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Abstract—The speech corpus with labeled prosodic structure
information is crucial for text-to-speech (TTS) synthesis to train
a reliable model that can generate high quality natural synthetic
speech. Traditional manual prosodic structure labeling is labori-
ous and time-consuming and may encounter an inconsistency
problem caused by different annotators. Automatic prosodic
labeling is thus desirable, which can not only speed up the
labeling process, but also protect the labeling results from the
inconsistency problem. This paper presents a DNN-BGRU-CRF
hybrid neural network, which aggregates the advantages of
deep neural network, bidirectional gated recurrent units and
conditional random fields, to label three-level prosodic structure
boundaries. It exploits both text and acoustic cues in a neural
network framework. Experimental results demonstrate the effec-
tiveness of the proposed model.

I. INTRODUCTION

A speech corpus with precisely labeled prosodic structure
is important to build a high-quality text-to-speech (TTS) syn-
thesis system. Traditionally, the labeling procedure is carried
out by professional annotators. Obviously, it is laborious
and time-consuming. Furthermore, sometimes there may be
inconsistent labeling results between different annotators due
to different interpretations of the sentences. An automatic
prosodic structure boundary labeling system is essential to
speed up the process for preparing the TTS corpus, and can
also solve the inconsistency problem.

A typical Chinese prosodic hierachy is illustrated in Fig.1.
We adopt a three-levels prosodic hierarchical structure which
is commonly used by other researchers [1]. Each lexical
word in a sentence is assigned to one of the following four
distinct boundary tags: NB for non-boundary, PW for prosodic
word boundary, PPH for prosodic phrase boundary, IPH for
intonational boundary.

Since the prosodic structure labeling task can be interpreted
as a classification problem, various machine learning methods
have been proposed for this task. In the early time, decision
tree was utilized to model the relation between acoustic
features and prosodic boundaries [2].

With the development of statistical learning methods, hidden
Markov model (HMM) [3][4], maximum entropy (ME) model
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PW PW PW

PPH PPH

美好的 祝愿

PW PW

PPH

致以 <PPH> 诚挚的 <PW> 问候 <IPH> 和 <PW> 美好的 <PW> 祝愿  <IPH>

和

PW

(Warm greetings and best wishes.)

Fig. 1. Example of the prosodic hierarchy.

[5][6] and conditional random fields (CRF) [7][8] have been
proposed to model prosodic structure boundaries.However, lo-
cal classifiers such as decision tree and sequence models such
as HMM and CRF can’t well model long-time dependency.

We propose a DNN-BRGU-CRF hybrid neural network
which combines dense layers, gated recurrent units based
recurrent neural network with CRF layer to label prosodic
boundaries. It can utilize both text and acoustic cues, and
capture bidirectional context information. Besides, the CRF
layer can take sequence level labeling into consideration.

II. METHOD

A. Features

1) Text features: Much research has indicated there are
close correlations between the part-of-speech (POS) tag and
the types of prosodic boundaries [9][10]. Therefore, POS
information is incorporated into the text-based features for
our task. Punctuation symbols have long been accepted as
a reliable indicator of prosodic boundaries [11][12]. Besides,
prosodic boundaries are affected by the number of syllables
in a lexical word (word length). Long lexical word often
corresponds to a single prosodic word [13].

Based on the work mentioned above, the textual features
adopted in our model are listed as follows:
• POS of the word.
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• Punctuation symbol after the word.
• Word length: the numbers of syllables in Chinese lexical

word.
• Word identity: represents each word.
• Word-final phoneme identity: represents the Pinyin final

of the last syllable of the word.

As depicted in Fig.2, the embedding layer with word ID
as input is used to learn task-specific 200-dimensional word
embeddings. Similarly, the embedding layer with word-final
phoneme ID as input is used to learn task-specific phoneme
embeddings.

2) Acoustic features: Besides textual information, we also
want to exploit acoustic cues to improve the labeling perfor-
mance. Many researchers have analysed the acoustic param-
eters of prosodic structure boundaries. Pre-boundary length-
ening is a strong cue to prosodic phrase boundaries [2].
Duration of pause is also relevant to prosodic boundary levels
[14]. According to Yang and Wang[15], both prosodic phrase
boundaries and intonational phrase boundaries have significant
pitch resets.

