set.

The baseline DBLSTM-based approach has the same
model configuration except that its input has only 39 dimen-
sions (instead of 131). It takes about 3 hours for 100 sentences
training set.

4.2. Objective Evaluation

Mel-cepstral distortion (MCD) is used to measure how close
the converted is to the target speech. MCD is the Euclidean
distance between the MCEPs of the converted speech and the
target speech, denoted as

10 N
MOD[dB] = 10 \/2 Zd:1(cd _ Cgonverted)z )

where NV is the dimension of MCEPs (excluding the energy
feature). cq and c5°"v¢"e are the d-th coefficient of the target
and converted MCEPs respectively.

To explore the effect of the training data size, all the
systems are trained using different amounts of training data —
5, 20, 60, 100 and 200 sentences. For the baseline approach,
the training data consists of parallel pairs of sentences from
the source and target speakers. For the proposed approach,
the training data consists only of the sentences from the target
speaker. The test data set has 80 sentences from the source
speaker.
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Fig. 7. Average MCD of baseline and proposed PPGs
approaches. Male-to-female conversion experiment.

Fig. 6 and Fig. 7 show the results of male-to-male and
male-to-female experiments respectively. As shown, when
the training size is at 5, 20 and 60 sentences, the MCD value
becomes smaller with the increase of the data size. The MCD
value tends to converge when the training size is larger than
60 sentences. The results indicate that the baseline approach
and the proposed approach have similar performance in terms
of objective measure.

4.3. Subjective Evaluations

We conducted a Mean Opinion Score (MOS) test and an ABX
preference test as subjective evaluations for measuring the
naturalness and speaker similarity of converted speech. 100
sentences are used for training each system and 10 sentences
(not in the training set) are randomly selected for testing.
21 participants are asked to do MOS test and ABX test.
The questionnaires of these two tests and some samples are
presented in https://sites.google.com/site/2016icme/.

In the MOS test, listeners are asked to rate the naturalness
and clearness of the converted speech on a 5-point scale. The
results of the MOS test are shown in Fig. 8. The average
scores of the baseline and proposed PPGs-based approaches
are 3.20 and 3.87 respectively.

For the ABX preference test, listeners are asked to choose
which of the converted utterances A and B (generated by
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Fig. 8. MOS test results with the 95% confidence intervals.
M2M: male-to-male experiment. =~ M2F: male-to-female
experiment. 5-point scale: 5: excellent, 4: good, 3: fair, 2:
poor, 1: bad.

the two approaches) sounds more like the target speaker’s
recording X or no preference. Each pair of A and B are
shuffled to avoid preferential bias. As shown in Fig. 9, PPGs-
based approach is frequently preferred over the baseline
approach.

Baseline mN/P mPPGs

M2M 37% 52%

M2F 50% 33%

Fig. 9. ABX preference test results. N/P stands for no
preference. M2M: male-to-male experiment. M2F: male-to-
female experiment. The p-values of the two experiments are
2.94 x 10716 and 4.94 x 1073 respectively.

Results from both MOS test and ABX test show that
our proposed PPGs-based approach perform better than
the baseline approach in both speech quality and speaker
similarity. Possible reasons include: 1) Proposed PPGs-
based approach does not require alignment (e.g., DTW),
which avoids the influence caused by possible alignment
errors; 2) the DBLSTM model of the proposed approach is
trained using only the speaker-normalized PPGs and the target
speaker’s acoustic features. This minimizes the interference
from the source speaker’s signal.

5. CONCLUSIONS

In this paper, we propose a PPGs-based voice conversion
approach for non-parallel data. PPGs, obtained by an SI-
ASR model, are used to bridge between the source and
target speakers. The relationships between PPGs and acoustic



features are modeled by a DBLSTM structure. The proposed
approach does not require parallel training data and is very
flexible for many-to-one conversion, which are the two main
advantages over the approach for voice conversion (VC) using
parallel data. Experiments suggest that the proposed approach
improves the naturalness of the converted speech and its
similarity with target speech.

We have also tried applying our proposed model into
cross-lingual VC and have obtained some good preliminary
results. More investigation on the cross-lingual applications
will be conducted in the future.
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