It is reported that degree of pitch contour change varies with
boundary levels based on the statistical analysis on phrase-
final F0 slopes [16]. Therefore, we incorporate the pitch
and energy contours statistics of word-final syllable to the
acoustic features for our task. In order to capture the pitch
reset phenomenon, log F0 difference and log energy difference
between the last voiced frame of current word and the first
voiced frame of succeeding word are considered.

The acoustic features we have explored are listed as follows:

• Duration level of post-word pause. A bucketing scheme is
used to transform the continuous pause duration values
into several discrete levels: Pause-0 (0 ≤ p < 50 ms),
Pause-1 (50 ≤ p < 150 ms), Pause-2 (150 ≤ p < 350
ms), Pause-3 (350 ≤ p < 450 ms), Pause-4 (p ≥ 450
ms).

• Duration level of the last syllable of a word (word-final
syllable). A bucketing scheme, similar to coping with
pause duration, is used to classify the duration of word-
final syllable into 9 bins. A 9-dimentional one-hot vector
can represent duration level of word-final syllable.

• Statistics on log F0 and log energy contours of word-final
syllable: maximum, minimum, range, mean and standard
deviation.

• Log F0 difference and log energy difference between last
voiced frame of current word and the first voiced frame
of succeeding word.

B. Bidirectional Gated Recurrent Units based Neural Network

Prosodic structure labeling is a sequence labeling task,
the factors affecting IPH boundary may be adjacent acoustic
features or prosodic boundaries far away from the current
position. Recurrent neural networks (RNNs) can’t capture
long time context information due to the vanishing gradient
and exploding gradient problems, long short-term memory
(LSTM) [17] is designed to solve long time lag problems.

Gated recurrent units (GRU) [18], a variant of LSTM, is
adopted in our task for its simpler structure.

Automatic prosodic labeling task may need both the past
and the future information. Bidirectional RNN with gated re-
current units (BGRU-RNN) [19] is suitable for sequence mod-
eling. It gathers the two directional information by merging the
forward and backward GRU outputs. Therefore, BGRU-RNN
is adopted in our model to learn the context information.

C. Conditional Random Fields

In prosodic boundary automatic labeling task, the boundary
type of the current word is also dependent on the boundary
types of adjacent words. CRF focuses on sentence level
instead of individual positions or time-steps. To model the
label transition from time-step i-1 to time-step i, CRF is
parameterized by a state transition matrix of size K∗K, where
K is the label set size. For example in our task, K = 4.

Recently, the integrated LSTM-CRF model has been suc-
cessfully applied in Part-of-speech tagging task [20]. Since our
task is also a sequence tagging problem, we employ the CRF
layer as the output layer of our model. With such a layer, we
can efficiently use past and future labels to predict the current
label. The score of a input sequence W = (w1, w2, ..., wT )
along with a path of labels Y = (y1, y2, ..., yT ) is given by
the sum of transition scores and neural scores:

s(W,Y,Θ) =

T∑
i=1

(f1(yt−1, yt, θ1) + f2(wt, yt, θ2)) (1)

where Θ is the parameters of all layers depicted in Fig.2,
θ1 and f1(yt−1, yt, θ1) are respectively the parameters and
score function of CRF part, θ2 and f2(wt, yt, θ2) are the
parameters and score function of the rest neural network
part, Θ = θ1

⋃
θ2. At training step, the model is optimized

by maximizing the score of the correct label sequence. At
testing step, the Viterbi algorithm is used to obtain the optimal
sequence in our task. It can be depicted as follows:

Y ? = arg max
Y ∈Y

p(Y |W,Θ) (2)

where Y is the set of all possible label sequences.

D. Proposed Model

As Fig.2 shows, our proposed model is mainly composed of
four parts: the embedding layer, DNN with three dense layers,
BGRU layer and the CRF layer. It is termed a DNN-BGRU-
CRF model for its hybrid structure.

We use the front DNN to learn a high level representation
of text-based features including POS, word length, post-word
punctuation. Dropout with 0.5 probability is applied to each
dense layer as a regulariser. The trainable embedding layer
is applied to learn task-specific embeddings for prosodic
boundary labeling task. Then we concatenate the output of
DNN with word embedding, word-final phoneme embedding
and word acoustic features described in Section II-A2 to form
the input to the succeeding BGRU-RNN at timestep t, the last
CRF layer are used to get the optimal label sequence. Those
four parts are trained altogether as a unified network.
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Fig. 2. The neural network architecture for automatic prosodic structure
labeling.

III. EXPERIMENT

A. Corpus and Preprocessing

The corpus contains 41,483 utterances, read by a female na-
tive Mandarin speaker. Speech is sampled at 16 kHz. Prosodic
structure boundaries have been labeled by professional annota-
tor. We randomly select 37,483 utterances for training, another
2,000 utterances for validation, the rest 2,000 utterances for
test.

Word segmentation and POS tagging were carried out by a
front-end preprocessing tool. We can easily get the punctuation
symbol after each lexical word and the number of syllables
within each lexical word by means of text analysis. These
features form the input to the dense layers. The input to
embedding layer is the index of word in the vocabulary.

From the phonetic time alignments generated from HMM
framework, the boundary times of word-final syllable can be
obtained. We extract pitch and energy at 5-ms intervals. The
acoustic features described in Section II-A2 can be calculated
from the alignment result, the pitch and energy contours.

The word-level textual features fed into the front three
dense layers are represented by one-hot vectors. Within word-
level acoustic features described in II-A2, duration level of
word-final syllable and duration level of post-word pause are
represented by one-hot vectors, other acoustic features are
min-max normalized scalars.

B. Experiment Setup

After testing a set of neural network configuration such
as the number of layers and size of each layer, we adopt a
framework illustrated in Fig.2. For optimization, we use Adam
with a minibatch size of 1024. The initial learning rate is set

to 0.0001. Our model is trained for up to 40 epochs. We use
TensorFlow [21] to implement the model.

CRF has been previously reported to provide state-of-the-art
performance on sequential labeling. It has been used by many
researchers for both prosodic boundaries prediction task and
auto-labeling task [7] [22]. As it’s a fairly strong baseline, we
have implemented a CRF-based baseline system using both
text and acoustic features. CRF++ toolkit is used for CRF
model training.

C. Metrics

In our experiments, four measurements are used to compare
our model with the baseline models, including total accuracy
for 4-class classification (T-ACC), F1 score for PW (PW F1),
F1 score for PPH (PPH F1), F1 score for IPH (IPH F1). T-
ACC is calculated as:

T -ACC =
Ncorrectly labeled samples

Ntotal samples
(3)

where Ncorrectly labeled samples is the number of correctly
auto-labeled samples, Ntotal samples is the number of total
samples.

Manual labeled results serve as ground truth in our task.
To evaluate the performance of our model on each prosodic
structure category, precision, recall and F1 score can be
calculated for each category. For example, the F1 score for
IPH can be calculated as follows:

precision =
Ncorrectly labeled IPH

Nlabeled IPH
(4a)

recall =
Ncorrectly labeled IPH

Nground truth IPH
(4b)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(4c)

where Ncorrectly labeled IPH is the number of correctly auto-
labeled IPH samples, Nlabeled IPH is the number of auto-
labeled IPH samples, Nground truth IPH is the number of
manual labeled IPH samples.

D. Results and Discussion

1) Compared with manual labeled result: The auto-labeled
results are compared with manual labeled ground truth. The
confusion matrix for our model is shown in Table I. The one
for baseline CRF is shown in Table II.

From Table I, we can see that our proposed model has good
performance on labeling PW and IPH. While almost 38% of
PPHs are automatically labelled as PWs. However, as previous
research [1] has also reported, this is acceptable and should not
always be regarded as error. Confusion matrix describes the
conformity between the manual label and automatic label. In
the cases of disagreement between automatic label and manual
label, the prosodic boundary type on the higher level (e.g.
PPH) labeled as a lower level (e.g. PW) are more acceptable
than the case that lower one is labeled as a higher one. In
TTS, when lower level of prosodic structure is predicted as
higher level, the improper inserted breaks would degrade the
naturalness of the synthesized speech greatly. On the contrary,

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1236



the missing break caused by predicting higher level prosodic
structure as lower level is acceptable. By comparing the part
above main diagonal in Table I with the part in Table II, our
model outperforms the baseline CRF method for its reduced
amount of mislabeling the lower prosodic levels as the higher
ones. For example, our model labeled result has 98 PPH
samples automatically labeled as IPH, whereas CRF model
labeled result has 129 cases.

TABLE I
CONFUSION MATRIX FOR PROSODIC STRUCTURE LABELING USING

DNN-BGRU-CRF.

Manual
Automatic NB PW PPH IPH

NB 4227 691 47 2
(85.10%) (13.91%) (0.95%) (0.04%)

PW 505 6044 542 8
(7.11%) (85.14%) (7.63%) (0.11%)

PPH 104 1138 1661 98
(3.47%) (37.92%) (55.35%) (3.27%)

IPH 14 14 177 3467
(0.38%) (0.38%) (4.82%) (94.42%)

TABLE II
CONFUSION MATRIX FOR PROSODIC STRUCTURE LABELING USING

CRF.

Manual
Automatic NB PW PPH IPH

NB 4173 706 86 2
(84.01%) (14.21%) (1.73%) (0.04%)

PW 527 5914 644 14
(7.42%) (83.31%) (9.07%) (0.20%)

PPH 101 1093 1678 129
(3.37%) (36.42%) (55.91%) (4.30%)

IPH 4 14 183 3471
(0.11%) (0.38%) (4.98%) (94.53%)

2) Compared with related models: The following different
models are compared for automatic prosodic structure label-
ing:

1) CRF: Conventional CRF model using both text and
acoustic features including lexical word, POS tagging
labels, word length, post-word punctuation, post-word
pause and word-final syllable duration level.

2) D-BLSTM-CRF: The input features, the front dense
layers and output CRF layer are the same as model
illustrated in Fig.2. The difference is that bidirectional
LSTM layer is used to model the context dependency.

3) D-BGRU-S: The only difference from our proposed
model illustrated in Fig.2 is that the softmax layer is
employed as the output layer.

4) D-BGRU-CRF?: The model structure is quite similar to
our proposed model except that the word-final phoneme
embedding is not included in the input features.

5) D-BGRU-CRF: Our proposed automatic prosodic struc-
ture labeling model with CRF layer as the output layer.

T-ACC is adopted to compare the performance of different
models, F1 scores of PW, PPH, IPH are also recorded to ensure
the models performance on these measurements. Experimental
results of all models are shown in Table III.

Compared with CRF, our proposed D-BGRU-CRF acheives
superior performance on both F1 scores of all prosodic bound-
ary types and total accuracy. More specifically, it improves
T-ACC from 0.8131 to 0.8218, IPH F1 score from 0.9525
to 0.9646 and PPH F1 score from 0.6001 to 0.6120. The D-
BGRU-CRF outperforms D-BLSTM-CRF, it indicates that the
BGRU layer performs better than the BLSTM layer when inte-
grated to our model. Our proposed model D-BGRU-CRF out-
performs D-BGRU-S, suggesting that CRF layer considering
the sentence level information can improve the labeling perfor-
mance. Comparing D-BGRU-CRF with D-BGRU-CRF?, the
word-final phoneme embedding added to the input improve the
T-ACC from 0.8163 to 0.8218. Due to the fact that the word-
final phoneme type affects the word-final acoustic feature,
integrating both of them as the input features can improve
the word-final feature representation than just using the word-
final acoustic feature. Among all the models, our proposed
model (D-BGRU-CRF) achieves the best performance.

TABLE III
EXPERIMENT RESULTS OF RELATED MODELS.

Model PW F1 PPH F1 IPH F1 T-ACC
CRF 0.7978 0.6001 0.9525 0.8131
D-BLSTM-CRF 0.8018 0.5984 0.9584 0.8169
D-BGRU-S 0.8026 0.5964 0.9599 0.8199
D-BGRU-CRF? 0.7993 0.5965 0.9586 0.8163
D-BGRU-CRF 0.8066 0.6120 0.9646 0.8218

IV. CONCLUSIONS

In this paper, we investigate the textual features and acoustic
features for automatic prosodic structure labeling task and
propose a model with a cascade of dense layers, BGRU layer
and CRF layer, which can exploit both text and acoustic
cues to label three-level prosodic structure boundaries in a
unified neural network. We also find that word-final features
like word-final phoneme embedding can improve the labeling
performance in the neural network method. Experimental
results demonstrate effectiveness of the proposed hybrid neural
network and also justify the hybrid structure of our model.
In future, we wish to explore speaker’s habitual movement
patterns near the prosodic boundaries based on the videos data
to find the possibility of improving the labeling performance
with that data.
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